© Algebra and Discrete Mathematics Volume **36** (2023). Number 1, pp. 32–42 DOI:10.12958/adm2042

A note on multidegrees of automorphisms of the form $(\exp D)_{\star}$

M. Karaś and P. Pękała

Communicated by A. P. Petravchuk

ABSTRACT. Let k be a field of characteristic zero. For any polynomial mapping $F = (F_1, \ldots, F_n) : k^n \to k^n$ by multidegree of F we mean the following n-tuple of natural numbers mdeg $F = (\deg F_1, \ldots, \deg F_n)$.

Let us denote by $k[x] = k[x_1, \ldots, x_n]$ a ring of polynomials in n variables x_1, \ldots, x_n over k. If $D: k[x] \to k[x]$ is a locally nilpotent k-derivation, then one can define the automorphism $\exp D$ of k-algebra k[x] and then the polynomial automorphism $(\exp D)_*$ of k^n . In this note we present a general upper bound of mdeg $(\exp D)_*$ in the case of a triangular derivation D, and also show that this estimation is exact.

Introduction

Let k be a field of characteristic zero, and let $k[x] = k[x_1, \ldots, x_n]$ be a ring of polynomials in n variables x_1, \ldots, x_n over k. Let us recall that a mapping $D: k[x] \to k[x]$ is called k-derivation of k[x] when it is k-linear and satisfies the Leibniz rule:

$$D(fg) = D(f)g + fD(g) \quad \text{for all } f, g \in k[x].$$
(1)

²⁰²⁰ Mathematics Subject Classification: Primary: 13N15, 14R10; Secondary: 16W20.

Key words and phrases: derivation, locally nilpotent derivation, polynomial automorphism, multidegree.

The set of all k-derivations of k[x] we will denote by $\text{Der}_k(k[x])$. For any $D \in \text{Der}_k(k[x])$ we define the *kernel* of D as the following subset of k[x]:

$$\ker D = \{ a \in k[x] : D(a) = 0 \}.$$
(2)

If $D \in \text{Der}_k(k[x])$, then ker D is a k-subalgebra of k[x]. In particular, if $D_1, D_2 \in \text{Der}_k(k[x])$ are such that $D_1(x_i) = D_2(x_i)$ for i = 1, ..., n, then ker $(D_1 - D_2) = k[x]$, and so $D_1 = D_2$. This means that for any $D \in \text{Der}_k(k[x])$ we have the following equality

$$D = D(x_1)\frac{\partial}{\partial x_1} + \dots + D(x_n)\frac{\partial}{\partial x_n},$$
(3)

where $\frac{\partial}{\partial x_i} : k[x] \to k[x]$ is the usually defined partial derivative with respect to the variable x_i .

Let us also recall that a derivation $D \in \text{Der}_k(k[x])$ is called *locally* nilpotent if for any $f \in k[x]$ there is a number $m \in \mathbb{N}$ such that $D^m(f) = 0$, where $D^0 = \text{id}_{k[x]}$ and $D^{l+1} = D \circ D^l$ for any $l \in \mathbb{N}$. The set of all locally nilpotent derivations of k[x] will be denoted by $\text{LND}_k(k[x])$.

Assume that we are given an arbitrary derivation $D \in \text{LND}_k(k[x])$. Then, one can define the following map

$$\exp D: k[x] \ni f \mapsto \sum_{i=0}^{\infty} \frac{1}{i!} D^i(f) \in k[x], \tag{4}$$

which is a homomorphism of k-algebras. If $D_1, D_2 \in \text{LND}_k(k[x])$ are such that $D_1 \circ D_2 = D_2 \circ D_1$, then

$$\exp D_1 \circ \exp D_2 = \exp(D_1 + D_2) = \exp D_2 \circ \exp D_1.$$
(5)

In particular

$$\exp D \circ \exp(-D) = \exp(-D) \circ \exp D = \exp 0 = \operatorname{id}_{k[x]} \tag{6}$$

for any $D \in \text{LND}_k(k[x])$. This means that for any $D \in \text{LND}_k(k[x])$ the mapping $\exp D$ is an automorphism of the k-algebra k[x]. For more information about derivations and polynomial automorphisms we refer to [1, 3].

For the convenience of the reader let us recall that for any polynomial mapping $F = (F_1, \ldots, F_n) : k^n \to k^n$ the mapping $F^* : k[x] \ni h \mapsto h \circ F = h(F_1, \ldots, F_n) \in k[x]$ is a k-algebra homomorphism and for any

k-algebra homomorphism $\varphi: k[x] \to k[x]$ the mapping $\varphi_{\star} = (F_1, \ldots, F_n)$, where $F_i = \varphi(x_i)$ for $i = 1, \ldots, n$, is a polynomial mapping of k^n .

The multidegrees of polynomial mappings seem to be a useful tool in studying polynomial automorphisms. For example, the first author and J. Zygadło proved in [6], using multidegrees, that for the following slight modification of the Nagata automorphism $\tilde{\sigma}: \mathbb{C}^3 \ni (x, y, z) \mapsto$ $(z, y - z(zx + y^2), x + 2y(zx + y^2) - z(zx + y^2)^2) \in \mathbb{C}^3$ and any $n \in \mathbb{N} \setminus \{0\}$, the automorphism $\tilde{\sigma}^n: \mathbb{C}^3 \to \mathbb{C}^3$ is wild (i.e. it is not a composition of triangular and affine automorphisms). The question about wildness of the Nagata automorphism $\sigma: \mathbb{C}^3 \ni (x, y, z) \mapsto (x + 2y(zx + y^2) - z(zx + y^2))$ $(y^2)^2, y - z(zx + y^2), z) \in \mathbb{C}^3$ was open since 1972 up to 2003 [9, 10]. It is known that the Nagata automorphism can be obtained in the form $(\exp D)_{\star}$ for some locally nilpotent derivation (see e.g. [8]). In this context it seems to be interesting to know something about $mdeg(exp D)_{\star}$, and in this note we establish an upper bound of $mdeg(exp D)_{\star}$ in the case of a triangular derivation D, and show that this estimation cannot be improved. For the first result about multidegrees of polynomial automorphisms see [4], and for more information about multidegrees we refer to [2, 5, 7].

1. Weighted degree and general estimation of multidegree for triangular derivation

Consider a k-derivation $D = f_1 \frac{\partial}{\partial x_1} + \dots + f_n \frac{\partial}{\partial x_n}$ of k[x], where $f_1, \dots, f_n \in k[x]$. We say that D is triangular if $f_1 \in k$ and $f_i \in k[x_1, \dots, x_{i-1}]$ for $i = 2, \dots, n$. One can check that if $D \in \text{Der}_k(k[x])$ is triangular, then $D \in \text{LND}_k(k[x])$.

Now, we define an useful weighted degree on k[x] associated with a given triangular derivation $D = f_1 \frac{\partial}{\partial x_1} + \cdots + f_n \frac{\partial}{\partial x_n} \in \text{Der}_k(k[x])$. In order to define $w = (w_1, \ldots, w_n) \in \mathbb{N}^n_+$, we put

 $w_1 = 1$ and $w_i = \max\{1, \deg_{(w_1, \dots, w_{i-1})} f_i\}$ for $i = 2, \dots, n.$ (7)

In the above formula for w_2, \ldots, w_n we use the fact that $f_i \in k[x_1, \ldots, x_{i-1}]$ for $i = 2, \ldots, n$, and so $\deg_{(w_1, \ldots, w_{i-1})} f_i$ means the weighted degree of f_i considered as an element of $k[x_1, \ldots, x_{i-1}]$, where the weighted degree function $\deg_{(w_1, \ldots, w_{i-1})} : k[x_1, \ldots, x_{i-1}] \to \mathbb{N} \cup \{-\infty\}$ is defined

by $\deg_{(w_1,\ldots,w_{i-1})} x_l = w_l$ for $l = 1,\ldots,i-1$. One can notice that, in the case $f_2,\ldots,f_n \notin k$, the above defined $w = (w_1,\ldots,w_n) \in \mathbb{N}^n_+$ is the unique element of \mathbb{N}^n_+ such that $w_1 = 1$ and $\deg_w f_i = w_i$ for $i = 2,\ldots,n$, where $\deg_w f_i$ means, of course, the w-degree of f_2,\ldots,f_n considered as elements of $k[x_1,\ldots,x_n]$.

Now, we are in a position to prove the following theorem.

Theorem 1. Let $D = f_1 \frac{\partial}{\partial x_1} + f_2 \frac{\partial}{\partial x_2} + \dots + f_n \frac{\partial}{\partial x_n}$ be a triangular kderivation of k[x] with $f_1 \in k$ and $f_i \in k[x_1, \dots, x_{i-1}]$ for $i = 2, \dots, n$.

If $w = (w_1, \ldots, w_n) \in \mathbb{N}^n_+$ is defined as above and $m = (m_1, \ldots, m_n) =$ mdeg(exp D)_{*}, then we have

 $m_1 = w_1, \quad m_2 = w_2 \qquad and \qquad m_i \le w_i \quad for \ i = 3, \dots, n.$ (8)

Proof. First, notice that

$$(\exp D)(x_1) = x_1 + f_1 \tag{9}$$

and

$$(\exp D)(x_2) = \begin{cases} x_2 + f_2 & \text{if } f_2 \in k \\ x_2 + f_2 + \sum_{l=1}^d \frac{1}{(l+1)!} f_1^l \left(\frac{\partial}{\partial x_1}\right)^l (f_2), & \text{if } f_2 \in k[x_1] \setminus k \end{cases}$$
(10)

where $d = \deg_{x_1} f_2$.

By (9) and $f_1 \in k$, we obtain deg $((\exp D)(x_1)) = 1$. In the case $f_2 \in k$, by (10), we also obtain deg $((\exp D)(x_2)) = 1$. On the other hand, in the case $f_2 \in k[x_1] \setminus k$ (in which $d \ge 1$), we have deg $f_2 >$ deg $\left(\frac{\partial}{\partial x_1}(f_2)\right) > \ldots >$ deg $\left(\left(\frac{\partial}{\partial x_1}\right)^d(f_2)\right)$, and so

$$\deg((\exp D)(x_2)) = \deg(x_2 + f_2) = \deg f_2 = \deg_w f_2.$$

In both cases, we have $\deg((\exp D)(x_2)) = w_2$.

Now, take any $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n \setminus \{0\}$. By the chain rule for the

derivation D and properties of degree function, we have

$$\deg_{w} \left(D(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}) \right)$$

$$= \deg_{w} \left(\sum_{i=1}^{n} \alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} D(x_{i}) \right)$$

$$= \deg_{w} \left(\sum_{i=1}^{n} \alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} f_{i} \right)$$

$$\le \max \left\{ \deg_{w} \left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i}-1} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} f_{i} \right) : i = 1, \dots, n \right\}.$$

$$(11)$$

Let us notice that, by definition of $w = (w_1, \ldots, w_n)$, for $\alpha_i \neq 0$, we have

$$\deg_{w} \left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i-1}} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} f_{i} \right)$$

$$= \alpha_{1} w_{1} + \dots + \alpha_{n} w_{n} - w_{i} + \deg_{w} f_{i}$$

$$\leq \alpha_{1} w_{1} + \dots + \alpha_{n} w_{n} = \deg_{w} \left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \right).$$

$$(12)$$

By (11) and (12), we obtain

$$\deg_w \left(D(x_1^{\alpha_1} \cdots x_n^{\alpha_n}) \right) \le \deg_w (x_1^{\alpha_1} \cdots x_n^{\alpha_n}).$$
(13)

Now, we check that the above inequality is also valid for any polynomial $h \in k[x]$. The inequality is obviously true if h = 0, so we can assume that $h \neq 0$. Then, $h = \sum_{\alpha \in \text{supp } h} a_{\alpha} x^{\alpha}$, where for $\alpha = (\alpha_1, \ldots, \alpha_n)$ we write x^{α} instead of $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. By (13), k-linearity of D and properties of degree function, we obtain

$$\deg_{w} (D(h)) = \deg_{w} \left(\sum_{\alpha \in \operatorname{supp} h} a_{\alpha} D(x^{\alpha}) \right)$$

$$\leq \max_{\alpha \in \operatorname{supp} h} \deg_{w} (D(x^{\alpha})) \leq \max_{\alpha \in \operatorname{supp} h} \deg_{w} (x^{\alpha}) = \deg_{w} h.$$
(14)

Now, take any $h \in k[x]$ and choose $d \in \mathbb{N}_+$ such that $D^{d+1}(h) = 0$. Then, by (14), we get

$$\deg_{w} ((\exp D)(h)) = \deg_{w} \left(h + \sum_{i=1}^{d} \frac{1}{i!} D^{i}(h) \right)$$

$$\leq \max \left\{ \deg_{w} h, \deg_{w} (D(h)), \dots, \deg_{w} \left(D^{d}(h) \right) \right\}$$

$$= \deg_{w} h.$$
(15)

Since $w_1 \ge 1, \ldots, w_n \ge 1$, it follows that for any polynomial $P \in k[x]$ we have deg $P \le \deg_w P$. Thus, for any $h \in k[x]$, we get

$$\deg\left((\exp D)(h)\right) \le \deg_w\left((\exp D)(h)\right) \le \deg_w h. \tag{16}$$

In particular, we obtain $\deg((\exp D)(x_i)) \leq \deg_w x_i = w_i$ for $i = 3, \ldots, n$.

2. Exactness of the estimation in Theorem 1

In this section, we give a large family of triangular derivations for which, in Theorem 1 we obtain the equality. Nonemptiness of this family shows that the estimation given in Theorem 1 cannot be improved.

First, notice that since k is of characteristic zero, we can assume that $\mathbb{Q} \subset k$, where \mathbb{Q} denotes the field of rational numbers. By $\mathbb{Q}_{\geq 0}$ and $\mathbb{Q}_{\geq 0}[x_1,\ldots,x_n]$ we will denote, respectively, the set of all nonnegative rational numbers and the set of all polynomials with coefficients in $\mathbb{Q}_{\geq 0}$.

In order to prove the nonemptiness of the above mentioned family we will use the following fact.

Lemma 1. Let $w = (w_1, \ldots, w_n) \in \mathbb{N}^n_+$ be arbitrary and $D_1 = a_1 \frac{\partial}{\partial x_1} + a_2 \frac{\partial}{\partial x_2} + \cdots + a_n \frac{\partial}{\partial x_n}$, $D_2 = b_2 \frac{\partial}{\partial x_2} + \cdots + b_n \frac{\partial}{\partial x_n}$ be two triangular kderivations such that $\deg_w a_i < w_i$, $\deg_w b_i = w_i$ and $b_i \in \mathbb{Q}_{\geq 0}[x_1, \ldots, x_{i-1}]$ for $i = 2, \ldots, n$.

Then, the following hold:

- (1) For any $h \in k[x] \setminus \{0\}$ we have $\deg_w D_1(h) < \deg_w h$.
- (2) For any $h \in k[x]$ we have $\deg_w D_2(h) \leq \deg_w h$.
- (3) If $h \in \mathbb{Q}_{\geq 0}[x_1, \dots, x_n]$, then $D_2(h) \in \mathbb{Q}_{\geq 0}[x_1, \dots, x_n]$.
- (4) If $h \in \mathbb{Q}_{>0}[x_1, \ldots, x_n] \cap \ker D_2$, then $h \in \mathbb{Q}_{>0}[x_1]$.
- (5) If $h \in \mathbb{Q}_{\geq 0}[x_1, \dots, x_n] \setminus \ker D_2$ is w-homogeneous, then $\deg_w D_2(h) = \deg_w h.$
- (6) If b_2, \ldots, b_n are w-homogeneous, then for each w-homogeneous $h \in \mathbb{Q}_{\geq 0}[x_1, \ldots, x_n] \setminus \ker D_2, D_2(h)$ is w-homogeneous with $\deg_w D_2(h) = \deg_w h.$

Proof. To obtain (1) and (2) one can use similar arguments as in the proof of Theorem 1 (see the second and third paragraphs of the proof).

The statement (3) is a consequence of the straightforward calculation.

To prove (4) take any $h = \sum_{\alpha \in \text{supp } h} a_{\alpha} x^{\alpha} \in \mathbb{Q}_{\geq 0}[x]$. Since $D_2(h) = \sum_{\alpha \in \text{supp } h} D_2(a_{\alpha} x^{\alpha})$ and, by (3), for each $\alpha \in \text{supp } h$ we have $D_2(a_{\alpha} x^{\alpha}) \in \mathbb{Q}_{\geq 0}[x]$, it follows that monomials occurring in $D_2(a_{\beta} x^{\beta})$ for a fixed $\beta \in \text{supp } h$ cannot be vanished by monomials occurring in the sum $\sum_{\alpha \in \text{supp } h \setminus \{\beta\}} D_2(a_{\alpha} x^{\alpha})$.

Thus, we obtain that

$$\operatorname{supp} D_2(h) = \bigcup_{\alpha \in \operatorname{supp} h} \operatorname{supp} D_2(a_\alpha x^\alpha) = \bigcup_{\alpha \in \operatorname{supp} h} \operatorname{supp} D_2(x^\alpha)$$
(17)

and

$$D_2(h) = 0 \qquad \Leftrightarrow \qquad D_2(x^{\alpha}) = 0 \quad \text{for each } \alpha \in \text{supp } h, \qquad (18)$$

because f = 0 iff supp $f = \emptyset$. By definition of D_2 one can easily check that if $\alpha \in \text{supp } h \setminus \mathbb{N} \times \{(0, \ldots, 0)\}$, then $D_2(x^{\alpha}) \neq 0$. This completes the proof of (4).

To obtain (5) and (6) one can repeat carefully, for each $\alpha \in \text{supp } h$, similar calculations as in (12). Indeed, if $h = \sum_{\alpha \in \text{supp } h} a_{\alpha} x^{\alpha} \in \mathbb{Q}_{\geq 0}[x]$, then

$$D_{2}(h) = \sum_{\alpha \in \text{supp } h} a_{\alpha} D_{2} (x^{\alpha})$$
$$= \sum_{\alpha \in \text{supp } h} \sum_{i=2}^{n} a_{\alpha} \left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i-1}} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} b_{i} \right),$$

and by calculations as in (12), we have

$$\deg_w\left(\alpha_i x_1^{\alpha_1} \cdots x_{i-1}^{\alpha_{i-1}} x_i^{\alpha_i - 1} x_{i+1}^{\alpha_{i+1}} \cdots x_n^{\alpha_n} b_i\right) = \deg_w h.$$

If b_i are *w*-homogeneous, then all summands of (19) are *w*-homogeneous of *w*-degree equal to $\deg_w h$. This proves (6).

When not all of b_2, \ldots, b_n are *w*-homogeneous, observe that $\bar{b}_i \in \mathbb{Q}_{\geq 0}[x]$, where \bar{f} denotes the *w*-homogeneous component of f with maximal *w*-degree. This implies that

$$a_{\alpha}\left(\alpha_{i}x_{1}^{\alpha_{1}}\cdots x_{i-1}^{\alpha_{i-1}}x_{i}^{\alpha_{i-1}}x_{i+1}^{\alpha_{i+1}}\cdots x_{n}^{\alpha_{n}}\bar{b}_{i}\right)\in\mathbb{Q}_{\geq0}[x],$$

and so

$$\sum_{\alpha \in \operatorname{supp} h} \sum_{i=2}^{n} a_{\alpha} \left(\alpha_{i} x_{1}^{\alpha_{1}} \cdots x_{i-1}^{\alpha_{i-1}} x_{i}^{\alpha_{i-1}} x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}} \bar{b}_{i} \right) \neq 0.$$
(19)

Since all summands in the above sum are w-homogeneous of w-degree equal to $\deg_w h$ and any other summands of (19) have strictly lower w-degree than $\deg_w h$ we obtain (5).

Now, we are in a position to prove the following theorem which gives us the above mentioned family of triangular derivations.

Theorem 2. Let $D = f_1 \frac{\partial}{\partial x_1} + \cdots + f_n \frac{\partial}{\partial x_n}$ be a triangular k-derivation of k[x] with $f_1 \in k$ and $f_i \in k[x_1, \ldots, x_{i-1}] \setminus k$ for $i = 2, \ldots, n$.

Assume that $w = (w_1, \ldots, w_n) \in \mathbb{N}^n_+$ is defined as in the previous section, and that $\bar{f}_i \in \mathbb{Q}_{\geq 0}[x]$ for $i = 2, \ldots, n$, where \bar{h} denotes the w-homogeneous component of h with maximal w-degree. Then

$$\operatorname{mdeg}(\exp D)_{\star} = (w_1, \dots, w_n).$$
⁽²⁰⁾

Proof. First, notice that by assumption that $f_2, \ldots, f_n \notin k$, we have $\deg_w f_i = w_i$ for $i = 2, \ldots, n$.

Consider the following k-derivations:

$$D_1 = f_1 \frac{\partial}{\partial x_1} + (f_2 - \bar{f}_2) \frac{\partial}{\partial x_2} + \dots + (f_n - \bar{f}_n) \frac{\partial}{\partial x_n}$$
(21)

and

$$D_2 = \bar{f}_2 \frac{\partial}{\partial x_2} + \dots + \bar{f}_n \frac{\partial}{\partial x_n}.$$
 (22)

Then, for any $l = 1, 2, \ldots$, we have

$$D^{l} = (D_{1} + D_{2})^{l} = \sum_{(\varepsilon_{1}, \dots, \varepsilon_{l}) \in \{1, 2\}^{l}} D_{\varepsilon_{l}} \circ \dots \circ D_{\varepsilon_{1}}.$$
 (23)

Using Lemma 1(1) and (2), we obtain that for any $l = 1, 2, ..., h \in k[x] \setminus \{0\}$ and $(\varepsilon_1, \ldots, \varepsilon_l) \in \{1, 2\}^l \setminus \{(2, \ldots, 2)\}$ the following holds

$$\deg_w \left(D_{\varepsilon_l} \circ \dots \circ D_{\varepsilon_1} \right)(h) < \deg_w h.$$
(24)

Using Lemma 1(3), (5) and (6), we obtain that if $h \in \mathbb{Q}_{\geq 0}[x]$ is w-homogeneous then

$$(D_2)^l(h) = 0$$
 or $\deg_w(D_2)^l(h) = \deg_w h$ for $l = 1, 2...$ (25)

Now, we claim that for any $h \in k[x] \setminus k$ such that $\bar{h} \in \mathbb{Q}_{\geq 0}[x]$ we have:

$$\deg\left((\exp D)(h)\right) = \deg_w h. \tag{26}$$

If this is the case, then in particular we obtain $\deg((\exp D)(x_i)) = \deg_w x_i = w_i$ for i = 2, ..., n, Thus, to complete the proof it is enough to show the claim.

First, notice using (16) that

$$\deg\left((\exp D)(h-\bar{h})\right) \le \deg_w(h-\bar{h}) < \deg_w h.$$
(27)

Since $(\exp D)(h) = (\exp D)(h - \bar{h}) + (\exp D)(\bar{h})$, it follows that we only need to show that

$$\deg\left((\exp D)(\bar{h})\right) = \deg_w \bar{h} = \deg_w h.$$
(28)

Take $d_1 \in \mathbb{N}_+$ such that $D^{d_1+1}(\bar{h}) = 0$. Then, by (23), we obtain

$$(\exp D)(\bar{h}) = \bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!} D^l(\bar{h})$$
(29)
$$= \bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!} \sum_{(\varepsilon_1, \dots, \varepsilon_l) \in \{1, 2\}^l \setminus \{(2, \dots, 2)\}} (D_{\varepsilon_l} \circ \dots \circ D_{\varepsilon_1})(\bar{h})$$
$$+ \sum_{l=1}^{d_1} \frac{1}{l!} (D_2)^l(\bar{h}).$$

By (24), properties of degree function and the fact that $w_1 \ge 1, \ldots, w_n \ge 1$, we obtain

$$\deg\left(\sum_{l=1}^{d_1} \frac{1}{l!} \sum_{\substack{(\varepsilon_1,\dots,\varepsilon_l)\in\{1,2\}^l\setminus\{(2,\dots,2)\}}} \left(D_{\varepsilon_l}\circ\dots\circ D_{\varepsilon_1}\right)(\bar{h}\right)\right)$$
(30)

$$\leq \ \deg_w\left(\sum_{l=1}^{d_1} \frac{1}{l!} \sum_{\substack{(\varepsilon_1,\dots,\varepsilon_l)\in\{1,2\}^l\setminus\{(2,\dots,2)\}}} \left(D_{\varepsilon_l}\circ\dots\circ D_{\varepsilon_1}\right)(\bar{h}\right)\right) < \deg_w\bar{h}.$$

Thus, now it is enough to show that $deg\left(\bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!} (D_2)^l(\bar{h})\right) = deg_w \bar{h}.$

By Lemma 1(3), we obtain that if $x^{\alpha} \in \text{supp}((D_2)^l(\bar{h}))$ for some l (we identify the monomial x^{α} with α), then

$$x^{\alpha} \in \operatorname{supp}\left(\bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!} (D_2)^l(\bar{h})\right).$$

Take $d_2 \in \mathbb{N}$ such that $(D_2)^{d_2}(\bar{h}) \neq 0$ and $(D_2)^{d_2+1}(\bar{h}) = 0$. Of course, we have $d_2 \in \{0, 1, \ldots, d_1\}$. Using Lemma 1(3), (5) and (6), we obtain that $(D_2)^{d_2}(\bar{h}) \in \mathbb{Q}_{\geq 0}[x]$ is *w*-homogeneous of *w*-degree equal to $\deg_w h$. Since $(D_2)^{d_2}(\bar{h}) \in \mathbb{Q}_{\geq 0}[x] \cap \ker D_2$ is *w*-homogeneous of *w*-degree $\deg_w h$, it follows by Lemma 1(4)-(6) that $(D_2)^{d_2}(\bar{h}) = cx_1^{\deg_w h}$ for some $c \in \mathbb{Q}_{\geq 0}, c \neq 0$. Hence $x_1^{\deg_w h} \in \operatorname{supp}\left((D_2)^{d_2}(\bar{h})\right)$ and so $x_1^{\deg_w h} \in$ $\operatorname{supp}\left(\bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!}(D_2)^l(\bar{h})\right)$. This means that $\deg\left(\bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!}(D_2)^l(\bar{h})\right)$ $\geq \deg_w \bar{h} = \deg_w h$. Thus the claim is proved, because $\bar{h} + \sum_{l=1}^{d_1} \frac{1}{l!}(D_2)^l(\bar{h})$ $= (\exp D_2)(\bar{h})$ and so one can use (16).

References

- [1] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser Verlag, Basel-Boston-Berlin, 2000.
- [2] E. Edo, T. Kanehira, M. Karaś, S. Kuroda, Separability of wild automorphisms of a polynomial ring, Transform. Groups, 18, No. 1, 2013, pp. 81–96.
- [3] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Springer-Verlag Berlin Heidelberg, 2006.
- [4] M. Karaś, There is no tame automorphism of C³ with multidegree (3,4,5), Proc. Am. Math. Soc., 139, No. 3, 2011, pp. 769-775.
- [5] M. Karaś, Multidegrees of tame automorphisms of \mathbb{C}^n , Diss. Math., 477, 2011, 55 p.
- [6] M. Karaś, J. Zygadło, On multidegree of tame and wild automorphisms of C³, J. Pure Appl. Alg., 215, 2011, pp. 2843-2846.
- [7] S. Kuroda, On the Karaś type theorems for the multidegrees of polynomial automorphisms, J. Algebra, 423, 2015, pp. 441-465.
- [8] M.K. Smith, Stably tame automorphisms, J. Pure Appl. Alg., 58, 1989, pp. 209-212.
- [9] I.P. Shestakov, U.U. Umirbaev, The Nagata automorphism is wild, Proc. Natl. Acad. Sci. USA, 100, 2003, pp. 12561-12563.
- [10] I.P. Shestakov, U.U. Umirbayev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc., 17, 2004, pp. 197-227.

CONTACT INFORMATION

Marek Karaś	AGH University of Krakow,
	Faculty of Applied Mathematics
	al. A. Mickiewicza 30
	30-059 Krakow, Poland
	ORCID: https://orcid.org/0000-0003-0821-
	521X
	E-Mail: mkaras@agh.edu.pl
	URL:
Paweł Pękała	AGH University of Krakow,
	Faculty of Applied Mathematics
	al. A. Mickiewicza 30
	30-059 Krakow, Poland
	ORCID: https://orcid.org/0000-0001-8961-
	644X
	E-Mail: ppekala@agh.edu.pl
	URL:

Received by the editors: 01.12.2022 and in final form 06.09.2023.