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Abstract. Let k be a �eld of characteristic zero. For any

polynomial mapping F = (F1, . . . , Fn) : kn → kn by multidegree

of F we mean the following n-tuple of natural numbers mdegF =
(degF1, . . . ,degFn).

Let us denote by k[x] = k[x1, . . . , xn] a ring of polynomials in n
variables x1, . . . , xn over k. If D : k[x] → k[x] is a locally nilpotent

k-derivation, then one can de�ne the automorphism expD of k-
algebra k[x] and then the polynomial automorphism (expD)⋆ of

kn. In this note we present a general upper bound of mdeg(expD)⋆
in the case of a triangular derivation D, and also show that this

estimation is exact.

Introduction

Let k be a �eld of characteristic zero, and let k[x] = k[x1, . . . , xn] be a

ring of polynomials in n variables x1, . . . , xn over k. Let us recall that a

mapping D : k[x] → k[x] is called k-derivation of k[x] when it is k-linear

and satis�es the Leibniz rule:

D(fg) = D(f)g + fD(g) for all f, g ∈ k[x]. (1)
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The set of all k-derivations of k[x] we will denote by Derk(k[x]). For any
D ∈ Derk(k[x]) we de�ne the kernel of D as the following subset of k[x]:

kerD = { a ∈ k[x] : D(a) = 0 }. (2)

If D ∈ Derk(k[x]), then kerD is a k-subalgebra of k[x]. In particular,
if D1, D2 ∈ Derk(k[x]) are such that D1(xi) = D2(xi) for i = 1, . . . , n,
then ker(D1 − D2) = k[x], and so D1 = D2. This means that for any
D ∈ Derk(k[x]) we have the following equality

D = D(x1)
∂

∂x1
+ · · ·+D(xn)

∂

∂xn
, (3)

where ∂
∂xi

: k[x] → k[x] is the usually de�ned partial derivative with
respect to the variable xi.

Let us also recall that a derivation D ∈ Derk(k[x]) is called locally

nilpotent if for any f ∈ k[x] there is a number m ∈ N such that Dm(f) =

0, where D0 = idk[x] and Dl+1 = D ◦ Dl for any l ∈ N. The set of all

locally nilpotent derivations of k[x] will be denoted by LNDk(k[x]).

Assume that we are given an arbitrary derivation D ∈ LNDk(k[x]).

Then, one can de�ne the following map

expD : k[x] ∋ f 7→
∞∑
i=0

1

i!
Di(f) ∈ k[x], (4)

which is a homomorphism of k-algebras. If D1, D2 ∈ LNDk(k[x]) are
such that D1 ◦D2 = D2 ◦D1, then

expD1 ◦ expD2 = exp(D1 +D2) = expD2 ◦ expD1. (5)

In particular

expD ◦ exp(−D) = exp(−D) ◦ expD = exp 0 = idk[x] (6)

for any D ∈ LNDk(k[x]). This means that for any D ∈ LNDk(k[x])
the mapping expD is an automorphism of the k-algebra k[x]. For more
information about derivations and polynomial automorphisms we refer
to [1, 3].

For the convenience of the reader let us recall that for any polynomial
mapping F = (F1, . . . , Fn) : kn → kn the mapping F ⋆ : k[x] ∋ h 7→
h ◦ F = h(F1, . . . , Fn) ∈ k[x] is a k-algebra homomorphism and for any
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k-algebra homomorphism φ : k[x] → k[x] the mapping φ⋆ = (F1, . . . , Fn),
where Fi = φ(xi) for i = 1, . . . , n, is a polynomial mapping of kn.

The multidegrees of polynomial mappings seem to be a useful tool

in studying polynomial automorphisms. For example, the �rst author

and J. Zygadªo proved in [6], using multidegrees, that for the follow-

ing slight modi�cation of the Nagata automorphism σ̃ : C3 ∋ (x, y, z) 7→
(z, y−z(zx+y2), x+2y(zx+y2)−z(zx+y2)2) ∈ C3 and any n ∈ N\{0},
the automorphism σ̃n : C3 → C3 is wild (i.e. it is not a composition of

triangular and a�ne automorphisms). The question about wildness of

the Nagata automorphism σ : C3 ∋ (x, y, z) 7→ (x+2y(zx+ y2)− z(zx+

y2)2, y − z(zx + y2), z) ∈ C3 was open since 1972 up to 2003 [9, 10]. It

is known that the Nagata automorphism can be obtained in the form

(expD)⋆ for some locally nilpotent derivation (see e.g. [8]). In this con-

text it seems to be interesting to know something about mdeg(expD)⋆,

and in this note we establish an upper bound of mdeg(expD)⋆ in the

case of a triangular derivation D, and show that this estimation cannot

be improved. For the �rst result about multidegrees of polynomial auto-

morphisms see [4], and for more information about multidegrees we refer

to [2, 5, 7].

1. Weighted degree and general estimation of multidegree

for triangular derivation

Consider a k-derivationD = f1
∂

∂x1
+· · ·+fn

∂
∂xn

of k[x], where f1, . . . , fn ∈
k[x]. We say that D is triangular if f1 ∈ k and fi ∈ k[x1, . . . , xi−1] for

i = 2, . . . , n. One can check that if D ∈ Derk(k[x]) is triangular, then

D ∈ LNDk(k[x]).

Now, we de�ne an useful weighted degree on k[x] associated with a
given triangular derivation D = f1

∂
∂x1

+ · · · + fn
∂

∂xn
∈ Derk(k[x]). In

order to de�ne w = (w1, . . . , wn) ∈ Nn
+, we put

w1 = 1 and wi = max{1,deg(w1,...,wi−1) fi} for i = 2, . . . , n. (7)

In the above formula for w2, . . . , wn we use the fact that fi ∈ k[x1, . . . ,
xi−1] for i = 2, . . . , n, and so deg(w1,...,wi−1) fi means the weighted de-
gree of fi considered as an element of k[x1, . . . , xi−1], where the weighted
degree function deg(w1,...,wi−1) : k[x1, . . . , xi−1] → N ∪ {−∞} is de�ned
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by deg(w1,...,wi−1) xl = wl for l = 1, . . . , i − 1. One can notice that, in
the case f2, . . . , fn /∈ k, the above de�ned w = (w1, . . . , wn) ∈ Nn

+ is the
unique element of Nn

+ such that w1 = 1 and degw fi = wi for i = 2, . . . , n,
where degw fi means, of course, the w-degree of f2, . . . , fn considered as
elements of k[x1, . . . , xn].

Now, we are in a position to prove the following theorem.

Theorem 1. Let D = f1
∂

∂x1
+ f2

∂
∂x2

+ · · · + fn
∂

∂xn
be a triangular k-

derivation of k[x] with f1 ∈ k and fi ∈ k[x1, . . . , xi−1] for i = 2, . . . , n.

If w = (w1, . . . , wn) ∈ Nn
+ is de�ned as above and m = (m1, . . . ,mn) =

mdeg(expD)⋆, then we have

m1 = w1, m2 = w2 and mi ≤ wi for i = 3, . . . , n. (8)

Proof. First, notice that

(expD)(x1) = x1 + f1 (9)

and

(expD)(x2) =


x2 + f2 if f2 ∈ k

x2 + f2 +
d∑

l=1

1
(l+1)!f

l
1

(
∂

∂x1

)l
(f2), if f2 ∈ k[x1] \ k

(10)
where d = degx1

f2.

By (9) and f1 ∈ k, we obtain deg ((expD)(x1)) = 1. In the case

f2 ∈ k, by (10), we also obtain deg ((expD)(x2)) = 1. On the other

hand, in the case f2 ∈ k[x1] \ k (in which d ≥ 1), we have deg f2 >

deg
(

∂
∂x1

(f2)
)
> . . . > deg

((
∂

∂x1

)d
(f2)

)
, and so

deg ((expD)(x2)) = deg (x2 + f2) = deg f2 = degw f2.

In both cases, we have deg ((expD)(x2)) = w2.

Now, take any α = (α1, . . . , αn) ∈ Nn \ {0}. By the chain rule for the
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derivation D and properties of degree function, we have

degw (D(xα1
1 · · ·xαn

n )) (11)

= degw

(
n∑

i=1

αix
α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n D(xi)

)

= degw

(
n∑

i=1

αix
α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n fi

)
≤ max

{
degw

(
αix

α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n fi

)
: i = 1, . . . , n

}
.

Let us notice that, by de�nition of w = (w1, . . . , wn), for αi ̸= 0, we have

degw

(
αix

α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n fi

)
(12)

= α1w1 + · · ·+ αnwn − wi + degw fi

≤ α1w1 + · · ·+ αnwn = degw (xα1
1 · · ·xαn

n ) .

By (11) and (12), we obtain

degw (D(xα1
1 · · ·xαn

n )) ≤ degw(x
α1
1 · · ·xαn

n ). (13)

Now, we check that the above inequality is also valid for any polyno-
mial h ∈ k[x]. The inequality is obviously true if h = 0, so we can assume
that h ̸= 0. Then, h =

∑
α∈supph aαx

α, where for α = (α1, . . . , αn) we
write xα instead of xα1

1 · · ·xαn
n . By (13), k-linearity of D and properties

of degree function, we obtain

degw (D(h)) = degw

 ∑
α∈supph

aαD(xα)

 (14)

≤ max
α∈supph

degw (D(xα)) ≤ max
α∈supph

degw(x
α) = degw h.

Now, take any h ∈ k[x] and choose d ∈ N+ such that Dd+1(h) = 0.
Then, by (14), we get

degw ((expD)(h)) = degw

(
h+

d∑
i=1

1

i!
Di(h)

)
(15)

≤ max
{
degw h,degw (D(h)) , . . . ,degw

(
Dd(h)

)}
= degw h.
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Since w1 ≥ 1, . . . , wn ≥ 1, it follows that for any polynomial P ∈ k[x]
we have degP ≤ degw P. Thus, for any h ∈ k[x], we get

deg ((expD)(h)) ≤ degw ((expD)(h)) ≤ degw h. (16)

In particular, we obtain deg ((expD)(xi)) ≤ degw xi = wi for i =
3, . . . , n.

2. Exactness of the estimation in Theorem 1

In this section, we give a large family of triangular derivations for which,
in Theorem 1 we obtain the equality. Nonemptiness of this family shows
that the estimation given in Theorem 1 cannot be improved.

First, notice that since k is of characteristic zero, we can assume that
Q ⊂ k, where Q denotes the �eld of rational numbers. By Q≥0 and
Q≥0[x1, . . . , xn] we will denote, respectively, the set of all nonnegative
rational numbers and the set of all polynomials with coe�cients in Q≥0.

In order to prove the nonemptiness of the above mentioned family we
will use the following fact.

Lemma 1. Let w = (w1, . . . , wn) ∈ Nn
+ be arbitrary and D1 = a1

∂
∂x1

+

a2
∂

∂x2
+ · · · + an

∂
∂xn

, D2 = b2
∂

∂x2
+ · · · + bn

∂
∂xn

be two triangular k-

derivations such that degw ai < wi, degw bi = wi and bi ∈ Q≥0[x1, . . . ,

xi−1] for i = 2, . . . , n.

Then, the following hold:

(1) For any h ∈ k[x] \ {0} we have degw D1(h) < degw h.

(2) For any h ∈ k[x] we have degw D2(h) ≤ degw h.

(3) If h ∈ Q≥0[x1, . . . , xn], then D2(h) ∈ Q≥0[x1, . . . , xn].

(4) If h ∈ Q≥0[x1, . . . , xn] ∩ kerD2, then h ∈ Q≥0[x1].

(5) If h ∈ Q≥0[x1, . . . , xn] \ kerD2 is w-homogeneous, then

degw D2(h) = degw h.

(6) If b2, . . . , bn are w-homogeneous, then for each w-homogeneous

h ∈ Q≥0[x1, . . . , xn] \ kerD2, D2(h) is w-homogeneous with

degw D2(h) = degw h.

Proof. To obtain (1) and (2) one can use similar arguments as in the
proof of Theorem 1 (see the second and third paragraphs of the proof).

The statement (3) is a consequence of the straightforward calculation.
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To prove (4) take any h =
∑

α∈supph aαx
α ∈ Q≥0[x]. Since D2(h) =∑

α∈supphD2 (aαx
α) and, by (3), for each α ∈ supph we have D2 (aαx

α)

∈ Q≥0[x], it follows that monomials occurring in D2

(
aβx

β
)
for a �xed

β ∈ supph cannot be vanished by monomials occurring in the sum∑
α∈supph\{β}D2 (aαx

α).

Thus, we obtain that

suppD2(h) =
⋃

α∈supph

suppD2(aαx
α) =

⋃
α∈supph

suppD2(x
α) (17)

and

D2(h) = 0 ⇔ D2(x
α) = 0 for each α ∈ supph, (18)

because f = 0 i� supp f = ∅. By de�nition of D2 one can easily check
that if α ∈ supph \ N × {(0, . . . , 0)}, then D2(x

α) ̸= 0. This completes
the proof of (4).

To obtain (5) and (6) one can repeat carefully, for each α ∈ supph,
similar calculations as in (12). Indeed, if h =

∑
α∈supph aαx

α ∈ Q≥0[x],
then

D2(h) =
∑

α∈supph

aαD2 (x
α)

=
∑

α∈supph

n∑
i=2

aα

(
αix

α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n bi

)
,

and by calculations as in (12), we have

degw

(
αix

α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n bi

)
= degw h.

If bi are w-homogeneous, then all summands of (19) are w-homogeneous
of w-degree equal to degw h. This proves (6).

When not all of b2, . . . , bn are w-homogeneous, observe that b̄i ∈
Q≥0[x], where f̄ denotes the w-homogeneous component of f with max-
imal w-degree. This implies that

aα

(
αix

α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n b̄i

)
∈ Q≥0[x],

and so ∑
α∈supph

n∑
i=2

aα

(
αix

α1
1 · · ·xαi−1

i−1 xαi−1
i x

αi+1

i+1 · · ·xαn
n b̄i

)
̸= 0. (19)
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Since all summands in the above sum are w-homogeneous of w-degree
equal to degw h and any other summands of (19) have strictly lower w-
degree than degw h we obtain (5).

Now, we are in a position to prove the following theorem which gives
us the above mentioned family of triangular derivations.

Theorem 2. Let D = f1
∂

∂x1
+ · · · + fn

∂
∂xn

be a triangular k-derivation

of k[x] with f1 ∈ k and fi ∈ k[x1, . . . , xi−1] \ k for i = 2, . . . , n.

Assume that w = (w1, . . . , wn) ∈ Nn
+ is de�ned as in the previous

section, and that f̄i ∈ Q≥0[x] for i = 2, . . . , n, where h̄ denotes the w-
homogeneous component of h with maximal w-degree. Then

mdeg(expD)⋆ = (w1, . . . , wn). (20)

Proof. First, notice that by assumption that f2, . . . , fn /∈ k, we have
degw fi = wi for i = 2, . . . , n.

Consider the following k-derivations:

D1 = f1
∂

∂x1
+ (f2 − f̄2)

∂

∂x2
+ · · ·+ (fn − f̄n)

∂

∂xn
(21)

and

D2 = f̄2
∂

∂x2
+ · · ·+ f̄n

∂

∂xn
. (22)

Then, for any l = 1, 2, . . . , we have

Dl = (D1 +D2)
l =

∑
(ε1,...,εl)∈{1,2}l

Dεl ◦ · · · ◦Dε1 . (23)

Using Lemma 1(1) and (2), we obtain that for any l = 1, 2, . . . , h ∈
k[x] \ {0} and (ε1, . . . , εl) ∈ {1, 2}l \ {(2, . . . , 2)} the following holds

degw (Dεl ◦ · · · ◦Dε1) (h) < degw h. (24)

Using Lemma 1(3), (5) and (6), we obtain that if h ∈ Q≥0[x] is w-
homogeneous then

(D2)
l(h) = 0 or degw(D2)

l(h) = degw h for l = 1, 2 . . . (25)

Now, we claim that for any h ∈ k[x]\k such that h̄ ∈ Q≥0[x] we have:

deg ((expD)(h)) = degw h. (26)
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If this is the case, then in particular we obtain deg ((expD)(xi)) =
degw xi = wi for i = 2, . . . , n, Thus, to complete the proof it is enough to
show the claim.

First, notice using (16) that

deg
(
(expD)(h− h̄)

)
≤ degw(h− h̄) < degw h. (27)

Since (expD)(h) = (expD)(h− h̄) + (expD)(h̄), it follows that we only
need to show that

deg
(
(expD)(h̄)

)
= degw h̄ = degw h. (28)

Take d1 ∈ N+ such that Dd1+1(h̄) = 0. Then, by (23), we obtain

(expD)(h̄) = h̄+

d1∑
l=1

1

l!
Dl(h̄) (29)

= h̄+

d1∑
l=1

1

l!

∑
(ε1,...,εl)∈{1,2}l\{(2,...,2)}

(Dεl ◦ · · · ◦Dε1) (h̄)

+

d1∑
l=1

1

l!
(D2)

l(h̄).

By (24), properties of degree function and the fact that w1 ≥ 1, . . . , wn ≥
1, we obtain

deg

 d1∑
l=1

1

l!

∑
(ε1,...,εl)∈{1,2}l\{(2,...,2)}

(Dεl ◦ · · · ◦Dε1) (h̄)

 (30)

≤ degw

 d1∑
l=1

1

l!

∑
(ε1,...,εl)∈{1,2}l\{(2,...,2)}

(Dεl ◦ · · · ◦Dε1) (h̄)

 < degw h̄.

Thus, now it is enough to show that deg
(
h̄+

∑d1
l=1

1
l!(D2)

l(h̄)
)

=

degw h̄.

By Lemma 1(3), we obtain that if xα ∈ supp
(
(D2)

l(h̄)
)
for some l

(we identify the monomial xα with α), then

xα ∈ supp

(
h̄+

d1∑
l=1

1

l!
(D2)

l(h̄)

)
.
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Take d2 ∈ N such that (D2)
d2(h̄) ̸= 0 and (D2)

d2+1(h̄) = 0. Of

course, we have d2 ∈ {0, 1, . . . , d1}. Using Lemma 1(3), (5) and (6), we

obtain that (D2)
d2(h̄) ∈ Q≥0[x] is w-homogeneous of w-degree equal to

degw h. Since (D2)
d2(h̄) ∈ Q≥0[x]∩kerD2 is w-homogeneous of w-degree

degw h, it follows by Lemma 1(4)-(6) that (D2)
d2(h̄) = cx

degw h
1 for some

c ∈ Q≥0, c ̸= 0. Hence x
degw h
1 ∈ supp

(
(D2)

d2(h̄)
)
and so x

degw h
1 ∈

supp
(
h̄+

∑d1
l=1

1
l!(D2)

l(h̄)
)
. This means that deg

(
h̄+

∑d1
l=1

1
l!(D2)

l(h̄)
)

≥ degw h̄ = degw h. Thus the claim is proved, because h̄+
∑d1

l=1
1
l!(D2)

l(h̄)

= (expD2)(h̄) and so one can use (16).
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