A note on multidegrees of automorphisms of the form $(\exp D)_{\star}$

M. Karaś and P. Pękała

Communicated by A. P. Petravchuk

Abstract

Let k be a field of characteristic zero. For any polynomial mapping $F=\left(F_{1}, \ldots, F_{n}\right): k^{n} \rightarrow k^{n}$ by multidegree of F we mean the following n-tuple of natural numbers $\operatorname{mdeg} F=$ $\left(\operatorname{deg} F_{1}, \ldots, \operatorname{deg} F_{n}\right)$.

Let us denote by $k[x]=k\left[x_{1}, \ldots, x_{n}\right]$ a ring of polynomials in n variables x_{1}, \ldots, x_{n} over k. If $D: k[x] \rightarrow k[x]$ is a locally nilpotent k-derivation, then one can define the automorphism $\exp D$ of k algebra $k[x]$ and then the polynomial automorphism $(\exp D)_{\star}$ of k^{n}. In this note we present a general upper bound of $\operatorname{mdeg}(\exp D)_{\star}$ in the case of a triangular derivation D, and also show that this estimation is exact.

Introduction

Let k be a field of characteristic zero, and let $k[x]=k\left[x_{1}, \ldots, x_{n}\right]$ be a ring of polynomials in n variables x_{1}, \ldots, x_{n} over k. Let us recall that a mapping $D: k[x] \rightarrow k[x]$ is called k-derivation of $k[x]$ when it is k-linear and satisfies the Leibniz rule:

$$
\begin{equation*}
D(f g)=D(f) g+f D(g) \quad \text { for all } f, g \in k[x] \tag{1}
\end{equation*}
$$

[^0]The set of all k-derivations of $k[x]$ we will denote by $\operatorname{Der}_{k}(k[x])$. For any $D \in \operatorname{Der}_{k}(k[x])$ we define the kernel of D as the following subset of $k[x]$:

$$
\begin{equation*}
\operatorname{ker} D=\{a \in k[x]: D(a)=0\} \tag{2}
\end{equation*}
$$

If $D \in \operatorname{Der}_{k}(k[x])$, then ker D is a k-subalgebra of $k[x]$. In particular, if $D_{1}, D_{2} \in \operatorname{Der}_{k}(k[x])$ are such that $D_{1}\left(x_{i}\right)=D_{2}\left(x_{i}\right)$ for $i=1, \ldots, n$, then $\operatorname{ker}\left(D_{1}-D_{2}\right)=k[x]$, and so $D_{1}=D_{2}$. This means that for any $D \in \operatorname{Der}_{k}(k[x])$ we have the following equality

$$
\begin{equation*}
D=D\left(x_{1}\right) \frac{\partial}{\partial x_{1}}+\cdots+D\left(x_{n}\right) \frac{\partial}{\partial x_{n}} \tag{3}
\end{equation*}
$$

where $\frac{\partial}{\partial x_{i}}: k[x] \rightarrow k[x]$ is the usually defined partial derivative with respect to the variable x_{i}.

Let us also recall that a derivation $D \in \operatorname{Der}_{k}(k[x])$ is called locally nilpotent if for any $f \in k[x]$ there is a number $m \in \mathbb{N}$ such that $D^{m}(f)=$ 0 , where $D^{0}=\operatorname{id}_{k[x]}$ and $D^{l+1}=D \circ D^{l}$ for any $l \in \mathbb{N}$. The set of all locally nilpotent derivations of $k[x]$ will be denoted by $\operatorname{LND}_{k}(k[x])$.

Assume that we are given an arbitrary derivation $D \in \mathrm{LND}_{k}(k[x])$. Then, one can define the following map

$$
\begin{equation*}
\exp D: k[x] \ni f \mapsto \sum_{i=0}^{\infty} \frac{1}{i!} D^{i}(f) \in k[x] \tag{4}
\end{equation*}
$$

which is a homomorphism of k-algebras. If $D_{1}, D_{2} \in \operatorname{LND}_{k}(k[x])$ are such that $D_{1} \circ D_{2}=D_{2} \circ D_{1}$, then

$$
\begin{equation*}
\exp D_{1} \circ \exp D_{2}=\exp \left(D_{1}+D_{2}\right)=\exp D_{2} \circ \exp D_{1} \tag{5}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\exp D \circ \exp (-D)=\exp (-D) \circ \exp D=\exp 0=\operatorname{id}_{k[x]} \tag{6}
\end{equation*}
$$

for any $D \in \operatorname{LND}_{k}(k[x])$. This means that for any $D \in \operatorname{LND}_{k}(k[x])$ the mapping $\exp D$ is an automorphism of the k-algebra $k[x]$. For more information about derivations and polynomial automorphisms we refer to $[1,3]$.

For the convenience of the reader let us recall that for any polynomial mapping $F=\left(F_{1}, \ldots, F_{n}\right): k^{n} \rightarrow k^{n}$ the mapping $F^{\star}: k[x] \ni h \mapsto$ $h \circ F=h\left(F_{1}, \ldots, F_{n}\right) \in k[x]$ is a k-algebra homomorphism and for any
k-algebra homomorphism $\varphi: k[x] \rightarrow k[x]$ the mapping $\varphi_{\star}=\left(F_{1}, \ldots, F_{n}\right)$, where $F_{i}=\varphi\left(x_{i}\right)$ for $i=1, \ldots, n$, is a polynomial mapping of k^{n}.

The multidegrees of polynomial mappings seem to be a useful tool in studying polynomial automorphisms. For example, the first author and J. Zygadło proved in [6], using multidegrees, that for the following slight modification of the Nagata automorphism $\tilde{\sigma}: \mathbb{C}^{3} \ni(x, y, z) \mapsto$ $\left(z, y-z\left(z x+y^{2}\right), x+2 y\left(z x+y^{2}\right)-z\left(z x+y^{2}\right)^{2}\right) \in \mathbb{C}^{3}$ and any $n \in \mathbb{N} \backslash\{0\}$, the automorphism $\tilde{\sigma}^{n}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ is wild (i.e. it is not a composition of triangular and affine automorphisms). The question about wildness of the Nagata automorphism $\sigma: \mathbb{C}^{3} \ni(x, y, z) \mapsto\left(x+2 y\left(z x+y^{2}\right)-z(z x+\right.$ $\left.\left.y^{2}\right)^{2}, y-z\left(z x+y^{2}\right), z\right) \in \mathbb{C}^{3}$ was open since 1972 up to $2003[9,10]$. It is known that the Nagata automorphism can be obtained in the form $(\exp D)_{\star}$ for some locally nilpotent derivation (see e.g. [8]). In this context it seems to be interesting to know something about $\operatorname{mdeg}(\exp D)_{\star}$, and in this note we establish an upper bound of $\operatorname{mdeg}(\exp D)_{\star}$ in the case of a triangular derivation D, and show that this estimation cannot be improved. For the first result about multidegrees of polynomial automorphisms see [4], and for more information about multidegrees we refer to $[2,5,7]$.

1. Weighted degree and general estimation of multidegree for triangular derivation

Consider a k-derivation $D=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}$ of $k[x]$, where $f_{1}, \ldots, f_{n} \in$ $k[x]$. We say that D is triangular if $f_{1} \in k$ and $f_{i} \in k\left[x_{1}, \ldots, x_{i-1}\right]$ for $i=2, \ldots, n$. One can check that if $D \in \operatorname{Der}_{k}(k[x])$ is triangular, then $D \in \operatorname{LND}_{k}(k[x])$.

Now, we define an useful weighted degree on $k[x]$ associated with a given triangular derivation $D=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}} \in \operatorname{Der}_{k}(k[x])$. In order to define $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}_{+}^{n}$, we put

$$
\begin{equation*}
w_{1}=1 \quad \text { and } \quad w_{i}=\max \left\{1, \operatorname{deg}_{\left(w_{1}, \ldots, w_{i-1}\right)} f_{i}\right\} \text { for } i=2, \ldots, n \tag{7}
\end{equation*}
$$

In the above formula for w_{2}, \ldots, w_{n} we use the fact that $f_{i} \in k\left[x_{1}, \ldots\right.$, $\left.x_{i-1}\right]$ for $i=2, \ldots, n$, and so $\operatorname{deg}_{\left(w_{1}, \ldots, w_{i-1}\right)} f_{i}$ means the weighted degree of f_{i} considered as an element of $k\left[x_{1}, \ldots, x_{i-1}\right]$, where the weighted degree function $\operatorname{deg}_{\left(w_{1}, \ldots, w_{i-1}\right)}: k\left[x_{1}, \ldots, x_{i-1}\right] \rightarrow \mathbb{N} \cup\{-\infty\}$ is defined
by $\operatorname{deg}_{\left(w_{1}, \ldots, w_{i-1}\right)} x_{l}=w_{l}$ for $l=1, \ldots, i-1$. One can notice that, in the case $f_{2}, \ldots, f_{n} \notin k$, the above defined $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}_{+}^{n}$ is the unique element of \mathbb{N}_{+}^{n} such that $w_{1}=1$ and $\operatorname{deg}_{w} f_{i}=w_{i}$ for $i=2, \ldots, n$, where $\operatorname{deg}_{w} f_{i}$ means, of course, the w-degree of f_{2}, \ldots, f_{n} considered as elements of $k\left[x_{1}, \ldots, x_{n}\right]$.

Now, we are in a position to prove the following theorem.

Theorem 1. Let $D=f_{1} \frac{\partial}{\partial x_{1}}+f_{2} \frac{\partial}{\partial x_{2}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}$ be a triangular k derivation of $k[x]$ with $f_{1} \in k$ and $f_{i} \in k\left[x_{1}, \ldots, x_{i-1}\right]$ for $i=2, \ldots, n$.

If $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}_{+}^{n}$ is defined as above and $m=\left(m_{1}, \ldots, m_{n}\right)=$ $\operatorname{mdeg}(\exp D)_{\star}$, then we have

$$
\begin{equation*}
m_{1}=w_{1}, \quad m_{2}=w_{2} \quad \text { and } \quad m_{i} \leq w_{i} \quad \text { for } i=3, \ldots, n \tag{8}
\end{equation*}
$$

Proof. First, notice that

$$
\begin{equation*}
(\exp D)\left(x_{1}\right)=x_{1}+f_{1} \tag{9}
\end{equation*}
$$

and

$$
(\exp D)\left(x_{2}\right)= \begin{cases}x_{2}+f_{2} & \text { if } f_{2} \in k \tag{10}\\ x_{2}+f_{2}+\sum_{l=1}^{d} \frac{1}{(l+1)!} f_{1}^{l}\left(\frac{\partial}{\partial x_{1}}\right)^{l}\left(f_{2}\right), & \text { if } f_{2} \in k\left[x_{1}\right] \backslash k\end{cases}
$$

where $d=\operatorname{deg}_{x_{1}} f_{2}$.
By (9) and $f_{1} \in k$, we obtain $\operatorname{deg}\left((\exp D)\left(x_{1}\right)\right)=1$. In the case $f_{2} \in k$, by (10), we also obtain $\operatorname{deg}\left((\exp D)\left(x_{2}\right)\right)=1$. On the other hand, in the case $f_{2} \in k\left[x_{1}\right] \backslash k$ (in which $d \geq 1$), we have $\operatorname{deg} f_{2}>$ $\operatorname{deg}\left(\frac{\partial}{\partial x_{1}}\left(f_{2}\right)\right)>\ldots>\operatorname{deg}\left(\left(\frac{\partial}{\partial x_{1}}\right)^{d}\left(f_{2}\right)\right)$, and so

$$
\operatorname{deg}\left((\exp D)\left(x_{2}\right)\right)=\operatorname{deg}\left(x_{2}+f_{2}\right)=\operatorname{deg} f_{2}=\operatorname{deg}_{w} f_{2}
$$

In both cases, we have $\operatorname{deg}\left((\exp D)\left(x_{2}\right)\right)=w_{2}$.
Now, take any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n} \backslash\{0\}$. By the chain rule for the
derivation D and properties of degree function, we have

$$
\begin{align*}
& \operatorname{deg}_{w}\left(D\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)\right) \tag{11}\\
= & \operatorname{deg}_{w}\left(\sum_{i=1}^{n} \alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} D\left(x_{i}\right)\right) \\
= & \operatorname{deg}_{w}\left(\sum_{i=1}^{n} \alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} f_{i}\right) \\
\leq & \max \left\{\operatorname{deg}_{w}\left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} f_{i}\right): i=1, \ldots, n\right\} .
\end{align*}
$$

Let us notice that, by definition of $w=\left(w_{1}, \ldots, w_{n}\right)$, for $\alpha_{i} \neq 0$, we have

$$
\begin{align*}
& \operatorname{deg}_{w}\left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} f_{i}\right) \tag{12}\\
= & \alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}-w_{i}+\operatorname{deg}_{w} f_{i} \\
\leq & \alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}=\operatorname{deg}_{w}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)
\end{align*}
$$

By (11) and (12), we obtain

$$
\begin{equation*}
\operatorname{deg}_{w}\left(D\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)\right) \leq \operatorname{deg}_{w}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right) \tag{13}
\end{equation*}
$$

Now, we check that the above inequality is also valid for any polynomial $h \in k[x]$. The inequality is obviously true if $h=0$, so we can assume that $h \neq 0$. Then, $h=\sum_{\alpha \in \operatorname{supp} h} a_{\alpha} x^{\alpha}$, where for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we write x^{α} instead of $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. By (13), k-linearity of D and properties of degree function, we obtain

$$
\begin{align*}
\operatorname{deg}_{w}(D(h)) & =\operatorname{deg}_{w}\left(\sum_{\alpha \in \operatorname{supp} h} a_{\alpha} D\left(x^{\alpha}\right)\right) \tag{14}\\
& \leq \max _{\alpha \in \operatorname{supp} h} \operatorname{deg}_{w}\left(D\left(x^{\alpha}\right)\right) \leq \max _{\alpha \in \operatorname{supp} h} \operatorname{deg}_{w}\left(x^{\alpha}\right)=\operatorname{deg}_{w} h
\end{align*}
$$

Now, take any $h \in k[x]$ and choose $d \in \mathbb{N}_{+}$such that $D^{d+1}(h)=0$. Then, by (14), we get

$$
\begin{align*}
\operatorname{deg}_{w}((\exp D)(h)) & =\operatorname{deg}_{w}\left(h+\sum_{i=1}^{d} \frac{1}{i!} D^{i}(h)\right) \tag{15}\\
& \leq \max \left\{\operatorname{deg}_{w} h, \operatorname{deg}_{w}(D(h)), \ldots, \operatorname{deg}_{w}\left(D^{d}(h)\right)\right\} \\
& =\operatorname{deg}_{w} h
\end{align*}
$$

Since $w_{1} \geq 1, \ldots, w_{n} \geq 1$, it follows that for any polynomial $P \in k[x]$ we have $\operatorname{deg} P \leq \operatorname{deg}_{w} P$. Thus, for any $h \in k[x]$, we get

$$
\begin{equation*}
\operatorname{deg}((\exp D)(h)) \leq \operatorname{deg}_{w}((\exp D)(h)) \leq \operatorname{deg}_{w} h \tag{16}
\end{equation*}
$$

In particular, we obtain $\operatorname{deg}\left((\exp D)\left(x_{i}\right)\right) \leq \operatorname{deg}_{w} x_{i}=w_{i}$ for $i=$ $3, \ldots, n$.

2. Exactness of the estimation in Theorem 1

In this section, we give a large family of triangular derivations for which, in Theorem 1 we obtain the equality. Nonemptiness of this family shows that the estimation given in Theorem 1 cannot be improved.

First, notice that since k is of characteristic zero, we can assume that $\mathbb{Q} \subset k$, where \mathbb{Q} denotes the field of rational numbers. By $\mathbb{Q} \geq 0$ and $\mathbb{Q} \geq 0\left[x_{1}, \ldots, x_{n}\right]$ we will denote, respectively, the set of all nonnegative rational numbers and the set of all polynomials with coefficients in $\mathbb{Q}_{\geq 0}$.

In order to prove the nonemptiness of the above mentioned family we will use the following fact.

Lemma 1. Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}_{+}^{n}$ be arbitrary and $D_{1}=a_{1} \frac{\partial}{\partial x_{1}}+$ $a_{2} \frac{\partial}{\partial x_{2}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}, \quad D_{2}=b_{2} \frac{\partial}{\partial x_{2}}+\cdots+b_{n} \frac{\partial}{\partial x_{n}}$ be two triangular k derivations such that $\operatorname{deg}_{w} a_{i}<w_{i}, \operatorname{deg}_{w} b_{i}=w_{i}$ and $b_{i} \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots\right.$, x_{i-1}] for $i=2, \ldots, n$.

Then, the following hold:
(1) For any $h \in k[x] \backslash\{0\}$ we have $\operatorname{deg}_{w} D_{1}(h)<\operatorname{deg}_{w} h$.
(2) For any $h \in k[x]$ we have $\operatorname{deg}_{w} D_{2}(h) \leq \operatorname{deg}_{w} h$.
(3) If $h \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]$, then $D_{2}(h) \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]$.
(4) If $h \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right] \cap \operatorname{ker} D_{2}$, then $h \in \mathbb{Q}_{\geq 0}\left[x_{1}\right]$.
(5) If $h \in \mathbb{Q} \geq 0\left[x_{1}, \ldots, x_{n}\right] \backslash \operatorname{ker} D_{2}$ is w-homogeneous, then $\operatorname{deg}_{w} D_{2}(h)=\operatorname{deg}_{w} h$.
(6) If b_{2}, \ldots, b_{n} are w-homogeneous, then for each w-homogeneous $h \in \mathbb{Q}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right] \backslash \operatorname{ker} D_{2}, D_{2}(h)$ is w-homogeneous with $\operatorname{deg}_{w} D_{2}(h)=\operatorname{deg}_{w} h$.

Proof. To obtain (1) and (2) one can use similar arguments as in the proof of Theorem 1 (see the second and third paragraphs of the proof).

The statement (3) is a consequence of the straightforward calculation.

To prove (4) take any $h=\sum_{\alpha \in \operatorname{supp} h} a_{\alpha} x^{\alpha} \in \mathbb{Q}_{\geq 0}[x]$. Since $D_{2}(h)=$ $\sum_{\alpha \in \operatorname{supp} h} D_{2}\left(a_{\alpha} x^{\alpha}\right)$ and, by (3), for each $\alpha \in \operatorname{supp} h$ we have $D_{2}\left(a_{\alpha} x^{\alpha}\right)$ $\in \mathbb{Q} \geq 0[x]$, it follows that monomials occurring in $D_{2}\left(a_{\beta} x^{\beta}\right)$ for a fixed $\beta \in \operatorname{supp} h$ cannot be vanished by monomials occurring in the sum $\sum_{\alpha \in \operatorname{supp} h \backslash\{\beta\}} D_{2}\left(a_{\alpha} x^{\alpha}\right)$.

Thus, we obtain that

$$
\begin{equation*}
\operatorname{supp} D_{2}(h)=\bigcup_{\alpha \in \operatorname{supp} h} \operatorname{supp} D_{2}\left(a_{\alpha} x^{\alpha}\right)=\bigcup_{\alpha \in \operatorname{supp} h} \operatorname{supp} D_{2}\left(x^{\alpha}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}(h)=0 \quad \Leftrightarrow \quad D_{2}\left(x^{\alpha}\right)=0 \quad \text { for each } \alpha \in \operatorname{supp} h, \tag{18}
\end{equation*}
$$

because $f=0$ iff $\operatorname{supp} f=\emptyset$. By definition of D_{2} one can easily check that if $\alpha \in \operatorname{supp} h \backslash \mathbb{N} \times\{(0, \ldots, 0)\}$, then $D_{2}\left(x^{\alpha}\right) \neq 0$. This completes the proof of (4).

To obtain (5) and (6) one can repeat carefully, for each $\alpha \in \operatorname{supp} h$, similar calculations as in (12). Indeed, if $h=\sum_{\alpha \in \operatorname{supp} h} a_{\alpha} x^{\alpha} \in \mathbb{Q}_{\geq 0}[x]$, then

$$
\begin{aligned}
D_{2}(h) & =\sum_{\alpha \in \operatorname{supp} h} a_{\alpha} D_{2}\left(x^{\alpha}\right) \\
& =\sum_{\alpha \in \operatorname{supp} h} \sum_{i=2}^{n} a_{\alpha}\left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} b_{i}\right)
\end{aligned}
$$

and by calculations as in (12), we have

$$
\operatorname{deg}_{w}\left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} b_{i}\right)=\operatorname{deg}_{w} h
$$

If b_{i} are w-homogeneous, then all summands of (19) are w-homogeneous of w-degree equal to $\operatorname{deg}_{w} h$. This proves (6).

When not all of b_{2}, \ldots, b_{n} are w-homogeneous, observe that $\bar{b}_{i} \in$ $\mathbb{Q}_{\geq 0}[x]$, where \bar{f} denotes the w-homogeneous component of f with maximal w-degree. This implies that

$$
a_{\alpha}\left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} \bar{b}_{i}\right) \in \mathbb{Q}_{\geq 0}[x]
$$

and so

$$
\begin{equation*}
\sum_{\alpha \in \operatorname{supp} h} \sum_{i=2}^{n} a_{\alpha}\left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} \bar{b}_{i}\right) \neq 0 \tag{19}
\end{equation*}
$$

Since all summands in the above sum are w-homogeneous of w-degree equal to $\operatorname{deg}_{w} h$ and any other summands of (19) have strictly lower w degree than $\operatorname{deg}_{w} h$ we obtain (5).

Now, we are in a position to prove the following theorem which gives us the above mentioned family of triangular derivations.

Theorem 2. Let $D=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}$ be a triangular k-derivation of $k[x]$ with $f_{1} \in k$ and $f_{i} \in k\left[x_{1}, \ldots, x_{i-1}\right] \backslash k$ for $i=2, \ldots, n$.

Assume that $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}_{+}^{n}$ is defined as in the previous section, and that $\bar{f}_{i} \in \mathbb{Q}_{\geq 0}[x]$ for $i=2, \ldots, n$, where \bar{h} denotes the w homogeneous component of h with maximal w-degree. Then

$$
\begin{equation*}
\operatorname{mdeg}(\exp D)_{\star}=\left(w_{1}, \ldots, w_{n}\right) \tag{20}
\end{equation*}
$$

Proof. First, notice that by assumption that $f_{2}, \ldots, f_{n} \notin k$, we have $\operatorname{deg}_{w} f_{i}=w_{i}$ for $i=2, \ldots, n$.

Consider the following k-derivations:

$$
\begin{equation*}
D_{1}=f_{1} \frac{\partial}{\partial x_{1}}+\left(f_{2}-\bar{f}_{2}\right) \frac{\partial}{\partial x_{2}}+\cdots+\left(f_{n}-\bar{f}_{n}\right) \frac{\partial}{\partial x_{n}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}=\bar{f}_{2} \frac{\partial}{\partial x_{2}}+\cdots+\bar{f}_{n} \frac{\partial}{\partial x_{n}} \tag{22}
\end{equation*}
$$

Then, for any $l=1,2, \ldots$, we have

$$
\begin{equation*}
D^{l}=\left(D_{1}+D_{2}\right)^{l}=\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{1,2\}^{l}} D_{\varepsilon_{l}} \circ \cdots \circ D_{\varepsilon_{1}} \tag{23}
\end{equation*}
$$

Using Lemma 1 (1) and (2), we obtain that for any $l=1,2, \ldots, h \in$ $k[x] \backslash\{0\}$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{1,2\}^{l} \backslash\{(2, \ldots, 2)\}$ the following holds

$$
\begin{equation*}
\operatorname{deg}_{w}\left(D_{\varepsilon_{l}} \circ \cdots \circ D_{\varepsilon_{1}}\right)(h)<\operatorname{deg}_{w} h \tag{24}
\end{equation*}
$$

Using Lemma $1(3)$, (5) and (6), we obtain that if $h \in \mathbb{Q}_{\geq 0}[x]$ is w homogeneous then

$$
\begin{equation*}
\left(D_{2}\right)^{l}(h)=0 \quad \text { or } \quad \operatorname{deg}_{w}\left(D_{2}\right)^{l}(h)=\operatorname{deg}_{w} h \quad \text { for } l=1,2 \ldots \tag{25}
\end{equation*}
$$

Now, we claim that for any $h \in k[x] \backslash k$ such that $\bar{h} \in \mathbb{Q}_{\geq 0}[x]$ we have:

$$
\begin{equation*}
\operatorname{deg}((\exp D)(h))=\operatorname{deg}_{w} h \tag{26}
\end{equation*}
$$

If this is the case, then in particular we obtain $\operatorname{deg}\left((\exp D)\left(x_{i}\right)\right)=$ $\operatorname{deg}_{w} x_{i}=w_{i}$ for $i=2, \ldots, n$, Thus, to complete the proof it is enough to show the claim.

First, notice using (16) that

$$
\begin{equation*}
\operatorname{deg}((\exp D)(h-\bar{h})) \leq \operatorname{deg}_{w}(h-\bar{h})<\operatorname{deg}_{w} h \tag{27}
\end{equation*}
$$

Since $(\exp D)(h)=(\exp D)(h-\bar{h})+(\exp D)(\bar{h})$, it follows that we only need to show that

$$
\begin{equation*}
\operatorname{deg}((\exp D)(\bar{h}))=\operatorname{deg}_{w} \bar{h}=\operatorname{deg}_{w} h \tag{28}
\end{equation*}
$$

Take $d_{1} \in \mathbb{N}_{+}$such that $D^{d_{1}+1}(\bar{h})=0$. Then, by (23), we obtain

$$
\begin{align*}
(\exp D)(\bar{h})= & \bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!} D^{l}(\bar{h}) \tag{29}\\
= & \bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{1,2\}} \backslash\{(2, \ldots, 2)\} \\
& +\sum_{l=1}^{d_{1}} \frac{1}{l!}\left(D_{2}\right)^{l}(\bar{h})
\end{align*}
$$

By (24), properties of degree function and the fact that $w_{1} \geq 1, \ldots, w_{n} \geq$ 1, we obtain

$$
\begin{align*}
& \operatorname{deg}\left(\sum_{l=1}^{d_{1}} \frac{1}{l!} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{1,2\}^{l} \backslash\{(2, \ldots, 2)\}}\left(D_{\varepsilon_{l}} \circ \cdots \circ D_{\varepsilon_{1}}\right)(\bar{h})\right) \tag{30}\\
\leq & \operatorname{deg}_{w}\left(\sum_{l=1}^{d_{1}} \frac{1}{l!} \sum_{\left.\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{1,2\} \backslash \backslash(2, \ldots, 2)\right\}}\left(D_{\varepsilon_{l}} \circ \cdots \circ D_{\varepsilon_{1}}\right)(\bar{h})\right)<\operatorname{deg}_{w} \bar{h} .
\end{align*}
$$

Thus, now it is enough to show that $\operatorname{deg}\left(\bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!}\left(D_{2}\right)^{l}(\bar{h})\right)=$ $\operatorname{deg}_{w} \bar{h}$.

By Lemma $1(3)$, we obtain that if $x^{\alpha} \in \operatorname{supp}\left(\left(D_{2}\right)^{l}(\bar{h})\right)$ for some l (we identify the monomial x^{α} with α), then

$$
x^{\alpha} \in \operatorname{supp}\left(\bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!}\left(D_{2}\right)^{l}(\bar{h})\right) .
$$

Take $d_{2} \in \mathbb{N}$ such that $\left(D_{2}\right)^{d_{2}}(\bar{h}) \neq 0$ and $\left(D_{2}\right)^{d_{2}+1}(\bar{h})=0$. Of course, we have $d_{2} \in\left\{0,1, \ldots, d_{1}\right\}$. Using Lemma $1(3)$, (5) and (6), we obtain that $\left(D_{2}\right)^{d_{2}}(\bar{h}) \in \mathbb{Q}_{\geq 0}[x]$ is w-homogeneous of w-degree equal to $\operatorname{deg}_{w} h$. Since $\left(D_{2}\right)^{d_{2}}(\bar{h}) \in \mathbb{Q}_{\geq 0}[x] \cap \operatorname{ker} D_{2}$ is w-homogeneous of w-degree $\operatorname{deg}_{w} h$, it follows by Lemma $1(4)-(6)$ that $\left(D_{2}\right)^{d_{2}}(\bar{h})=c x_{1}^{\operatorname{deg}_{w} h}$ for some $c \in \mathbb{Q}_{\geq 0}, c \neq 0$. Hence $x_{1}^{\operatorname{deg}_{w} h} \in \operatorname{supp}\left(\left(D_{2}\right)^{d_{2}}(\bar{h})\right)$ and so $x_{1}^{\operatorname{deg}_{w} h} \in$ $\operatorname{supp}\left(\bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!}\left(D_{2}\right)^{l}(\bar{h})\right)$. This means that $\operatorname{deg}\left(\bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!}\left(D_{2}\right)^{l}(\bar{h})\right)$ $\geq \operatorname{deg}_{w} \bar{h}=\operatorname{deg}_{w} h$. Thus the claim is proved, because $\bar{h}+\sum_{l=1}^{d_{1}} \frac{1}{l!}\left(D_{2}\right)^{l}(\bar{h})$ $=\left(\exp D_{2}\right)(\bar{h})$ and so one can use (16).

References

[1] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser Verlag, Basel-Boston-Berlin, 2000.
[2] E. Edo, T. Kanehira, M. Karaś, S. Kuroda, Separability of wild automorphisms of a polynomial ring, Transform. Groups, 18, No. 1, 2013, pp. 81-96.
[3] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, SpringerVerlag Berlin Heidelberg, 2006.
[4] M. Karaś, There is no tame automorphism of \mathbb{C}^{3} with multidegree (3, 4, 5), Proc. Am. Math. Soc., 139, No. 3, 2011, pp. 769-775.
[5] M. Karaś, Multidegrees of tame automorphisms of \mathbb{C}^{n}, Diss. Math., 477, 2011, 55 p.
[6] M. Karaś, J. Zygadło, On multidegree of tame and wild automorphisms of \mathbb{C}^{3}, J. Pure Appl. Alg., 215, 2011, pp. 2843-2846.
[7] S. Kuroda, On the Karaś type theorems for the multidegrees of polynomial automorphisms, J. Algebra, 423, 2015, pp. 441-465.
[8] M.K. Smith, Stably tame automorphisms, J. Pure Appl. Alg., 58, 1989, pp. 209-212.
[9] I.P. Shestakov, U.U. Umirbaev, The Nagata automorphism is wild, Proc. Natl. Acad. Sci. USA, 100, 2003, pp. 12561-12563.
[10] I.P. Shestakov, U.U. Umirbayev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc., 17, 2004, pp. 197-227.

Contact information

Marek Karaś
AGH University of Krakow, Faculty of Applied Mathematics
al. A. Mickiewicza 30
30-059 Krakow, Poland
ORCID: https://orcid.org/0000-0003-0821521X
E-Mail: mkaras@agh.edu.pl URL:

Paweł Pękała AGH University of Krakow, Faculty of Applied Mathematics al. A. Mickiewicza 30
30-059 Krakow, Poland
ORCID: https://orcid.org/0000-0001-8961644X
E-Mail: ppekala@agh.edu.pl
URL:

Received by the editors: 01.12.2022
and in final form 06.09.2023.

[^0]: 2020 Mathematics Subject Classification: Primary: 13N15, 14R10; Secondary: 16 W 20 .

 Key words and phrases: derivation, locally nilpotent derivation, polynomial automorphism, multidegree.

