
© Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 35 (2023). Number 1, pp. 30ś35
DOI:10.12958/adm2084

Presentations of Munn matrix algebras over

K-algebras with K being a commutative ring
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Communicated by A. P. Petravchuk

Abstract. We consider the Munn matrix algebras over an
associative unital K-algebra A, where K is a commutative (unital)
ring and A as a K-module is free (of őnite or inőnite rank), and,
for each (not necessarily őnitely deőned) presentation of A, we give
presentations of the Munn matrix algebras over it.

Introduction

Presentations of algebraic objects by generators and deőning relations is
a convenient way to deőne these objects by themselves. For this reason, they
have been intensively studied for different classes of groups and semigroups
(see, e,g., the books [4,6ś9]). As for associative algebras over őelds, the
active study of presentations is connected with their representation theory
and, according to the well-known methods, őnite dimensional algebras
(under some additional conditions) can be reduced to algebras of the paths
of quivers with relations (see, e.g., the books [1, 2, 5]).

In this paper we study presentations of Munn matrix algebras over
associative K-algebras with K to be a ring, which are closely related to
completely 0-simple semigroups (see [3]).

1. Main results

Throughout the paper, K denotes a unital commutative ring. Algebra
means associative (unital or non-unital) K-algebra, which is free as a
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K-module (of őnite or inőnite rank). If an algebra is unital, its identity is
usually denoted by e (leaving the symbol 1 for the ring K).

1.1. Presentations

Let B be a (unital or non-unital) K-algebra. Its presentation (or, in
other words, co-representation) is, by deőnition, a pair ⟨B|R⟩, where B is
a set of generators and R a set of deőning relations for the given set of
generators (each of these sets can be both őnite and inőnite).1 Then we
write B = ⟨B|R⟩K or simply B = ⟨B|R⟩.

We call a presentation ⟨B|R⟩ of B normal if the following conditions
hold:2

(a) B does not contain the zero element;
(b) for any relation {f = 0} ∈ R, the free term of the polynomial f is

equal 0 or −e ;
(c) when e ∈ B, then R contains the relations eb−b = b and be−b = 0

for any b ∈ B.
A presentation ⟨B|R⟩ is said to be unital, if e ∈ B.

1.2. Munn matrix algebras

Let A be a unital algebra over a commutative ring K, m, n natural
numbers and P = (pji) an n×m matrix over A. The free Kśnodule of
all m × n matrices over the algebra A can be made into an K-algebra
with respect to the following operation (◦): B ◦ C = BPC. This algebra
is called the Munn m× n matrix algebra over A with sandwich matrix P
and is denoted by M(A;m,n;P ).

By analogy with the Rees semigroups, the matrix P could be called
regular if each row and each column contains at least one invertible entry.
But since after replacing the matrix P by an equivalent matrix P ′ = XPY
(with invertibleX and Y ) we obtain an isomorphic Munn algebra, it suffices
to require that p11 is equal to the identity e of A and the remaining entries
of the őrst row and őrst column are equal to zero. A sandwith matrix of
such form is denoted by P0. Just such a variant is considered below.

1Since most Munn algebras are not unital, in order to be consistent, we consider
unital algebras also as factors of the free algebras in the class of all algebras (but not
only unital). In this case the identity e of a unital algebra B can be included in a system
of its generators B and then the natural relations for e (namely, eb− e = 0, be− e = 0
for any b ∈ B) are deőning; more precisely, either themselves enter in a őxed R or are
consequences of the rest.

2Of course, the presence of the identity e in some condition applies only to the case
when the algebra B is unital.
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1.3. Formulation of theorems

The following theorems deőne presentations of the Munn matrix alge-
bras M(A;m,n;P0) by a presentation A = ⟨X|R⟩ with X and R being
őnite or inőnite. Note that the upper ◦ index in the notation of presen-
tations of Munn algebras indicates the operation of multiplication. The
cases when a system of generators of a (unital) algebra A is unital or
non-unital are considered separately.

Theorem 1. Let A be a K-algebra with identity e over a commutative
ring K, and ⟨A|R⟩ be its a normal unital presentation. For the n and m,
introduce the sets

Γ = {γ2, . . . , γm}, Λ = {λ2, . . . , λn}.

We have the following normal presentation ⟨M |R⟩◦ of a Munn algebra
M = M(A;m,n;P0) with a regular P0 = (pji): M = A ∪ Γ ∪ Λ and R
consists of the following relations:

(1) the relations3 from R;
(2) e ◦ γi = 0, γi ◦ e− γi = 0 (i = 2, . . . ,m);
(3) e ◦ λj − λj = 0, λj ◦ e = 0 (j = 2, . . . , n);
(4) γi ◦ γi′ = 0 (i, i′ = 2, . . . ,m);
(5) λj ◦ λj′ = 0 (j, j′ = 2, . . . , n);
(6) λj ◦ γi − pji = 0 (i = 2, . . . ,m; j = 2, . . . , n).

Theorem 2. Let A be a K-algebra with identity e over a commutative
ring K and ⟨A|R⟩ be its a normal non-unital presentation Then R contains
at least one relation f = 0 with the polynomial f whose free term is not
equal to zero. Fix such a polynomial denoting it by f0 − e.

For the n and m, introduce the sets

Γ = {γ2, . . . , γm}, Λ = {λ2, . . . , λn}.

We have the following normal presentation ⟨M |R⟩◦ of a Munn algebra
M = M(A;m,n;P0) with a regular P0 = (pji): M = A ∪ Γ ∪ Λ and R
consists of the following relations:

(0) the relations3 from R;
(1) f0a = af0 for any a ∈ A;
(2) f0 ◦ γi = 0, γi ◦ f0 − γi = 0 (i = 2, . . . ,m);
(3) f0 ◦ λj − λj = 0, λj ◦ f0 = 0 (j = 2, . . . , n);

3This condition means that a homomorphic embedding of A into M will be indicated,
but without taking into account the identity e, i.e. as non-unital algebras.
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(4) γi ◦ γi′ = 0 (i, i′ = 2, . . . ,m);
(5) λj ◦ λj′ = 0 (j, j′ = 2, . . . , n);
(6) λj ◦ γi − pji = 0 (i = 2, . . . ,m; j = 2, . . . , n).

Note that the presentations constructed in both cases are not, as rule,
unital (since, by [3, Lemma 5.18], the Munn algebra don’t have an identity
if the sandwich matrix is singular).

2. Proofs of Theorem 1 and 2

First we prove Theorem 1.
Indicate which elements of M correspond to generators, which are

indicated in the condition of the theorem.
For x ∈ A denote by (x)ij , where i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, the

matrix from M with its (i, j)th entry being x, and its remaining entries
being 0; the expression (0)ij means the m × n zero matrix 0. Then, by
the deőnition of ◦,

(b)ij ◦ (c)i′j′ = (bpji′c)ij′

whence, due to the form of the matrix P0,

(bc)ij = (b)i1 ◦ (c)1j . (∗)

Due to (∗), the map i0 given by the equality i0(x) = (x)11 with x ∈ A
is a homomorphic embedding of A into M as non-unital algebras, and
we identify the corresponding elements of both the algebras. Hence, in
particular, the set of generators A is a subset of the set of generators M .

As for the rest of the generators from M , we take the following matrices
(as elements of M):

γi = (e)i1, λj = (e)1j

for i ∈ {2, . . . ,m}, j ∈ {2, . . . , n}.
It is easy to check that conditions (2)-(6) of the theorem are satis-

őed. The fact that the indicated matrices (a)11, γi, λj , where a ∈ A, i =
2, . . . ,m; j = 2, . . . , n, form a system of generators of the algebra M is a
consequence of the equalities

(a)i1 = γi ◦ (a)11, (a)1j = (a)11 ◦ λj , (a)ij = (a)i1 ◦ (e)1j ,

which follow from (∗).
It remains to prove that the set of relations R deőnes the algebra M.

In other words, there is no a relation between generators from the set M
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which would not follow from the relations of R. Assume the contrary and
let F be a non-commutative polynomial (over K) in variables from M
such that F = 0 and it is not a consequence of the relations from R.

To őnd out what kind of the polynomial F can be, we need the some
lemmas. By γ and λ we denote γi for some i and λj for some j. Condition
(k) of the theorem will be denoted by Tk.

Lemma 1. a ◦ γ = 0 and λ ◦ a = 0 for any a ∈ A.

Indeed, a◦γ = (a◦e)◦γ = a◦ (e◦γ) and λ◦a = λ◦ (e◦a) = (λ◦e)◦a
and the lemma follows from equalities T2 and T3.

Lemma 2. Let A and M denote the sets of all őnite words from A and
M (with respect to multiplication ◦). A non-zero word x ∈M \A can only
have one of the following types: γi ◦ a, a ◦ λj, γi ◦ a ◦ λj, where a ∈ A.

Proof. Let’s consider connected subwords in x. Since γ = γ◦e and λ = e◦λ
(see T2 and T3), we can assume that in x there is a subword belonging to
A. Let b denotes such a subword of the greatest length. By Lemma 1, only
γ can stand to the left of b, and λ to the right. If such γ really stands,
then it cannot be to the left of it neither a (by Lemma 1), not γ (see T4),
not λ (otherwise, by T6 or λ ◦ γ = 0 or the length of b will be increased).
So γ is the left end of the word x. Similarly, it can be shown that if λ
to the right of b really stands, then it is the right end of x. Lemma is
proved.

Thus, by Lemma 2, the equality F = 0 has the form

f0 +
∑

2⩽i⩽m

γi ◦ f1i +
∑

2⩽j⩽n

f2j ◦ λj +
∑

2⩽i⩽m
2⩽j⩽n

γi ◦ f3ij ◦ λj = 0,

where f0, f1i, f2j , f3ij are polynomials in variables a ∈ A.
Write all the terms of this equality in matrix form (that is, as elements

of the Munn algebra), using the matrix form of the generators and the
deőnition of the multiplication ◦:

f0 = (f0)11, γi◦f1i = (f1i)i1, f2j ◦λj = (f2j)1j , γi◦f3ij ◦λj = (f3ij)ij .

So, all the terms of the polynomial F stand in the corresponding matrix
in different places and hence the equality F = 0 means that

f0 = 0, f1i = 0, f2j = 0, f3ij = 0,

i = 1, . . . ,m, j = 1, . . . , n.
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We got that the equality F = 0 is equivalent to the system of the
equalities in variables from A which leads to contradiction, since these
relations are consequences of the relations from R. Theorem 1 is proved.

Theorem 2 follows from Theorem 1 as follows: őrst we add to A the
element e and write out the presentation of the Munn algebra, applying
Theorem 1, and then exclude the generator e and replace it in the relations
by the polynomial f0.
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