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ABSTRACT. The main point of our research is to obtain the
estimates for Kloosterman sums K («, 3; h, ¢; k) considered on the
ellipse bound for the case of the integer rational module ¢ and for
some natural number k with conditions («, ¢) = (8,¢q) = 1 on the
integer numbers of imaginary quadratic field. These estimates can
be used to construct the asymptotic formulas for the sum of divisors
function 74(cr) for £ = 2,3, ... over the ring of integer elements of
imaginary quadratic field in arithmetic progression.

The classical Kloosterman sums were being introduced in 1926 by
work of [6] to study the representations of natural numbers by the binary
quadratical forms. The Kloosterman sum is an exponential sum over the
reduced residue system modulo ¢:

g azbz/
K(a,b;q) : Ze g , a,beZ, g>1eN, (1)

r=1

(z.q)=1
here 2’ denotes the multiplicative inverse for z modulo mod ¢, i.e. z2’ =1
(mod q).

Over the following years the Kloosterman sums have been found its
application on the different problems of asymptotic number theory and
first of all on the distribution problems of the values of divisor functions
7(n) on arithmetic progressions.
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The most complexity in construction the estimations of Kloosterman
sums is represented by the case ¢ = p, p be a prime number. In 1948 A.
Weill [11] proved the Riemann hypothesis on algebraic curves that leads
to construction the best possible estimation

N

K(a,b;q) < p2. (2)

The Kloosterman sums play the essential role in the spectral theory
of Riemann zeta-function devised by Yu. Motohashi (see [8]).

The renewed impetus of resolving the difficult problems of asymptotic
number theory give the works of N.V. Kuznetsov|7] and R. Bruggeman|3|
devoted to estimates of the sum of Kloosterman sums. Afterwards there
are occured the generalizations of classical Kloosterman sums. For example,
U. Zhanbyrbaeva|12] has studied the Kloosterman sums over the ring of
Gaussian integers Z[f] and resolved the distribution problem of divisor
function of the Gaussian integers in arithmetic progression. In the work
[4] there have been investigated the Kloosterman sums over the entirely
real number fields. In 2003 R. Bruggeman and Yu. Motohashi |2] obtained
an analogue of Kuznetsov formula for the sum of Kloosterman sums over
the ring of Gaussian integers. The geometry of Gaussian integers is richer
that the geometry of integer rational numbers. In the work [10] there was
considered the norm Kloosterman sum over the ring Z[f] that has no
analogous rational case.

We use the following notations:

a, 3,7, ... be the integer numbers from Q(v/—d);
p — Gaussian prime number;
Sp(a) be the trace of a from Q(i) to Q, i.e. Sp(a) = 2Re «;
N(a) = |a|? be the norm of «;
G, (respectively, G7) — complete (respectively, reduced) residue
system modulo mod v in Q(v/—d);
e the notation )  means that the summation goes over the condition
S
C, and besideé t)he condition C describing separately;
o ¢,(2) = ™, exp (x) := €%
e (a,b,...,c) be the greater common divisor of a,b,...,cin Z or in
Z[v/—d] (that is usually follows from context);
e the Vinogradov symbol 7 <7 means the same as Landau symbol
ok :
¢ (respectively, @) be the Euler totient function in N (or, respectively,
in Z[0], where § = /—d);
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e and further instead v/—d we will use whenever it is the letter 6.
Now let o, € Z[A], h€ Z, g € N, ¢ > 1, (h,q) = 1. Let us assume

~ 1
K(a,Bihg)i= > e (25p<ax+ﬁy>> (3)
N(zy)=h(mod q)

and call it the Kloosterman sum over the ellipse u? + dv? = 1 (mod p™).
For ¢ = qiq2, (q1,92) = 1 we have

K (o, B;h,q) = K(a, B; hd's, q1) - K (e, B; hq'1, q2) =

= K(aq2, Baz2; h, q1) - K (g1, Bai; h, q2).

(here ¢, be the inversive to g2 modulo ¢; and ¢} be the inversive to ¢;
modulo g2).

Therefore, we will consider only the case ¢ = p”, p be the prime rational
number, n € IN.

Denote my = max {m: m < yy(q)} (i.e. mqy be the maximal
a=0(mod p™)

exponent of p that is not more than v,(¢) and such that o = 0 (mod p™)).

Theorem 1. Let (h,p) = 1. Then

[ SIS
is
M

K(a, B;h,p") < (p™=, p™",p")
with absolute constant in symbol” <K 7.

Proof. First of all let assume that n = 1. The case my = mg = 11is a
trivial. So we will suppose that m, = 0 or mg = 0. And further let say
a = aj + tag, B = by + ibs, and then (al,ag,bl, b2) =1.

For the factorable p we have

K(a, B; h,p) = D eplarzy — coazmsy + biyr — eobaya), (4)
)

where

d

- x17x27y17y26{0717"'7p_]-}7
(@t +d-235)(yi +d-y3) =h (modp) |’
g2 =—d (modp™)

We will suppose that (d,p) = 1.
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The sum K (a, B; h,p) we call the norm Kloosterman sum over the
ring Z[0).

Let gg be the solution of congruence 22 = —d(mod p). This congruence
has the solution because —d is the quadratic residue modulo p.

Further let assume
Uy = 1 + €02, U2 = X1 — E0x2, V1 = Y1 + E0Y2, V2 = Y1 — €0Y2-

Now from (4) we obtain

K (o, B;h,p) = Zep(Alul + Agus + Bivi + Bovs),
)

where U = {uy,ug,vi,v2 € {0,1,...,p— 1}, ujugvivy = h(modp)}.

E. Bombieri|1] proved that the last sum can be estimated as < p%.

If p be irreducible then the same estimate be valid for the sum (4)(the
proof is analogous).

Now let n > 2. It is enough for us to consider only the case
(p™me,p™B p™) = 1. In such case just although one of numbers aj, ag, b1,
by is not divided by p (here o = ay + fag, 5 = by + 0b2).

Then we infer

K(, B;h,p") =

p"—1

= X 5 2 e (k(N(@)N(y) = h) + R(ax) + R(By)) =
z,y€Gyn k=0 (5)

=5 > epr(k(d- (2% +23)(y] +93) — h)+
s(©) + a1y — agws + dbiyr — dbays),

where
C = {k(mod p"); x1, x2(mod p"); y1, y2(mod p"); x1, 22, y1,y2 € Zypn }

Just although the one of sum over x1, x2, y1, y2 is equal to 0, if (k,p) = p
(by rational analogue of the completed exponential sum of linear function).



S. VARBANETS, Y. VOROBYOV 255

Therefore, supposing that (aq,az,p) = 1 we have

K (o, B;h,p) =

= o= S(z(;) ep(—kh)epn (kdN (x)(y§ 4 y5) + R(ax) + dbiyy — dbays) =

:,% > epn(—kh) >+ > =21+
kEZ;n z€Gyn z€Gyn
(N(z),p)=1 z(mod p™)
N(z)=0 (mod p) ( )
6
where C' := {k € Zpn, x € Gpn, y1,y2 € an},
Let N(z)" and k" be the solutions of congruence
N(z)u = 1(modp"), ku = 1(modp"),
respectively.
Then
‘Zl‘ — | S epn(—kh)x (7)
keZyn
X Z epn (4N ()'K (b3 + b3) + a121 — agws)| .
J?EGpn
We assume

z1 =2 +p"z1, xo =2y + p"ag,
O<$?7x8 <pm_17 0<21722 gpnim_:l? m= [%—i_l] :
It is clear that
N(z) = (29 +d-297) (1 = 2™ (23" + d - 25%) (2920 + 2921)).
And hence
211 = Zkezgnep"<_kh)x

2 2
X 32 20 a8 (mod pr) € (4K (277 +257)" - (b + 03) + @12} — apad)x
(29%+23% p)=1

X 221722(m0dpn_m) ep”_m((Al + al)zl + (AQ + a2)22) ’
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where Ay = 2((29% + 29%))229, Ay = 2((29% + 29°))229.

The summatlon over z1, z3 gives zero 1f the congruence
A1+ a1 =0(modp"™™), Ay —az = 0(modp"™™)

or the equivalent congruence

02

asx? + a2y = 0(mod p"™™), 219 = —ay (297 + m82)2(modp”_m)

are violated.

This congruence system has at most three solutions modulo p
so at most 3p™~ ("™ golutions modulo p™.

Hence,

= and

’21‘ =[PP S e (aia? — aza?) 3 (kh+K'B)| < 8p2",  (8)
S(C)

kGG;n
where
agz) = —a1xY(mod p"~™),
C =< 29, 2%(mod p™)
227 = —al(ajl + CL’(Q)Q) (mod p™~™)

Finally, if N(z) = 0(mod p) then ), = 0 by the rational analogue of
completed esponential sum of lenear function. O

For natural k£ > 1 we assume

K(o,Bih,qik):= Y eq(%Sp(ow"c + By")). 9)
z,y€Gyq
N (zy)=h(mod q)
It is clear that I?(a,ﬁ;h, q;1) = I?(a,é; h,q).
The method of investigation the sum K («, f3; h, q; k) shows that it is
enough to consider the case ¢ = p™, p be a prime. First of all, we will
assume that p be irreducible.

Theorem 2. Let p be irreducible, h € Z, (h,p) =1, k€ N, t = (k,p—1).
Then for any of integer numbers o, 3, (a, 5,p) = 1 over the ring Z[0] the
following estimate

12p3,

dp®, if t>= Yp+1.

K(a,B;h,p; k)| <

holds.
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Proof. Let k = dkq, (k1, %) = 1. We have

> ep(zSpla(™) + By™)")) =
z,y€Gyp
N (zy)=h(mod p)

= > ep(zSp(a(a™)! + Bly*)") =
z,y€Gp
N(zF1yF1)=hF1 (mod p)

= X ep(3Splaa’ +By") = K(a, i hM, pit).
z,yeGp
N(zy)=h*1(mod p)

By virtue of the fact that for any multiplicative character x over the
field IF,» we have

S x(W)K (e, B; hypyt) =
heF ",

= 5 XN@N@)e(bSplaat)e,(55p(8y') = 0
RIS »2

=( 2 x(N(@)ep(3Splaz)))( 3 x(N(y))ep(35p(By"))),

F* F*
z€l”, yek s

The sums in righthand of (10) can be estimated as (t — I)N(p)% (because
of this is generalized Gaussian sums).
So we obtain

> X(W)E (e, B h,pst)| < (¢ — 1)
helF™,
p
The application of Plancherel theorem gives

> K (a, Bihpit)]F < (1= 1)t
heF*,

Now, similar to the work of Bombieri[1], we infer that the weight of
characteristic roots associating with K («, /3; h, p;t) be no more than 3 if
(t — 1)* < p. Then using the results of Bombieri[1] and Deligne[5] we find

K(a,B;h,pit) < (t—1)2p? < t2p? ift —1 < ¢/p.
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Further, for = x1 + 09, 1,29 € Z, we have x1 — ifxs = (21 +
f22)P(mod p) and then N(x) = zP*!(modp).
Hence,

2 ep(3Sp(az’ + By')) =
z,y€Gyp
N (zy)=h(mod p)

= > ep(55p(az’ + By')) =
z,yeGp (1 1)
(zy)P T =h(mod p)

= X > ep(zSplaz’ + By")).
e€Gyp z(mod p)
ePt1=h(mod p)

The congruence P! = h(mod p) has the exactly 2 solutions mod p
if h be the quadratic residue. The inner sum at the righthand of (11)
estimates as < 2dp. This finalize the proof of theorem. O]

Now, let ¢ = p”, p be irreducible, n > 2. We will use the description
of elements with norm 1 of reduced residue system mod p”. They form a
group that we describe through F,,.
Further we will need to use the following statement.

Lemma. Let n,k € N, p > 3 be a prime, u € Z, (p,u) = 1. Then for any
natural t we have

(1+p*uw)’ = 1+ pFast + p*Fast® + p*ast® + - + p*ra,t"(mod p™),
more over, (a;,p) =1,i=1,...,n;X\; >2k,j=3,...,n.

Proof. From the relation

and the upper bound of exponent with that the number p falls into m!,
we obtain

(1+p*uw)f = 1+ pFart + p*Fast® + p*ast® + - + p*ra,t"(mod p™),

where (a;,p) =1,i=1,...,n; \j > (k‘—ﬁ)-‘j >2kforj=3,4,... . O
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Therefore, it is obvious that the generating element u + v/ —dv of
the group E1 may be taken as it will be the generating element of group
E, for any fixed ¢, ¢ = 2,3,... . Let £ = max(5,n). We have

N((u+ V—=dv))? = 1(mod p*)
(u+ V=dv)*P*) =1+ p(xo + V—=dyo), (xo+ V—dyo,p) =1.
Then
N(1+ pzo + V—=dpyo) = 1 + 2pxo + p’j + p*dyg = 1(mod p").

Therefor, 2pxo = 0(mod p?), xo = px}, (yo,p) = 1.
Hence,

(u+ V=dv)*P*) =1+ p*xg + V—=dpyo, (z0,p) = (y0,p) = 1.
Now applying previous lemma we easy obtain

Ri(u+ V=) 20 411 =
= Ay + At + A2t2 + -4 An_ltnfl(modpn),

(12)
S((u 4 V—dv)?PHt) =
= By + Bit + B2t2 + -+ Bn_ltn_l(modpn),

where

Ap = 1(mod p), By = 0(mod p),

Ay = p?ao + 2'dydp? (mod p?), i.e. A1 = 0(mod p?),

A2 = _2,ygp2(m0dp3)v ie. A2 = p2A/27 (A/Zap) = 17

B1 = pyo(mod p®), i.e. By = pBy, (Bi,p) =1,

BQ = A3 = Bg == An,1 = anl = O(modp?’)

Let assume

B=2p+Dt+2 0<t<p" 1 —1,0<2<2p+1

and define

(u+ vV—dv)* = u(z) +V—dv(z), z=0,1,...,2p+ 1.



260 KLOOSTERMAN SUMS ON THE ELLIPSE

Then
(u+ vV—=dv)? = (u+ V—=dv)*PTVt . (u(z) + V—=dv(z)).
And therefore, we have

R{ (u + V/—dv)2PHDiz1 =

= Ao(z) + A1(2)t + - + Ag1(2)t" ! (mod pm),

where A;(z) = A;ju(z) — Biv(z).

Now define for which values of z the congruence v(z) = 0(modp)
holds.

Let v(2) = pvo(2), vo(2) = 0(mod p*), k > 0.

Then

(13)

(u+V—dv)* = u(2) + vV/—dpvy(2)

(u + V—=dv)?@= D" = (4(2)) D" (mod pn).

The sequences {(u + v/—dv)??} and {g®} can have two common ele-
ments modulo p: 1 or -1. Then

(u<z))<p—1>p"*k = +1 (mod p").

The congruence (u(z))®=Dr" =- 1(mod p™) impossible because
otherwise we would be have (—1 ) = (u(2))PTP"" = 1(mod p"), i.e
—1 = 1(modp).

Hence,

(u(z))(pfl)pn_k = 1(mod p™)

2(p— 1)p"F = 0(mod 2(p + 1)p" ).

As we have (p —1,p+ 1) = 2 then z = O(mod(p + 1)p*~1). So, obtain
that from pH ) it follows z = p+ 1, and from p ! ) it follows z = 0.
So, we have

pHA1 , Ai(2) = 0(mod p?), 1=2,....n—1if2#£0,z#4p+1;
A1(0) = A1(p+1) = 0(mod p?), p?||A2(0) p?||A2(p + 1),

Aj(0)=A;(p+1) =0(modp?®), j=3,4,...,n—1.

We use below the following lemma.
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Lemma (Generalized Gauss sum). Let p be the prime odd number from
imaginary quadratic field, m > 1 be the natural, ai,ae,...,a, € G,
(ag,p) = 1. Then for any natural k > 2 we have

< . <041W+P042W2+Pga3w3+"'+pkakwk>>
Z exp | m2Sp o =

wEGpm
0, if (ca,p) =1 (mod p),

m—+41

(N(p)) 2, if a1z =0 (mod p).
Now we can prove the following statement.

Theorem 3. Let p be a prime irreducible number, h € Z, (h,p) = 1,
k > 1 be the natural, a,b are integer numbers in Z[0], (a,p) = (b,p) = 1.
Then forn > 2

‘ff(a,b; h,p"; k)’ < 2p2" " log p,

where m such that pmHk,

Proof. Applying lemma about the structure of group Gyn, we can write
a,b in form

a =g (u+0v)%, b= g (u+0v)’.
where ¢ be the primitive root modp” in Z, u + fv be the generative

element of group F,.
Then we obtain

K (a,b;h,p"; k) =

= > epn (gP0R((u + v)0zk) + g*OR((u + v)oyk)).
z,y€Gyn
N(z)N(y)=h(modp™)
(14)
Let h = g%(modp™). Then h = £¢?* (mod p"), where

5 Qg if «is even,
Qo = p—=1,_n—1 :
a+ S5-p if ads odd.

The sum over € Gpn in (14) we will split in two parts, > =", +> .
In the sum ), we put such = € Gy, for which

N(z) = g** (modp"),
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and in the sum ), will falling such « € Gpn, for which

N(z) = —¢g** (mod p").

For both cases we have that oy runs over all values 0,1, ..., %p"_l -1

Hence,
K(a,b;h,p" k)= + (15)

For z from ) ; we have

2= g1 (u + 002 (mod pr),
a1 =0,1,....5p—1p" ' =1; B1=0,1,....(p+1)p" -1
It means that
R((u+ 0v)%0zF) = g" R ((u + 0v)?*P175%) (mod p™).
From condition N(x)N(y) = h(modp") it follows that
N(y) = £¢**(modp"),
where as = ag + ((p — 1)p" ' — 1)ay.

And so we have
YOI 35 ) BRI (16)

(a1) (B1) (B2)

where

(ﬂ) _ (ga6+a1k%((u + 0v)2k61+,36) + ga(’)’-i-agk%((u + HU)Qk,B2+56'+5k))

here (ay) means that a; runs over all values 0,1, ..., %(p —1)p

(B;) run over all 0,1,...,(p+ 1)p"~ !t —1, (i = 1,2); and, moreover, § = 0
if h = g?*(modp") and 6 = 1 if h = —¢?>* (mod p").

Similarly,
2= (D) (17)

(a1) (B1) (B2)

n—1 _ 1:

)

where
(;Z]) _ (gaa-‘roqk%((u + iv)2k61+56+1) + ga(’)’—i-agk%((u + 9U)2k/82+18(/)/+5k))'
Let assume again

Bi = (p+ Dt; + 2, ty(modp™t), 2, =0,1,....p, (i=1,2).
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Then

kﬁz = 2(]) + 1)kti + k:zi, (Z = 1, 2).
Now from (13)-(14) and Lemma 1.1 it follows that the sums over ¢; are
equal to zero if the congruences

Bl + 2kz = 0(mod(p + 1)),
' + 2kzo + k6 = 0(mod(p + 1)) for the sum >,
(18)
By + 2kz + 1 = 0(mod(p + 1)),
( + 2kzy 4+ k6 = 0(mod(p + 1)) for the sum ) _,,

are violated.

Therefore, the one from sums ) ; or ) , is always equal to zero.
The relations (18) can be hold only for (k,p + 1)? pairs of values (z1, 22).
Let B be the set of such values (21, 22).

From (13)-(14) we obtain

K(a,b;h,p™; k) = > epn(Nog™ + Mog™?)x
(a1)

DY > epn—2(F1(kt1)g®t + Fa(kt2)g*?),

(21,22)€B t1,t2(modpn—1)

where F;(t) = cgi)t + Cgi)t2 +p)‘3céi)t3 + - '—|-p)“fcgi)tz, (cg),p) — (cgi),p) =
~-=1, A >0for j >3, (No,p) = (Mop,p) = 1.

The sums over t1, ty are calculated similarly. Let k = p™ky, (k1,p) = 1.
Let split the sum over t; by the blocks with length of p" 272" (if 2m <

n — 2). Then, applying the lemma above, we obtain
K(a,b;h,p"s k) = p" 2™ " epn (N1g™ + Nag®), (19)
(1)

where (N1,p) = (Na,p) = 1.

From definition of s it follows that g*2 = ¢g*°(¢')* (mod p").

The sum in righthand of (19) is an incomplete Kloosterman sum. By
selection of primitive root g we have

g" "t =14pu, (u,p) = 1.

Then ¢ =1—pur, (u1,p) =1, u=u;(mod p).
Let assume

O‘lz(pil)t+za

t=0,1,....5p" ' =1), 2=0,1,...,p—2.
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Then
g™ = g*(1 + arpt + agp?t® + azp™t> + ---) (mod p™),

a1 = —uy, az = —2'u?(mod p), \; > 3.
Similarly, we have

g2 = g0g' = g0 g (1 + bypt + bop?t? + bap"3t3 + - -+ ) (mod p™)

by = —uy, by = —2'u*(mod p), p; > 3.
Therefore,
N1g®' 4 Nog® = ¢ + c1pt + cop®t® + c3p™3t® + - -+ (mod p"),
where ¢; = g°a; N1 + g*°g"*b;No, (i =1,2).
By virtue of (Ny,p) = (N2,p) = 1 it easy to see that two congruences
¢1 = 0(mod p), co = 0(mod p)

can not be hold at once.

But from ¢; = 0(mod p) it follows that g?* = g Ny Nj(mod p). It is
possible only for single value of z. Denote this value as zg.

Then from (19) we get

K (a,b; b, p"; k) = p"+2mx

p72 %(pn71_1 2 )
. R e (et capt® a4 )

TS G2 .epn_z(c’lt+c’2t2+C§,p“3_2t3+"'))’

where (c1,p) = (ch,p) = 1.

The sums over t are incomplete rational sums, which estimates we
obtaining in help with the estimates of complete exponential sums.

For arbitrary polynomial ®(¢) € Z[t] we have

T
2:271’1 772:27rz

t=0

‘1>(t) *P(t)

(21)

q

1
< .
Z min(r,q —r+ 1)

r=1

(1) —t
q

q—1

2 : 2711
e

t=0
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Now if ®(t) = c1t + copt? + c3p 13+ -+, (e1,p) = 1, ¢ = p"!
then the complete sums in (21) are equal to zero for all r except the case
7 = c1(mod p). In this special case we have W(t) = |t + cht? + chp*s~ 13 +

-y (dyyp) =1,¢ = p" 2 and then the complete sum is estimated as
Qp%.
Hence,

pn
1 n2 n-2
(abhp k‘ n+m Z‘Cl —|—Z%p2 +p-p2
r=1
z;ézo

Finally, taking into account that for different values z we have different
values for ¢;(z)(mod p) and then we obtain

~ 1 T
K(a,b; h, p"; k)| < panm( TN

If 2m > n — 2 then the assertion of theorem is trivial. O

_ From now we continue with the estimating of Kloosterman sum
K(a,b;h,p™; k) on the ellipse bound for the case of factorable p and
for k > 2, (a,p) = (b,p) = 1.

In this case we have p = pp, where p and p are the complex-conjugate
prime numbers over Z[f]. Then the reduced residue system mod p™ can
be rewrite as

z=g"p" + g 0< bl < (p— 1" - 1,
where g be the primitive root mod p” such that
@ l=14pH HcZ (Hp) =1.
Therefore
N(z)=z-T=
= g*p" + gt pt + g TR 4 gl g = (22)

= g" T2 5p(p?™) (mod p").

Moreover, if p = ag + 0by then (ag,p) = (b, p) = 1 and by induction
we easy obtain
p2”:an+9bn,n:1,2,... ,
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where
(—1)"t-2m . aq - boz(m_l)(mOdp) if n=2m—1,
an =
(—1)m.om+2. g2m if n=2m
(_1)2m_1 S2m 502m_1(m0dp) if n=2m-—1,
b, =

(_1)m71 . 2m+2 ag - b02m71(m0dp) if n=2m
From here for the factorable p we have

K(a,b;h,p"; k) =

= e (A(g"F + g%F) + B(g"1* + ¢%%)) =
)

= epn(A(z} +28) + B(yf +u5)),
)

where

U = {81, 65,61, 4(amod(p — Dp [+ = H(mod pm) .

U’ = {x1, 29,91, y2(mod p") [z12291y2 = H(mod p™)}

A, B,eZ, (A,p)=(B,p) =1.

Theorem 4. Let p be factorable prime number and let a,b € 7|0, (a,p) =
(b,p) =1. Then

_ d*p: if (d—1)* <p,
K(a,b;h,p; k)| <
d*p? if(d—-1)*>p
where d = (k,p —1).

Proof. Without loss of generality we can suppose that a,b € Z.
In virtue of (23) and by an analogue of the case of irreducible p we
obtain

K(a,b;h,pik) = Y ep(Alf +25) + By +5)).
x2,72,y1,y2€F™
T1,22,y1,y2=HY
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Now, for (d — 1)* < p we obtain by an analogue of the case with
irreducible p

> x(h)K(a, B hyp;d) =
heFy

= ( > x(x)ep(Awd)> (Z x(y)ep(Byd)> :

zel} yelry

From here,
- 2
> ‘K(a,ﬁ; h, p; d)‘ <(d-1)fpt i (d-1)" <p.
Then N ,
K(a,b;h,p; k) < d*p2 if (d—1)* < p.

Let (d — 1)* > p. Denote through g the primitive element of field IF,,
and let x = ¢"4* for x € .

Let G be the group of multiplicative characters of field If,,. For x € G
we have
Xx(x) = ep—1(v - indx) with some v € F),. Then using the assertion of
theorem about estimate of exponential sum of Gauss type, we obtain the
following relation

K(a,b;h,p;d) =
1 = 22
- LY XH) Y X(A2BY)x
x€G 81,-..,84=0

X eq((s1+ s2)ind A + (s3 + s4)ind B)x

X > eq(syindxy + - - - + sqind xq) X
Z1,..., 04 €LY

X x(z1,...,za)ep(x1 + -+ 24) =
d—1

- p%l > Yo ep_i(v-ind H)ep—1(Fi(v,s))x

velF, s1,...,84=0

X Y ep1(Fa(v, s, x))ep(xr + -+ + xa).

Z1,..., 04 €FY
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where
Fi(v,8) == (2v + (s1 + s2) 21 yind A + (2v + (s3 + s4) 25 )ind B
Fy(v,s,x) = (51% +v)indxy + -+ (54]%1 + v)ind zy.

The last sum over x1, ..., x4 is the production of Gaussian sums over
the field IF,. And hence,

K(a,b;h,p; k)| < d'p*.
0

If n > 2, we can use the description of solutions of the congruence
x1 - To - x3 - x4 = H(mod p™):

Ty = Yi + "z,
yi(mod p™),

zi(mod p"~™),
i=1,2,3;m=["]

m

x4 = Hylyhys(1 — p™yyz1 — " yhzo — P y523),

yiy; = 1(mod p™).

Theorem 5. Let p be the irreducible prime number in the ring Z[0], n € IN,
n>=2;heZ, (hp) =1;a,beZ0)], (a,p) = (b,p) =1. Then

N dh-patif (d—1)* <p,
‘K(a, b; h,p”;k)‘ <
dt-prtmodf (d—1)* > p,

where m = ["TH]

Proof. From (23)-(24) we have

K(a,bh,p"; k) =
— Z € ”(f(?/lvy%y:}))x

Y1,Y2,Y3€2m ' (25)
X > epn-—m (F(21, 22, 23)),

21,22,23(mod pn—m)
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where

k 1k
F1,y2.y3) = Ay} + ayh + Byk + BHy "y ",

F(21,2,23) = k |(Ayf=t — By Py FytFyz +

+H(Ays ™ = By kus) )z + (A5 - Blyfybys ™))z -
Let (k,p"~™) = p’. Then from (25) we obtain
K(a,b;h,p"s k) = p* "™ > epn (£ (41, y2,93)), (26)
5(C)
where
(yi,p) =1,1=1,2,3;

k k

C:=<y, y27?/3(m0dpm) yi =y = ysk(modpn—m—é)

)

4k — BA’(modp” m— Z)

Now, for n = 2m we estimate the sum > by the number of triples
S(U)
(y1,y2,y3) € C, and for n = 2m — 1 we get

B dp2mif (d—1)4 < p,
K(a,b;h,p"; k)| <
dp"t™ if (d—1)* > p.

In case of even n we have the similar estimate. O]

Collecting previous estimates of theorems 2-5, we obtain
Theorem. Let o, 3 € Z[0] and let h,q,k,n € N, k> 2, (k,q) = (h,q) =
1. Then for (a,q) = (8,q) = 1 we have
K(a, B h,q: k) < D(k, q)q2,

where
D(k,q) = TI d%k,p)- TI d*(k,p)logp",
p}q p Hq
p=1(q) p=3(q)

d(k‘,p) = (k’p - 1)
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We have to note that the Kloosterman sum on the ellipse I?(a, Bih,q; k)
has no an analogue in the ring Z.

In help with obtained estimates of Kloosterman sums on the ellipse it
can be constructed the asymptotic formulas for the divisors sum 73 («),
k=2,3,..., aZ[0] (see, for example, [9]).
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