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Abstract. In [6], it is studied properties of the class DLie of
non-perfect Leibniz algebras with non-trivial Lie-centers. In this
paper, we study properties of Leibniz algebras of class TLie, a sub-
class of both the class DLie and the class of Lie-stem Leibniz alge-
bras. We determine necessary and sufficient conditions under which
a non-Lie Leibniz algebra is of class TLie and study their relationship
with pseudo-abelian Leibniz algebras. We also show that Leibniz
algebras of class TLie have semi-simple central Lie-derivations.

1. Introduction

Leibniz algebras were introduced in papers published by Bloh [7] in the
sixties, and were rediscovered by Jean-Louis Loday [12] in his study
of periodicity phenomenons in algebraic K-theory. Essentially, Leib-
niz algebras generalize Lie algebras, and are usually considered as non-
commutative Lie algebras. Studies of Leibniz algebras have been asso-
ciated to various areas such as non-commutative geometry, differential
geometry, and mathematical physics. As in several papers in this research
area, our aim is to investigate certain results on Leibniz algebras that
are known to hold on derivations of Lie algebras. Our study particularly
focusses on the class DLie of non-perfect Leibniz algebras whose center is
not contained in the Leibniz kernel. Also, our study relies on the notions
of derivations relative to the Liezation functor (−)Lie : Leib → Lie, which
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assigns to a Leibniz algebra g the Lie algebra gLie , where Leib denotes the
category of Leibniz algebras and Lie denotes the category of Lie algebras.
Studying notions of Leibniz algebras in this relative setting fits on a line
of research studied in [1, 2, 8, 9].

Recently, several results in studies of derivations of Lie algebras have
been extended on Leibniz algebras [4–6, 13]. Our aim in this paper is
to study properties of a subclass of Lie-stem Leibniz algebras and their
relationship with the properties of the Lie algebra of Lie-derivations. We
organize the paper as follows: In Section 2, we provide some background
on relative notions with respect to the Liezation functor. We recall defi-
nitions of the set of Lie-derivations DerLie(g) and central Lie-derivations
DerLiez (g) for a non-Lie Leibniz algebra g. In Section 3, we introduce the
concept of Leibniz algebras of class TLie. This is an analogue on Leib-
niz algebras of the class defined in [14] on Lie algebras. We provide a
characterization of these algebras by using properties of their two-sided
ideals of codimension one. We prove that Lie-solvable Leibniz algebras of
type (TLie) are pseudo-Lie-abelian. Also, we prove that the Lie algebra of
Lie-derivations of Leibniz algebras in the class TLie is centerless. Finally,
we prove that under certain conditions, Leibniz algebras in the class TLie
have direct summands that are Lie-nilpotent Leibniz subalgebras, and
admit semi-simple Lie-derivations.

2. Preliminaries on Leibniz algebras

Let K be a fixed ground field such that 1
2 ∈ K. Throughout the paper,

all vector spaces and tensor products are considered over K.

A Leibniz algebra [12] is a vector space g equipped with a bilinear
map [−,−] : g⊗ g → g, usually called the Leibniz bracket of g, satisfying
the Leibniz identity :

[x, [y, z]] = [[x, y], z]− [[x, z], y], x, y, z ∈ g.

A subalgebra h of a Leibniz algebra g is said to be left (resp. right)
ideal of g if [h, g] ∈ h (resp. [g, h] ∈ h), for all h ∈ h, g ∈ g. If h is both
left and right ideal, then h is called two-sided ideal of g. In this case g/h
naturally inherits a Leibniz algebra structure.

Given a Leibniz algebra g, we denote by gann the subspace of g
spanned by all elements of the form [x, x], x ∈ g. It is clear that the
quotient gLie = g/gann is a Lie algebra. This defines the so-called Lieza-
tion functor (−)Lie : Leib → Lie, which assigns to a Leibniz algebra g the
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Lie algebra gLie . Moreover, the canonical epimorphism g ↠ gLie is uni-
versal among all homomorphisms from g to a Lie algebra, implying that
the Liezation functor is left adjoint to the inclusion functor Lie ↪→ Leib.

Given a Leibniz algebra g, we define the bracket

[−,−]lie : g → g, by [x, y]lie = [x, y] + [y, x], for x, y ∈ g.

Let m, n be two-sided ideals of a Leibniz algebra g. The following
notions come from [9], which were derived from [10].

The Lie-commutator of m and n is the two-sided ideal of g

[m, n]Lie = ⟨{[m,n]lie,m ∈ m, n ∈ n}⟩.

The Lie-center of the Leibniz algebra g is the two-sided ideal

ZLie(g) = {z ∈ g | [g, z]lie = 0 for all g ∈ g}.

The Lie-centralizer of m and n over g is

CLie
g (m, n) = {g ∈ g | [g,m]lie ∈ n, for all m ∈ m} .

Obviously, CLie
g (g, 0) = ZLie(g).

Remark 2.1. [[a, b]Lie, c]Lie = [a, [b, c]]Lie + [b, [a, c]]Lie for all a, b, c ∈ g.

Definition 2.2 ([9]). The lower Lie-central series of a Leibniz algebra g
is the sequence

· · · ⊴ γLiei (g) ⊴ · · · ⊴ γLie2 (g) ⊴ γLie1 (g)

of two-sided ideals of g defined inductively by

γLie1 (g) = g and γLiei (g) = [γLiei−1(g), g]Lie, i ≥ 2.

Recall that in the absolute case, the lower central series of g is the
sequence of two-sided ideals of g defined inductively by

· · · ⊴ γi(g) ⊴ · · · ⊴ γ2(g) ⊴ γ1(g) = g and γi(g) = [γi−1(g), g], i ≥ 2.

Definition 2.3 ([9]). The Leibniz algebra g is said to be Lie-nilpotent of
class c if γLiec+1(g) = 0 and γLiec (g) ̸= 0.

Definition 2.4 ([9, Proposition 1]). An exact sequence of Leibniz al-
gebras 0 → n → g

π→ q → 0 is said to be a Lie-central extension if
[g, n]Lie = 0, equivalently n ⊆ ZLie(g).
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Definition 2.5. A linear map d : g → g of a Leibniz algebra (g, [−,−])
is said to be a Lie-derivation if for all x, y ∈ g, the following condition
holds:

d([x, y]lie) = [d(x), y]lie + [x, d(y)]lie

We denote by DerLie(g) the set of all Lie-derivations of a Leibniz
algebra g, which can be equipped with a structure of Lie algebra by means
of the usual bracket [d1, d2] = d1 ◦ d2 − d2 ◦ d1, for all d1, d2 ∈ Der(g).

Example 2.6. The absolute derivations, that is linear maps d : g → g
such that d([x, y]) = [d(x), y] + [x, d(y)], are also Lie-derivations, since:

d([x, y]lie) = d([x, y] + [y, x]) = [d(x), y]lie + [x, d(y)]lie, for all x, y ∈ g. (1)

In particular, for a fixed x ∈ g, the inner derivation Rx : g → g, Rx(y) =
[y, x], for all y ∈ g, is a Lie-derivation, so it gives rise to the following
identity:

[[y, z]lie, x] = [[y, x], z]lie + [y, [z, x]]lie, for all x, y ∈ g.

Definition 2.7. A Lie-derivation d : g → g of a Leibniz algebra g is said
to be Lie-central derivation if its image is contained in the Lie-center of g.

Remark 2.8. The absolute notion corresponding to Definition 2.7 is
the so called central derivations, that is derivations d : g → g such
that its image is contained in the center of g. Obviously, every central
derivation is a Lie-central derivation. However the converse is not true
as the following example shows: let g be the two-dimensional Leibniz
algebra with basis {e, f} and bracket operation given by [e, f ] = −[f, e] =
= e [11]. The inner derivation Re is a Lie-central derivation, but it is not
central in general.

We denote the set of all Lie-central derivations of a Leibniz algebra g
by DerLiez (g). Obviously DerLiez (g) is a subalgebra of DerLie(g) and every
element of DerLiez (g) annihilates γLie2 (g) = [g, g]Lie.

3. The main Results

Denote by DLie, the class of Leibniz algebras g satisfying the conditions
[g, g]Lie ̸= g and ZLie(g) ̸= 0. In this section, we study properties of a
subclass of DLie, call it (TLie).

Definition 3.1. A Leibniz algebra g is of type (TLie) if g ∈ DLie and g
has a nonzero subspace T satisfying the following conditions:
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a) g = T + [g, g]Lie, T ∩ [g, g]Lie = 0;

b)
[
T , [g, g]Lie

]
Lie

= 0;

c) [T , T ]Lie = ⟨z⟩ for some z ∈ ZLie(g);

d) The mapping θ : T ×T → [g, g]Lie defined by θ(x, y) = αz such that
[x, y]Lie = αz, is a non-degenerate alternate form on T .

Definition 3.2 ([3, Definition 4.1]). A Lie-stem Leibniz algebra is a Leib-
niz algebra g such that ZLie(g) ⊆ [g, g]Lie.

Example 3.3. Consider the K-vector space g spanned by the nonzero
vectors x, y, z and define a bracket on g as follows: [x, x] = 2z, [y, y] = z
and [x, y] = 1

2z = [y, x]. g is a non-Lie Leibniz algebra of dimension 3
with Lie-center ZLie(g) = ⟨z⟩ . Moreover one has g = T + [g, g]Lie with
T = ⟨{x, y}⟩ and [g, g]Lie = ⟨z⟩ = ZLie(g). Thus T ∩ [g, g]Lie = 0 and the
bilinear form θ : T × T −→ K defined by θ(x, x) = 4, θ(y, y) = 2, and
θ(x, y) = 1, is nondegenerate. Therefore g is a non-Lie Leibniz algebra
of type (TLie).

Example 3.4. Consider the Leibniz algebra g spanned by {x, y, z} with
nonzero bracket [x, x] = z; [y, y] = z; [x, y] = z; [y, x] = αz, α ∈ F ∖ {1;−1}.
Then, ZLie(g) = span{z} and [g, g]Lie = span{z}. So (0) ̸= ZLie(g) ⊂
[g, g]Lie ̸= g. This means that g is Lie-stem Leibniz algebra and g ∈ DLie.
Consider the subspace T =: span{x, y} of g. It is easy to check that
g = [g, g]Lie + T , [g, g]Lie ∩ T = 0, [[g, g]Lie, T ]Lie = 0 and [T , T ]Lie =
span{z}. Moreover, the bilinear form θ : T ×T → F defined by θ(x, x) =
2 = θ(y, y); θ(x, y) = 1+α, α ∈ F∖ {1;−1}, is nondegenerate. Therefore
g is a non-Lie Leibniz algebra of type (TLie).
Now let M = span{y, z}. M is an ideal of g of codimension one, and
ZLie(M) = span{z} = [g, g]Lie.

Remark 3.5. If g is a non-Lie Leibniz algebra of type (TLie) then ZLie(g) =

ZLie(g
(1)
Lie).

Proof. In fact, for any z ∈ ZLie(g) and any x ∈ T one has [z, x]Lie = 0.
But z = z1 + z2 with z1 ∈ T and z2 ∈ [g, g]Lie and [x, z2]Lie = 0; hence
[x, z1]Lie = 0, ∀x ∈ T . Therefore z1 = 0 since the map

θ : T × T −→ K
(x, y) 7−→ θ(x, y) = α; [x, y]Lie = αz

is a nondegenerate bilinear form. The converse inclusion comes from the
definition of a (TLie)-Leibniz algebra.
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Lemma 3.6. Let g be a Lie-stem Leibniz algebra in class DLie such that
ZLie(M) ̸⊂ [g, g]Lie for every two-sided ideal M of g of codimension 1.
Then for every two-sided ideal M of g of codimension 1, there exists a
two-sided ideal M′ of codimension 1 satisfying the following conditions:

a) g = ⟨e⟩ + M = ⟨e′⟩ + M′ for some e ∈ ZLie(M
′) − [g, g]Lie and

e′ ∈ ZLie(M)− [g, g]Lie;

b) [e, e′]Lie ̸= 0, [e, g]Lie = [e′, g]Lie = ⟨[e, e′]Lie⟩ ⊆ ZLie(g);

c) [g, ZLie(M)]Lie ⊆ ZLie(g) and dim([g, ZLie(M)]Lie) = 1;

d) dim(ZLie(M)) = 1 + dim(ZLie(g)).

Proof. Assume that g satisfies the hypotheses of the Lemma and let
M be an arbitrary two-sided ideal of g of codimension 1. We need
to find a two-sided ideal M′ of codimension 1 satisfying the conditions
a), b), c) and d). Since ZLie(M) ̸⊂ [g, g]Lie, there exists a nonzero vector
e′ ∈ ZLie(M) − [g, g]Lie and a subspace M′ of g such that g = Ke′ ⊕M′

with [g, g]Lie ⊂ M′. Clearly, M′ is a two-sided ideal of g of codimen-
sion 1. This implies that ZLie(M

′) ⊈ [g, g]Lie, thus there exists a nonzero
vector e ∈ ZLie(M

′) − [g, g]Lie. Now, e /∈ M, otherwise e ∈ ZLie(g) ⊆
[g, g]Lie, which contradicts the choice of e. Therefore g = Ke + M =
Ke′ + M′ with e ∈ ZLie(M

′) − [g, g]Lie and e′ ∈ ZLie(M) − [g, g]Lie.
This proves a). To prove b), notice from the construction above that
since e, e′ /∈ ZLie(g), then [e, e′]Lie ̸= 0. Moreover, we have [e, g]Lie =
[e,Ke′+M′]Lie = [e,Ke′]Lie+[e,M′]Lie =< [e, e′]Lie >, since e ∈ ZLie(M

′).
Similarly, [e′, g]Lie =< [e, e′]Lie > . Furthermore, for every g ∈ g, we
have by Remark 2.1 [[e, e′]Lie, g]Lie = [e, [e′, g]]Lie + [e′, [e, g]]Lie = 0 since
e′ ∈ ZLie(M), e ∈ ZLie(M) and [e′, g]Lie, [e, g]Lie ∈ M ∩ M′. There-
fore [e, e′]Lie ∈ ZLie(g). To prove c), notice that 0 ̸= [g, ZLie(M)]Lie =
[< e >,ZLie(M)]Lie ⊆ [< e >, g]Lie =< [e, e′]Lie >⊆ ZLie(g), thanks
to b). To show d), let M be an arbitrary two-sided ideal of g with
codimension one. Then from a), we obtain that for any other two-
sided ideal M′ of g of codimension one, ZLie(g) ⊆ M ∩ M′. Moreover,
if BZLie(g) denotes the basis of g, then BZLie(M) = BZLie(g)∪{e′}. Therefore
dim(ZLie(M)) = 1 + dim(ZLie(g)).

Lemma 3.7. If a Leibniz algebra g is of type (TLie), then g is a Lie-stem
Leibniz algebra such that g ∈ DLie and for every two-sided ideal M of g
of codimension 1 such that ZLie(g) ̸= ZLie(M), ZLie(M) ̸⊂ [g, g]Lie.
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Proof. Assume that g is a Leibniz algebra of type (TLie). Then g ∈ DLie

by definition. Let T , z and θ be as in definition 3.1. For any z :=
z1 + z2 ∈ ZLie(g), with z1 ∈ T and z2 ∈ [g, g]Lie, we have [T , z1]Lie +
[T , z2]Lie = [T , z]Lie = 0. So θ(x, z1) = [x, z1]Lie = 0 for all x ∈ T ,
since [x, z2]Lie = 0 by Definition 3.1(b). It follows that z1 = 0 because
θ is a non-degenerate bilinear form on T . Therefore z = z2 ∈ [g, g]Lie.
This implies that ZLie(g) ⊆ [g, g]Lie i.e. g is a Lie-stem Leibniz algebra.
Now consider M be an arbitrary two-sided ideal of g of codimension 1.
Clearly M contains [g, g]Lie and g = T + [g, g]Lie = Ke + M, for some
e ∈ g − [g, g]Lie. But since ZLie(g) ⫋ ZLie(M), there exists e′ ∈ ZLie(M)
such that [e′, e]Lie ̸= 0. Consider the subspace M′ of g complementary of
< {e′} > .M′ is a two sided ideal of g of codimension 1 containing [g, g]Lie
and g = M′ ⊕Ke′ = T ⊕ [g, g]Lie. Hence e′ ∈ T ∩ ZLie(M), consequently
ZLie(M) ⊈ [g, g]Lie.

Theorem 3.8. Let g be a Lie-stem Leibniz algebra such that g ∈ DLie

and ZLie(M) ̸⊂ [g, g]Lie for every two-sided ideal M of g of codimension 1.
Then g is of type (TLie).

Proof. Assume that g is a Lie-stem Leibniz algebra such that g ∈ DLie

and for any two-sided ideal of g of codimension 1, ZLie(M) ⊈ [g, g]Lie. We
construct a subspace T of g satisfying the properties of Definition 3.1
above. Let M be any subspace of g of codimension 1 containing [g, g]Lie.
Clearly, M is a two-sided ideal of g. Since ZLie(M) ⊈ [g, g]Lie, then by
Lemma 3.6, there exists a two-sided ideal M′ of g such that{

g = Ke⊕M with e ∈ ZLie(M)′ − [g, g]Lie,
g = Ke′ ⊕M′ with e′ ∈ ZLie(M)− [g, g]Lie.

Since M and M′ contain [g, g]Lie, It follows that{
M = Ke′ ⊕ (⊕s

i=1Kai)⊕ [g, g]Lie,
M′ = Ke⊕ (⊕s

i=1Kai)⊕ [g, g]Lie.

We construct the subspace T by induction. If s = 1 then g = Ke⊕Ke′⊕
[g, g]Lie. Take T = ⟨{e, e′}⟩ . Clearly, for some vectors ai ∈ g, i = 1, . . . , s,
T satisfies all the assertions of Definition 3.1, therefore g is a (TLie)
Leibniz algebra. Now, assume that s ≥ 2 and set M1 = Ke ⊕ Ke′ ⊕
(⊕s

i=2Kai)⊕ [g, g]Lie. M1 is also a two-sided ideal of g of codimension 1.
Since [e, e′]Lie ̸= 0, then ZLie(M1) ⊆ (⊕s

i=2Kai) ⊕ [g, g]Lie. Moreover, we
have by hypothesis ZLie(M1) ⊈ [g, g]Lie. Again, by Lemma 3.6, one has{

g = Ke1 ⊕M1 with e1 ∈ ZLie(M
′
1),

g = Ke′1 ⊕M′
1 with e′1 ∈ ZLie(M1),
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and [e1, e
′
1]Lie ̸= 0, [e1, g]Lie = [g, e′1]Lie = ⟨[e1, e′1]Lie⟩ ⊂ ZLie(g); e1, e

′
1 /∈

{e, e′}, [e, e1]Lie = [e′, e1]Lie = [e, e′1]Lie = [e′, e′1]Lie = 0.
Continuing this construction and using appropriate notations, we obtain

g = Ke1 ⊕Ke′1 ⊕Ke2 ⊕Ke′2 · · · ⊕Ken ⊕Ke′n ⊕ [g, g]Lie

with (0 ̸= [ei, e
′
i]Lie = zi ∈ ZLie(g))1≤i≤n, and for all i, j ∈ {1; 2; · · ·n},

i ̸= j, [ei, ej ]Lie = [ei, e
′
j ]Lie = [e′i, ej ]Lie = [e′i, e

′
j ]Lie = 0. Set T = Ke1 ⊕

Ke′1⊕Ke2⊕Ke′2 · · ·⊕Ken⊕Ke′n. We show that T satisfies the assertions
of Definition 3.1. From the construction, we have g = T ⊕ [g, g]Lie and
[T , [g, g]Lie]Lie = 0. It remains to show that [T , T ]Lie is a one dimensional
vector subspace of ZLie(g). We show that any set {zi, zj}{1≤ i ̸=j≤n} of two
vectors in ZLie(g) is linearly dependent. Indeed, assume that {zi0 , zj0}
is independent for some 1 ≤ i0 ̸= j0 ≤ n, and denote by M̃ the two
sided-ideal of g of codimension 1 defined by

M̃ = K(ei0 − ej0)⊕Ke′i0 ⊕Ke′j0 ⊕
∑

1≦s≦n, s ̸=i0,j0

(Ke′s ⊕Kes)⊕ [g, g]Lie.

Then for any element, x in ZLie(M̃), we have [x, es]Lie = [x, e′s]Lie = 0 for
all 1 ≤ s ≤ n, s ̸= i0, j0. Moreover [x, ei0−ej0 ]Lie = 0 = βi0zi0−βj0zj0 for
some βi0 , βj0 ∈ K. Thus βi0 = βj0 = 0 since the set {zi0 , zj0}{1≤ i ̸=j≤n}
is linearly independent. Hence x ∈ [g, g]Lie. This contradicts the fact

that ZLie(M̃) ⊈ [g, g]Lie. Therefore [T , T ]Lie is a one dimensional vector
subspace of ZLie(g).

Definition 3.9. A Lie-nilpotent Leibniz algebra is said to be pseudo-Lie-
abelian if [g, g]Lie = ZLie(g) = ⟨z⟩ for some z ∈ g.

Remark 3.10. Every Lie-solvable Leibniz algebra of type (TLie) is pseudo-
Lie-abelian.

Proof. Let g be a Lie-solvable Leibniz algebra of type (TLie). Then g is
a Lie-stem Leibniz algebra i.e. ZLie(g) ⊆ [g, g]Lie. Moreover, there exists

a subalgebra T of g such that g = T + g
(1)
Lie with [T , g

(1)
Lie ]Lie = 0, and

[T , T ]Lie = ⟨z⟩ for some z ∈ ZLie(g), where g
(i+1)
Lie = [g

(i)
Lie, g

(i)
Lie]Lie and

g
(0)
Lie = g. So

g
(1)
Lie = [T + g

(1)
Lie , T + g

(1)
Lie ]Lie ⊆ ⟨z⟩+ g(2).

Inductively, we have that

g
(2)
Lie = [g

(1)
Lie , g

(1)
Lie ]Lie ⊆ [⟨z⟩+g

(2)
Lie , ⟨z⟩+g

(2)
Lie ]Lie ⊆ g

(3)
Lie ⊆ . . . ⊆ g

(n)
Lie ⊆ . . . ⊆ 0
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since g is Lie-solvable. So, [g, g]Lie ⊆ ⟨z⟩ ⊆ ZLie(g). This completes the
proof.

The following theorem characterizes Leibniz algebras of type (TLie)
with 1-dimensional Lie-center.

Theorem 3.11. A Leibniz algebra is of type (TLie) such that dim(ZLie(g)) =

1 if and only if g is a Lie-stem Leibniz algebra such that g ∈ DLie, and
[ZLie(M), g]Lie = ZLie(M) ∩ [g, g]Lie for every two-sided ideal M of g of
codimension 1 such that ZLie(M) ̸= ZLie(g).

Proof. Assume that g is a Leibniz algebra of type (TLie) with 1-dimensio-
nal Lie-center. Then by Lemma 3.7, g ∈ DLie and g is a Lie-stem Leibniz
algebra. Let M be a two-sided ideal of g of codimension 1. Then by
Lemma 3.6(c), [ZLie(M), g]Lie ⊆ ZLie(g). Since dim(ZLie(g)) = 1, it fol-
lows that [ZLie(M), g]Lie = ZLie(g). Also, as ZLie(M) is a two-sided ideal of
g, we have [ZLie(M), g]Lie ⊆ ZLie(M) ∩ [g, g]Lie ⊆ ZLie([g, g]Lie) = ZLie(g).
Therefore [ZLie(M), g]Lie = ZLie(M) ∩ [g, g]Lie. Conversely, assume that g
is a Lie-stem Leibniz algebra such that g ∈ DLie, and [ZLie(M), g]Lie =
ZLie(M)∩ [g, g]Lie for every two-sided ideal M of g of codimension 1, and
let e ∈ g such that g = Ke+M. If ZLie(M) ⊆ [g, g]Lie, then we have on one
hand [ZLie(M), e]Lie = [ZLie(M), g]Lie = ZLie(M). On the other hand, the
map α : ZLie(M) → [ZLie(M), e]Lie defined by α(m) = [m, e]Lie, is a surjec-
tive linear map with ker(α) = {m ∈ ZLie(M) | [m, e]Lie = 0} = ZLie(g) ̸=
0. This implies that dim(ZLie(M)) > dim([ZLie(M), e]Lie). A contradic-
tion. Hence ZLie(M) ⊈ [g, g]Lie for every two-sided ideal M of g of codi-
mension 1. We conclude by Theorem 3.8 that g is of type (TLie). To show
that dim(ZLie(g)) = 1, notice that since g is a Lie-stem Leibniz algebra,
ZLie(g) = ZLie([g, g]Lie) ⊆ ZLie(M) ∩ [g, g]Lie = [ZLie(M), g]Lie. The result
follows by Lemma 3.6 since ZLie(g) ̸= 0 and dim([g, ZLie(M)]Lie) = 1.

Proposition 3.12. Let g be a Leibniz algebra. Then the following as-
sertions are equivalents:

a) g is Lie-pseudo-abelian;

b) [g, g]Lie = ZLie(g) and dim(ZLie(g)) = 1;

c) [g, g]Lie = ZLie(g) and dim(ZLie(M)) = 2dim(ZLie(g)) for every two-
sided ideal M of g of codimension 1;

d) [g, g]Lie = ZLie(g) and dim(ZLie(M) ∩ [g, g]Lie) = 1 for every two-
sided ideal M of g of codimension 1.
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Proof. a) ⇒ b) Straightforward.

b) ⇒ c) Assume that b) holds. If ZLie(M) ⊆ [g, g]Lie, then ZLie(M) =
[g, g]Lie, and the result follows. Otherwise, g ∈ (TLie), and thus
dim(ZLie(M)) = dim(ZLie(g)) + 1 = 2dim(ZLie(g)).

c) ⇒ a) Assume that c) holds. Then, ZLie(M) ⊈ [g, g]Lie. By Theo-
rem 3.8, g is of type (TLie). Since [g, g]Lie = ZLie(g), g is Lie-solvable.
Therefore, g is Lie-solvable of type (TLie). It follows by Remark 3.10 that
g is pseudo-abelian.

b) ⇒ d) Assume that b) holds and let M be a two-sided ideal of g of
codimension 1. Then, ZLie(g) = [g, g]Lie ⊆ M. So, ZLie(g) ⊆ ZLie(M) and
ZLie(g) = [g, g]Lie ∩ ZLie(M). Hence dim([g, g]Lie ∩ ZLie(M)) = 1.

d) ⇒ b) Assume that d) holds. For every two-sided ideal M of g of
codimension 1, ZLie(g) = [g, g]Lie ⊆ M. So, ZLie(g) ⊆ ZLie(M) and thus
ZLie(g) = [g, g]Lie ∩ ZLie(M). Hence dim(ZLie(g)) = 1.

This completes the proof.

Proposition 3.13. Let g be a non-Lie Leibniz algebra. If g is Lie-pseudo-
abelian, then dim(ZLie(M)) = 2 and ZLie(g) = ZLie(M)∩[g, g]Lie for every
two-sided ideal M of g of codimension one.

Proof. For every two-sided ideal M of g of codimension 1, ZLie(g) =
[g, g]Lie ⊆ M since g is a Lie-pseudo-abelian. So, ZLie(g) ⊆ ZLie(M) and
thus ZLie(g) = ZLie(M) ∩ [g, g]Lie. Finally, we have by the assertions b)
and c) of Proposition 3.12 that dim(ZLie(M)) = 2.

Proposition 3.14. Let g be a Leibniz algebra of type (TLie). Then

Z(DerLie(g)) = 0.

Proof. Let T , and θ be as in Definition 3.1 and let d ∈ Z(DerLie(g)). For
any a, b ∈ g, d([a, b]Lie) = d([a, b]) + d([b, a]) = d(Rb)(a) + d(Ra)(b) = 0,
since the inner derivations Ra and Rb are Lie-derivations (see Exam-
ple 2.6). Now let x ∈ T , since θ is nondegenerate, there exists a non
zero vector y ∈ T such that θ(x, y) ̸= 0 for some y ∈ T . Set T1 =
{u ∈ T | θ(x, u) = 0}. It is easy to show that T1 is a subspace of T of
codimension 1. Set M1 := [g, g]Lie + T1. Clearly, M1 is an ideal of g of
codimension 1, x ∈ ZLie(M1) by Definition 3.1(b), and g = Ky + M1.
Now, let d′ : g → g defined by d′(λy+m1) := λx. It is easy to show that
d′ is a Lie-derivation of g. So d(x) = d(d′(y)) − d′(d(y)) = 0. Therefore
d(g) = 0, and hence d = 0.
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Proposition 3.15. Let g be a non-Lie Leibniz algebra in the class DLie

such that g is not of type (TLie) and has no nonzero abelian direct sum-
mands. Then g has a Lie-derivation in DerLiez (g).

Proof. Let g be a non-Lie Leibniz algebra satisfying the hypothesis of
the proposition. Then g is a Lie-stem Leibniz algebra. Otherwise, there
exists x ∈ ZLie(g) such that 0 ̸= x /∈ [g, g]Lie. Consider the one-dimensio-
nal subspace of g spanned by ⟨x⟩ and let Mx be its complementary in
g. Then Mx is a two-sided ideal of g and g = ⟨x⟩ ⊕ Mx. Thus ⟨x⟩ is a
nonzero abelian direct summand of g. This contradicts the hypothesis.
Now, since g is a Lie-stem Leibniz algebra and is not of type (TLie), then
by Theorem 3.8, there exists a two-sided idealMe of g of codimension one
such that ZLie(Me) ⊂ [g, g]Lie. So we have g = ⟨e⟩⊕Me with 0 ̸= ZLie(g) ⊂
[g, g]Lie ⊂ Me, ZLie(g) ̸= Me and e ∈ g − Me. Choose z0 ∈ ZLie(g) and
define the linear map d : g → g by d(x) = αxz0 for any x = αxe +mx.
Clearly, d is an derivation of the Leibniz algebra g in DerLiez (g).

Definition 3.16. A Lie-derivation d : g → g is said to be semi-simple
if Im(d) = ⊕α∈∧gα where gα is a subspace of g defined by gα = {a ∈ g :
d(a) = αa}and ∧ is a set of indexes.

Proposition 3.17. Let g be a non-Lie Leibniz algebra of type (TLie)

such that g
(1)
Lie ̸= g

(2)
Lie . Then g is a direct sum of a Lie-nilpotent Leibniz

subalgebra of g and g has a semi-simple Lie-derivation.

Proof. Since g is of type (TLie) with the condition g
(1)
Lie ̸= g

(2)
Lie , then there

exists z ∈ ZLie(g) such that g
(1)
Lie = ⟨z⟩ ⊕ g

(2)
Lie . Set g1 = T ⊕ ⟨z⟩ and

g2 = g
(2)
Lie . We have [g1, g1]Lie = [T , T ]Lie = ⟨z⟩ = ZLie(g1). Thus g1 is a

pseudo-abelian Leibniz subalgebra of g, and therefore it is Lie-nilpotent
Leibniz subalgebra of g with nilpotency class 2. So g = T ⊕ ⟨z⟩ ⊕ g(2) =
g1 ⊕ g2. Assume now that K is a field of characteristic different from 2
and consider the linear map defined as follows:

d0 : g −→ g
x = x1 + αxz + x2 7−→ d0(x) = x1 + 2αxz

.

We show that d0 is a derivation. Indeed,

d0([x1 + αxz + x2, y1 + αyz + y2]Lie) =
= d0(α1z) = 2α1z = α1z + α1z = [x1, y1]Lie + [x1, y1]Lie =

= [x1 + 2αxz, y1 + αyz + y2]Lie + [x1 + αxz + x2, y1 + 2αyz]Lie =
= [d0(x1+αxz+x2), y1+αyz+y2]Lie+[x1+αxz+x2, d0(y1+2αyz+y2)]Lie.
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In addition Im(d0) = T ⊕ [T , T ]Lie, T = {x ∈ g : d0(x) = x} and
[T , T ]Lie = {y ∈ g : d0(y) = 2y}. Thus d0 is a semi-simple Lie-derivation

Remark 3.18. If g is a non-Lie Leibniz algebra, then DerLiez (g) is an
ideal of DerLie(g).

Proof. Let d ∈ DerLiez (g), d′ ∈ DerLie(g) and x, y ∈ g. Then

[[d′, d](x), y]Lie = [d′(d(x)), y]Lie − [d(d′(x)), y]Lie = [d′(d(x)), y]Lie.

In addition

d′([d(x), y]Lie) = 0 = [d′(d(x)), y]Lie + [d(x), d′(y)]Lie = [d′(d(x)), y]Lie.

Hence [d′, d] ∈ DerLiez (g). Therefore DerLiez (g) is an ideal of DerLie(g).

Remark 3.19. Let g be a non-Lie Leibniz algebra of type (TLie). Then
g has a central Lie-derivation.

Proof. Since g is of type (TLie), then ZLie(g) ⊆ [g, g]Lie ⊊ g by the proof
of Lemma 3.7. Let M be a two-sided ideal of g of codimension one, and
set g = ⟨e⟩ ⊕M. Choose z ∈ ZLie(g) and define the linear map

d : g −→ g
x = αxe+m 7−→ d(x) = αxz.

It is easy to show that d is a central Lie-derivation.

Proposition 3.20. Let g be a Lie-solvable Leibniz algebra with nonzero
Lie-center. If g is not pseudo-abelian and if g has no nonzero abelian
direct summands, then g has a Lie-derivation in DerLiez (g).

Proof. Let g be a Lie-solvable Leibniz algebra such that ZLie(g) ̸= {0},
and assume that g satisfies the hypotheses of the proposition. First, we
prove that g ∈ DLie. Indeed, assume the contrary, then since ZLie(g) ̸=
{0}, it follows that g = [g, g]Lie. So the sequence of ideals (g

(k)
Lie )k≥0 defined

inductively by: g
(0)
Lie = g and for all k ≥ 1, g

(k)
Lie = [g

(k−1)
Lie , g

(k−1)
Lie ]Lie, is a

constant sequence. It follows by the Lie-solvability of g that there exists

r > 0 such that {0} ≠ ZLie(g) ⊂ g = g
(0)
Lie = g

(r)
Lie = {0}. This is absurd.

Thus g ̸= [g, g]Lie and g ∈ DLie. Moreover g
(2)
Lie ⫋ g. Now assume that

g is of type (TLie). Then g = T + [g, g]Lie for some nonzero subspace
T of g. This implies that [g, g]Lie = [T , T ]Lie + [[g, g]Lie, [g, g]Lie]Lie =
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Kz + g
(2)
Lie . Thus g

(2)
Lie = g

(3)
Lie . So the sequence (g

(k)
Lie )k≥0, as defined above,

is stationary. It follows that g
(2)
Lie = 0 since g is Lie-solvable. Therefore

[g, g]Lie = Kz = [T , T ]Lie with z ∈ ZLie(g). Moreover, by the proof
of Theorem 3.8, g is a Lie-stem Leibniz algebra. Therefore, [g, g]Lie =
ZLie(g) = ⟨z⟩ , that is, g is a pseudo-abelian Leibniz algebra satisfying

g
(2)
Lie ̸= g

(1)
Lie . This contradicts the hypothesis. So g is not of type (TLie).We

now conclude by Proposition 3.15 that g has a Lie-derivation in DerLiez (g).
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