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ABSTRACT. Let k be a field of characteristic zero. For any
polynomial mapping F = (Fi,...,F,) : k¥ — k™ by multidegree
of F' we mean the following n-tuple of natural numbers mdeg F' =
(deg F,...,deg Fy,).

Let us denote by k[z] = k[x1, ..., z,] a ring of polynomials in n
variables x1, ..., x, over k. If D : k[z] — k[x] is a locally nilpotent
k-derivation, then one can define the automorphism exp D of k-
algebra k[z] and then the polynomial automorphism (exp D), of
k™. In this note we present a general upper bound of mdeg(exp D).
in the case of a triangular derivation D, and also show that this
estimation is exact.

Introduction
Let k be a field of characteristic zero, and let k[z] = k[x1,...,zy] be a
ring of polynomials in n variables x1,...,xz, over k. Let us recall that a

mapping D : k[z] — k[z] is called k-derivation of k[x] when it is k-linear
and satisfies the Leibniz rule:

D(fg) = D(f)g+ fD(g)  forall f,g € k[z]. (1)
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The set of all k-derivations of k[z] we will denote by Der(k[z]). For any
D € Dery(k[x]) we define the kernel of D as the following subset of k[x]:

ker D ={a € k[x] : D(a) =0}. (2)

If D € Derg(k[z]), then ker D is a k-subalgebra of k[z]. In particular,
if Dy, Dy € Derg(k[z]) are such that D;(x;) = Da(x;) for i = 1,...,n,
then ker(D; — Dy) = klz], and so D; = D,. This means that for any
D € Dery(k[x]) we have the following equality

0

0

where 6@% : k[x] — k[z] is the usually defined partial derivative with
respect to the variable x;.

Let us also recall that a derivation D € Dery(k[x]) is called locally
nilpotent if for any f € k[z] there is a number m € N such that D™(f) =
0, where D° = idy,) and D'"*' = Do D' for any I € N. The set of all
locally nilpotent derivations of k[x] will be denoted by LNDy(k[z]).

Assume that we are given an arbitrary derivation D € LNDy(k[x]).

Then, one can define the following map

expD : k[z] > f— Z %Dl(f) € klz], (4)
i=0

which is a homomorphism of k-algebras. If Dj, Dy € LNDy(k[x]) are
such that Dy o Dy = Ds o Dy, then

exp Dy o exp Dy = exp(D1 + D3) = exp Dy o exp D;. (5)
In particular
exp D o exp(—D) = exp(—D) oexp D = exp0 = idyy (6)

for any D € LNDy(k[z]). This means that for any D € LNDy(k[z])
the mapping exp D is an automorphism of the k-algebra k[z]. For more
information about derivations and polynomial automorphisms we refer
to [1, 3.

For the convenience of the reader let us recall that for any polynomial
mapping F = (Fy,...,Fy,) : kK" — k™ the mapping F* : k[z] 2 h —
hoF = h(F1,...,F,) € k[z] is a k-algebra homomorphism and for any
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k-algebra homomorphism ¢ : k[x] — k[z] the mapping ¢, = (F1,..., Fp),
where F; = p(x;) for i = 1,...,n, is a polynomial mapping of k.

The multidegrees of polynomial mappings seem to be a useful tool
in studying polynomial automorphisms. For example, the first author
and J. Zygadlo proved in [6], using multidegrees, that for the follow-
ing slight modification of the Nagata automorphism & : C3 > (z,v,2) —
(z,y—z(zz+y?), 2+ 2y(zz+y?) — 2(22+4?)?) € C3 and any n € N\ {0},
the automorphism 6" : C3 — C3 is wild (i.e. it is not a composition of
triangular and affine automorphisms). The question about wildness of
the Nagata automorphism o : C3 3 (z,y, 2) — (z + 2y(z22 +9°) — z(zz +
y*)2,y — z(zx + y?),2) € C3 was open since 1972 up to 2003 [9, 10]. It
is known that the Nagata automorphism can be obtained in the form
(exp D), for some locally nilpotent derivation (see e.g. [8]). In this con-
text it seems to be interesting to know something about mdeg(exp D)y,
and in this note we establish an upper bound of mdeg(exp D), in the
case of a triangular derivation D, and show that this estimation cannot
be improved. For the first result about multidegrees of polynomial auto-
morphisms see [4], and for more information about multidegrees we refer

to [2, 5, 7].

1. Weighted degree and general estimation of multidegree
for triangular derivation

Consider a k-derivation D = f1%+- : '+fn% of k[z], where f1,..., fn €
klx]. We say that D is triangular if f1 € k and f; € k[z1,...,z;_1] for
i = 2,...,n. One can check that if D € Derg(k[z]) is triangular, then
D € LNDy(k[z]).

Now, we define an useful weighted degree on k[z] associated with a
given triangular derivation D = fla%l + -+ fn% € Derg(k[z]). In

order to define w = (w1, ..., wy) € N}, we put

wy =1 and w; = max{l,deg(,, ., ) fi}t fori=2,....n. (7)
In the above formula for wy,...,w, we use the fact that f; € k[xy,...,
xi—1) for i = 2,...,n, and so deg(y,, .. w,_,) i means the weighted de-

gree of f; considered as an element of k[z1,...,2;—1], where the weighted
degree function deg,, s k[z,. .., xi-1] = NU{—o0} is defined

yeeesWi—1)
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by degy,, w,_y 21 = wy for I = 1,...,%4 — 1. One can notice that, in
the case fa,..., fn ¢ k, the above defined w = (w1, ..., w,) € N7 is the
unique element of N’} such that w; = 1 and deg,, f; = w; fori =2,...,n,
where deg,, f; means, of course, the w-degree of fs, ..., f, considered as
elements of k[z1,...,zy].

Now, we are in a position to prove the following theorem.

Theorem 1. Let D = fla%l + fga%2 + fn% be a triangular k-
derivation of klx| with f1 € k and f; € klz1,...,zi—1] fori=2,...,n.

Ifw = (wi,...,wy) € N} is defined as above and m = (mq,...,my,) =
mdeg(exp D)y, then we have

mi = wiy, Mo = Wy and m; <w; fori=3,...,n. (8)

Proof. First, notice that

(exp D)(z1) =1+ f1 (9)
and
T2 + fo if f2€k
. _ d l
(exp D)(x2) 2o+ fo +l¥1 i (%) (f2), if fo € klz1] \ &
(10)

where d = deg,, f2.

By (9) and f; € k, we obtain deg((exp D)(xz1)) = 1. In the case
fa € k, by (10), we also obtain deg ((exp D)(z2)) = 1. On the other
hand, in the case fa € k[z1] \ ¥ (in which d > 1), we have deg fo >

deg (a%l(fg)) > ... > deg <(£l)d(f2)> , and so
deg ((exp D)(z2)) = deg (z2 + f2) = deg f2 = deg,, fa.

In both cases, we have deg ((exp D)(z2)) = w.
Now, take any a = (au,...,ap) € N\ {0}. By the chain rule for the
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derivation D and properties of degree function, we have

deg,, (D(z1" -+ 2)) (11)

n

n
. et ai—1 o;—1 Qi1 o .
= degw (E oyt T "Zl:n"D(l'fL)>
=1

n
. et a1 oa;—1 Qi1 an £,
= deg,, (E QX" Xy Xy Ty "'xn”fz)
=1

< max {degw (aix?l . -x?ﬁ‘lle‘i_lx?ﬁl e l‘%"f1> ci=1,... ,n} .
Let us notice that, by definition of w = (wy,...,wy,), for a; # 0, we have

deg, (asaf" - -af a0l o an ) (12)
=aqwy + -+ + apw, — w; + deg,, f;
< ajwy + -+ apwy, = deg,, (27 - a0 .
By (11) and (12), we obtain
deg,, (D(z7" -+ z")) < deg,, (27" -+ - 2"). (13)

Now, we check that the above inequality is also valid for any polyno-
mial h € k[z]. The inequality is obviously true if h = 0, so we can assume
that h # 0. Then, h = ZaeSupphaaaja, where for a = (a1,...,q,) we
write ¢ instead of z{" ---z%". By (13), k-linearity of D and properties
of degree function, we obtain

deg, (D(h)) = deg, [ Y aaD(z*) (14)
a€esupp h
<  max deg, (D(z%)) < max deg,(z*) = deg, h.
a€supp h a€supp h

Now, take any h € k[z] and choose d € N such that DT (h) = 0.
Then, by (14), we get

d
deg,, ((exp D)(h)) = deg, (h +) Z.l!Di(h)> (15)

i=1
< max {degw h,deg,, (D(h)),...,deg, (Dd(h)) }
= deg, h.
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Since wy > 1,...,w, > 1, it follows that for any polynomial P € k[z]
we have deg P < deg,, P. Thus, for any h € k[z], we get

deg ((exp D)(h)) < deg,, ((exp D)(h)) < deg,, h. (16)

In particular, we obtain deg ((exp D)(x;)) < deg,x; = w; for ¢ =
3,...,1. O

2. Exactness of the estimation in Theorem 1

In this section, we give a large family of triangular derivations for which,
in Theorem 1 we obtain the equality. Nonemptiness of this family shows
that the estimation given in Theorem 1 cannot be improved.

First, notice that since k is of characteristic zero, we can assume that
Q C k, where Q denotes the field of rational numbers. By Q>¢ and
Q>o[z1,...,2n] we will denote, respectively, the set of all nonnegative
rational numbers and the set of all polynomials with coefficients in Q>o.

In order to prove the nonemptiness of the above mentioned family we
will use the following fact.

Lemma 1. Let w = (wi,...,w,) € N} be arbitrary and D; = ala%l +

GQ% + oo+ ana%n, Dy = bga%z 4+ -+ bna%n be two triangular k-

derivations such that deg, a; < w;, deg, b; =w; and b; € Q>¢[z1,...,

xi—1) fori=2,...,n.

Then, the following hold:

(1) For any h € k[x] \ {0} we have deg,, D1(h) < deg,, h.

(2) For any h € k[z] we have deg,, D2(h) < deg,, h.

(3) If h € Qso[z1,...,xy], then Da(h) € Qxplz1,...,Tn].

(4) If h € Qxo[z1,...,zp] Nker Dy, then h € Qx¢[z1].

(5) If h € Qsolz1,...,xy] \ ker Dy is w-homogeneous, then
deg,, Da(h) = deg,, h.

(6) If ba,...,b, are w-homogeneous, then for each w-homogeneous
h € Qso[z1,...,2n] \ ker Dy, Dy(h) is w-homogeneous with
deg,, Da(h) = deg,, h.

Proof. To obtain (1) and (2) one can use similar arguments as in the
proof of Theorem 1 (see the second and third paragraphs of the proof).
The statement (3) is a consequence of the straightforward calculation.
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To prove (4) take any h =3 opn @z € Qxolz]. Since Dy(h) =
> aesupph D2 (aax®) and, by (3), for each o € supp h we have D (aqz®)
€ Qxo[z], it follows that monomials occurring in Dy (agz”) for a fixed
B € supph cannot be vanished by monomials occurring in the sum

2 acsupp (5} D2 (aaz®).
Thus, we obtain that

supp Da(h) = | J supp Da(anz®) = | J suppDa(z®)  (17)
a€supp h a€supp h

and
Dy(h) =0 & Dy(z*) =0 for each « € supph, (18)

because f = 0 iff supp f = (). By definition of D5 one can easily check
that if & € supph \ N x {(0,...,0)}, then Do(x®) # 0. This completes
the proof of (4).

To obtain (5) and (6) one can repeat carefully, for each o € supp h,
similar calculations as in (12). Indeed, if h = > o005 @a2® € Qxo[7],
then

Dy(h) = Y aaDs(z)

a€esupp h
n
_ a1 o1 o —1 o041 o
= E g o (ai:rl R PR e P ---xn"bi>,
a€esupp h =2
and by calculations as in (12), we have

Y] i1, 0;—1_ 01 anp .|
deg,, (ale R PR i P ---xn"lh) = deg,, h.

If b; are w-homogeneous, then all summands of (19) are w-homogeneous
of w-degree equal to deg,, h. This proves (6).

When not all of by,...,b, are w-homogeneous, observe that b; €
Q>o[x], where f denotes the w-homogeneous component of f with max-
imal w-degree. This implies that

« a1 o;—1 i1 an,
Qox (aixll T T Ty xn"bz) € Qxola],

and so

n
« ;-1 a;—1 Oy nl
g g Ao (oai:rll cexp el bi> # 0. (19)

a€esupp h =2
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Since all summands in the above sum are w-homogeneous of w-degree
equal to deg, h and any other summands of (19) have strictly lower w-
degree than deg,, h we obtain (5). O

Now, we are in a position to prove the following theorem which gives
us the above mentioned family of triangular derivations.

Theorem 2. Let D = fla%l 4+ 4 fn% be a triangular k-derivation
of klz] with fi € k and f; € k[x1,...,xi—1) \ k fori=2,...,n.

Assume that w = (wi,...,w,) € N} is defined as in the previous
section, and that f; € Qsolz] for i = 2,...,n, where h denotes the w-
homogeneous component of h with mazimal w-degree. Then

mdeg(exp D)y = (w1, ..., wy). (20)

Proof. First, notice that by assumption that fa,..., f, ¢ k, we have
deg,, fi =w; fori =2,...,n.
Consider the following k-derivations:

0 —. 0 — .0
Di=f1— )t (fr = fr)— 21
1 f16x1+(f2 f2)8x2+ + (f f)ﬁxn (21)

and 9 5
Dy = fo— +- fr—-. 22
2 f28:c2+ +f8xn (22)
Then, for any [ = 1,2, ..., we have

D' = (Dy + Dy)' = Y Dgo---oDy. (23)

Using Lemma 1(1) and (2), we obtain that for any [ = 1,2,..., h €
E[z] \ {0} and (e1,...,&) € {1,2}'\ {(2,...,2)} the following holds

deg,, (D¢, 0-+-0D.,) (h) < deg,, h. (24)

Using Lemma 1(3), (5) and (6), we obtain that if h € Qxglx] is w-
homogeneous then

(D) (h) =0  or  deg,(D2)'(h) =deg,h  forl=1,2... (25)
Now, we claim that for any h € k[x]\ k such that h € Q>o[z] we have:

deg ((exp D)(h)) = deg, h. (26)
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If this is the case, then in particular we obtain deg ((exp D)(x;)) =
deg,, ©; = w; for i = 2,... n, Thus, to complete the proof it is enough to
show the claim.

First, notice using (16) that

deg ((exp D)(h — h)) < deg,,(h — h) < deg,, h. (27)

Since (exp D)(h) = (exp D)(h — h) + (exp D)(h), it follows that we only
need to show that

deg ((exp D)(h)) = deg,, h = deg,, h. (28)

Take dy € N such that D%+1(h) = 0. Then, by (23), we obtain

d1
(expD)(h) = E+Z%Dl(ﬁ) (29)
=1
! 1 _
= ht) 5 > (D00 Dey) (h)
=1 (e1,....51)e{1,2}}\{(2,...,2)}
dy 1 -
+ZE(D2)’(h)
=1

By (24), properties of degree function and the fact that wy; > 1,...,w, >
1, we obtain

dy

deg Z% > (D.,o-+-0Dz,) (h) (30)
=1 (er,0e0)€{1,230\{(2,...,2)}
I , §
< deg, Z il Z (Dg0---0Dg)(h) | <deg,h.

=17 (e1,me) {121\ {(2,....2)}

Thus, now it is enough to show that deg (l_z+ S %(Dz)l(ﬁ)> =
deg,, h.
By Lemma 1(3), we obtain that if 2% € supp ((D2)!(h)) for some !

(we identify the monomial % with «/), then

di
x € supp (h + Z ;(Dg)l(h)> :
I=1"
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Take do € N such that (D9)%(h) # 0 and (D2)%+1(h) = 0. Of
course, we have dg € {0,1,...,d;}. Using Lemma 1(3), (5) and (6), we
obtain that (D3)®(h) € Q>0[ ] is w-homogeneous of w-degree equal to
deg,, h. Since (D3)®(h) € Qxg[x] Nker Dy is w-homogeneous of w-degree
deg,, h, it follows by Lemma 1(4)-(6) that (Ds)%(h) = cxcllegw for some

¢ € Q>0, ¢ # 0. Hence xfegwh € supp ((D2)d2(h)) and so xtliegwh c

supp (h + 30 L(Ds) (h)) This means that deg (h + 300 L(Ds) (71))
> deg,, h = deg,, h. Thus the claim is proved, because h—i—Zl L 5 (D2)!(h)
= (exp D3)(h) and so one can use (16).

O
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