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On the LS-category of homomorphisms
of groups with torsion

N. Kuanyshov

Communicated by V. V. Lyubashenko

Abstract. We prove the equality catpϕq � cdpϕq for homo-
morphisms ϕ : ΓÑ Λ of any finitely generated abelian group Γ. In
addition, we prove that the Lusternik-Schnirelmann category and
the cohomological dimension of any nonzero homomorphism of a
torsion group cannot be finite.

1. Introduction

The (reduced) Lusternik-Schnirelmann category (for short, LS-category),
catpXq, of a topological space X is the minimal number k such that there
is an open cover tU0, U1, . . . , Uku of X by k � 1 contractible in X. The
LS-category gives a lower bound on the number of critical points for a
smooth real-valued function on a closed manifold [13], [3].

Since it is a homotopy invariant, it can be defined for discrete groups
Γ as catpΓq � catpBΓq where BΓ � KpΓ, 1q is a classifying space. Com-
putation of the LS-category of spaces presents a great challenge even
spaces are nice such as manifolds [8]. In the 50s Eilenberg and Ganea [9]
proved that the LS-category of a discrete group equals its cohomological
dimension, catpπq � cdpπq. We recall that the cohomological dimension
of a group Γ is defined as follows,

cdpΓq � suptk | HkpΓ,Mq � 0u
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where M is some ZΓ-module [2]. From the work of Dranishnikov and
Rudyak [7] it follows that

cdpΓq � maxtk | pβΓq
k � 0u

where βΓ P H
1pΓ, IpΓqq is the Berstein-Schwarz class of Γ [1].

The LS-category of the map f : X Ñ Y , catpfq, is the minimal num-
ber k such that X admits an open cover by k� 1 open sets U0, U2, ..., Uk
with nullhomotopic restrictions f |Ui : Ui Ñ Y for all i. The LS-category
catpϕq of a group homomorphism ϕ : Γ Ñ π is defined as catpfq where
the map f : BΓ Ñ Bπ induces the homomorphism ϕ for the fundamental
groups.

The cohomological dimension cdpϕq of a group homomorphism
ϕ : Γ Ñ Λ was introduced by Mark Grant [10] as the maximum of
k such that there is a ZΛ-module M with the nonzero induced homo-
morphism ϕ� : HkpΛ,Mq Ñ HkpΓ,Mq. In view of universality of the
Berstein-Schwarz class [7], for any homomorphism ϕ : Γ Ñ Λ

cdpϕq � maxtk | ϕ�pβΛq
k � 0u.

This together with the cup-length lower bound for the LS-category brings
the inequality cdpϕq ¤ catpϕq for all group homomorphisms.

In view of the Eilenberg-Ganea equality cdpΓq � catpΓq, the following
conjecture seems to be natural:

Conjecture 1.1. For any group homomorphism ϕ : Γ Ñ Λ always
catpϕq � cdpϕq.

In [15] Jamie Scott considered this conjecture for geometrically finite
groups and he proved it for monomorphisms of any groups and for ho-
momorphisms of free and free abelian groups. In [10] Tom Goodwillie
gave an example of an epimorphism of an infinitely generated group
ϕ : GÑ Z2 with cdpϕq � 1 that disproves the conjecture.

In the joint paper with Dranishnikov [6] we reduced the conjecture
from arbitrary homomorphisms to epimorphisms and we gave a coun-
terexample to the conjecture with epimorphism between geometrically
finite groups. Also, we proved the conjecture for epimorphisms between
finitely generated, torsion-free nilpotent groups. It is a natural question
to ask if one can remove the torsion-free restriction in our result. In this
paper we do it in the cases abelian groups.

Theorem 1.2 (Theorem 4.4). Let ϕ : Γ Ñ Λ be any homomorphism
between finitely generated abelian groups. Then catpϕq � cdpϕq.
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Moreover, in the above case the number catpϕq can explicitely com-
puted. For that one needs to present the above homomorphism as a direct
sum ϕ � ϕ1`ϕ2 where ϕ1 is a homomorphism between free abelian groups
and ϕ2 is from free abelian to finite abelian group T pΛq � TorsionpΛq.
Then catpϕq � cdpϕq � rankpϕ1q� kpT pΛqq, where kpT pΛqq is the Smith
Normal number of T pΛq.

Dealing with torsion we investigated a satellite question whether it
is possible to have a homomorphism of finite groups ϕ : Γ Ñ Λ with
cdpϕq   8. We give a negative answer to this question in the following
theorem.

Theorem 1.3 (Theorem 3.2). Let ϕ : G Ñ H be a nonzero homomor-
phism of a torsion group G. Then cdpϕq � 8. In particular, catpϕq �
cdpϕq.

2. Preliminaries

In this section we recall some classic theorems used in the paper.
Given positive integers m,n ¥ 1, we denote by Mm�npZqthe set of

m� n matrices with integer entries.

Theorem 2.1 (The Smith Normal Form). Given a nonzero matrix A P
Mm�npZq, there exist invertible matrices P PMm�mpZq and Q PMn�npZq
such that

PAQ �

�
�����������

n1 0 � � � 0 0 � � � 0
0 n2 � � � 0 0 � � � 0
...

...
. . .

...
...

. . .
...

0 0 � � � nk 0 � � � 0
0 0 � � � 0 0 � � � 0
...

...
. . .

...
...

. . .
...

0 0 � � � 0 0 � � � 0

�
�����������

where the integer ni ¥ 1 are unique up to sign and satisfy n1|n2| � � � |nk.
Further, one can compute the integers ni by the recursive formula

ni �
di
di�1

, where di is the greatest common divisor of all i� i-minors of

the matrix A and d0 is defined to be 1.

The proof of Theorem 2.1 can be found in [12, Proposition 2.11,
p. 339].
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Corollary 2.2. Given a matrix A P Mn�npZq with detpAq � 0, there
exist invertible matrices P PMn�npZq and Q PMn�npZq such that

PAQ �

�
�����������

1 0 � � � 0 0 � � � 0
0 1 � � � 0 0 � � � 0
...

...
. . .

...
...

. . .
...

0 0 � � � 1 0 � � � 0
0 0 � � � 0 n1 � � � 0
...

...
. . .

...
...

. . .
...

0 0 � � � 0 0 � � � nk

�
�����������

where the integer ni ¥ 2 are unique up to sign and satisfy n1|n2| � � � |nk.

Theorem 2.3 (Invariant Factor Decomposition (IDF) for Finite Abelian
Groups). Every finite abelian group G can be written uniquely as G �
Zn1 � ... � Znk where the integers ni ¥ 2 are the invariant factors of G
that satisfy n1|n2|...|nk and Zni are cyclic group of order ni, i � 1, � � � , k.

The proof of Theorem 2.3 can be found in [4, Theorem 3, p. 158].
Alternatively, one can apply Corollary 2.2 and get the result.

Definition 2.4. Given a finite abelian group G, the Smith Normal num-
ber kpGq of G is the number k from Theorem 2.3.

In the proof of our main result about homomorphism between finite
groups we use Shapiro’s Lemma [2, Proposition 6.2, p. 73].

Theorem 2.5 (“Shapiro’s Lemma”). If i : H Ñ G is a monomorphism
and M is an H-module, then the through homomorphism

H�pG,CoindGHMq
i�
Ñ H�pH,CoindGHMq

α�
Ñ H�pH,Mq

is an isomorphism, where CoindGHM � HomZHpZG,Mq and the ho-
momorphism of coefficients α : HomZHpZG,Mq Ñ M is defined as
αpfq � fpeq.

In the paper we use the notation H�pΓ, Aq for the cohomology of a
group Γ with coefficient in a Γ-module A. The cohomology groups of a
space X with the fundamental group Γ we denote as H�pX;Aq. Thus,
H�pΓ, Aq � H�pBΓ;Aq where BΓ � KpΓ, 1q.

We say that a CW-complex X is of finite type if each n-skeleton Xpnq

of X is finite.
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The Kunneth Formula Theorem for cohomology of product of two
spaces with field coefficient F can be founded in Spanier [16, Theo-
rem 5.5.11] or Dold [5, Proposition VI.12.16]. We state a special case,
which will be used in the paper.

Theorem 2.6 (The Kunneth Formula Theorem). Let F be a field. If
the CW-complexes X, Y are of finite type, then the cross product

à
k

HkpX;F q bHn�kpY ;F q
�
Ñ HnpX � Y ;F q

is an isomorphism.

We recall the Universal Coefficient Formula (UCF) for cohomology
(see [16, Theorem 5.5.10]).

UCF: Let the CW-complex X be of finite type and a coefficient group
G, then for each n there is the short exact sequence

0 Ñ HnpXq bGÑ HnpX;Gq Ñ TorpHn�1pXq, Gq Ñ 0,

which splits.

3. Finite Groups

A group G is called a torsion group if every element g P G has finite
order.

For the proof of the main result of this section (Theorem 3.2) we need
the following easy lemma.

Lemma 3.1. Let ϕ : G Ñ Zp be an epimorphism where p is prime and
G is a torsion group. Then G contains Zpk for some k such that the
restriction ψ � ϕ|Z

pk
: Zpk Ñ Zp is surjective.

Proof. Let a be a generator of Zp. We pick g P G with ϕpgq � a. Then g
has a finite order n. Since gn � 0, it follows that ϕpgqn � na � 0. Hence,
n is divisible by p. Let n � pkm where m is not divisible by p. Then
the order of element gm is pk. Thus, gm generates a subgroup Zpk � G.
Since ϕpgmq � ma � 0 in Zp, the element ma generates Zp. Therefore,
ψ is surjective, ϕpZpkq � Zp.

Theorem 3.2. Let ϕ : GÑ H be a nonzero homomorphism of a torsion
group G. Then catpϕq � cdpϕq � 8.
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Proof. In view of Theorem 3.2 and Theorem 3.3 [6] we may assume that
ϕ is an epimorphism.

We do the proof in two steps:
Step 1. Suppose that H is a cyclic group of order p, say H � Zp,

where p is prime. Then by Lemma 3.1 the group G contains Zpk for some
k such that ψ � ϕ|Z

pk
maps Zpk onto Zp.

We claim that cdpψq � 8 with Z coefficient. It suffices to show
ψ� : HnpBZp;Zq Ñ HnpBZpk ;Zq is not trivial for all even numbers n.
The reduced integral cohomology groups of BZp and BZpk are Zp and
Zpk respectively in even cases and zero in odd cases [11]. So, we consider
the case of even n.

Since for any i the CW-complex BZpi can be taken to be the infinite
lens space S8{Zpi , we may assume that the pn � 1q-dimensional lens

space Ln�1
pi

� Sn�1{Zpi is the pn� 1q-skeleton of BZpi . Hence it suffices

to show that the map f : Ln�1
pk

Ñ Ln�1
p induces nonzero homomorphism

f� : HnpLn�1
p ;Zq Ñ HnpLn�1

pk
;Zq.

First we note that the map f has degree one. We may assume that each
of our lens spaces Ln�1

pi
, i � 1, k is the orbit space of a free Zpi-action

on the odd dimensional sphere Sn�1 � S1 � � � � � S1 which is presented
as the join product of circles. We may assume the Zpi-action takes place

only on the first factor. Let πi : S
n�1 Ñ Ln�1

pi
be corresponding maps.

Let
f̄ : S1 � � � � � S1 Ñ S1 � � � � � S1

be defined as ξ � 1 � � � � � 1 where ξ : S1 Ñ S1 is taking unit complex
numbers to the pk�1 power, ξ : z ÞÑ zp

k�1
. The map f̄ defines the map

of the orbit spaces f : Ln�1
pk

Ñ Ln�1
p with f� � ψ such that the following

diagram

Sn�1 Sn�1

Ln�1
pk

Ln�1
p

πk

f̄

π1

f

is commutative. The degrees of maps πi and f̄ equal the degree of their
restrictions to the first circle in S1 � . . . S1 and they are degpπiq � pi,
degpf̄q � pk�1. It follows from the equality

degpπ1q degpf̄q � degpfqdegpπkq
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that degpfq � 1.
For nonzero α P HnpLn�1

p ;Zq by the Poincare Duality and the natu-
rality of the cap product it follows that

0 � rLn�1
p s X α � f�prL

n�1
pk

sq X α � f�prL
n�1
p s X f�pαqq

where rLn�1
p s and rLn�1

pk
s are the fundamental classes. Thus, we obtain

that f�pαq � 0.
Claim: If cdpψq � 8, then cdpϕq � 8 where ψ :� ϕ|Z

pk
.

Suppose cdpϕq � n   8. Since ϕ�paq � 0 for all a P H2npBZp;Zq,
the restriction homomorphism i� : H2npBG;Zq Ñ H2npBZpk ;Zq is not
trivial, but i�pϕ�paqq � i�p0q � 0. Since ψ� � i� � ϕ�, we get ψ�paq � 0
for all a P H2npBZp;Zq. This is contradiction, hence we prove the claim.

Step 2. Let H be an arbitrary torsion group. Pick a nonzero element
h P H generating a cyclic group Zp for some prime p. The preimage of
the subgroup Zp of H is a torsion subgroup of G. We apply Lemma 3.1 to
find a cyclic subgroup Zpk � G that maps onto Zp.We have the following
commutative diagrams:

G H

Zpk Zp

ϕ

ψ

BG BH

BZpk BZp

Bϕ

Bψ

where ϕ and ψ are the homomorphisms of the fundamental groups in-
duced by the maps Bϕ and Bψ.

Let α : CoindHZpZ � HomZZppZH,Zq Ñ Z be the canonical ZZp-
homomorphism from Theorem 2.5. Consider the following commutative
diagram

H�pBH;CoindHZpZq H�pBZp;CoindHZpZq H�pBZp;Zq

H�pBG;CoindHZpZq H�pBZpk ;CoindHZpZq H�pBZpk ;Zq

ϕ�

i�

ψ�

α�

ψ�

i� α�

where α� is the coefficient homomorphism generated by α.
We claim that cdpϕq � 8. Assume the contrary, cdpϕq   n for some

even number n. By Step 1, ψ is a nonzero homomorphism in dimension
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n. We pick a nonzero element a P HnpBZp;Zq with ψ�paq � 0. By
Theorem 2.5, the top row through homomorphism

α�i
� : H�pBH;CoindHZpZq Ñ H�pBZp;Zq

is an isomorphism. Let a � α�i
�pbq. Since by the assumption ϕ�pbq � 0,

we obtain a contradiction:

0 � ψ�paq � ψ�α�i
�pbq � α�i

�ϕ�pbq � α�i
�p0q � 0.

4. Finitely Generated Abelian Groups

Lemma 4.1. Given an epimorphism ϕ : Zn Ñ G with a finite group G
there is an epimorphism π : Zn Ñ Zk such that ϕ � ψ�π where k � kpGq
is the Smith normal number for G,

ψ �
k¹
i�1

pψi : Z Ñ Zniq,

and the numbers n1| . . . |nk are taken from IFD for G from Theorem 2.3.

Proof. Being a subgroup of Zn, the kernel kerϕ is a free abelian group.
Since G is finite, kerϕ is isomorphic to Zn. We fix a basis in kerϕ. Let
A : Zn Ñ kerϕ be an isomorphism. We regard A : Zn Ñ Zn as the
embedding. Then A is given by n�n matrix the columns of which form
our basis. We apply Corollary 2.2 (Smith Normal Form) to get matrices
Q and P that change in a special way the bases in the domain of A
and the range of ϕ respectively. Thus, AQpZnq � ApZnq � kerϕ. Then
PAQpZnq � kerpϕP�1q. Then

G � pϕP�1qpZnq � Zn
M
kerpϕP�1q � Zn

M
PAQpZnq �

�
�
Zn�k

M
x1y � � � � � x1y

	
�
�
Zk
M
xn1y � xn2y � � � � � xnky

	
�

�
�
Z
M
Z� � � �Z

M
Z
	
�
�
Z
M
n1Z� � � � � Z

M
nkZ

	
�

� prkpZnq
M
xn1y � � � � � xnky � ψprkpZnq

where prk : Zn Ñ Zk is the projection onto the last k coordinates. Thus,
ϕP�1 � ψprk. Then ϕ � ψπ with π � prkP .
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Lemma 4.2. Let ϕ : Zn Ñ G be an epimorphism, where G is a finite
abelian group. Then catpϕq � cdpϕq. In particular, catpϕq � cdpϕq �
kpGq where k is the Smith Normal number for given a finite abelian
group G.

Proof. Since cdpϕq ¤ catpϕq for any group homomorphism [6], we just
need to show two inequalities, i.e catpϕq ¤ kpGq and kpGq ¤ cdpϕq.
Then, observing the chain inequalities kpGq ¤ cdpϕq ¤ catpϕq ¤ kpGq,
we obtain the conclusion of Lemma 4.2.

Let us show the first inequality catpϕq ¤ kpGq. Let k � kpGq. By
Lemma 4.1, there exists an epimorphisms π : Zn Ñ Zk and ψ : Zk Ñ G
such that we have the following commutative diagram:

Zn

Zk G 0.

π
ϕ

ψ

Using well-known facts on the LS-category cat [3], we obtain:

catpϕq ¤ mintcatpψq, catpπqqu ¤ catpψq ¤ mintcatpT kq,

catpBGqu ¤ catpT kq � k

where T k is the k dimensional torus.

Since Bπ : Tn Ñ T k is a retraction, π is injective on cohomo-
logy, so we have cdpϕq � cdpψq. Then to prove the second inequality
kpGq ¤ cdpϕq, it suffices to show kpGq ¤ cdpψq.

We do it by induction on k � kpGq. When k=1 we have G � Zn1 .
Then the homomorphism ψ� � ψ�1 : H1pBZn1 ;Zn1q Ñ H1pBZ;Zn1q is
nonzero, since ψ : Z Ñ Zn1 is surjective.

Suppose the result holds true for all l ¤ k. First we note that
by Theorem 2.3 the group G for kpGq � k � 1 is written uniquely as
G � Zn1 � � � �Znk�1

with n1| � � � |nk�1. Note also that BG can be pre-
sented as the product BZn1�� � ��BZnk�1

. Let p be a prime that divides
n1 and, hence, all ni. We show that the induced homomorphism

ψ� : Hk�1pBZn1 � ...�BZnk�1
;Zpq Ñ Hk�1pT k�1;Zpq

is a nonzero homomorphism.
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It is known that the integral cohomology groups HjpBZm;Zq are Zm
if j is even and zero otherwise [11]. Note that for prime p dividing m
by the Universal Coefficient Formula HjpBZm;Zpq � Zp for all j, since
Zm b Zp � Zp and TorpZm,Zpq � Zp. Thus, for prime p dividing n1
we obtain HjpBZni ;Zpq � Zp for all i and j. Since for each ni the
CW-complex BZni are of finite type, we can apply the Kunneth For-
mula 2.6. By the Kunneth Formula with a field coefficient Zp, and in-
duction, we get that HjpBpZn1 � ... � Znk�1

q;Zpq is not zero for all j.

Clearly for the pk � 1q-torus T k�1 we have Hk�1pT k�1;Zpq � Zp. Using
commutative diagram below, we get that ψ is a nonzero homomorphism
for the mod p cohomology in dimension k � 1.

HkpBZn1 � ...�BZnk q;Zpq bH1pBZnk�1 ;Zpq Hk�1pBZn1 � ...�BZnk�1 q;Zpq

HkpTk;Zpq bH1pS1;Zpq Hk�1pTk�1;Zpq

�

ψ�bψ� ψ�

�

Indeed, the horizontal maps are isomorphism, by the Kunneth Theorem.
Thus the Kunneth Formula isomorphism takes the tensor product to

the cross product, a b b
�
Ñ a � b. Here the cross product is defined as

a� b � p�1paq Y p
�
2pbq where p1 and p2 are the projections of the product

X�Y onto Xand Y respectively. Using the naturality of the cup product
and the induction assumption, we obtain:

ψ�pa� bq � ψ�pp�1paq Y p�2pbqq � pψ�0p�1qpaq Y pψ�0p�2qpbq �

� ψ�paq b ψ�pbq � 0

Hence, cdpψq � k � 1.

We use the notation T pAq for the torsion subgroup of an abelian group
A. For finitely generated abelian groups we define the rank rankpAq �
rankpA{T pAqq.

Lemma 4.3. Every epimorphism ϕ : Zn Ñ Zm ` G splits as the direct
sum

ϕ � ψ1 ` ψ2 : Zm ` Zn�m Ñ Zm `G.

Proof. The epimorphism ϕ as a map to the product is defined by coordi-
nate functions, ϕ � pϕ1, ϕ2q which are also epimorphisms. There exists a
section s : Zm Ñ Zn of the epimorphism ϕ1, since Zm is free abelian. We
show that Zn splits as the direct sum spZmq `ϕ�1pGq. For each element
x P Zn we have ϕ1px � sϕ1pxqq � ϕ1pxq � ϕ1spϕ1pxqq � 0. Therefore,
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x � sϕ1pxq P ϕ�1pGq. Thus, every element x P Zn can be written as
sϕ1pxq�px�sϕ1pxqq. Suppose that y P spZmqXϕ�1pGq. Since ϕpyq P G,
we obtain ϕ1pyq � 0. Since y P spZmq, we have sϕ1pyq � y. Hence y � 0
and the sum spZmq � ϕ�1pGq � Zn is a direct sum.

Note that spZmq � Zm. In view of the splitting Zn � Zm ` ϕ�1pGq
it follows that rankpϕ�1pGqq � n � m. We define ψ1 and ψ2 to be
the restrictions of ϕ1 and ϕ2 to corresponding direct summands. i.e.,
ψ1 :� ϕ1|spZmq and ψ2 :� ϕ2|ϕ�1pGq.

Theorem 4.4. Let ϕ : Γ Ñ Λ be an epimorphism between finitely
generated abelian groups. Then

catpϕq � cdpϕq.

If Γ is torsion free, then

catpϕq � cdpϕq � rankpΛq � kpT pΛqq,

where kpT pΛqq is the Smith Normal number of T pΛq.

Proof. Since the groups Γ and Λ are finitely generated abelian groups,
we may assume Γ � Zn ` T pΓq and Λ � Zm ` T pΛq for some m and n.

By Theorem 3.2, if both groups Γ have torsion and ϕpT pΓqq � 0, then
cdpϕq � 8, so catpϕq � cdpϕq. Thus, we consider ϕ with ϕpT pΛqq � 0.
Such ϕ factors through the epimorphism ϕ̄ : Zn Ñ Λ. In view of the
retraction BΓ Ñ BZn we obtain that cdpϕ̄q � cdpϕq and catpϕ̄q � catpϕq.
Thus, we may assume that Γ � Zn.

If Λ has no torsion, then catpϕq � cdpϕq � rankpϕq � rankpΛq � m
by Jamie Scott’s result [15]. We consider the case T pΛq � 0. Let
ϕ : Zn Ñ Zm ` T pΛq be an epimorphism. By Lemma 4.3 ϕ breaks
into the direct sum ψ1`ψ2 where ψ1 : Zm Ñ Zm is an isomorphism and
an epimorphism ψ2 : Zn�m Ñ T pΛq.

By the well-known inequality for LS category of product of maps
in [3], we obtain

catpψ1 ` ψ2q ¤ catpψ1q � catpψ2q � m� k,

where k � kpT pΛqq, since by Lemma 4.2 catpψ2q � cdpψ2q � kpT pΛqq.
To complete the proof, we show that m � k ¤ cdpϕq. By Theo-

rem 2.3, the torsion group T pΛq admits a decomposition T pΛq � Zn1 �
..�Znk where n1, � � � , nk are natural numbers with n1| � � � |nk. The proof
of Lemma 4.2 gives a nonzero homomorphism

ψ�2 : HkpBT pΛq;Zpq Ñ HkpTn�m;Zpq.



N. Kuanyshov 177

We apply the Kunneth Formula (Theorem 2.6) with Zp coefficients for
p|n1 to obtain a nonzero homomorphism

ϕ� : Hm�kpTm �BT pΛq;Zpq Ñ Hm�kpTm � Tn�m;Zpq.

Therefore, cdpϕq ¥ m� k.
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