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On the LS-category of homomorphisms
of groups with torsion
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ABSTRACT. We prove the equality cat(¢) = cd(¢) for homo-
morphisms ¢ : I' —> A of any finitely generated abelian group I'. In
addition, we prove that the Lusternik-Schnirelmann category and
the cohomological dimension of any nonzero homomorphism of a
torsion group cannot be finite.

1. Introduction

The (reduced) Lusternik-Schnirelmann category (for short, LS-category),
cat(X), of a topological space X is the minimal number & such that there
is an open cover {Uy, Uy, ..., U} of X by k + 1 contractible in X. The
LS-category gives a lower bound on the number of critical points for a
smooth real-valued function on a closed manifold [13], [3].

Since it is a homotopy invariant, it can be defined for discrete groups
I' as cat(I") = cat(BI") where BI' = K(I', 1) is a classifying space. Com-
putation of the LS-category of spaces presents a great challenge even
spaces are nice such as manifolds [8]. In the 50s Eilenberg and Ganea [9]
proved that the LS-category of a discrete group equals its cohomological
dimension, cat(m) = cd(m). We recall that the cohomological dimension
of a group I is defined as follows,

cd(I') = sup{k | H*(I', M) # 0}

2020 Mathematics Subject Classification: Primary 20J06; Secondary
20K45, 20K30, 20K10.
Key words and phrases: cohomological dimension, group homomorphism.


https://doi.org/10.12958/adm2065

N. KUANYSHOV 167

where M is some ZI'-module [2]. From the work of Dranishnikov and
Rudyak [7] it follows that

ed(I') = max{k | (5r)* # 0)

where fr € H(T', I(T)) is the Berstein-Schwarz class of T' [1].

The LS-category of the map f: X — Y, cat(f), is the minimal num-
ber k such that X admits an open cover by k + 1 open sets Uy, Us, ..., Ui
with nullhomotopic restrictions f|y, : U; — Y for all i. The LS-category
cat(¢) of a group homomorphism ¢ : I' — 7 is defined as cat(f) where
the map f : BI' —» B7 induces the homomorphism ¢ for the fundamental
groups.

The cohomological dimension cd(¢) of a group homomorphism
¢ : I' > A was introduced by Mark Grant [10] as the maximum of
k such that there is a ZA-module M with the nonzero induced homo-
morphism ¢* : H*(A, M) — H¥[,M). In view of universality of the
Berstein-Schwarz class [7], for any homomorphism ¢ : I' —» A

cd(¢) = max{k | $*(62)" # 0}.

This together with the cup-length lower bound for the LS-category brings
the inequality cd(¢) < cat(¢) for all group homomorphisms.

In view of the Eilenberg-Ganea equality c¢d(I") = cat(I"), the following
conjecture seems to be natural:

Conjecture 1.1. For any group homomorphism ¢ : I' — A always

cat(¢) = cd(¢).

In [15] Jamie Scott considered this conjecture for geometrically finite
groups and he proved it for monomorphisms of any groups and for ho-
momorphisms of free and free abelian groups. In [10] Tom Goodwillie
gave an example of an epimorphism of an infinitely generated group
¢ : G — 72 with cd(¢) = 1 that disproves the conjecture.

In the joint paper with Dranishnikov [6] we reduced the conjecture
from arbitrary homomorphisms to epimorphisms and we gave a coun-
terexample to the conjecture with epimorphism between geometrically
finite groups. Also, we proved the conjecture for epimorphisms between
finitely generated, torsion-free nilpotent groups. It is a natural question
to ask if one can remove the torsion-free restriction in our result. In this
paper we do it in the cases abelian groups.

Theorem 1.2 (Theorem 4.4). Let ¢ : I' — A be any homomorphism
between finitely generated abelian groups. Then cat(¢) = cd(¢).
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Moreover, in the above case the number cat(¢) can explicitely com-
puted. For that one needs to present the above homomorphism as a direct
sum ¢ = ¢1@¢po where ¢ is a homomorphism between free abelian groups
and ¢2 is from free abelian to finite abelian group T(A) = Torsion(A).
Then cat(¢) = cd(¢) = rank(pr) + k(T(A)), where k(T (A)) is the Smith
Normal number of T'(A).

Dealing with torsion we investigated a satellite question whether it
is possible to have a homomorphism of finite groups ¢ : I' - A with
cd(¢) < co. We give a negative answer to this question in the following
theorem.

Theorem 1.3 (Theorem 3.2). Let ¢ : G — H be a nonzero homomor-
phism of a torsion group G. Then cd(¢) = . In particular, cat(¢p) =

cd(g).

2. Preliminaries

In this section we recall some classic theorems used in the paper.
Given positive integers m,n > 1, we denote by M,,«,(Z)the set of
m X n matrices with integer entries.

Theorem 2.1 (The Smith Normal Form). Given a nonzero matriz A €
M sn(Z), there exist invertible matrices P € My, xm(Z) and Q € My xn(7Z)
such that

ny 0 0 0 0
0 mno 0 0 0
PAQ = 0 0 - np 0 -+ 0
0O 0 --- 0 0 --- 0
| 0 0 - 0 0 -+ 0
where the integer n; = 1 are unique up to sign and satisfy ni|na|-- - |ng.
Further, one can compute the integers n; by the recursive formula
d
n; = d—l, where d; is the greatest common divisor of all i X i-minors of
i—1

the matrix A and dy is defined to be 1.

The proof of Theorem 2.1 can be found in [12, Proposition 2.11,
p. 339].
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Corollary 2.2. Given a matric A € Myxn(Z) with det(A) # 0, there
exist invertible matrices P € Myxn(Z) and Q € Myxn(Z) such that

1 0 --- 0 0 --- 0
01 - 0 0 --- 0
PAQ=|00 - 1 0 - 0
00 --- 0 ng --- 0
[ 00 -~ 0 0 - my
where the integer n; = 2 are unique up to sign and satisfy ni|na|- - |ng.

Theorem 2.3 (Invariant Factor Decomposition (IDF) for Finite Abelian
Groups). FEvery finite abelian group G can be written uniquely as G =
Zny X oo X Zp, where the integers n; = 2 are the invariant factors of G
that satisfy ni|na|...|nk and Zy, are cyclic group of order n;,i =1,--- | k.

The proof of Theorem 2.3 can be found in [4, Theorem 3, p. 158].
Alternatively, one can apply Corollary 2.2 and get the result.

Definition 2.4. Given a finite abelian group G, the Smith Normal num-
ber k(G) of G is the number k from Theorem 2.3.

In the proof of our main result about homomorphism between finite
groups we use Shapiro’s Lemma [2, Proposition 6.2, p. 73].

Theorem 2.5 (“Shapiro’s Lemma”). If i : H — G is a monomorphism
and M is an H-module, then the through homomorphism

H*(G, Coind$ M) 5 H*(H, Coind$, M) 5 H*(H, M)

18 an isomorphism, where CoindgM = Homyzy(ZG,M) and the ho-
momorphism of coefficients o : Homzpy(ZG, M) — M is defined as

a(f) = f(e).

In the paper we use the notation H*(I', A) for the cohomology of a
group I' with coefficient in a I''module A. The cohomology groups of a
space X with the fundamental group I' we denote as H*(X; A). Thus,
H*(I',A) = H*(BTI'; A) where BI' = K(I', 1).

We say that a CW-complex X is of finite type if each n-skeleton X ()
of X is finite.
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The Kunneth Formula Theorem for cohomology of product of two
spaces with field coefficient F' can be founded in Spanier [16, Theo-
rem 5.5.11] or Dold [5, Proposition VI.12.16]. We state a special case,
which will be used in the paper.

Theorem 2.6 (The Kunneth Formula Theorem). Let F' be a field. If
the CW-complexes X, Y are of finite type, then the cross product

PHYX;F)@ H"F(Y;F) 5 H*(X x Y} F)
k

s an isomorphism.

We recall the Universal Coefficient Formula (UCF) for cohomology
(see [16, Theorem 5.5.10]).

UCEF: Let the CW-complex X be of finite type and a coefficient group
G, then for each n there is the short exact sequence

0— H'(X)®G — H'(X;G) — Tor(H"(X),G) — 0,

which splits.

3. Finite Groups

A group G is called a torsion group if every element g € G has finite
order.

For the proof of the main result of this section (Theorem 3.2) we need
the following easy lemma.

Lemma 3.1. Let ¢ : G — Z, be an epimorphism where p is prime and
G is a torsion group. Then G contains Zyx for some k such that the
restriction 1 = ¢|Zpk : Ly — Ly is surjective.

Proof. Let a be a generator of Z,. We pick g € G with ¢(g) = a. Then ¢
has a finite order n. Since ¢g" = 0, it follows that ¢(g)" = na = 0. Hence,
n is divisible by p. Let n = p*m where m is not divisible by p. Then
the order of element ¢ is p*. Thus, ¢" generates a subgroup Ly < G.
Since ¢(¢g™) = ma # 0 in Zj, the element ma generates Z,. Therefore,
Y is surjective, ¢(Zx) = Zy. O

Theorem 3.2. Let ¢ : G — H be a nonzero homomorphism of a torsion
group G. Then cat(¢p) = cd(¢) = .
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Proof. In view of Theorem 3.2 and Theorem 3.3 [6] we may assume that
¢ is an epimorphism.

We do the proof in two steps:

Step 1. Suppose that H is a cyclic group of order p, say H =~ Z,,
where p is prime. Then by Lemma 3.1 the group G contains Z, for some
k such that ¢ = ¢|Zpk maps Zy,k onto Zy.

We claim that cd(v) = oo with Z coefficient. It suffices to show
Y* : HY(BZp; Z) — H"(BZyk; Z) is not trivial for all even numbers n.
The reduced integral cohomology groups of BZ;, and BZ,: are Z, and
Z,k respectively in even cases and zero in odd cases [11]. So, we consider
the case of even n.

Since for any i the CW-complex BZ,: can be taken to be the infinite
lens space S*/Z,i, we may assume that the (n + 1)-dimensional lens
space LZfl = S™H/Zyi is the (n + 1)-skeleton of BZ,:. Hence it suffices

to show that the map f : L;‘,f b L;}H induces nonzero homomorphism
f* HY (L' Z) — HY (L Z).

First we note that the map f has degree one. We may assume that each
of our lens spaces LZ;’I, i = 1,k is the orbit space of a free Z-action

on the odd dimensional sphere S"*! = St « ... % S! which is presented
as the join product of circles. We may assume the Z,-action takes place
only on the first factor. Let m; : S — LZfl be corresponding maps.
Let

foS w8t 5 Stw. . n St

be defined as € % 1% --- % 1 where £ : S — S is taking unit complex
numbers to the p*~1 power, £ : z — 7' The map f defines the map
of the orbit spaces f : Lg,f L, L;“rl with f, = 1 such that the following
diagram

Sn—i—l f Sn—i—l

bl
Ln,j_l f Ln+1
D p

is commutative. The degrees of maps 7; and f equal the degree of their
restrictions to the first circle in S ... S and they are deg(m;) = p,
deg(f) = p¥~1. It follows from the equality

deg(m) deg(f) = deg(f) deg(y)
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that deg(f) = 1.
For nonzero v € H"(L2*"; Z) by the Poincare Duality and the natu-
rality of the cap product it follows that

0# [Ly "] na = fl[LF]) na = fl[LyT] A (@)

where [Lg“] and [LZ,;Ir 1] are the fundamental classes. Thus, we obtain
that f*(«) # 0.

Claim: If ¢d(v)) = o0, then c¢d(¢) = o0 where @) := ¢|Zpk-

Suppose cd(¢) = n < oo. Since ¢*(a) = 0 for all a € H*"(BZ,;7Z),
the restriction homomorphism i* : H>*(BG;Z) — H 2”(BZP;C; Z) is not
trivial, but i*(¢*(a)) = i*(0) = 0. Since ¥* = i* o ¢*, we get YP*(a) =0
for all a € H*"(BZy;Z). This is contradiction, hence we prove the claim.

Step 2. Let H be an arbitrary torsion group. Pick a nonzero element
h € H generating a cyclic group Z, for some prime p. The preimage of
the subgroup Z,, of H is a torsion subgroup of G. We apply Lemma, 3.1 to
find a cyclic subgroup Z,» < G that maps onto Z;. We have the following
commutative diagrams:

¢—"+H BG-""sBH
71 T
Ty — 7, BZ, -+ BZ,

where ¢ and ¢ are the homomorphisms of the fundamental groups in-
duced by the maps B¢ and Bi.

Let o : CoindZZ = Homggz,(ZH,Z) — 7 be the canonical ZZ,-
homomorphism from Theorem 2.5. Consider the following commutative
diagram

H*(BH; Coindll Z) —"— H*(BZy; Coind{] Z) —*~ H*(BlLy;1L)

|+ [+ l "

H*(BG; Coindll Z) —"— H*(BZ,; Coindf] Z) —*~ H*(BZ,; L)

where a is the coefficient homomorphism generated by «.
We claim that cd(¢) = 0. Assume the contrary, cd(¢) < n for some
even number n. By Step 1, 1 is a nonzero homomorphism in dimension
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n. We pick a nonzero element a € H"(BZy;Z) with ¢*(a) # 0. By
Theorem 2.5, the top row through homomorphism

ai* : H*(BH; Coindy 7.) — H*(BZy; Z)

is an isomorphism. Let a = a,i*(b). Since by the assumption ¢*(b) = 0,
we obtain a contradiction:

0 # ¥*(a) = Y ai™(b) = asi®d*(b) = a,i*(0) = 0.

4. Finitely Generated Abelian Groups

Lemma 4.1. Given an epimorphism ¢ : Z"™" — G with a finite group G
there is an epimorphism 7 : Z" — ZF such that ¢ = o where k = k(G)
s the Smith normal number for G,

k

=[]z > 2Z,),

i=1

and the numbers ny|...|ny are taken from IFD for G from Theorem 2.3.
Proof. Being a subgroup of Z™, the kernel ker ¢ is a free abelian group.
Since G is finite, ker ¢ is isomorphic to Z"™. We fix a basis in ker ¢. Let
A Z" — ker ¢ be an isomorphism. We regard A : Z" — Z™ as the
embedding. Then A is given by n x n matrix the columns of which form
our basis. We apply Corollary 2.2 (Smith Normal Form) to get matrices
@ and P that change in a special way the bases in the domain of A
and the range of ¢ respectively. Thus, AQ(Z") = A(Z") = ker ¢. Then
PAQ(Z") = ker(¢P~1). Then

G = (6P~1)(Z") = Z”/ ker(¢pP 1) = Z”/PAQ(Z") -

— (Z”*k/<1> X oo <1>) x (Zk/<n1> X (nad X -+ % <nk>) -

- (Z/Zx ---Z/Z) X (Z/mZx xZ/nkZ) _
= pru(Z") [ () x -+ x iy = wpri(2")

where pry, : Z™ — Z* is the projection onto the last k coordinates. Thus,
¢P~1 = ¢pr.. Then ¢ = o7 with 7 = pr, P. O



174 ON THE LS-CATEGORY OF HOMOMORPHISMS OF GROUPS

Lemma 4.2. Let ¢ : Z™" — G be an epimorphism, where G is a finite
abelian group. Then cat(¢) = cd(¢). In particular, cat(¢) = cd(¢) =
k(G) where k is the Smith Normal number for given a finite abelian
group G.

Proof. Since cd(¢) < cat(¢) for any group homomorphism [6], we just
need to show two inequalities, i.e cat(¢) < k(G) and k(G) < cd(¢).
Then, observing the chain inequalities k(G) < cd(¢) < cat(¢) < k(G),
we obtain the conclusion of Lemma 4.2.

Let us show the first inequality cat(¢) < k(G). Let & = k(G). By
Lemma 4.1, there exists an epimorphisms 7 : Z" — Z* and ¢ : Z*¥ - G
such that we have the following commutative diagram:

Zn
/l‘ﬁ
7k — Y, @ 0

Using well-known facts on the LS-category cat [3], we obtain:
cat(¢) < min{cat(v), cat(n))} < cat(¢)) < min{cat(T%),

cat(BG)} < cat(T%) = k

where T is the k dimensional torus.

Since Bw : T" — T* is a retraction, 7 is injective on cohomo-
logy, so we have cd(¢) = cd(¢)). Then to prove the second inequality
k(G) < cd(¢), it suffices to show k(G) < cd(v)).

We do it by induction on k = k(G). When k=1 we have G = Z,,.
Then the homomorphism ¢* = ¥ : HY(BZy,; Zn,) — HY(BZ; Z,,) is
nonzero, since v : Z — Zy, is surjective.

Suppose the result holds true for all [ < k. First we note that
by Theorem 2.3 the group G for k(G) = k + 1 is written uniquely as
G = Zny X +++Ln,,, with ni|---|ngq1. Note also that BG can be pre-
sented as the product BZy, x - -+ x BZy, . Let p be a prime that divides
n1 and, hence, all n;. We show that the induced homomorphism

* . H"Y(BZ,, x ... x BZy,,,;Z,) — H*Y(T*1;7,)

Nk+17

is a nonzero homomorphism.
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It is known that the integral cohomology groups H’(BZy,; Z) are Zy,
if j is even and zero otherwise [11]. Note that for prime p dividing m
by the Universal Coefficient Formula H?(BZy,; Z,) = Z, for all j, since
Zin ® Ly = Zy and Tor(Zy,,Z,) = Zp. Thus, for prime p dividing nq
we obtain HY(BZy,;Z,) = Z, for all i and j. Since for each n; the
CW-complex BZ,, are of finite type, we can apply the Kunneth For-
mula 2.6. By the Kunneth Formula with a field coefficient Z,, and in-
duction, we get that H/(B(Zp, X ... X Zy,,,); Zy) is not zero for all j.
Clearly for the (k + 1)-torus T%*! we have H**Y(T**+1:Z,) = Z,. Using

commutative diagram below, we get that v is a nonzero homomorphism
for the mod p cohomology in dimension & + 1.

H¥(BZny X ... X Bln,,); Zp) ® H' (BZn,, ,; Zp) —~ s H*Y(BZp, x ... x By, 1 ) Lp)

lw*caw* lw*

Hk(Tk§Zp)®H1(Sl%Zp) : HkH(TkH%Zp)

Indeed, the horizontal maps are isomorphism, by the Kunneth Theorem.
Thus the Kunneth Formula isomorphism takes the tensor product to
the cross product, a ® b = a x b. Here the cross product is defined as
a x b =pj(a) ups(b) where p; and py are the projections of the product
X XY onto Xand Y respectively. Using the naturality of the cup product
and the induction assumption, we obtain:

P (a x b) = P*(pi(a) v pz(b)) = (¥*opi)(a) L (Y ops)(b) =

=% (a) @Y7 (b) # 0
Hence, cd(¢)) = k + 1. O

We use the notation T'(A) for the torsion subgroup of an abelian group
A. For finitely generated abelian groups we define the rank rank(A) =
rank(A/T(A)).

Lemma 4.3. Every epimorphism ¢ : Z" — Z™ @ G splits as the direct
sum

p=t1 @Y Z"®L"" > L DG.

Proof. The epimorphism ¢ as a map to the product is defined by coordi-
nate functions, ¢ = (¢1, ¢2) which are also epimorphisms. There exists a
section s : Z™ — Z" of the epimorphism ¢1, since Z™ is free abelian. We
show that Z" splits as the direct sum s(Z™) @ ¢~1(G). For each element
x € Z" we have ¢1(x — s¢1(x)) = ¢1(x) — p15(¢1(x)) = 0. Therefore,
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x — s¢1(x) € ¢71(G). Thus, every element x € Z" can be written as
s¢1(x) + (x —s¢1(x)). Suppose that y € s(Z™) n ¢~ 1(G). Since ¢(y) € G,
we obtain ¢1(y) = 0. Since y € s(Z™), we have s¢1(y) = y. Hence y = 0
and the sum s(Z™) + ¢~1(G) = Z" is a direct sum.

Note that s(Z™) =~ Z™. In view of the splitting Z" = Z™ ® ¢ 1(G)
it follows that rank(¢p~'(G)) = n — m. We define ¥ and v to be
the restrictions of ¢ and ¢s to corresponding direct summands. i.e.,

Y11= P1|szmy and Yo 1= Palg-1(ay- )

Theorem 4.4. Let ¢ : I' — A be an epimorphism between finitely
generated abelian groups. Then

cat(¢) = cd(¢).
If T is torsion free, then
cat(¢) = cd(¢) = rank(A) + K(T'(A)),
where k(T(A)) is the Smith Normal number of T(A).

Proof. Since the groups I' and A are finitely generated abelian groups,
we may assume I' = Z" @ T(I") and A = Z"™ @ T'(A) for some m and n.

By Theorem 3.2, if both groups I" have torsion and ¢(T(T')) # 0, then
cd(¢) = o0, so cat(¢) = cd(¢). Thus, we consider ¢ with ¢(T'(A)) = 0.
Such ¢ factors through the epimorphism ¢ : Z" — A. In view of the
retraction BI' — BZ™ we obtain that cd(¢) = cd(4) and cat(¢) = cat(¢).
Thus, we may assume that I' = Z".

If A has no torsion, then cat(¢) = cd(¢) = rank(¢) = rank(A) = m
by Jamie Scott’s result [15]. We consider the case T'(A) # 0. Let
¢ Z" — Z™ @ T(A) be an epimorphism. By Lemma 4.3 ¢ breaks
into the direct sum 1, @1y where 1 : Z™ — Z™ is an isomorphism and
an epimorphism 1y : Z" "™ — T(A).

By the well-known inequality for LS category of product of maps
in [3], we obtain

cat(i1 ®a) < cat()r) + cat(ye) = m + k,

where k = k(T(A)), since by Lemma 4.2 cat(i2) = cd(v2) = k(T'(A)).

To complete the proof, we show that m + k < cd(¢). By Theo-
rem 2.3, the torsion group T'(A) admits a decomposition T(A) = Z,, x
.. X Ly, where nq,--- ,n are natural numbers with n;|- - - [ng. The proof
of Lemma 4.2 gives a nonzero homomorphism

3 HY (BT (A); Zp) — HNT" ™ Lp).
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We apply the Kunneth Formula (Theorem 2.6) with Z, coefficients for
p|n1 to obtain a nonzero homomorphism

¢* : H™H(T™ x BT(A); Z,) — H™™H(T™ x T""™, Z,,).

Therefore, cd(¢) = m + k. O

Acknowledgments

I would like to thank my advisor, Alexander Dranishnikov, for all of his
help and encouragement throughout this project. The work was partially
supported by the grant No. AP14869301 of the Science Committee of the
Ministry of Science and Higher Education of the Republic of Kazakhstan.

References
[1] I. Berstein, On the Lusternik-Schnirelmann category of Grassmannians, Math.
Proc. Camb. Philos. Soc., 79, 1976, pp. 129-134.

[2] K. Brown, Cohomology of Groups. Graduate Texts in Mathematics, 87, Springer,
New York, Heidelberg, Berlin, 1994.

[3] O. Cornea, G. Lupton, J. Oprea, D. Tanre, Lusternik-Schnirelmann Category,
AMS, 2003.

[4] D. Dummit, R. Foote, Abstract algebra, Wiley Hoboken, 2004.
[5] A. Dold, Lectures on algebraic topology. Springer Science & Business Media, 2012.

[6] A. Dranishnikov, N. Kuanyshov, On the LS-category of group homomorphisms,
Mathematische Zeitschrift, 305, no. 1, 2023.

[7] A. Dranishnikov, Yu. Rudyak, On the Berstein-Svarc theorem in dimension 2,
Math. Proc. Cambridge Philos. Soc., 146, no. 2, 2009, pp. 407-413.

[8] A. Dranishnikov, R. Sadykov, The Lusternik—Schnirelmann category of a connected
sum, Fundamenta Mathematicae, 251, no. 3, 2020, pp. 313-328.

[9] S. Eilenberg, T. Ganea, On the Lusternik-Schnirelmann Category of Abstract
Groups. Annals of Mathematics, 65, 1957, pp. 517-518.

[10] M. Grant, Cohomological dimension of a homomorphism, https://mathoverflow.
net/questions/89178/cohomological-dimension-of-a-homomorphism.

[11] A. Hatcher, Algebraic topology, 2005.
[12] T. Hungerford, Algebra (Vol. 73), Springer, 2012.

[13] L. Lusternik, L. Schnirelmann, Sur le probleme de trois geodesiques fermees sur
les surfaces de genre 0, Comptes Rendus de I’Academie des Sciences de Paris, 189,
1929, pp. 269-271.

[14] A. Schwarz, The genus of a fibered space, Trudy Moscov. Mat. Obsc., 10, 11
(1961 and 1962), pp. 217-272, pp. 99-126.


https://mathoverflow.net/questions/89178/cohomological-dimension-of-a-homomorphism
https://mathoverflow.net/questions/89178/cohomological-dimension-of-a-homomorphism

178 ON THE LS-CATEGORY OF HOMOMORPHISMS OF GROUPS

[15] J. Scott, On the topological complexity of maps, Topology and its Applications,
314, 2022, Paper no. 108094, 25 pp.

[16] E. Spanier, Algebraic topology, Springer Science & Business Media, 1989.

CONTACT INFORMATION

Nursultan Department of Mathematics, University of
Kuanyshov Florida, 358 Little Hall, Gainesville, FL. 32611-
8105, USA;

Institute of Mathematics and Mathematical

Modeling, 125 Pushkin str., 050010 Almaty,

Kazakhstan

E-Mail: nkuanyshov@ufl.edu
kuanyshov.nursultan@gmail.com

URL:

Received by the editors: 15.02.2023.



	N. Kuanyshov

