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Minimal lattice points in the Newton
polyhedron with an application

to normal ideals

Ibrahim Al-Ayyoub
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Abstract. Let a1, . . . , an be positive integers and let ∆ =
NP (a1, . . . , an) be the Newton polyhedron associated to these in-
tegers, that is, the convex hull in Rn of the axial points that have
ai in the xi-axis. We give some characterization of the minimal
elements of ∆, and then use this characterization to give an al-
ternative simpler proof of a main result of [7] on the normality of
monomial ideals.

Introduction

Let I be an ideal in a Noetherian ring R. The integral closure of I is the
ideal I that consists of all elements of R that satisfy an equation of the
form

xn + d1x
n−1 + · · ·+ dn−1x+ dn = 0, di ∈ Ii (i = 1, . . . , n).

The ideal I is said to be integrally closed if I = I. An ideal is called

normal if all of its powers are integrally closed. It is known that if R
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is a normal integral domain, then the Rees algebra R[It] = ⊕n∈NIntn

is normal if and only if I is a normal ideal of R [4, Proposition 2.1.2].

This brings up the importance of normality of ideals as the Rees algebra

is the algebraic counterpart of blowing up a scheme along a closed sub-

scheme [9]. There is no concise solution to the problem of when a given

ideal is normal, not even in the monomial ideal case.

Let I ⊂ K[x1, . . . , xn] be a monomial ideal with K a field and let Γ(I)

denote the set of exponents of all monomials in the ideal I. The Newton

polyhedron of I, denoted NP (I), is the convex hull in Rn of Γ(I); see

Definition 1.4.7 in Swanson and Huneke [8]. Similarly, let Γ(I) denote

the set of exponents of all monomials in I. Geometrically, finding the

integral closure of the monomial ideal I is the same as finding all the

integer lattice points in NP (I); see Proposition 1.4.6 in [8]. That is,

Γ(I) = NP (I)∩Nn. It is a challenging problem to translate the question

of normality of a monomial ideal I into a question about the exponent

sets Γ(I) and Γ(I).

Given the ideal I = ⟨xa11 , . . . , xann ⟩ ⊂ R = K[x1, . . . , xn] with ai posi-

tive integers. Let I(a1, . . . , an) denote the integral closure of the ideal I.

The normality of I(a1, . . . , an) has been of interest for many authors

[1–3,7,9]. Investigating this normality causes the following natural ques-

tion to arise:

Question: Giving that I(a1, . . . , an) ⊂ R is normal. What hypothe-

ses does s need to satisfy so that I(a1, . . . , an, s) ⊂ R[xn+1] stays normal?

As partial answers to this question (generalizing the main work of [2])

it is shown in Al-Ayyoub et. al. [1] that if I(a1, . . . , an) is normal, then

I(a1, . . . , an, s) is normal for any s ∈ {a1, . . . , an}. Also, it has been pro-

ved in [1] that if I(a1, . . . , an, l) is not normal, where l = lcm(a1, . . . , an),

then I(a1, . . . , an, s) is not normal for any s > l.

Searching for an answer to the above question is reduced to consider

only the values of s that lie in the interval [l, 2l − 1], this is due to the

main result of Reid, Roberts and Vitulli [7, Theorem 5.1] which states

that if l = lcm(a1, . . . , an) and L := I(a1, . . . , an, an+1 + l) is normal,

then J := I(a1, . . . , an, an+1) is normal. Conversely, if an+1 ≥ l and J is

normal, then L is normal. The method of the proof of [7, Theorem 5.1] is

by comparing the minimal generators of the integral closure of the Rees

algebras R[Lt] and R[Jt]. The goal of this paper is to give an elementary
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and simpler proof of this main result of [7]. Our proof depends on the ele-

mentary definition of convex sets, and in particular, it depends on a

simple characterization of the exponents of the minimal generators of

I(a1, . . . , an), see Lemma 1 which constitutes a key lemma of this paper.

This lemma provides a good tool for investigating the normality of the in-

tegral closure of the chief ideals, that is, ideals of the form ⟨xa11 , . . . , xann ⟩.

1. Characterizing the minimal elements

Throughout this paper, let a1 ≤ · · · ≤ an ≤ an+1 with ai positive integers
and let R = K[x1, . . . , xn] and S = R[xn+1]. Before we proceed, we start
with the following definition and emphasize the following notation.

Notation 1. Given the ideal I = ⟨xa11 , . . . , xann ⟩ ⊂ R. Let I(a1, . . . , an) =
I denote the integral closure of I. Let Γ(a1, . . . , an) denote the set of
exponents of all monomials in I. Also, let Γ′(a1, . . . , an) denote the
set of the minimal elements of Γ(a1, . . . , an), that is, the elements in
Γ′(a1, . . . , an) are in a one-to-one correspondence with the minimal gene-
rators of I.

Definition 1. The tuple (c1, . . . , cn) ∈ Γ(a1, . . . , an) is called minimal
if whenever ci > 0, then (c1, . . . , ci − 1, . . . , cn) /∈ Γ(a1, . . . , an), where
i ∈ {1, . . . , n}.

For instance, the black disks in the figure below give the elements of
Γ′(6, 8, 10), that is, the black disks represent the minimal set of generators
of I(6, 8, 10) = ⟨x6, y8, z10⟩.

Consider an n-tuple c =(c1, . . . , cn) ∈ Qn
≥0. If c ∈ Γ(a1, . . . , an), then

there are nonnegative rational numbers λ1, . . . , λn with
n∑

j=1
λj = 1 such
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that cj ≥ ajλj for j = 1, . . . , n; that is,
n∑

j=1

cj
aj

≥ 1. Conversely, if

n∑
j=1

cj
aj

≥ 1, then c ∈ Γ(a1, . . . , an). To prove this, first note that if

n∑
j=1

cj
aj

− 1

ai
≥ 1 for some i with ci > 0, then there must be some positive

integer k such that
n∑

j=1

cj
aj

− k

ai
≥ 1 and

n∑
j=1

cj
aj

− k

ai
− 1

ai
< 1. It this

case we show that (c1, . . . , ci − k, . . . , cn) ∈ Γ(a1, . . . , an) which in turn
implies that c ∈ Γ(a1, . . . , an). Therefore, without loss of generality, we

may assume that
n∑

j=1

cj
aj

− 1

ai
< 1 for any i with ci > 0. Fix i with ci > 0.

Let λi = 1 −
n∑

j=1,j ̸=i

cj
aj

and let λj =
cj
aj

(j = 1, . . . , î, . . . , n). Then

n∑
j=1

λj = 1 and cj = ajλj for j = 1, . . . , î, . . . , n. Also, since
n∑

j=1

cj
aj

≥ 1,

then
ci
ai

≥ 1−
n∑

j=1,j ̸=i

cj
aj

; thus ci ≥ λiai. This proves the following basic

lemma, yet a key lemma of this paper.

Lemma 1. Let (c1, . . . , cn) ∈ Qn
≥0. Then

(c1, . . . , cn) ∈ Γ(a1, . . . , an) ⇐⇒ 1 ≤
n∑

j=1

cj
aj

.

In particular, (c1, . . . , cn) ∈ Γ′(a1, . . . , an) ⇐⇒ 1 ≤
n∑

j=1

cj
aj

< 1 +
1

ai
for

any i with ci > 0.

Remark 1. Let (c1, . . . , cn, cn+1) ∈ Γ′(a1, . . . , an, an+1) and let l =
lcm(a1, . . . , an).
(1) If cn+1 > 0, then

cn+1 =

⌈
an+1

(
1−

n∑
i=1

ci
ai

)⌉
.

(2) If
n∑

i=1

ci
ai

> 1, then
n∑

i=1

ci
ai

≥ 1 +
1

l
and cn+1 = 0.

Proof. (1) Assume cn+1 > 0. Then 1 ≤
n+1∑
j=1

cj
aj

< 1 +
1

an+1
by Lemma 1.

Thus
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an+1

(
1−

n∑
i=1

ci
ai

)
≤ cn+1 < an+1

(
1−

n∑
i=1

ci
ai

)
+ 1,

hence done as cn+1 is an integer.

(2) Note
n∑

i=1

ci
ai

=
c1l1 + · · ·+ c1l1

l
> 1, where li = l/ai. Since all parame-

ters are integers, then we must have c1l1+· · ·+c1l1 ≥ l+1, hence done.

2. An application to normal monomial ideals

In this section, we give an alternative shorter and elementary proof of a
main result of [7], see Corollaries 1 and 2.

Notation 2. Let Ik =
〈
xka11 , . . . , xkann

〉
⊂ K[x1, . . . , xn] and Fk =

Γ′(ka1, . . . , kan). Let J = I1 = ⟨xe11 · · ·xenn | (e1, . . . , en) ∈ F1⟩ and Jk =
Ik = ⟨xc11 · · ·xcnn | (c1, . . . , cn) ∈ Fk⟩.

Remark 2. With notation as before, we have Jk ⊆ Jk.

Proof. To prove the remark we need to show that M1 + · · · + Mk ∈
Γ(ka1, . . . , kan) whenever Mi ∈ F1. Write Mi = (ei,1, . . . , ei,n) ∈ F1 and

let M1 + · · · +Mk = (c1, . . . , cn) with cj =
k∑

i=1
ei,j . Since Mi ∈ F1, then

n∑
j=1

ei,j
aj

≥ 1 and hence

n∑
j=1

cj
kaj

=
n∑

j=1

k∑
i=1

ei,j

kaj
=

k∑
i=1

1

k

n∑
j=1

ei,j
aj

≥
k∑

i=1

1

k
= 1;

which finishes the proof.

We adopt the following notation as given in [6].

Definition 2. Define the k-fold Minkowski sum of F1 to be as follows

k ∗ F1 = {M1 + · · ·+Mk | Mi ∈ F1}

with componentwise addition.

Theorem 1 ([5, Theorem 1.4.2]). Let I be a monomial ideal in a poly-
nomial ring R. Then I is the monomial ideal generated by all monomials
u ∈ R for which there exists an integer l such that ul ∈ I l.
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Remark 3. With notation as before, we have Jk = Jk.

Proof. Note ⟨xa11 , . . . , xann ⟩ ⊂ J ; thus,
〈
xka11 , . . . , xkann

〉
⊂ Jk and hence

Jk = Ik =
〈
xka11 , . . . , xkann

〉
⊂ Jk. On the other hand, assume that

α ∈ Jk. Then by Theorem 1, there is an integer l such that αl ∈
(
Jk
)l
.

This implies that αl = m1m2 · · ·mkl with mi ∈ J for all i. This means
that mi ∈ ⟨xa11 , . . . , xann ⟩ for each i; hence, by Theorem 1, there exists

an integer si such that msi
i = x

ti,1a1
1 x

ti,2a2
2 · · ·xti,nann where the ti,j are

integers with ti,1 + · · · + ti,n = si for all i = 1, . . . , kl. Now let s =
lcm(s1, . . . , skl) and qi = s/si. Then

αls =
(
αl
)s

= ms
1m

s
2 · · ·ms

kl

= ms1q1
1 ms2q2

2 · · ·msklqkl
kl

=

kl∏
i=1

(
x
ti,1a1
1 x

ti,2a2
2 · · ·xti,nann

)qi
=

n∏
j=1

x
(t1,jq1+t2,jq2+···+tkl,jqkl)aj
j

∈
(
xka11 , . . . , xkann

)ls
,

since
n∑

j=1
(t1,jq1 + t2,jq2 + · · ·+ tkl,jqkl) =

kl∑
i=1

(ti,1 + ti,2 + · · ·+ ti,n) qi =

=
kl∑
i=1

siqi =
kl∑
i=1

s = kls; therefore, Theorem 1 implies that

α ∈
〈
xka11 , . . . , xkann

〉
= Jk.

Recall that an ideal is called normal if all of its powers are integrally

closed. The ideal J as given in the above notation, is normal if Jk is

integrally closed for all powers k, that is, Jk = Jk. By Remark 3, we

have Jk = Jk. Therefore, J is normal if and only if Jk = Jk for all k. But

Remark 2 gives that Jk ⊆ Jk; therefore, we conclude that J is normal if

and only if Jk ⊆ Jk for all k. But Jk ⊆ Jk is equivalent to Fk ⊆ k ∗ F1.

Therefore, to prove J is normal, it suffices to show that Fk ⊆ k ∗ F1 for

all k ∈ N.
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Remark 4. Let l = lcm(a1, . . . , an) with a1 < · · · < an < an+1 are
positive integers.

(1) Let (c1, . . . , cn, cn+1) ∈ Γ′(a1, . . . , an, an+1) and let δ = 1 −
n∑

i=1

ci
ai

or

δ = 0 according as
n∑

i=1

ci
ai

≤ 1 or
n∑

i=1

ci
ai

> 1. Then (c1, . . . , cn, cn+1+ lδ) ∈

Γ′(a1, . . . , an, an+1 + l).

(2) Let (e1, . . . , en, en+1) ∈ Γ′(a1, . . . , an, an+1+l) and let δ = 1−
n∑

i=1

ei
ai

or

δ = 0 according as
n∑

i=1

ei
ai

≤ 1 or
n∑

i=1

ei
ai

> 1. Then (e1, . . . , en, en+1−lδ) ∈

Γ′(a1, . . . , an, an+1).

Proof. (1) By Lemma 1, it suffices to show that
n∑

i=1

ci
ai

+
cn+1 + lδ

an+1 + l
<

1 +
1

an+1 + l
. By Remark 1, we have cn+1 = ⌈an+1δ⌉ < an+1δ + 1; thus,

cn+1+ lδ < (an+1 + l) δ+1. Therefore,
n∑

i=1

ci
ai

+
cn+1 + lδ

an+1 + l
<

n∑
i=1

ci
ai

+ δ+

1

an+1 + l
= 1 +

1

an+1 + l
, as required.

(2) By Lemma 1, it suffices to show that
n∑

i=1

ei
ai

+
en+1 − lδ

an+1
< 1 +

1

an+1
.

By Remark 1, we have en+1 = ⌈(an+1 + l) δ⌉ < (an+1 + l) δ + 1; thus,

en+1−lδ < an+1δ+1. Therefore,
n∑

i=1

ei
ai

+
en+1 − lδ

an+1
<

n∑
i=1

ei
ai

+δ+
1

an+1
=

1 +
1

an+1
, as required.

Lemma 2. Let F1 = Γ′(α1, . . . , αn, αn+1) and let

(b1, . . . , bn, bn+1) :=
∑

j
kj(c1,j , . . . , cn,j , cn+1,j) ∈ k ∗ F1, (1)

where (c1,j , . . . , cn,j , cn+1,j) ∈ F1 and k =
∑

j kj with kj > 0. Let δj =

1 −
n∑

i=1

ci,j
αi

or δj = 0 according as
n∑

i=1

ci,j
αi

≤ 1 or
n∑

i=1

ci,j
αi

> 1. Also, let

δ = 1−
n∑

i=1

bi
kαi

or δ = 0 according as
n∑

i=1

bi
kαi

≤ 1 or
n∑

i=1

bi
kαi

> 1. Then

kδ ≤
∑

j kjδj .

In particular,



8 Newton polyhedron and normal ideals

kδ =
∑

j kjδj ⇐⇒
n∑

i=1

ci,j
αi

≤ 1 for every j.

Proof. By (1) note bi =
∑

j kjci,j for i = 1, . . . , n. Consider

kδ = k

(
1−

n∑
i=1

∑
j kjci,j

kαi

)
= k −

∑
j

(
kj

n∑
i=1

ci,j
αi

)
=
∑

j
kj

(
1−

n∑
i=1

ci,j
αi

)
. (2)

But the definition of δj implies that 1 −
n∑

i=1

ci,j
αi

≤ δj for all j, therefore

kδ ≤
∑

j kjδj . To prove the second conclusion, note that if kδ <
∑

j kjδj ,

then (2) implies that 1−
n∑

i=1

ci,jt
αi

< δjt for some jt, which in turn implies

that
n∑

i=1

ci,jt
αi

> 1. Conversely, if 1 <
n∑

i=1

ci,jt
αi

for some jt, then 1 −
n∑

i=1

ci,jt
αi

< δjt = 0; hence, kδ =
∑

j kj

(
1−

n∑
i=1

ci,j
αi

)
<
∑

j kjδj .

Now, using the above two lemmas and remark, we give a direct and
simpler proof for Theorem 5.1 of [7]. Let L = I(a1, . . . , an, an+1 + l) and
J = I(a1, . . . , an, an+1), where l = lcm(a1, . . . , an).

Corollary 1. If L is normal, then J is so.

Proof. Let Fk = Γ′(ka1, . . . , kan, kan+1) and Hk = Γ′(ka1, . . . , kan,
k (an+1 + l)). Our goal is to show that Fk ⊆ k ∗ F1. Let γ = (b1, . . . , bn,
bn+1) ∈ Fk. We may assume bn+1 > 0. By Remark 4, (b1, . . . , bn, bn+1 +

klδ) ∈ Hk, where δ = 1 −
n∑

i=1

bi
kai

> 0. Since L is normal, then

Hk ⊆ k ∗H1; thus, we get

(b1, . . . , bn, bn+1 + klδ) =
∑

j kj(e1,j , . . . , en,j , en+1,j),

with (e1,j , . . . , en,j , en+1,j) ∈ H1 and k =
∑

j kj . Note bn+1 + klδ =∑
j kjen+1,j . By the first conclusion of Lemma 2, we have kδ ≤

∑
j kjδj ,

where δj = 1−
n∑

i=1

ei,j
ai

or δj = 0 according as
n∑

i=1

ei,j
αi

≤ 1 or
n∑

i=1

ei,j
αi

> 1;

thus, bn+1 =
∑

j kjen+1,j − klδ ≥
∑

j kj (en+1,j − lδj). Now, Remark 4
gives that (e1,j , . . . , en,j , en+1,j − lδj) ∈ F1 for every j; thus,

γ = (b1, . . . , bn, bn+1) ≥lex
∑

j kj(e1,j , . . . , en,j , en+1,j − lδj) ∈ k ∗ F1,

where ≥lex is the lexicographical order, which gives that J is normal.
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The proof of the converse direction of the above corollary is analogue
to the proof of the corollary itself but with interchanging addition and
subtraction of the last coordinates of the (n+ 1)-tuples. But in order to
prove this converse direction, we need the following lemma.

Lemma 3. Let l = lcm(α1, . . . , αn) and let αn+1 ≥ l. Let Ek =
Γ′(kα1, . . . , kαn, kαn+1). Assume that I(α1, . . . , αn, αn+1) is normal, that
is, Ek ⊆ k ∗ E1. Let γ ∈ Ek and write

γ := (b1, . . . , bn, bn+1) =
∑

j kj(e1,j , . . . , en,j , en+1,j) ∈ k ∗ E1,

where (e1,j , . . . , en,j , en+1,j) ∈ E1 and k =
∑

j kj with kj > 0. Then

bn+1 > 0 =⇒
n∑

i=1

ei,j
αi

≤ 1 for all j.

Proof. Since γ = (b1, . . . , bn, bn+1) ∈ Ek, then by Remark 1 we have

bn+1 =

⌈
kαn+1

(
1−

n∑
i=1

bi
kαi

)⌉
.

Assume
n∑

i=1

ei,jt
αi

> 1 for some jt; then 1−
n∑

i=1

ei,jt
αi

≤ −1

l
and en+1,jt = 0

according to Remark 1. Therefore, and since αn+1 ≥ l, we have

αn+1

(
1−

n∑
i=1

ei,jt
αi

)
≤ l

(
1−

n∑
i=1

ei,jt
αi

)
≤ −1. (3)

For any j let δj = 1 −
n∑

i=1

ei,j
αi

or δj = 0 according as
n∑

i=1

ei,j
αi

≤ 1 or

n∑
i=1

ei,j
αi

> 1. This implies that δj ≥ 1 −
n∑

i=1

ei,j
αi

. Note δjt = 0 and

consider∑
j kjen+1,j =

∑
j kj ⌈αn+1δj⌉ ≥

⌈∑
j kjαn+1δj

⌉
=

⌈ ∑
j ̸=jt

kjαn+1δj

⌉

by (3) >

⌈
kjtαn+1

(
1−

n∑
i=1

ei,jt
αi

)
+
∑
j ̸=jt

kjαn+1

(
1−

n∑
i=1

ei,j
αi

)⌉
=

⌈∑
j kjαn+1

(
1−

n∑
i=1

ei,j
αi

)⌉
=

⌈
kαn+1

(
1−

n∑
i=1

∑
j kjei,j

kαi

)⌉
=

⌈
kαn+1

(
1−

n∑
i=1

bi
= kαi

)⌉
= bn+1,

giving a contradiction to the hypothesis that bn+1 =
∑

j kjen+1,j .

Corollary 2. If J is normal and an+1 ≥ l, then L is so.
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Proof. LetHk = Γ′(ka1, . . . , kan, k (an+1 + l)) and Fk = Γ′(ka1, . . . , kan,
kan+1). Our goal is to show thatHk ⊆ k∗H1. Let γ = (b1, . . . , bn, bn+1) ∈
Hk. We may assume bn+1 > 0. By Remark 4, (b1, . . . , bn, bn+1 − klδ) ∈

Fk, where δ = 1−
n∑

i=1

bi
kai

> 0. Since J is normal, then Fk ⊆ k ∗F1; thus,

we have

(b1, . . . , bn, bn+1 − klδ) =
∑

j kj(c1,j , . . . , cn,j , cn+1,j),

with (c1,j , . . . , cn,j , cn+1,j) ∈ F1 and k =
∑

j kj . Note that bn+1 =∑
j kjcn+1,j + klδ. By Lemma 3, we have

n∑
i=1

ci,j
ai

≤ 1 for all j. Hence

by the last conclusion of Lemma 2, we get kδ =
∑

j kjδj where δj =

1−
n∑

i=1

ci,j
ai

≥ 0; thus, bn+1 =
∑

j kj (cn+1,j + lδj). Now, Remark 4 gives

that (c1,j , . . . , cn,j , cn+1,j + lδj) ∈ H1 for every j; thus,

γ = (b1, . . . , bn, bn+1) =
∑

j kj(c1,j , . . . , cn,j , cn+1,j + lδj) ∈ k ∗H1,

which gives that L is normal.
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