On the structure of low-dimensional Leibniz algebras: some revision

L. A. Kurdachenko, O. O. Pypka, and I. Ya. Subbotin

Dedicated to Professor M. M. Semko on the occasion of his 65th birthday

Abstract

Let L be an algebra over a field F with the binary operations + and $[\cdot, \cdot]$. Then L is called a left Leibniz algebra if $[[a, b], c]=[a,[b, c]]-[b,[a, c]]$ for all $a, b, c \in L$. We describe the inner structure of left Leibniz algebras having dimension 3.

1. Introduction

Let L be an algebra over a field F with the binary operations + and $[\cdot, \cdot]$. Then, L is called a Leibniz algebra (more precisely, a left Leibniz algebra) if, for all elements $a, b, c \in L$, it satisfies the Leibniz identity:

$$
[[a, b], c]=[a,[b, c]]-[b,[a, c]] .
$$

We will also use another form of this identity:

$$
[a,[b, c]]=[[a, b], c]+[b,[a, c]] .
$$

Leibniz algebras first appeared in the paper of A. Blokh [2] where they were called D-algebras. However, at that time, these works were not in demand. Only after two decades was there a real rise in interest towards Leibniz algebras. It happened thanks to the rediscovery of these algebras

[^0]Key words and phrases: Leibniz algebra, nilpotent Leibniz algebra, dimension.
by J.-L. Loday [9] (see also [8, Section 10.6]), who used the term "Leibniz algebras" since it was Leibniz who discovered and proved the Leibniz rule for differentiation of the product of functions. The main motivation for the introduction of Leibniz algebras was the study of periodicity phenomena in algebraic K-theory. The Leibniz algebras appeared to be naturally related to several areas such as differential geometry, homological algebra, classical algebraic topology, algebraic K-theory, loop spaces, noncommutative geometry, physics and so on. Nowadays, the theory of Leibniz algebras is one of actively developing areas of modern algebra.

Note that Lie algebras are a partial case of Leibniz algebras. Conversely, if L is a Leibniz algebra in which $[a, a]=0$ for every element $a \in L$, then it is a Lie algebra. Thus, Leibniz algebras can be seen as a non-commutative generalization of Lie algebras.

The theory of Leibniz algebras has been intensely developing in many different directions. Some results of this theory were presented in the recent book [1].

One of the first steps in the theory of Leibniz algebras is the description of algebras with small dimensions. Unlike Lie algebras, the situation with Leibniz algebras of dimension 3 is very diverse. Leibniz algebras of dimension 3 are mostly described. The description of Leibniz algebras of dimensions 4 and 5 is quite complex. The list of papers devoted to these studies is quite large and we will not give it here in full. We only note that the Section 3.1 of book [1] is devoted to study of right Leibniz algebras having dimension 3. The investigation of Leibniz algebras having dimension 3 was carried out in articles [3-5,10-12]. Some of these papers use the language of the right Leibniz algebras, whilst others use the language of left Leibniz algebras. Basically, the description is reduced to determining the structural constants of these algebras. However, the structural constants do not always give an idea of the internal structure of these algebras. Elucidation of the structure requires some additional analysis. The overall picture seems fragmented. Thus, the articles dealt with Leibniz algebras over concrete fields of real, complex, p-adic numbers, etc. Therefore, we cannot decide if the internal structure of these algebras really contains a complete description. For example, when passing from the field of rational numbers to the field of real numbers, some types of algebras disappear altogether. Furthermore, some sections describe right Leibniz algebras, while others describe left Leibniz algebras. Moreover, only structural constants were found. None of the articles considered the internal structure. So, under these circumstances, in order to observe the entire scope, there are two options that arise: analyze these articles and
really make sure everything is done there or do it yourself all over again. The second option is preferable since it is better to complete the list within your own framework if it turns out that not all types of algebras have been considered. More importantly, we are interested in the description of the inner structure, not just structural constants. Of course, you can extract some information about the structure from structural constants, but it is more logical to obtain the structural constants in the process of describing the inner structure.

Therefore, in the current article, we present a description of left Leibniz algebras having dimension 3, focusing on clarifying their structure and obtaining structural constants by passing. This consideration of the structure of Leibniz algebras of dimension 3 is carried out over an arbitrary field F, and when studying these specific types of algebras, additional natural restrictions on the field F appear. These restrictions are very significant in some cases. Some types of algebras can exist only if sufficiently strict restrictions are imposed. Our goal was the most detailed description of these algebras, reflecting all the nuances of their structure.

2. Main results

Let L be a Leibniz algebra over a field F. Then L is called abelian if $[a, b]=0$ for every elements $a, b \in L$. In particular, an abelian Leibniz algebra is a Lie algebra.

If A, B are subspaces of L, then $[A, B]$ will denote a subspace generated by all elements $[a, b]$ where $a \in A, b \in B$. As usual, a subspace A of L is called a subalgebra of L, if $[a, b] \in A$ for every $a, b \in A$. It follows that $[A, A] \leqslant A$. A subalgebra A of L is called a left (respectively right) ideal of L, if $[b, a] \in A$ (respectively $[a, b] \in A$) for every $a \in A, b \in L$. In other words, if A is a left (respectively right) ideal, then $[L, A] \leqslant A$ (respectively $[A, L] \leqslant A$). A subalgebra A of L is called an ideal of L (more precisely, two-sided ideal) if it is both a left ideal and a right ideal.

Every Leibniz algebra L possesses the following specific ideal. Denote by Leib (L) the subspace generated by the elements $[a, a], a \in L$. It is not hard to prove that $\operatorname{Leib}(L)$ is an ideal of L. The ideal $\operatorname{Leib}(L)$ is called the Leibniz kernel of algebra L.

We note the following important property of the Leibniz kernel:

$$
[[a, a], x]=[a,[a, x]]-[a,[a, x]]=0 .
$$

The left (respectively right) center $\zeta^{\text {left }}(L)$ (respectively $\left.\zeta^{\text {right }}(L)\right)$ of a Leibniz algebra L is defined by the rule:

$$
\zeta^{\text {left }}(L)=\{x \in L \mid[x, y]=0 \text { for each element } y \in L\}
$$

(respectively,

$$
\left.\zeta^{\mathrm{right}}(L)=\{x \in L \mid[y, x]=0 \text { for each element } y \in L\}\right)
$$

It is not hard to prove that the left center of L is an ideal, but that is not true for the right center. Moreover, $\operatorname{Leib}(L) \leqslant \zeta^{\text {left }}(L)$ so that $L / \zeta^{\text {left }}(L)$ is a Lie algebra. The right center is a subalgebra of L and, in general, the left and right centers are distinct (see, for example, [7]).

The center $\zeta(L)$ of L is defined by the rule:

$$
\zeta(L)=\{x \in L \mid[x, y]=0=[y, x] \text { for each element } y \in L\}
$$

The center is an ideal of L.
Now we define the upper central series

$$
\langle 0\rangle=\zeta_{0}(L) \leqslant \zeta_{1}(L) \leqslant \ldots \zeta_{\alpha}(L) \leqslant \zeta_{\alpha+1}(L) \leqslant \ldots \zeta_{\eta}(L)
$$

of a Leibniz algebra L by the following rule: $\zeta_{1}(L)=\zeta(L)$ is the center of L, and recursively, $\zeta_{\alpha+1}(L) / \zeta_{\alpha}(L)=\zeta\left(L / \zeta_{\alpha}(L)\right)$ for all ordinals α, and $\zeta_{\lambda}(L)=\bigcup_{\mu<\lambda} \zeta_{\mu}(L)$ for the limit ordinals λ. By definition, each term of this series is an ideal of L.

Define the lower central series of L

$$
L=\gamma_{1}(L) \geqslant \gamma_{2}(L) \geqslant \ldots \gamma_{\alpha}(L) \geqslant \gamma_{\alpha+1}(L) \geqslant \ldots \gamma_{\tau}(L)
$$

by the rule: $\gamma_{1}(L)=L, \gamma_{2}(L)=[L, L], \gamma_{\alpha+1}(L)=\left[L, \gamma_{\alpha}(L)\right]$ for all ordinals α and $\gamma_{\lambda}(L)=\bigcap_{\mu<\lambda} \gamma_{\mu}(L)$ for the limit ordinals λ.

As usual, we say that a Leibniz algebra L is nilpotent, if there exists a positive integer k such that $\gamma_{k}(L)=\langle 0\rangle$. More precisely, L is said to be nilpotent of nilpotency class c if $\gamma_{c+1}(L)=\langle 0\rangle$, but $\gamma_{c}(L) \neq\langle 0\rangle$. We denote the nilpotency class of L by $\operatorname{ncl}(L)$.

Define the lower derived series of L

$$
L=\delta_{0}(L) \geqslant \delta_{1}(L) \geqslant \ldots \delta_{\alpha}(L) \geqslant \delta_{\alpha+1}(L) \geqslant \ldots \delta_{\nu}(L)
$$

by the rule: $\delta_{0}(L)=L, \delta_{1}(L)=[L, L]$, and recursively $\delta_{\alpha+1}(L)=$ $\left[\delta_{\alpha}(L), \delta_{\alpha}(L)\right]$ for all ordinals α and $\delta_{\lambda}(L)=\bigcap_{\mu<\lambda} \delta_{\mu}(L)$ for the limit
ordinals λ. If $\delta_{n}(L)=\langle 0\rangle$ for some positive integer n, then we say that L is a soluble Leibniz algebra.

As usual, we say that a Leibniz algebra L is finite dimensional if the dimension of L as a vector space over F is finite.

If $\operatorname{dim}_{F}(L)=1$, then L is abelian.
If $\operatorname{dim}_{F}(L)=2$, then we obtain the following types of Leibniz algebras:
$\operatorname{Lei}_{1}(2, F)=F a \oplus F b$ where $[a, a]=b,[a, b]=[b, a]=[b, b]=0 ;$
$\operatorname{Lei}_{2}(2, F)=F c \oplus F d$ where $[c, c]=[c, d]=d,[d, c]=[d, d]=0$
(see, for example, [6]).
Moving on to Leibniz algebras of dimension 3, we immediately note that we will consider Leibniz algebras, which are not Lie algebras. This means that their Leibniz kernel is non-zero. Then, the factor-algebra over Leibniz kernel has dimension, at most, 2. Note that Lie algebras having dimension at most 2 are soluble. Thus, we obtain the following

Proposition 1. Let L be a Leibniz algebra over a field F. Suppose that L is not a Lie algebra. If L has dimension 3, then L is soluble.

For the Leibniz kernel Leib (L) of a Leibniz but not a Lie algebra, L having dimension 3 will give us only two possibilities: $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$ and $\operatorname{dim}_{F}(\operatorname{Leib}(L))=2$.

First, we will consider the situation when $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$. Immediately, we obtain the following two subcases:
(IA) the center of L includes $\operatorname{Leib}(L)$;
(IB) the Leibniz kernel of L is not central.
For each of these subcases, we have the following two possibilities:
(IA1) the factor-algebra $L / \operatorname{Leib}(L)$ is abelian;
(IA2) the factor-algebra $L / \operatorname{Leib}(L)$ is not abelian;
and
(IB1) the factor-algebra $L / \operatorname{Leib}(L)$ is abelian;
(IB2) the factor-algebra $L / \operatorname{Leib}(L)$ is not abelian.
Consider these cases.
Theorem 1. Let L be a Leibniz algebra over a field F having dimension 3. Suppose that L is not a Lie algebra. If the center of L includes the Leibniz kernel, $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$ and the factor-algebra $L / \operatorname{Leib}(L)$ is abelian, then L is an algebra of one of the following types.
(i) $\operatorname{Lei}_{3}(3, F)=L_{3}$ is a direct sum of two ideals $A=F a_{1} \oplus F a_{3}$ and $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2,
$[A, B]=[B, A]=\langle 0\rangle$, so that $L_{3}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3}$, $\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=$ $\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{3}\right)=\left[L_{3}, L_{3}\right]=F a_{3}, \zeta^{\text {left }}\left(L_{3}\right)=\zeta^{\text {right }}\left(L_{3}\right)=\zeta\left(L_{3}\right)=$ $F a_{2} \oplus F a_{3}, L_{3}$ is nilpotent and $\operatorname{ncl}\left(L_{3}\right)=2$.
(ii) $\operatorname{Lei}_{4}(3, F)=L_{4}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=F a_{3},[B, A]=\langle 0\rangle$, so that $L_{4}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=a_{3},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{4}\right)=\left[L_{4}, L_{4}\right]=\zeta^{\text {right }}\left(L_{4}\right)=$ $\zeta\left(L_{4}\right)=F a_{3}, \zeta^{\text {left }}\left(L_{4}\right)=F a_{2} \oplus F a_{3}, L_{4}$ is nilpotent and $\operatorname{ncl}\left(L_{4}\right)=2$.
(iii) $\operatorname{Lei}_{5}(3, F)=L_{5}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=\langle 0\rangle,[B, A]=F a_{3}$, so that $L_{5}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{2}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{5}\right)=\left[L_{5}, L_{5}\right]=\zeta^{\text {left }}\left(L_{5}\right)=$ $\zeta\left(L_{5}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{5}\right)=F a_{2} \oplus F a_{3}, L_{5}$ is nilpotent and $\operatorname{ncl}\left(L_{5}\right)=2$.
(iv) $\operatorname{Lei}_{6}(3, F)=L_{6}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension $2,[A, B]=[B, A]=F a_{3}$, so that $L_{6}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{2}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=\alpha a_{3}(\alpha \neq 0),\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=$ $\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{6}\right)=\left[L_{6}, L_{6}\right]=$ $\zeta^{\text {right }}\left(L_{6}\right)=\zeta^{\text {left }}\left(L_{6}\right)=\zeta\left(L_{6}\right)=F a_{3}, L_{6}$ is nilpotent and $\operatorname{ncl}\left(L_{6}\right)=2$.
(v) $\operatorname{Lei}_{7}(3, F)=L_{7}$ is a sum of two nilpotent cyclic ideals $A=$ $F a_{1} \oplus F a_{3}$ and $C=F a_{2} \oplus F a_{3},[A, C]=[C, A]=\langle 0\rangle$, so that $L_{7}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{2}, a_{2}\right]=\beta a_{3}(\beta \neq 0),\left[a_{1}, a_{2}\right]=$ $\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{7}\right)=$ $\left[L_{7}, L_{7}\right]=\zeta^{\text {right }}\left(L_{7}\right)=\zeta^{\text {left }}\left(L_{7}\right)=\zeta\left(L_{7}\right)=F a_{3}$. Moreover, polynomial $X^{2}+\beta$ has no root in field F, L_{7} is nilpotent and $\operatorname{ncl}\left(L_{7}\right)=2$.
(vi) $\operatorname{Lei}_{8}(3, F)=L_{8}$ is a sum of two nilpotent cyclic ideals $A=$ $F a_{1} \oplus F a_{3}$ and $C=F a_{2} \oplus F a_{3},[A, C]=F a_{3},[C, A]=\langle 0\rangle$, so that $L_{8}=F a_{1} \oplus F a_{2} \oplus F a_{3},\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=\alpha a_{3},\left[a_{2}, a_{2}\right]=\beta a_{3}$ $(\alpha, \beta \neq 0),\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{8}\right)=\left[L_{8}, L_{8}\right]=\zeta^{\text {right }}\left(L_{8}\right)=\zeta^{\text {left }}\left(L_{8}\right)=\zeta\left(L_{8}\right)=F a_{3}$. Moreover, polynomial $X^{2}+\alpha X+\beta$ has no root in field F, L_{8} is nilpotent and $\operatorname{ncl}\left(L_{8}\right)=2$.
(vii) $\operatorname{Lei}_{9}(3, F)=L_{9}$ is a sum of two nilpotent cyclic ideals $A=F a_{1} \oplus$ $F a_{3}$ and $B=F a_{2} \oplus F a_{3}$ such that $[A, B]=\langle 0\rangle,[B, A]=F a_{3}$, so that $L_{9}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{2}, a_{1}\right]=a_{3},\left[a_{2}, a_{2}\right]=\sigma a_{3}(\sigma \neq 0)$, $\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{9}\right)=$
$\left[L_{9}, L_{9}\right]=\zeta^{\text {right }}\left(L_{9}\right)=\zeta\left(L_{9}\right)=\zeta^{\text {left }}\left(L_{9}\right)=F a_{3}$. Moreover, polynomial $X^{2}+X+\sigma$ has no root in field F, L_{9} is nilpotent and $\operatorname{ncl}\left(L_{9}\right)=2$.
(viii) $\operatorname{Lei}_{10}(3, F)=L_{10}$ is a sum of two nilpotent cyclic ideals $A=$ $F a_{1} \oplus F a_{3}$ and $B=F a_{2} \oplus F a_{3}$ such that $[A, B]=[B, A]=F a_{3}$, so that $L_{10}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{2}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=$ $\tau a_{3}(\tau \neq 0),\left[a_{2}, a_{2}\right]=\sigma a_{3}(\sigma \neq 0),\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=$ $\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{10}\right)=\left[L_{10}, L_{10}\right]=\zeta^{\text {right }}\left(L_{10}\right)=\zeta^{\text {left }}\left(L_{10}\right)=$ $\zeta\left(L_{10}\right)=F a_{3}$. Moreover, polynomial $X^{2}+(\tau+1) X+\sigma$ has no root in field F, L_{10} is nilpotent and $\operatorname{ncl}\left(L_{10}\right)=2$.

Proof. We note that the center $\zeta(L)$ has dimension at most 2. Suppose first that $\operatorname{dim}_{F}(\zeta(L))=2$. Since L is not a Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=a_{3} \neq 0$. We note that $a_{3} \in \zeta(L)$. It follows that $\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{3}\right]=0$. Being an abelian algebra of dimension 2, $\zeta(L)$ has a direct decomposition $\zeta(L)=F a_{2} \oplus F a_{3}$ for some element a_{2}. Put $A=F a_{1} \oplus F a_{3}$ and $B=F a_{2}$, then $B \leqslant \zeta(L)$, so that B is an ideal of L. Clearly, $L=F a_{1} \oplus F a_{2} \oplus F a_{3}=A \oplus B$ and A is also an ideal of L. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2. Thus, we come to the following type of nilpotent Leibniz algebras:

$$
\begin{gathered}
L_{3}=F a_{1} \oplus F a_{2} \oplus F a_{3} \quad \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]} \\
=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{3}\right)=\left[L_{3}, L_{3}\right]=F a_{3}, \zeta^{\text {left }}\left(L_{3}\right)=\zeta^{\text {right }}\left(L_{3}\right)=$ $\zeta\left(L_{3}\right)=F a_{2} \oplus F a_{3}, \operatorname{ncl}\left(L_{3}\right)=2$.

Suppose now that the center of L has dimension 1. In this case, $\zeta(L)=\operatorname{Leib}(L)$. Since L is not a Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=a_{3} \neq 0$. We note that $a_{3} \in \zeta(L)$. It follows that $\left[a_{1}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{3}\right]=0$. Then $\zeta(L)=F a_{3}$. Since $L / \operatorname{Leib}(L)$ is abelian, for every element $x \in L$ we have $\left[a_{1}, x\right],\left[x, a_{1}\right] \in \zeta(L) \leqslant\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}$. It follows that subalgebra $\left\langle a_{1}\right\rangle$ is an ideal of L. Since $\operatorname{dim}_{F}\left(\left\langle a_{1}\right\rangle\right)=2$, $\left\langle a_{1}\right\rangle \neq L$.

Suppose first that there exists an element b such that $b \notin\left\langle a_{1}\right\rangle$ and $[b, b]=0$. We have $\left[b, a_{1}\right]=\gamma a_{3}$ for some $\gamma \in F$. The following two cases appear here: $\gamma=0$ and $\gamma \neq 0$. Let $\gamma=0$. Then $\left[a_{1}, b\right]=\alpha a_{3}$ for some $\alpha \in F$. If we suppose that $\alpha=0$, then $b \in \zeta(L)$. But in this case, $\operatorname{dim}_{F}(\zeta(L))=2$, and we obtain a contradiction, which shows that $\alpha \neq 0$. Put $a_{2}=\alpha^{-1} b$, then $\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{1}\right]=0,\left[a_{1}, a_{2}\right]=a_{3}$, and we come to
the following nilpotent Leibniz algebra:

$$
\begin{gathered}
L_{4}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=a_{3} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{4}\right)=\left[L_{4}, L_{4}\right]=F a_{3}, \zeta^{\text {left }}\left(L_{4}\right)=F a_{2} \oplus F a_{3}$, $\zeta^{\mathrm{right}}\left(L_{4}\right)=\zeta\left(L_{4}\right)=F a_{3}, \operatorname{ncl}\left(L_{4}\right)=2$.

Let $\gamma \neq 0$. Put $a_{2}=\gamma^{-1} b$, then $\left[a_{2}, a_{2}\right]=0,\left[a_{2}, a_{1}\right]=a_{3}$. We have $\left[a_{1}, a_{2}\right]=\alpha a_{3}$ for some element $\alpha \in F$. If $\alpha=0$, then $a_{2} \in \zeta^{\text {right }}(L)$, and we come to the following nilpotent Leibniz algebra:

$$
\begin{gathered}
L_{5}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{2}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{5}\right)=\left[L_{5}, L_{5}\right]=F a_{3}, \zeta^{\text {right }}\left(L_{5}\right)=F a_{2} \oplus F a_{3}$, $\zeta^{\text {left }}\left(L_{5}\right)=\zeta\left(L_{5}\right)=F a_{3}, \operatorname{ncl}\left(L_{5}\right)=2$.

Suppose that $\alpha \neq 0$. Then, we come to the following type of nilpotent Leibniz algebras:

$$
\begin{gathered}
L_{6}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{2}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=\alpha a_{3}(\alpha \neq 0),} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{6}\right)=\left[L_{6}, L_{6}\right]=\zeta^{\text {right }}\left(L_{6}\right)=\zeta^{\text {left }}\left(L_{6}\right)=\zeta\left(L_{6}\right)=$ $F a_{3}, \operatorname{ncl}\left(L_{6}\right)=2$.

Suppose now that $[b, b] \neq 0$ for every element $b \notin\left\langle a_{1}\right\rangle$. In particular, it follows that $b \notin \zeta(L)$. $\operatorname{Put}[b, b]=\beta a_{3}$ where $\beta \in F$. We have $\left[b, a_{1}\right]=\gamma a_{3}$ and $\left[a_{1}, b\right]=\alpha a_{3}$ for some elements $\alpha, \gamma \in F$. If $\alpha=\gamma=0$, then put $a_{2}=b$ and denote by C the subalgebra generates by a_{2}. Then C is a cyclic nilpotent ideal such that $[A, C]=[C, A]=\langle 0\rangle$. Furthermore, let $u=\lambda a_{1}+\mu a_{2}+\nu a_{3}$ be the arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu a_{2}+\nu a_{3}, \lambda a_{1}+\mu a_{2}+\nu a_{3}\right]=\lambda^{2}\left[a_{1}, a_{1}\right]+\mu^{2}\left[a_{2}, a_{2}\right]=} \\
\lambda^{2} a_{3}+\beta \mu^{2} a_{3}=\left(\lambda^{2}+\beta \mu^{2}\right) a_{3}
\end{gathered}
$$

If $u \notin\left\langle a_{1}\right\rangle$, then $(\lambda, \mu) \neq(0,0)$. It follows that polynomial $X^{2}+\beta$ has no root in field F. Thus, we come to the following type of nilpotent Leibniz algebras:

$$
\begin{gathered}
L_{7}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3},\left[a_{2}, a_{2}\right]=\beta a_{3}(\beta \neq 0) \\
{\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{7}\right)=\left[L_{7}, L_{7}\right]=\zeta^{\text {right }}\left(L_{7}\right)=\zeta^{\text {left }}\left(L_{7}\right)=\zeta\left(L_{7}\right)=$ $F a_{3}$. Moreover, polynomial $X^{2}+\beta$ has no root in field $F, \operatorname{ncl}\left(L_{7}\right)=2$.

Suppose now that $\gamma=0$ and $\alpha \neq 0$. Put $a_{2}=b$. Then, $\left[a_{2}, a_{1}\right]=0$, $\left[a_{1}, a_{2}\right]=\alpha a_{3},\left[a_{2}, a_{2}\right]=\beta a_{3}$. Let $\lambda a_{1}+\mu a_{2}+\nu a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu a_{2}+\nu a_{3}, \lambda a_{1}+\mu a_{2}+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, a_{2}\right]+\lambda \mu\left[a_{2}, a_{1}\right]+\mu^{2}\left[a_{2}, a_{2}\right]= \\
\lambda^{2} a_{3}+\lambda \mu \alpha a_{3}+\mu^{2} \beta a_{3}=\left(\lambda^{2}+\lambda \mu \alpha+\mu^{2} \beta\right) a_{3} .
\end{gathered}
$$

As above, $\lambda \neq 0, \mu \neq 0$. It follows that polynomial $X^{2}+\alpha X+\beta$ has no root in field F. Thus, we come to the following type of nilpotent Leibniz algebras:

$$
\begin{gathered}
L_{8}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=\alpha a_{3}(\alpha \neq 0),\left[a_{2}, a_{2}\right]=\beta a_{3}(\beta \neq 0)} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{8}\right)=\left[L_{8}, L_{8}\right]=\zeta^{\text {right }}\left(L_{8}\right)=\zeta^{\text {left }}\left(L_{8}\right)=\zeta\left(L_{8}\right)=$ $F a_{3}$. Moreover, polynomial $X^{2}+\alpha X+\beta$ has no root in field $F, \operatorname{ncl}\left(L_{8}\right)=2$.

Suppose now that $\gamma \neq 0$ and $\alpha=0$. Put $a_{2}=\gamma^{-1} b$. Then, $\left[a_{2}, a_{1}\right]=a_{3}$, $\left[a_{1}, a_{2}\right]=0,\left[a_{2}, a_{2}\right]=\gamma^{-2} \beta a_{3}=\sigma a_{3}$. Let $\lambda a_{1}+\mu a_{2}+\nu a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu a_{2}+\nu a_{3}, \lambda a_{1}+\mu a_{2}+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{2}, a_{1}\right]+\mu^{2}\left[a_{2}, a_{2}\right]= \\
\lambda^{2} a_{3}+\lambda \mu a_{3}+\mu^{2} \sigma a_{3}=\left(\lambda^{2}+\lambda \mu+\mu^{2} \sigma\right) a_{3} .
\end{gathered}
$$

As above, $\lambda \neq 0, \mu \neq 0$. It follows that polynomial $X^{2}+X+\sigma$ has no root in field F. Thus, we come to the following type of nilpotent Leibniz algebras:

$$
\begin{gathered}
L_{9}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3},\left[a_{2}, a_{1}\right]=a_{3} \\
{\left[a_{2}, a_{2}\right]=\sigma a_{3}(\sigma \neq 0)} \\
{\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{9}\right)=\left[L_{9}, L_{9}\right]=\zeta^{\text {right }}\left(L_{9}\right)=\zeta^{\text {left }}\left(L_{9}\right)=\zeta\left(L_{9}\right)=$ $F a_{3}$. Moreover, polynomial $X^{2}+X+\sigma$ has no root in field $F, \operatorname{ncl}\left(L_{9}\right)=2$.

Suppose now that $\gamma \neq 0$ and $\alpha \neq 0$. Put $a_{2}=\gamma^{-1} b$. Then, $\left[a_{2}, a_{1}\right]=a_{3}$, $\left[a_{1}, a_{2}\right]=\gamma^{-1} \alpha a_{3}=\tau a_{3},\left[a_{2}, a_{2}\right]=\gamma^{-2} \beta a_{3}=\sigma a_{3}$. Let $\lambda a_{1}+\mu a_{2}+\nu a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu a_{2}+\nu a_{3}, \lambda a_{1}+\mu a_{2}+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, a_{2}\right]+\lambda \mu\left[a_{2}, a_{1}\right]+\mu^{2}\left[a_{2}, a_{2}\right]= \\
\lambda^{2} a_{3}+\lambda \mu \tau a_{3}+\lambda \mu a_{3}+\mu^{2} \sigma a_{3}=\left(\lambda^{2}+\lambda \mu(\tau+1)+\mu^{2} \sigma\right) a_{3} .
\end{gathered}
$$

As above, $\lambda \neq 0, \mu \neq 0$. It follows that polynomial $X^{2}+(\tau+1) X+\sigma$ has no root in field F. Thus, we come to the following type of nilpotent Leibniz algebras:

$$
\begin{gathered}
L_{10}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3},\left[a_{2}, a_{1}\right]=a_{3}, \\
{\left[a_{1}, a_{2}\right]=\tau a_{3}(\tau \neq 0),\left[a_{2}, a_{2}\right]=\sigma a_{3}(\sigma \neq 0),} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{10}\right)=\left[L_{10}, L_{10}\right]=\zeta^{\text {right }}\left(L_{10}\right)=\zeta^{\text {left }}\left(L_{10}\right)=$ $\zeta\left(L_{10}\right)=F a_{3}$. Moreover, polynomial $X^{2}+(\tau+1) X+\sigma$ has no root in field $F, \operatorname{ncl}\left(L_{10}\right)=2$.

Theorem 2. Let L be a Leibniz algebra of dimension 3 over a field F. Suppose that L is not a Lie algebra. If the center of L includes the Leibniz kernel, $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$ and factor-algebra $L / \operatorname{Leib}(L)$ is non-abelian, then L is an algebra of one of the following types.
(i) $\operatorname{Lei}_{11}(3, F)=L_{11}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=[B, A]=F a_{1}$, so that $L_{11}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{11}\right)=\zeta^{\text {left }}\left(L_{11}\right)=\zeta^{\text {right }}\left(L_{11}\right)=$ $\zeta\left(L_{11}\right)=F a_{3},\left[L_{11}, L_{11}\right]=F a_{1} \oplus F a_{3}, L_{11}$ is non-nilpotent.
(ii) $\operatorname{Lei}_{12}(3, F)=L_{12}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{12}=F a_{1} \oplus$ $F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}-\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+$ $\alpha a_{3}(\alpha \neq 0),\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=$ $0, \operatorname{Leib}\left(L_{12}\right)=\zeta^{\text {left }}\left(L_{12}\right)=\zeta^{\text {right }}\left(L_{12}\right)=\zeta\left(L_{12}\right)=F a_{3},\left[L_{12}, L_{12}\right]=$ $F a_{1} \oplus F a_{3}, L_{12}$ is non-nilpotent.
(iii) $\operatorname{Lei}_{13}(3, F)=L_{13}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{1}$, so that $L_{13}=F a_{1} \oplus F a_{2} \oplus F a_{3}$
where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1},\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0)$, $\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{13}\right)=$ $\zeta^{\text {left }}\left(L_{13}\right)=\zeta^{\text {right }}\left(L_{13}\right)=\zeta\left(L_{13}\right)=F a_{3},\left[L_{13}, L_{13}\right]=F a_{1} \oplus F a_{3}$. Moreover, polynomial $X^{2}+\gamma$ has no root in field F, L_{13} is non-nilpotent.
(iv) $\operatorname{Lei}_{14}(3, F)=L_{14}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{14}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}-\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0)$, $\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=$ $0, \operatorname{Leib}\left(L_{14}\right)=\zeta^{\text {left }}\left(L_{14}\right)=\zeta^{\text {right }}\left(L_{14}\right)=\zeta\left(L_{14}\right)=F a_{3},\left[L_{14}, L_{14}\right]=$ $F a_{1} \oplus F a_{3}$. Moreover, polynomial $X^{2}+\gamma$ has no root in field F, L_{14} is non-nilpotent.
(v) $\operatorname{Lei}_{15}(3, F)=L_{15}$ is a direct sum of ideal $B=F a_{2}$ and a subalgebra $A=F a_{1} \oplus F a_{3}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension $2,[A, B]=[B, A]=F a_{2}$, so that $L_{15}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=a_{2},\left[a_{2}, a_{1}\right]=-a_{2},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=$ $\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{15}\right)=\zeta^{\text {left }}\left(L_{15}\right)=$ $\zeta^{\text {right }}\left(L_{15}\right)=\zeta\left(L_{15}\right)=F a_{3},\left[L_{15}, L_{15}\right]=F a_{2} \oplus F a_{3}, L_{15}$ is non-nilpotent.
(vi) $\operatorname{Lei}_{16}(3, F)=L_{16}$ is a sum of abelian ideal $B=F a_{2} \oplus F a_{3}$ and a subalgebra $A=F a_{1} \oplus F a_{3}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension $2,[A, B]=[B, A]=F a_{2} \oplus F a_{3}$, so that $L_{16}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=a_{2}+\alpha a_{3},\left[a_{2}, a_{1}\right]=-a_{2}-$ $\alpha a_{3}(\alpha \neq 0),\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=$ $0, \operatorname{Leib}\left(L_{16}\right)=\zeta^{\text {left }}\left(L_{16}\right)=\zeta^{\text {right }}\left(L_{16}\right)=\zeta\left(L_{16}\right)=F a_{3},\left[L_{16}, L_{16}\right]=$ $F a_{2} \oplus F a_{3}, L_{16}$ is non-nilpotent.

Proof. We note that the center $\zeta(L)$ has dimension at most 2. Suppose first that $\operatorname{dim}_{F}(\zeta(L))=2$. Since L is a not Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=a_{3} \neq 0$. We note that $a_{3} \in \zeta(L)$. It follows that $\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{3}\right]=0$. Being an abelian algebra of dimension $2, \zeta(L)$ has a direct decomposition $\zeta(L)=F a_{2} \oplus F a_{3}$ for some element a_{2}. We have $\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{1}\right]=0$. But, in this case, the factor-algebra $L / \operatorname{Leib}(L)$ is abelian, and we obtain a contradiction. This contradiction shows that $\zeta(L)$ has dimension 1 and hence, $\zeta(L)=\operatorname{Leib}(L)$.

As noted above, $L / \operatorname{Leib}(L)$ has an ideal $C / \operatorname{Leib}(L)$ of dimension 1 (i.e., $C=F c \oplus \operatorname{Leib}(L)$ for some element c). If $[c, c] \neq 0$ without loss of generality, we can put $c=a_{1}$. The ideal $\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}=A$ is nilpotent and has codimension 1 . Let b be an element such that $L=A \oplus F b$. We have $[b, b]=\gamma a_{3}$ for some element $\gamma \in F$. As noted above, in this case, $\left[b, a_{1}\right] \in a_{1}+F a_{3}$ so that $\left[b, a_{1}\right]=a_{1}+\alpha a_{3}$ for some element $\alpha \in F$. We
have also $\left[a_{1}, b\right]=-a_{1}+\beta a_{3}$ for some element $\beta \in F$. Using the equality

$$
\left[b,\left[a_{1}, b\right]\right]=\left[\left[b, a_{1}\right], b\right]+\left[a_{1},[b, b]\right]=\left[\left[b, a_{1}\right], b\right]
$$

we obtain $\left[b,-a_{1}+\beta a_{3}\right]=\left[a_{1}+\alpha a_{3}, b\right]$. It follows that $-\left[b, a_{1}\right]=\left[a_{1}, b\right]$, so that $\left[a_{1}, b\right]=-a_{1}-\alpha a_{3}$.

Suppose that $\gamma=\alpha=0$. Put $a_{2}=b$. Then, $\left[a_{2}, a_{2}\right]=0,\left[a_{1}, a_{2}\right]=-a_{1}$, $\left[a_{2}, a_{1}\right]=a_{1}$. Thus, we come to the following type of Leibniz algebras:
$L_{11}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}$, $\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$.
Note also that $\operatorname{Leib}\left(L_{11}\right)=\zeta^{\text {left }}\left(L_{11}\right)=\zeta^{\text {right }}\left(L_{11}\right)=\zeta\left(L_{11}\right)=F a_{3}$, $\left[L_{11}, L_{11}\right]=F a_{1} \oplus F a_{3}, L_{11}$ is non-nilpotent.

Suppose now that $\gamma=0$ and $\alpha \neq 0$. Put again $a_{2}=b$. Then, $\left[a_{2}, a_{2}\right]=$ $0,\left[a_{1}, a_{2}\right]=-a_{1}-\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}$. Then, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{12}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=-a_{1}-\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0)} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{12}\right)=\zeta^{\text {left }}\left(L_{12}\right)=\zeta^{\text {right }}\left(L_{12}\right)=\zeta\left(L_{12}\right)=F a_{3}$, $\left[L_{12}, L_{12}\right]=F a_{1} \oplus F a_{3}, L_{12}$ is non-nilpotent.

Suppose that $\gamma \neq 0$ and $\alpha=0$. Put again $a_{2}=b$. Then, $\left[a_{2}, a_{2}\right]=\gamma a_{3}$, $\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}$. Let $\lambda a_{1}+\mu a_{2}+\nu a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu a_{2}+\nu a_{3}, \lambda a_{1}+\mu a_{2}+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, a_{2}\right]+\lambda \mu\left[a_{2}, a_{1}\right]+\mu^{2}\left[a_{2}, a_{2}\right]= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \mu a_{1}+\mu^{2} \gamma a_{3}=\left(\lambda^{2}+\mu^{2} \gamma\right) a_{3} .
\end{gathered}
$$

As above, $\lambda \neq 0, \mu \neq 0$. It follows that polynomial $X^{2}+\gamma$ has no root in field F. Then, we come to the following type of Leibniz algebras:
$L_{13}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}$, $\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0)$,

$$
\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0
$$

Note also that $\operatorname{Leib}\left(L_{13}\right)=\zeta^{\text {left }}\left(L_{13}\right)=\zeta^{\text {right }}\left(L_{13}\right)=\zeta\left(L_{13}\right)=F a_{3}$, $\left[L_{13}, L_{13}\right]=F a_{1} \oplus F a_{3}$. Moreover, polynomial $X^{2}+\gamma$ has no root in field F, L_{13} is non-nilpotent.

Suppose now that $\gamma \neq 0$ and $\alpha \neq 0$. Put again $a_{2}=b$. Then, $\left[a_{2}, a_{2}\right]=$ $\gamma a_{3},\left[a_{1}, a_{2}\right]=-a_{1}-\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}$. Let $\lambda a_{1}+\mu a_{2}+\nu a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu a_{2}+\nu a_{3}, \lambda a_{1}+\mu a_{2}+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, a_{2}\right]+\lambda \mu\left[a_{2}, a_{1}\right]+\mu^{2}\left[a_{2}, a_{2}\right]= \\
\lambda^{2} a_{3}-\lambda \mu\left(-a_{1}-\alpha a_{3}\right)+\lambda \mu\left(a_{1}+\alpha a_{3}\right)+\mu^{2} \gamma a_{3}=\left(\lambda^{2}+\mu^{2} \gamma\right) a_{3} .
\end{gathered}
$$

As above, $\lambda \neq 0, \mu \neq 0$. It follows that polynomial $X^{2}+\gamma$ has no root in field F. Then, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{14}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3}, \\
{\left[a_{1}, a_{2}\right]=-a_{1}-\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0),} \\
{\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that Leib $\left(L_{14}\right)=\zeta^{\text {left }}\left(L_{14}\right)=\zeta^{\text {right }}\left(L_{14}\right)=\zeta\left(L_{14}\right)=F a_{3}$, $\left[L_{14}, L_{14}\right]=F a_{1} \oplus F a_{3}$. Moreover, polynomial $X^{2}+\gamma$ has no root in field F, L_{14} is non-nilpotent.

Suppose now that $[c, c]=0$. Put again Leib $(L)=F a_{3}$. Since Leib $(L)=$ $\zeta(L)$, the ideal $C=F c \oplus \operatorname{Leib}(L)$ is abelian. Suppose that there exists an element $b \notin C$ such that $[b, b]=0$. Using the above arguments without loss of generality, we can assume that $[b, c] \in c+F a_{3},[c, b] \in-c+F a_{3}$, so that $[b, c]=c+\alpha a_{3},[c, b]=-c+\beta a_{3}$ for some elements $\alpha, \beta \in F$. Using the equality

$$
[[b, c], b]=[b,[c, b]]-[c,[b, b]]=[b,[c, b]],
$$

we obtain $\left[c+\alpha a_{3}, b\right]=\left[b,-c+\beta a_{3}\right]$. It follows that $[c, b]=-[b, c]$, so that $[c, b]=-c-\alpha a_{3}$. Let $u=\lambda c+\mu b+\nu a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda c+\mu b+\nu a_{3}, \lambda c+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}[c, c]+\lambda \mu[c, b]+\lambda \mu[b, c]+\mu^{2}[b, b]=\lambda \mu[c, b]+\lambda \mu[b, c]=0 .
\end{gathered}
$$

Thus, we obtain a contradiction with the fact that L is not a Lie algebra. This contradiction shows that $[b, b] \neq 0$ for every element $b \notin C$. Hence, $[b, b]=\gamma a_{3}$ where γ is a non-zero element of field F. Without loss of generality, we can assume that $[b, b]=a_{3}$. Since $[b, b] \in \operatorname{Leib}(L)=\zeta(L)$, we obtain that $[c, b]=-[b, c]$, so that $[c, b]=-c-\alpha a_{3}$.

If $\alpha=0$, then $[b, c]=c,[c, b]=-c$. Put $b=a_{1}, c=a_{2}$, then $F a_{2}$ is an ideal of L, and we come to the following type of Leibniz algebras:
$L_{15}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=a_{2},\left[a_{2}, a_{1}\right]=-a_{2}$, $\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$.

Note also that $\operatorname{Leib}\left(L_{15}\right)=\zeta^{\text {left }}\left(L_{15}\right)=\zeta^{\text {right }}\left(L_{15}\right)=\zeta\left(L_{15}\right)=F a_{3}$, $\left[L_{15}, L_{15}\right]=F a_{2} \oplus F a_{3}, L_{15}$ is non-nilpotent.

If $\alpha \neq 0$, then $[b, c]=c+\alpha a_{3},[c, b]=-c-\alpha a_{3}$, and we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{16}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=a_{2}+\alpha a_{3},\left[a_{2}, a_{1}\right]=-a_{2}-\alpha a_{3}(\alpha \neq 0)} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{16}\right)=\zeta^{\text {left }}\left(L_{16}\right)=\zeta^{\text {right }}\left(L_{16}\right)=\zeta\left(L_{16}\right)=F a_{3}$, $\left[L_{16}, L_{16}\right]=F a_{2} \oplus F a_{3}, L_{16}$ is non-nilpotent.

Theorem 3. Let L be a Leibniz algebra of dimension 3 over a field F. Suppose that L is not a Lie algebra. If the center of L does not include the Leibniz kernel, $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$ and the factor-algebra $L / \operatorname{Leib}(L)$ is abelian, then L is an algebra of one of the following types.
(i) $\operatorname{Lei}_{17}(3, F)=L_{17}$ is a direct sum of two ideals $A=F a_{1} \oplus F a_{3}$ and $B=F a_{2}$. Moreover, A is a non-nilpotent cyclic Leibniz algebra of dimension 2 and $B=\zeta(L),[A, B]=[B, A]=\langle 0\rangle$, so that $L_{17}=F a_{1} \oplus$ $F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=$ $\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{17}\right)=\left[L_{17}, L_{17}\right]=F a_{3}$, $\zeta^{\text {left }}\left(L_{17}\right)=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{17}\right)=\zeta\left(L_{17}\right)=F a_{2}, L_{17}$ is non-nilpotent.
(ii) $\operatorname{Lei}_{18}(3, F)=L_{18}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and a subalgebra $B=F a_{2}$. Moreover, A is a non-nilpotent cyclic Leibniz algebra of dimension $2,[A, B]=F a_{3},[B, A]=\langle 0\rangle$, so that $L_{18}=F a_{1} \oplus$ $F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=$ $\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{18}\right)=\left[L_{18}, L_{18}\right]=F a_{3}$, $\zeta^{\text {left }}\left(L_{18}\right)=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{18}\right)=\zeta\left(L_{18}\right)=\langle 0\rangle, L_{18}$ is non-nilpotent.
(iii) $\operatorname{Lei}_{19}(3, F)=L_{19}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and a subalgebra $B=F a_{2}$. Moreover, A is a non-nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=\langle 0\rangle,[B, A]=F a_{3}$, so that $L_{19}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{2}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{19}\right)=\left[L_{19}, L_{19}\right]=\zeta^{\text {left }}\left(L_{19}\right)=$ $F a_{3}, \zeta^{\text {right }}\left(L_{19}\right)=F a_{2}, \zeta\left(L_{19}\right)=\langle 0\rangle, L_{19}$ is non-nilpotent.
(iv) $\operatorname{Lei}_{20}(3, F)=L_{20}$ is a sum of two ideals $A=F a_{1} \oplus F a_{3}$ and $B=F a_{2} \oplus F a_{3}$. Furthermore, A is a non-nilpotent cyclic Leibniz algebra of dimension 2, B is a nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=F a_{3},[B, A]=\langle 0\rangle$, so that $L_{20}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=$ $\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{2}\right]=\sigma a_{3}(\sigma \neq 0),\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{20}\right)=\left[L_{20}, L_{20}\right]=\zeta^{\text {left }}\left(L_{20}\right)=$ $F a_{3}, \zeta^{\text {right }}\left(L_{20}\right)=\zeta\left(L_{20}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \gamma+\beta^{2} \sigma \neq 0, L_{20}$ is non-nilpotent.
(v) $\operatorname{Lei}_{21}(3, F)=L_{21}$ is a sum of two ideals $A=F a_{1} \oplus F a_{3}$ and $B=F a_{2} \oplus F a_{3}$. Furthermore, A is a non-nilpotent cyclic Leibniz algebra of dimension 2, B is a nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=F a_{3},[B, A]=\langle 0\rangle$, so that $L_{21}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=$ $\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{2}\right]=\tau a_{3}(\tau \neq 0),\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{21}\right)=\left[L_{21}, L_{21}\right]=\zeta^{\text {left }}\left(L_{21}\right)=$ $F a_{3}, \zeta^{\text {right }}\left(L_{21}\right)=\zeta\left(L_{21}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \beta+\alpha \gamma+\beta^{2} \tau \neq 0, L_{21}$ is non-nilpotent.
(vi) $\operatorname{Lei}_{22}(3, F)=L_{22}$ is a sum of two ideals $A=F a_{1} \oplus F a_{3}$ and $B=$ $F a_{2} \oplus F a_{3}$. Furthermore, A, B are non-nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{3}$, so that $L_{22}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=a_{3},\left[a_{2}, a_{2}\right]=\tau a_{3}(\tau \neq 0)$, $\left[a_{1}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{22}\right)=\left[L_{22}, L_{22}\right]=$ $\zeta^{\text {left }}\left(L_{22}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{22}\right)=\zeta\left(L_{22}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+$ $\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \gamma+\alpha \beta+\beta^{2} \tau+\beta \gamma \neq 0, L_{22}$ is non-nilpotent.
(vii) $\operatorname{Lei}_{23}(3, F)=L_{23}$ is a sum of two ideals $A=F a_{1} \oplus F a_{3}$ and $B=$ $F a_{2} \oplus F a_{3}$. Furthermore, A, B are non-nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{3}$, so that $L_{23}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=\delta a_{3}(\delta \neq 0)$, $\left[a_{2}, a_{2}\right]=\tau a_{3}(\tau \neq 0),\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{23}\right)=$ $\left[L_{23}, L_{23}\right]=\zeta^{\text {left }}\left(L_{23}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{23}\right)=\zeta\left(L_{23}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \beta \delta+\alpha \gamma+\alpha \beta+\beta^{2} \tau+\beta \gamma \neq 0, L_{23}$ is non-nilpotent.

Proof. Since $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1, \operatorname{Leib}(L) \cap \zeta(L)=\langle 0\rangle$. If we suppose that the center $\zeta(L)$ has dimension 2, then $L=\operatorname{Leib}(L) \oplus \zeta(L)$. But, in this case, L is abelian and we obtain a contradiction. Suppose now that $\operatorname{dim}_{F}(\zeta(L))=1$.

Since L is not a Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=$ $a_{3} \neq 0$. Then, $\operatorname{Leib}(L)=F a_{3}$. Then, $A=\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}$ is a subalgebra of L. It is obvious that $A \cap \zeta(L)=\langle 0\rangle$, so that $L=A \oplus \zeta(L), A$ is an ideal of L and $B=\zeta(L)=F a_{2}$. If we suppose that A is nilpotent (that
is, $\left.\left[a_{1}, a_{3}\right]=0\right)$, then $\operatorname{Leib}(L)=\operatorname{Leib}(A)=\zeta(A) \leqslant \zeta(L)$, and we obtain a contradiction. Thus, A is not nilpotent. As we have seen above, we can choose an element a_{1} such that $\left[a_{1}, a_{3}\right]=a_{3}$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{17}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{17}\right)=\left[L_{17}, L_{17}\right]=F a_{3}, \zeta^{\text {left }}\left(L_{17}\right)=F a_{2} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{17}\right)=\zeta\left(L_{17}\right)=F a_{2}, L_{17}$ is non-nilpotent.

Suppose now that $\zeta(L)$ is zero. Since L is not a Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=a_{3} \neq 0$. Then, $\operatorname{Leib}(L)=F a_{3}$. Since $L / \operatorname{Leib}(L)$ is abelian, a subalgebra $A=\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}$ is an ideal of L. Suppose that A is nilpotent (that is, $\left[a_{1}, a_{3}\right]=0$). Let b be an element of L such that $b \notin A$. We have:

$$
\left[b, a_{3}\right]=\left[b,\left[a_{1}, a_{1}\right]\right]=\left[\left[b, a_{1}\right], a_{1}\right]+\left[a_{1},\left[b, a_{1}\right]\right]=\left[\lambda a_{3}, a_{1}\right]+\left[a_{1}, \lambda a_{3}\right]=0
$$

Since $\left[a_{3}, b\right]=0$, we obtain that $a_{3} \in \zeta(L)$, and we obtain a contradiction. This contradiction shows that subalgebra $A=\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}$ is not nilpotent. As we have seen above, we can choose an element a_{1} such that $\left[a_{1}, a_{3}\right]=a_{3}$.

Suppose that L contains an element b such that $b \notin A$ and $[b, b]=0$. Since $L / \operatorname{Leib}(L)$ is abelian, $\left[b, a_{1}\right]=\lambda a_{3},\left[a_{1}, b\right]=\mu a_{3}$ for some elements $\lambda, \mu \in F$. As above,

$$
\left[b, a_{3}\right]=\left[a_{1},\left[b, a_{1}\right]\right]=\left[a_{1}, \lambda a_{3}\right]=\lambda\left[a_{1}, a_{3}\right]=\lambda a_{3} .
$$

If $\lambda=\mu=0$, then $b \in \zeta(L)$, and we obtain a contradiction with our assumption concerning the inclusion of $\zeta(L)$.

Suppose, now, that $\lambda=0, \mu \neq 0$. Put $a_{2}=\mu^{-1} b$, then $\left[a_{2}, a_{1}\right]=0$, $\left[a_{1}, a_{2}\right]=a_{3},\left[a_{2}, a_{2}\right]=0$. As seen above, we can observe that $\left[a_{2}, a_{3}\right]=0$, and we obtain that $\left[a_{2}, A\right]=\langle 0\rangle$. It follows that $a_{2} \in \zeta^{\text {left }}(L)$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{18}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=a_{3} \\
{\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{18}\right)=\left[L_{18}, L_{18}\right]=F a_{3}, \zeta^{\text {left }}\left(L_{18}\right)=F a_{2} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{18}\right)=\zeta\left(L_{14}\right)=\langle 0\rangle, L_{18}$ is non-nilpotent.

Suppose now that $\lambda \neq 0, \mu=0$. Put $a_{2}=\lambda^{-1} b$, then $\left[a_{2}, a_{1}\right]=a_{3}$, $\left[a_{1}, a_{2}\right]=0,\left[a_{2}, a_{2}\right]=0$. Since $\left[a_{3}, a_{2}\right]=0,\left[A, a_{2}\right]=\langle 0\rangle$. It follows that $a_{2} \in \zeta^{\text {right }}(L)$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{19}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where } \\
{\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=a_{3}} \\
{\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{19}\right)=\left[L_{19}, L_{19}\right]=\zeta^{\text {left }}\left(L_{19}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{19}\right)=$ $F a_{2}, \zeta\left(L_{19}\right)=\langle 0\rangle, L_{19}$ is non-nilpotent.

Suppose now that $\mu \neq 0, \lambda \neq 0$. We have:

$$
\begin{gathered}
0=\left[a_{1}, 0\right]=\left[a_{1},[b, b]\right]=\left[\left[a_{1}, b\right], b\right]+\left[b,\left[a_{1}, b\right]\right]= \\
{\left[b,\left[a_{1}, b\right]\right]=\left[b, \mu a_{3}\right]=\mu\left[b, a_{3}\right]=\mu \lambda a_{3}}
\end{gathered}
$$

It follows that $\mu \lambda=0$, and we obtain a contradiction.
Suppose that $[b, b] \neq 0$ for every element b such that $b \notin A$. Since $L / \operatorname{Leib}(L)$ is abelian, $\left[b, a_{1}\right]=\lambda a_{3},\left[a_{1}, b\right]=\mu a_{3}$ for some elements $\lambda, \mu \in$ F, and $[b, b]=\sigma a_{3}$ for some non-zero element $\sigma \in F$.

As above,

$$
\left[b, a_{3}\right]=\left[a_{1},\left[b, a_{1}\right]\right]=\left[a_{1}, \lambda a_{3}\right]=\lambda\left[a_{1}, a_{3}\right]=\lambda a_{3} .
$$

If $\lambda=\mu=0$, then $\left[b, a_{1}\right]=\left[a_{1}, b\right]=\left[b, a_{3}\right]=0$. Put $a_{2}=b$. Let $u=\alpha a_{1}+\beta a_{2}+\gamma a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{[u, u]=\left[\alpha a_{1}+\beta a_{2}+\gamma a_{3}, \alpha a_{1}+\beta a_{2}+\gamma a_{3}\right]=} \\
\alpha^{2}\left[a_{1}, a_{1}\right]+\alpha \gamma\left[a_{1}, a_{3}\right]+\beta^{2}\left[a_{2}, a_{2}\right]= \\
\alpha^{2} a_{3}+\alpha \gamma a_{3}+\beta^{2} a_{3}=\left(\alpha^{2}+\alpha \gamma+\beta^{2} \sigma\right) a_{3}
\end{gathered}
$$

If $u \notin A$, then $[u, u] \neq 0$. It follows that $\alpha^{2}+\alpha \gamma+\beta^{2} \sigma \neq 0$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{20}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3} \\
{\left[a_{2}, a_{2}\right]=\sigma a_{3}(\sigma \neq 0),} \\
{\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{20}\right)=\left[L_{20}, L_{20}\right]=\zeta^{\text {left }}\left(L_{20}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{20}\right)=$ $\zeta\left(L_{20}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \gamma+\beta^{2} \sigma \neq 0$, L_{20} is non-nilpotent.

Suppose now that $\lambda=0, \mu \neq 0$. Put $a_{2}=\mu^{-1} b$. Then $\left[a_{2}, a_{1}\right]=$ $\left[a_{2}, a_{3}\right]=0,\left[a_{1}, a_{2}\right]=a_{3},\left[a_{2}, a_{2}\right]=\mu^{-2}[b, b]=\mu^{-2} \sigma a_{3}=\tau a_{3}$. Let $\alpha a_{1}+\beta a_{2}+\gamma a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\alpha a_{1}+\beta a_{2}+\gamma a_{3}, \alpha a_{1}+\beta a_{2}+\gamma a_{3}\right]=} \\
\alpha^{2}\left[a_{1}, a_{1}\right]+\alpha \beta\left[a_{1}, a_{2}\right]+\alpha \gamma\left[a_{1}, a_{3}\right]+\beta^{2}\left[a_{2}, a_{2}\right]= \\
\alpha^{2} a_{3}+\alpha \beta a_{3}+\alpha \gamma a_{3}+\beta^{2} \tau a_{3}=\left(\alpha^{2}+\alpha \beta+\alpha \gamma+\beta^{2} \tau\right) a_{3} .
\end{gathered}
$$

As above, $\alpha^{2}+\alpha \beta+\alpha \gamma+\beta^{2} \tau \neq 0$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{21}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{3}\right]=a_{3} \\
{\left[a_{2}, a_{2}\right]=\tau a_{3}(\tau \neq 0)} \\
{\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{21}\right)=\left[L_{21}, L_{21}\right]=\zeta^{\text {left }}\left(L_{21}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{21}\right)=$ $\zeta\left(L_{21}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \beta+\alpha \gamma+\beta^{2} \tau \neq 0$, L_{21} is non-nilpotent.

Suppose now that $\lambda \neq 0, \mu=0$. Put $a_{2}=\lambda^{-1} b$. Then $\left[a_{2}, a_{1}\right]=$ $\left[a_{2}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=0,\left[a_{2}, a_{2}\right]=\lambda^{-2}[b, b]=\lambda^{-2} \sigma a_{3}=\tau a_{3}$. Let $\alpha a_{1}+\beta a_{2}+\gamma a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\alpha a_{1}+\beta a_{2}+\gamma a_{3}, \alpha a_{1}+\beta a_{2}+\gamma a_{3}\right]=} \\
\alpha^{2}\left[a_{1}, a_{1}\right]+\alpha \gamma\left[a_{1}, a_{3}\right]+\alpha \beta\left[a_{2}, a_{1}\right]+\beta^{2}\left[a_{2}, a_{2}\right]+\beta \gamma\left[a_{2}, a_{3}\right]= \\
\alpha^{2} a_{3}+\alpha \gamma a_{3}+\alpha \beta a_{3}+\beta^{2} \tau a_{3}+\beta \gamma a_{3}= \\
\left(\alpha^{2}+\alpha \gamma+\alpha \beta+\beta^{2} \tau+\beta \gamma\right) a_{3} .
\end{gathered}
$$

As above, $\alpha^{2}+\alpha \gamma+\alpha \beta+\beta^{2} \tau+\beta \gamma \neq 0$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{22}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where } \\
{\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=a_{3}} \\
{\left[a_{2}, a_{2}\right]=\tau a_{3}(\tau \neq 0)} \\
{\left[a_{1}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{22}\right)=\left[L_{22}, L_{22}\right]=\zeta^{\text {left }}\left(L_{22}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{22}\right)=$ $\zeta\left(L_{22}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3}$ hn A, then $\alpha^{2}+\alpha \gamma+\alpha \beta+$ $\beta^{2} \tau+\beta \gamma \neq 0, L_{22}$ is non-nilpotent.

Suppose now that $\lambda \neq 0, \mu \neq 0$. Put $a_{2}=\lambda^{-1} b$. Then $\left[a_{2}, a_{1}\right]=$ $\left[a_{2}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=\lambda^{-1}\left[a_{1}, b\right]=\lambda^{-1} \mu a_{3}=\delta a_{3},\left[a_{2}, a_{2}\right]=\lambda^{-2}[b, b]=$ $\lambda^{-2} \sigma a_{3}=\tau a_{3}$. Let $\alpha a_{1}+\beta a_{2}+\gamma a_{3}$ be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\alpha a_{1}+\beta a_{2}+\gamma a_{3}, \alpha a_{1}+\beta a_{2}+\gamma a_{3}\right]=} \\
\alpha^{2}\left[a_{1}, a_{1}\right]+\alpha \beta\left[a_{1}, a_{2}\right]+\alpha \gamma\left[a_{1}, a_{3}\right]+ \\
\alpha \beta\left[a_{2}, a_{1}\right]+\beta^{2}\left[a_{2}, a_{2}\right]+\beta \gamma\left[a_{2}, a_{3}\right]= \\
\alpha^{2} a_{3}+\alpha \beta \delta a_{3}+\alpha \gamma a_{3}+\alpha \beta a_{3}+\beta^{2} \tau a_{3}+\beta \gamma a_{3}= \\
\left(\alpha^{2}+\alpha \beta \delta+\alpha \gamma+\alpha \beta+\beta^{2} \tau+\beta \gamma\right) a_{3} .
\end{gathered}
$$

As above, $\alpha^{2}+\alpha \beta \delta+\alpha \gamma+\alpha \beta+\beta^{2} \tau+\beta \gamma \neq 0$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{23}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where } \\
{\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=a_{3},} \\
{\left[a_{1}, a_{2}\right]=\delta a_{3}(\delta \neq 0),\left[a_{2}, a_{2}\right]=\tau a_{3}(\tau \neq 0),} \\
{\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{23}\right)=\left[L_{23}, L_{23}\right]=\zeta^{\text {left }}\left(L_{23}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{23}\right)=$ $\zeta\left(L_{23}\right)=\langle 0\rangle$. Moreover, if $\alpha a_{1}+\beta a_{2}+\gamma a_{3} \notin A$, then $\alpha^{2}+\alpha \beta \delta+\alpha \gamma+$ $\alpha \beta+\beta^{2} \tau+\beta \gamma \neq 0, L_{23}$ is non-nilpotent.

Let L be a Leibniz algebra over a field F, M be non-empty subset of L and H be a subalgebra of L. Put

$$
\begin{gathered}
\operatorname{Ann}_{H}^{\text {left }}(M)=\{a \in H \mid[a, M]=\langle 0\rangle\}, \\
\operatorname{Ann}_{H}^{\text {right }}(M)=\{a \in H \mid[M, a]=\langle 0\rangle\} .
\end{gathered}
$$

The subset $\operatorname{Ann}_{H}^{\text {left }}(M)$ is called the left annihilator of M in subalgebra H. The subset $\operatorname{Ann}_{H}^{\text {right }}(M)$ is called the right annihilator of M in subalgebra H. The intersection

$$
\operatorname{Ann}_{H}(M)=\operatorname{Ann}_{H}^{\text {left }}(M) \cap \operatorname{Ann}_{H}^{\text {right }}(M)
$$

is called the annihilator of M in subalgebra H.
It is not hard to see that all of these subsets are subalgebras of L. Moreover, if M is an ideal of L, then $\operatorname{Ann}_{H}(M)$ is an ideal of L (see, for example, [7]).

Theorem 4. Let L be a Leibniz algebra over a field F having dimension 3. Suppose that L is not a Lie algebra. Suppose that the center of L does not include the Leibniz kernel, $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$, and the factor-algebra $L / \operatorname{Leib}(L)$ is non-abelian. Then, L is an algebra of one of the following types.
(i) $\operatorname{Lei}_{24}(3, F)=L_{24}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2, $\operatorname{char}(F) \neq 2,[A, B]=F a_{1},[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{24}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}$, $\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{24}\right)=\zeta^{\text {left }}\left(L_{24}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{24}\right)=\zeta\left(L_{24}\right)=\langle 0\rangle,\left[L_{24}, L_{24}\right]=$ $F a_{1} \oplus F a_{3}, L_{24}$ is non-nilpotent.
(ii) $\operatorname{Lei}_{25}(3, F)=L_{25}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2, char $(F) \neq 2,[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{25}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}+\alpha a_{3},\left[a_{2}, a_{1}\right]=$ $a_{1}+\alpha a_{3}(\alpha \neq 0),\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=$ $\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{25}\right)=\zeta^{\text {left }}\left(L_{25}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{25}\right)=\zeta\left(L_{25}\right)=\langle 0\rangle$, $\left[L_{25}, L_{25}\right]=F a_{1} \oplus F a_{3}, L_{25}$ is non-nilpotent.
(iii) $\operatorname{Lei}_{26}(3, F)=L_{26}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Furthermore, A is a non-nilpotent cyclic Leibniz algebra of dimension $2,[A, B]=F a_{1},[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{26}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=$ $a_{1},\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{26}\right)=$ $\zeta^{\text {left }}\left(L_{26}\right)=F a_{3},\left[L_{26}, L_{26}\right]=F a_{1} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{26}\right)=\zeta\left(L_{26}\right)=\langle 0\rangle$. Moreover, $\operatorname{char}(F) \neq 2, L_{26}$ is non-nilpotent.
(iv) $\operatorname{Lei}_{27}(3, F)=L_{27}$ is a direct sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2}$. Moreover, A is a non-nilpotent cyclic Leibniz algebra of dimension 2, $[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{27}=F a_{1} \oplus F a_{2} \oplus$ $F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}+\beta a_{3}\left(\beta=\alpha(1+\alpha)^{-1}\right)$, $\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3},\left[a_{2}, a_{3}\right]=(2+\alpha) a_{3}(\alpha \neq 0, \alpha \neq-1, \alpha \neq-2)$, $\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{27}\right)=\zeta^{\text {left }}\left(L_{27}\right)=F a_{3}$, $\left[L_{27}, L_{27}\right]=F a_{1} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{27}\right)=\zeta\left(L_{27}\right)=\langle 0\rangle, L_{27}$ is non-nilpotent.
(v) $\operatorname{Lei}_{28}(3, F)=L_{28}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Furthermore, A is a nilpotent cyclic Leibniz algebra of dimension 2, B is a non-nilpotent cyclic Leibniz algebra of dimension 2, $\operatorname{char}(F) \neq 2,[A, B]=F a_{1},[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{28}=F a_{1} \oplus$ $F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1},\left[a_{2}, a_{2}\right]=\gamma a_{3}$ $(\gamma \neq 0),\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{28}\right)=\zeta^{\text {left }}\left(L_{28}\right)=F a_{3},\left[L_{28}, L_{28}\right]=F a_{1} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{28}\right)=$
$\zeta\left(L_{28}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\mu^{2} \gamma+2 \mu \nu \neq 0$, L_{28} is non-nilpotent.
(vi) $\operatorname{Lei}_{29}(3, F)=L_{29}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Furthermore, A is a nilpotent cyclic Leibniz algebra of dimension 2, B is a non-nilpotent cyclic Leibniz algebra of dimension 2, $\operatorname{char}(F) \neq 2,[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{29}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}+\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0)$, $\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=$ $\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{29}\right)=\zeta^{\text {left }}\left(L_{29}\right)=F a_{3},\left[L_{29}, L_{29}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{29}\right)=\zeta\left(L_{29}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+2 \lambda \mu \alpha+\mu^{2} \gamma+2 \mu \nu \neq 0, L_{29}$ is non-nilpotent.
(vii) $\operatorname{Lei}_{30}(3, F)=L_{30}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are non-nilpotent cyclic Leibniz algebras of dimension 2, $\operatorname{char}(F) \neq 2,[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{30}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}+\gamma a_{3}$ $(\gamma \neq 0),\left[a_{2}, a_{1}\right]=a_{1},\left[a_{2}, a_{2}\right]=\gamma a_{3},\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=$ $\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{30}\right)=\zeta^{\text {left }}\left(L_{30}\right)=F a_{3},\left[L_{30}, L_{30}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{30}\right)=\zeta\left(L_{30}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \mu \gamma+\lambda \nu+\mu^{2} \gamma+2 \mu \nu \neq 0, L_{30}$ is non-nilpotent.
(viii) $\operatorname{Lei}_{31}(3, F)=L_{31}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are non-nilpotent cyclic Leibniz algebras of dimension $2,[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{31}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=$ $a_{1}-a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{31}\right)=\zeta^{\text {left }}\left(L_{31}\right)=F a_{3}$, $\left[L_{31}, L_{31}\right]=F a_{1} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{31}\right)=\zeta\left(L_{31}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+$ $\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu \neq 0, L_{31}$ is non-nilpotent.
(ix) $\operatorname{Lei}_{32}(3, F)=L_{31}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are non-nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{1} \oplus F a_{3}$, so that $L_{32}=F a_{1} \oplus$ $F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=$ $-a_{1}+\beta a_{3}(\beta \neq 0),\left[a_{2}, a_{1}\right]=a_{1}-a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{32}\right)=\zeta^{\text {left }}\left(L_{32}\right)=F a_{3},\left[L_{32}, L_{32}\right]=F a_{1} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{32}\right)=$ $\zeta\left(L_{32}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \mu \beta+\lambda \nu-$ $\lambda \mu+\mu^{2}+\mu \nu \neq 0, L_{32}$ is non-nilpotent.
(x) $\operatorname{Lei}_{33}(3, F)=L_{31}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are non-nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{1} \oplus F a_{3}, L_{33}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}-\gamma a_{3}(\gamma \neq$ $0, \gamma \neq 1, \gamma \neq 2),\left[a_{2}, a_{2}\right]=\gamma a_{3},\left[a_{2}, a_{3}\right]=(2-\gamma) a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=$ $\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{33}\right)=\zeta^{\text {left }}\left(L_{33}\right)=F a_{3},\left[L_{33}, L_{33}\right]=F a_{1} \oplus F a_{3}$,
$\zeta^{\text {right }}\left(L_{33}\right)=\zeta\left(L_{33}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \nu-\lambda \mu \gamma+\mu^{2} \gamma+\mu \nu(2-\gamma) \neq 0, L_{33}$ is non-nilpotent.
(xi) $\operatorname{Lei}_{34}(3, F)=L_{34}$ is a sum of ideal $A=F a_{1} \oplus F a_{3}$ and subalgebra $B=F a_{2} \oplus F a_{3}$. Moreover, A, B are non-nilpotent cyclic Leibniz algebras of dimension 2, $[A, B]=[B, A]=F a_{1} \oplus F a_{3}, L_{34}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1}+\beta a_{3}\left(\beta=(\alpha+\gamma)(1+\alpha)^{-1}\right)$, $\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0, \alpha \neq-1, \alpha \neq-2),\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq$ 0), $\left[a_{2}, a_{3}\right]=(2+\alpha) a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{34}\right)=$ $\zeta^{\text {left }}\left(L_{34}\right)=F a_{3},\left[L_{34}, L_{34}\right]=F a_{1} \oplus F a_{3}, \zeta^{\mathrm{right}}\left(L_{34}\right)=\zeta\left(L_{34}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \mu \beta+\lambda \nu+\lambda \mu \alpha+\mu^{2} \gamma+$ $\mu \nu(2+\alpha) \neq 0, L_{34}$ is non-nilpotent.
(xii) $\operatorname{Lei}_{35}(3, F)=L_{35}$ is a direct sum of ideal $B=F a_{2}$ and a cyclic non-nilpotent subalgebra $A=F a_{1} \oplus F a_{3}$ of dimension $2,[A, B]=[B, A]=$ $F a_{2}$, so that $L_{35}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{2}\right]=$ $a_{2},\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{1}\right]=-a_{2},\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=$ $\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{35}\right)=\zeta^{\text {left }}\left(L_{35}\right)=F a_{3},\left[L_{35}, L_{35}\right]=F a_{2} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{35}\right)=\zeta\left(L_{35}\right)=\langle 0\rangle, L_{35}$ is non-nilpotent.
(xiii) $\operatorname{Lei}_{36}(3, F)=L_{36}$ is a sum of abelian ideal $B=F a_{2} \oplus F a_{3}$ and a cyclic non-nilpotent subalgebra $A=F a_{1} \oplus F a_{3}$ of dimension 2, $[A, B]=[B, A]=F a_{2} \oplus F a_{3}$, so that $L_{36}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{2}\right]=a_{2},\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{1}\right]=-a_{2}+$ $\beta a_{3}(\beta \neq 0),\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{36}\right)=\zeta^{\text {left }}\left(L_{36}\right)=F a_{3},\left[L_{36}, L_{36}\right]=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{36}\right)=$ $\zeta\left(L_{36}\right)=\langle 0\rangle, L_{36}$ is non-nilpotent.

Proof. As in the previous theorem, we can see that $\operatorname{dim}_{F}(\zeta(L)) \leqslant 1$. Suppose that $\operatorname{dim}_{F}(\zeta(L))=1$. Since L is not a Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=a_{3} \neq 0$. Then, $\operatorname{Leib}(L)=F a_{3}$. Let $A=\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}$. An equality $\operatorname{Leib}(L) \cap \zeta(L)=\langle 0\rangle$ implies that $A \cap \zeta(L)=\langle 0\rangle$, so that $L=A \oplus \zeta(L)$ and A is an ideal of L. But, in this case, the factor-algebra $L / \operatorname{Leib}(L)$ is abelian, and we obtain a contradiction. This contradiction shows that $\zeta(L)=\langle 0\rangle$.

By what is noted above, $L / \operatorname{Leib}(L)$ has an ideal $C / \operatorname{Leib}(L)$ of dimension 1 (i.e., $C=F c \oplus \operatorname{Leib}(L)$ for some element c). If $[c, c] \neq 0$ without loss of generality, we can put $c=a_{1}$. Then, subalgebra $\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}=A$ is an ideal which has codimension 1. Then, for every element b such that $b \notin A$, we have $L=A \oplus F b$. By what is noted above, in this case, $\left[b, a_{1}\right] \in a_{1}+F a_{3}$, so that $\left[b, a_{1}\right]=a_{1}+\alpha a_{3}$ for some element $\alpha \in F$. We have also $\left[a_{1}, b\right]=-a_{1}+\beta a_{3}$ for some element $\beta \in F$. Since $[b, b] \in \operatorname{Leib}(L)$, $[b, b]=\gamma a_{3}$ for some element $\gamma \in F$.

Suppose first that $\gamma=0$. In other words, we suppose that there exists an element b such that $b \notin A$ and $[b, b]=0$. Consider first the case when A is nilpotent. We have:

$$
\begin{gathered}
{\left[b, a_{3}\right]=\left[b,\left[a_{1}, a_{1}\right]\right]=\left[\left[b, a_{1}\right], a_{1}\right]+\left[a_{1},\left[b, a_{1}\right]\right]=} \\
{\left[a_{1}+\alpha a_{3}, a_{1}\right]+\left[a_{1}, a_{1}+\alpha a_{3}\right]=\left[a_{1}, a_{1}\right]+\left[a_{1}, a_{1}\right]=2 a_{3}}
\end{gathered}
$$

In particular, if we suppose that $\operatorname{char}(F)=2$, then $\left[b, a_{3}\right]=0$. Since $\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, b\right]=0, \operatorname{Leib}(L)=F a_{3} \leqslant \zeta(L)$, and we obtain a contradiction. This contradiction shows that $\operatorname{char}(F) \neq 2$. Further,

$$
\left[b,\left[a_{1}, b\right]\right]=\left[\left[b, a_{1}\right], b\right]+\left[a_{1},[b, b]\right]=\left[a_{1}+\alpha a_{3}, b\right]=\left[a_{1}, b\right]=-a_{1}+\beta a_{3}
$$

On the other hand,

$$
\begin{gathered}
{\left[b,\left[a_{1}, b\right]\right]=\left[b,-a_{1}+\beta a_{3}\right]=-\left[b, a_{1}\right]+\beta\left[b, a_{3}\right]=} \\
-\left(a_{1}+\alpha a_{3}\right)+2 \beta a_{3}=-a_{1}+(2 \beta-\alpha) a_{3}
\end{gathered}
$$

It follows that $2 \beta-\alpha=\beta$ or $\beta=\alpha$ and $\left[a_{1}, b\right]=-a_{1}+\alpha a_{3}$.
Suppose that $\alpha=0$. Put $a_{2}=b$. Then $\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}$, $\left[a_{2}, a_{2}\right]=0,\left[a_{2}, a_{3}\right]=2 a_{3}$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{24}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1},\left[a_{2}, a_{3}\right]=2 a_{3}} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that Leib $\left(L_{24}\right)=\zeta^{\text {left }}\left(L_{24}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{24}\right)=\zeta\left(L_{24}\right)=\langle 0\rangle$, $\left[L_{24}, L_{24}\right]=F a_{1} \oplus F a_{3}, \operatorname{char}(F) \neq 2, L_{24}$ is non-nilpotent.

Suppose now that $\alpha \neq 0$. Put again $a_{2}=b$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{25}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=-a_{1}+\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0)} \\
{\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{25}\right)=\zeta^{\text {left }}\left(L_{25}\right)=F a_{3}, \zeta^{\text {right }}\left(L_{25}\right)=\zeta\left(L_{25}\right)=\langle 0\rangle$, $\left[L_{25}, L_{25}\right]=F a_{1} \oplus F a_{3}, \operatorname{char}(F) \neq 2, L_{25}$ is non-nilpotent.

Consider now the case when A is not nilpotent. As we have seen above, we can choose an element a_{1} such that $\left[a_{1}, a_{3}\right]=a_{3}$. Then,

$$
\begin{gathered}
{\left[b, a_{3}\right]=\left[b,\left[a_{1}, a_{1}\right]\right]=\left[\left[b, a_{1}\right], a_{1}\right]+\left[a_{1},\left[b, a_{1}\right]\right]=} \\
{\left[a_{1}+\alpha a_{3}, a_{1}\right]+\left[a_{1}, a_{1}+\alpha a_{3}\right]=} \\
{\left[a_{1}, a_{1}\right]+\left[a_{1}, a_{1}\right]+\alpha\left[a_{1}, a_{3}\right]=(2+\alpha) a_{3} .}
\end{gathered}
$$

Further,

$$
\begin{aligned}
& {\left[b,\left[a_{1}, b\right]\right]=\left[\left[b, a_{1}\right], b\right]+\left[a_{1},[b, b]\right]=} \\
& {\left[a_{1}+\alpha a_{3}, b\right]=\left[a_{1}, b\right]=-a_{1}+\beta a_{3}}
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
{\left[b,\left[a_{1}, b\right]\right]=\left[b,-a_{1}+\beta a_{3}\right]=-\left[b, a_{1}\right]+\beta\left[b, a_{3}\right]=} \\
-\left(a_{1}+\alpha a_{3}\right)+\beta(2+\alpha) a_{3}=-a_{1}+(2 \beta+\beta \alpha-\alpha) a_{3}
\end{gathered}
$$

It follows that $2 \beta+\beta \alpha-\alpha=\beta$ or $\beta+\beta \alpha-\alpha=0$. It follows that $\beta(1+\alpha)=\alpha$. We consider separately the case when $\alpha=0$. Then, $\beta=0$. If we suppose that $\operatorname{char}(F)=2$, then $\left[b, a_{3}\right]=0$. Since $\left[a_{3}, b\right]=0$, $b \in \operatorname{Ann}_{L}\left(F a_{3}\right)=\operatorname{Ann}_{L}(\operatorname{Leib}(L))$. But, $\operatorname{Ann}_{L}(\operatorname{Leib}(L))$ is an ideal of L. Then, $\left[b, a_{1}\right]=a_{1} \in F b \oplus F a_{3}$, and we obtain a contradiction. This contradiction shows that $\operatorname{char}(F) \neq 2$. Put $a_{2}=b$. We come to the following type of Leibniz algebras:

$$
\begin{aligned}
& L_{26}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1} \\
& {\left[a_{2}, a_{1}\right]=a_{1},\left[a_{2}, a_{3}\right]=2 a_{3},\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{aligned}
$$

Note also that $\operatorname{Leib}\left(L_{26}\right)=\zeta^{\text {left }}\left(L_{26}\right)=F a_{3},\left[L_{26}, L_{26}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{26}\right)=\zeta\left(L_{26}\right)=\langle 0\rangle, \operatorname{char}(F) \neq 2, L_{26}$ is non-nilpotent.

Suppose that $\alpha \neq 0$. The equality $\beta(1+\alpha)=\alpha$ shows that $\alpha \neq-1$. In this case, $\beta=\alpha(1+\alpha)^{-1}$. If we suppose that $\alpha=-2$, then $\left[b, a_{3}\right]=0$. Using the above arguments, we obtain a contradiction. This contradiction shows that $\alpha \neq-2$. Put $a_{2}=b$. We come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{27}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3}, \\
{\left[a_{1}, a_{2}\right]=-a_{1}+\beta a_{3}\left(\beta=\alpha(1+\alpha)^{-1}\right),\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3},} \\
{\left[a_{2}, a_{3}\right]=(2+\alpha) a_{3}(\alpha \neq 0, \alpha \neq-1, \alpha \neq-2),} \\
{\left[a_{2}, a_{2}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{27}\right)=\zeta^{\text {left }}\left(L_{27}\right)=F a_{3},\left[L_{27}, L_{27}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{27}\right)=\zeta\left(L_{27}\right)=\langle 0\rangle, L_{27}$ is non-nilpotent.

Suppose now that $[b, b] \neq 0$ for every element b such that $b \notin A$, so that $[b, b]=\gamma a_{3}$ and $\gamma \neq 0$. Consider first the case when A is nilpotent. We have:

$$
\begin{gathered}
{\left[b, a_{3}\right]=\left[b,\left[a_{1}, a_{1}\right]\right]=\left[\left[b, a_{1}\right], a_{1}\right]+\left[a_{1},\left[b, a_{1}\right]\right]=} \\
{\left[a_{1}+\alpha a_{3}, a_{1}\right]+\left[a_{1}, a_{1}+\alpha a_{3}\right]=\left[a_{1}, a_{1}\right]+\left[a_{1}, a_{1}\right]=2 a_{3}}
\end{gathered}
$$

Again, we obtain that $\operatorname{char}(F) \neq 2$. Using the arguments above, we can get that $\left[a_{1}, b\right]=-a_{1}+\alpha a_{3}$ again. We consider separately the case when $\alpha=0$ (that is, $\left.\left[a_{1}, b\right]=-a_{1},\left[b, a_{1}\right]=a_{1}\right)$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \mu a_{1}+\mu^{2} \gamma a_{3}+2 \mu \nu a_{3}= \\
\left(\lambda^{2}+\mu^{2} \gamma+2 \mu \nu\right) a_{3}
\end{gathered}
$$

Then, a condition $[b, b] \neq 0$ for every element $b \notin A$ yields that $\lambda^{2}+\mu^{2} \gamma+$ $2 \mu \nu \neq 0$. Put $a_{2}=b$. Thus, we come to the following type of Leibniz algebras:
$L_{28}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{3},\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}$, $\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{2}, a_{3}\right]=2 a_{3}$, $\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$.

Note also that $\operatorname{Leib}\left(L_{28}\right)=\zeta^{\text {left }}\left(L_{28}\right)=F a_{3},\left[L_{28}, L_{28}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{28}\right)=\zeta\left(L_{28}\right)=\langle 0\rangle, \operatorname{char}(F) \neq 2$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\mu^{2} \gamma+2 \mu \nu \neq 0, L_{28}$ is non-nilpotent.

Suppose that $\alpha \neq 0$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}+\lambda \mu\left(-a_{1}+\alpha a_{3}\right)+\lambda \mu\left(a_{1}+\alpha a_{3}\right)+\mu^{2} \gamma a_{3}+2 \mu \nu a_{3}= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \mu \alpha a_{3}+\lambda \mu a_{1}+\lambda \mu \alpha a_{3}+\mu^{2} \gamma a_{3}+2 \mu \nu a_{3}= \\
\left(\lambda^{2}+2 \lambda \mu \alpha+\mu^{2} \gamma+2 \mu \nu\right) a_{3} .
\end{gathered}
$$

As above, $\lambda^{2}+2 \lambda \mu \alpha+\mu^{2} \gamma+2 \mu \nu \neq 0$. Put again $a_{2}=b$. Then, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{29}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=-a_{1}+\alpha a_{3},\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0),} \\
{\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{2}, a_{3}\right]=2 a_{3}} \\
{\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{29}\right)=\zeta^{\text {left }}\left(L_{29}\right)=F a_{3},\left[L_{29}, L_{29}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{29}\right)=\zeta\left(L_{29}\right)=\langle 0\rangle, \operatorname{char}(F) \neq 2$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+2 \lambda \mu \alpha+\mu^{2} \gamma+2 \mu \nu \neq 0, L_{29}$ is non-nilpotent.

Suppose, now, that $[b, b] \neq 0$ for every element b such that $b \notin A$ and a subalgebra A is not nilpotent. As we have seen above, we can choose an element a_{1} such that $\left[a_{1}, a_{3}\right]=a_{3}$. Then,

$$
\begin{gathered}
{\left[b, a_{3}\right]=\left[b,\left[a_{1}, a_{1}\right]\right]=\left[\left[b, a_{1}\right], a_{1}\right]+\left[a_{1},\left[b, a_{1}\right]\right]=} \\
{\left[a_{1}+\alpha a_{3}, a_{1}\right]+\left[a_{1}, a_{1}+\alpha a_{3}\right]=} \\
{\left[a_{1}, a_{1}\right]+\left[a_{1}, a_{1}\right]+\alpha\left[a_{1}, a_{3}\right]=(2+\alpha) a_{3} .}
\end{gathered}
$$

If we suppose that $\alpha=-2$, then $\left[b, a_{3}\right]=0$. Since $\left[a_{3}, b\right]=0, b \in$ $\operatorname{Ann}_{L}\left(F a_{3}\right)=\operatorname{Ann}_{L}(\operatorname{Leib}(L))$. But, $\operatorname{Ann}_{L}(\operatorname{Leib}(L))$ is an ideal of L. Then, $\left[b, a_{1}\right] \in F b \oplus F a_{3}$, and we obtain a contradiction. This contradiction shows that $\alpha \neq-2$. Further,

$$
\begin{gathered}
{\left[b,\left[a_{1}, b\right]\right]=\left[\left[b, a_{1}\right], b\right]+\left[a_{1},[b, b]\right]=\left[a_{1}+\alpha a_{3}, b\right]+\left[a_{1}, \gamma a_{3}\right]=} \\
{\left[a_{1}, b\right]+\gamma\left[a_{1}, a_{3}\right]=-a_{1}+\beta a_{3}+\gamma a_{3}=-a_{1}+(\beta+\gamma) a_{3}}
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
{\left[b,\left[a_{1}, b\right]\right]=\left[b,-a_{1}+\beta a_{3}\right]=-\left[b, a_{1}\right]+\beta\left[b, a_{3}\right]=} \\
-\left(a_{1}+\alpha a_{3}\right)+\beta(2+\alpha) a_{3}=-a_{1}+(2 \beta+\beta \alpha-\alpha) a_{3}
\end{gathered}
$$

It follows that $2 \beta+\beta \alpha-\alpha=\beta+\gamma$ or $\beta(1+\alpha)=\alpha+\gamma$. We consider separately the case when $\alpha=0$ and $\alpha=-1$.

Let $\alpha=0$, then $\beta=\gamma$ and $\left[b, a_{3}\right]=2 a_{3}$. Using the arguments given above, we can obtain that $\operatorname{char}(F) \neq 2$. In this case, $\left[b, a_{1}\right]=a_{1}$ and $\left[a_{1}, b\right]=-a_{1}+\gamma a_{3}$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \nu\left[a_{1}, a_{3}\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}+\lambda \mu\left(-a_{1}+\gamma a_{3}\right)+\lambda \mu a_{3}+\lambda \mu a_{1}+\mu^{2} \gamma a_{3}+2 \mu \nu a_{3}= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \mu \gamma a_{3}+\lambda \nu a_{3}+\lambda \mu a_{1}+\mu^{2} \gamma a_{3}+2 \mu \nu a_{3}= \\
\left(\lambda^{2}+\lambda \mu \gamma+\lambda \nu+\mu^{2} \gamma+2 \mu \nu\right) a_{3} .
\end{gathered}
$$

Then, the condition $[b, b] \neq 0$ for every element $b \notin A$ yields that $\lambda^{2}+$ $\lambda \mu \gamma+\lambda \nu+\mu^{2} \gamma+2 \mu \nu \neq 0$. Put $a_{2}=b$. Thus, we come to the following
type of Leibniz algebras:

$$
\begin{gathered}
L_{30}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=-a_{1}+\gamma a_{3}(\gamma \neq 0),\left[a_{2}, a_{1}\right]=a_{1},\left[a_{2}, a_{2}\right]=\gamma a_{3},\left[a_{2}, a_{3}\right]=2 a_{3},} \\
{\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{30}\right)=\zeta^{\text {left }}\left(L_{30}\right)=F a_{3},\left[L_{30}, L_{30}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{30}\right)=\zeta\left(L_{30}\right)=\langle 0\rangle, \operatorname{char}(F) \neq 2$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \mu \gamma+\lambda \nu+\mu^{2} \gamma+2 \mu \nu \neq 0, L_{30}$ is non-nilpotent.

Let now $\alpha=-1$. Then $\gamma=1,[b, b]=\left[b, a_{3}\right]=a_{3},\left[b, a_{1}\right]=a_{1}-a_{3}$, $\left[a_{1}, b\right]=-a_{1}+\beta a_{3}$. If $\beta=0$, then $\left[a_{1}, b\right]=-a_{1}$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \nu\left[a_{1}, a_{3}\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \nu a_{3}+\lambda \mu\left(a_{1}-a_{3}\right)+\mu^{2} a_{3}+\mu \nu a_{3}= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \nu a_{3}+\lambda \mu a_{1}-\lambda \mu a_{3}+\mu^{2} a_{3}+\mu \nu a_{3}= \\
\left(\lambda^{2}+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu\right) a_{3} .
\end{gathered}
$$

As above, $\lambda^{2}+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu \neq 0$. Put $a_{2}=b$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{31}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where } \\
{\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=a_{3},} \\
{\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}-a_{3},} \\
{\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{31}\right)=\zeta^{\text {left }}\left(L_{31}\right)=F a_{3},\left[L_{31}, L_{31}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{31}\right)=\zeta\left(L_{31}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu \neq 0, L_{31}$ is non-nilpotent.

Suppose that $\beta \neq 0$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \nu\left[a_{1}, a_{3}\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}+\lambda \mu\left(-a_{1}+\beta a_{3}\right)+\lambda \nu a_{3}+\lambda \mu\left(a_{1}-a_{3}\right)+\mu^{2} a_{3}+\mu \nu a_{3}= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \mu \beta a_{3}+\lambda \nu a_{3}+\lambda \mu a_{1}-\lambda \mu a_{3}+\mu^{2} a_{3}+\mu \nu a_{3}= \\
\left(\lambda^{2}+\lambda \mu \beta+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu\right) a_{3} .
\end{gathered}
$$

As above, $\lambda^{2}+\lambda \mu \beta+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu \neq 0$. Put $a_{2}=b$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{32}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where } \\
{\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=a_{3}} \\
{\left[a_{1}, a_{2}\right]=-a_{1}+\beta a_{3}(\beta \neq 0),\left[a_{2}, a_{1}\right]=a_{1}-a_{3}} \\
{\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{32}\right)=\zeta^{\text {left }}\left(L_{32}\right)=F a_{3},\left[L_{32}, L_{32}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{32}\right)=\zeta\left(L_{32}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \mu \beta+\lambda \nu-\lambda \mu+\mu^{2}+\mu \nu \neq 0, L_{32}$ is non-nilpotent.

Suppose now that $\alpha \neq 0$ and $\alpha \neq-1$. As we have noted above, $\alpha \neq-2$. We obtain $\beta=(\alpha+\gamma)(1+\alpha)^{-1}$. If $\beta=0$, then $\alpha=-\gamma,\left[a_{1}, b\right]=-a_{1}$, $\left[b, a_{1}\right]=a_{1}-\gamma a_{3},\left[b, a_{3}\right]=(2-\gamma) a_{3}$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \nu\left[a_{1}, a_{3}\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \nu a_{3}+\lambda \mu\left(a_{1}-\gamma a_{3}\right)+\mu^{2} \gamma a_{3}+\mu \nu(2-\gamma) a_{3}= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \nu a_{3}+\lambda \mu a_{1}-\lambda \mu \gamma a_{3}+\mu^{2} \gamma a_{3}+\mu \nu(2-\gamma) a_{3}= \\
\left(\lambda^{2}+\lambda \nu-\lambda \mu \gamma+\mu^{2} \gamma+\mu \nu(2-\gamma)\right) a_{3} .
\end{gathered}
$$

As above, $\lambda^{2}+\lambda \nu-\lambda \mu \gamma+\mu^{2} \gamma+\mu \nu(2-\gamma) \neq 0$. Put $a_{2}=b$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{33}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3} \\
{\left[a_{1}, a_{2}\right]=-a_{1},\left[a_{2}, a_{1}\right]=a_{1}-\gamma a_{3}(\gamma \neq 0, \gamma \neq 1, \gamma \neq 2),} \\
{\left[a_{2}, a_{2}\right]=\gamma a_{3},\left[a_{2}, a_{3}\right]=(2-\gamma) a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{33}\right)=\zeta^{\text {left }}\left(L_{33}\right)=F a_{3},\left[L_{33}, L_{33}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{33}\right)=\zeta\left(L_{33}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \nu-\lambda \mu \gamma+\mu^{2} \gamma+\mu \nu(2-\gamma) \neq 0, L_{33}$ is non-nilpotent.

Suppose that $\beta \neq 0$. Then $\left[a_{1}, b\right]=-a_{1}+\beta a_{3}\left(\beta=(\alpha+\gamma)(1+\alpha)^{-1}\right)$, $\left[b, a_{1}\right]=a_{1}+\alpha a_{3},\left[b, a_{3}\right]=(2+\alpha) a_{3}$. Let $\lambda a_{1}+\mu b+\nu a_{3}$ be the arbitrary
element of L. We have:

$$
\begin{gathered}
{\left[\lambda a_{1}+\mu b+\nu a_{3}, \lambda a_{1}+\mu b+\nu a_{3}\right]=} \\
\lambda^{2}\left[a_{1}, a_{1}\right]+\lambda \mu\left[a_{1}, b\right]+\lambda \nu\left[a_{1}, a_{3}\right]+\lambda \mu\left[b, a_{1}\right]+\mu^{2}[b, b]+\mu \nu\left[b, a_{3}\right]= \\
\lambda^{2} a_{3}+\lambda \mu\left(-a_{1}+\beta a_{3}\right)+\lambda \nu a_{3}+\lambda \mu\left(a_{1}+\alpha a_{3}\right)+\mu^{2} \gamma a_{3}+\mu \nu(2+\alpha) a_{3}= \\
\lambda^{2} a_{3}-\lambda \mu a_{1}+\lambda \mu \beta a_{3}+\lambda \nu a_{3}+\lambda \mu a_{1}+\lambda \mu \alpha a_{3}+\mu^{2} \gamma a_{3}+\mu \nu(2+\alpha) a_{3}= \\
\left(\lambda^{2}+\lambda \mu \beta+\lambda \nu+\lambda \mu \alpha+\mu^{2} \gamma+\mu \nu(2+\alpha)\right) a_{3} .
\end{gathered}
$$

As above, $\lambda^{2}+\lambda \mu \beta+\lambda \nu+\lambda \mu \alpha+\mu^{2} \gamma+\mu \nu(2+\alpha) \neq 0$. Put $a_{2}=b$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{34}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{3}\right]=a_{3}, \\
{\left[a_{1}, a_{2}\right]=-a_{1}+\beta a_{3}\left(\beta=(\alpha+\gamma)(1+\alpha)^{-1}\right),} \\
{\left[a_{2}, a_{1}\right]=a_{1}+\alpha a_{3}(\alpha \neq 0, \alpha \neq-1, \alpha \neq-2),} \\
{\left[a_{2}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{2}, a_{3}\right]=(2+\alpha) a_{3},} \\
{\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{34}\right)=\zeta^{\text {left }}\left(L_{34}\right)=F a_{3},\left[L_{34}, L_{34}\right]=F a_{1} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{34}\right)=\zeta\left(L_{34}\right)=\langle 0\rangle$. Moreover, if $\lambda a_{1}+\mu a_{2}+\nu a_{3} \notin A$, then $\lambda^{2}+\lambda \mu \beta+\lambda \nu+\lambda \mu \alpha+\mu^{2} \gamma+\mu \nu(2+\alpha) \neq 0, L_{34}$ is non-nilpotent.

Suppose now that $[c, c]=0$. Put again $\operatorname{Leib}(L)=F a_{3}$. Let b be an element such that $b \notin C$.

Suppose that a subalgebra $C=F c \oplus \operatorname{Leib}(L)$ is not abelian. As we have seen above, we can choose an element a_{3} such that $\left[c, a_{3}\right]=a_{3}$. Since $\operatorname{Leib}(L)=F a_{3}$ is an ideal, $\left[b, a_{3}\right]=\eta a_{3}$ for some element $\eta \in F$. Using the above arguments without loss of generality we can assume that $[b, c] \in c+F a_{3},[c, b] \in-c+F a_{3}$, so that $[b, c]=c+\alpha a_{3},[c, b]=-c+\beta a_{3}$ for some elements $\alpha, \beta \in F$. Then

$$
\begin{gathered}
a_{3}=\left[c, a_{3}\right]=\left[c+\alpha a_{3}, a_{3}\right]=\left[[b, c], a_{3}\right]=\left[b,\left[c, a_{3}\right]\right]-\left[c,\left[b, a_{3}\right]\right]= \\
{\left[b, a_{3}\right]-\left[c, \eta a_{3}\right]=\eta a_{3}-\eta\left[c, a_{3}\right]=\eta a_{3}-\eta a_{3}=0 .}
\end{gathered}
$$

This contradiction shows that a subalgebra C is abelian.
Note that $\eta \neq 0$. In fact, otherwise $a_{3} \in \zeta(L)$, and we obtain a contradiction. This contradiction shows that $\left[b, a_{3}\right] \neq 0$ for every element $b \notin C$. As we have seen above, we can choose an element b such that $\left[b, a_{3}\right]=a_{3}$.

Suppose first that there exists an element $b \notin C$ such that $[b, b] \neq 0$. It follows that $[b, b]=\gamma a_{3}$ where γ is a non-zero element of F. Then,
subalgebra $B=F b \oplus F a_{3}$ is non-abelian. We have now

$$
\begin{gathered}
{\left[c, a_{3}\right]=\left[c, \gamma^{-1}[b, b]\right]=\gamma^{-1}[c,[b, b]]=\gamma^{-1}([[c, b], b]+[b,[c, b]])=} \\
\gamma^{-1}\left(\left[-c+\beta a_{3}, b\right]+\left[b,-c+\beta a_{3}\right]\right)=\gamma^{-1}\left(-[c, b]-[b, c]+\beta\left[b, a_{3}\right]\right)= \\
\gamma^{-1}\left(c-\beta a_{3}-c-\alpha a_{3}+\beta a_{3}\right)=-\alpha \gamma^{-1} a_{3}
\end{gathered}
$$

On the other hand, we proved above that $\left[c, a_{3}\right]=0$. Since $\gamma \neq 0$, it follows that $\alpha=0$. Hence, $[b, c]=c$.

If $\beta=0$, then put $a_{1}=b, a_{2}=c$. A subalgebra $F c$ is an ideal of L and we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{35}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\gamma a_{3}(\gamma \neq 0), \\
{\left[a_{1}, a_{2}\right]=a_{2},\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{1}\right]=-a_{2},} \\
{\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{35}\right)=\zeta^{\text {left }}\left(L_{35}\right)=F a_{3},\left[L_{35}, L_{35}\right]=F a_{2} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{35}\right)=\zeta\left(L_{35}\right)=\langle 0\rangle, L_{35}$ is non-nilpotent.

If $\beta \neq 0$, then put $a_{1}=b, a_{2}=c$. A subalgebra $F c$ is not an ideal of L and we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{36}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\gamma a_{3}(\gamma \neq 0), \\
{\left[a_{1}, a_{2}\right]=a_{2},\left[a_{1}, a_{3}\right]=a_{3},\left[a_{2}, a_{1}\right]=-a_{2}+\beta a_{3}(\beta \neq 0)} \\
{\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{36}\right)=\zeta^{\text {left }}\left(L_{36}\right)=F a_{3},\left[L_{36}, L_{36}\right]=F a_{2} \oplus F a_{3}$, $\zeta^{\text {right }}\left(L_{36}\right)=\zeta\left(L_{36}\right)=\langle 0\rangle, L_{36}$ is non-nilpotent.

Suppose now that $[b, b]=0$ for each element $b \notin C$. Let $u=\lambda c+\mu b+$ νa_{3} be an arbitrary element of L. Then,

$$
\begin{gathered}
{\left[\lambda c+\mu b+\nu a_{3}, \lambda c+\mu b+\nu a_{3}\right]=\lambda \mu[c, b]+\lambda \mu[b, c]+\mu \nu\left[b, a_{3}\right]=} \\
\lambda \mu\left(-c+\beta a_{3}\right)+\lambda \mu\left(c+\alpha a_{3}\right)+\mu \nu a_{3}= \\
(\lambda \mu \beta+\lambda \mu \alpha+\mu \nu) a_{3}
\end{gathered}
$$

If $u \notin C$, then $\mu \neq 0$. If $\lambda=0, \mu=\nu=1$, then $[u, u]=a_{3} \neq 0$, and we obtain a contradiction. This contradiction shows that this situation is not possible.

The following natural situation appears when $\operatorname{dim}_{F}(\operatorname{Leib}(L))=2$. Immediately, we obtain the following two subcases:
(IIA) the intersection $\zeta(L) \cap \operatorname{Leib}(L)$ is not trivial;
$(\operatorname{IIB}) \zeta(L) \cap \operatorname{Leib}(L)=\langle 0\rangle$.

Theorem 5. Let L be a nilpotent Leibniz algebra over a field F having dimension 3, which is not a Lie algebra. Suppose that $\operatorname{dim}_{F}(\operatorname{Leib}(L))=2$. Then, L is an algebra of the following type:
$\operatorname{Lei}_{37}(3, F)=L_{37}$ is a cyclic nilpotent Leibniz algebra, so that $L_{37}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{3},\left[a_{1}, a_{3}\right]=$ $\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{37}\right)=\left[L_{37}, L_{37}\right]=\zeta^{\text {left }}\left(L_{37}\right)=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{37}\right)=$ $\zeta\left(L_{37}\right)=F a_{3}, \operatorname{ncl}\left(L_{37}\right)=3$.

Proof. Since $\operatorname{dim}_{F}(L)=3, \operatorname{ncl}(L) \leqslant 3$. Suppose first that $\operatorname{ncl}(L)=3$. Then, L has an upper central series of a length 3:

$$
\langle 0\rangle=C_{0} \leqslant C_{1} \leqslant C_{2} \leqslant C_{3}=L .
$$

Every factor of this series must be non-trivial. Therefore every factor of this series has dimension 1. Let a_{1} be an element of L such that $a_{1} \notin C_{2}$. The fact that L / C_{2} is abelian implies that $a_{2}=\left[a_{1}, a_{1}\right] \in C_{2}$. Suppose that $a_{2} \in C_{1}$. Since $\operatorname{dim}_{F}\left(C_{1}\right)=1, C_{1}=F a_{2}$. Choose an element $b \in C_{2}$ such that $b \notin C_{1}$. Then, $\left[a_{1}, b\right],\left[b, a_{1}\right],[b, b] \in C_{1}$, so that $\left[a_{1}, b\right]=\alpha a_{2}$, $\left[b, a_{1}\right]=\beta a_{2},[b, b]=\gamma a_{2}$ for some elements $\alpha, \beta, \gamma \in F$. It is not hard to see that the elements a_{1}, b, a_{2} generate L. Let $\lambda_{1} a_{1}+\lambda_{2} b+\lambda_{3} a_{2}$, $\mu_{1} a_{1}+\mu_{2} b+\mu_{3} a_{2}$ be two arbitrary elements of L. We have:

$$
\begin{gathered}
{\left[\lambda_{1} a_{1}+\lambda_{2} b+\lambda_{3} a_{2}, \mu_{1} a_{1}+\mu_{2} b+\mu_{3} a_{2}\right]=} \\
\lambda_{1} \mu_{1}\left[a_{1}, a_{1}\right]+\lambda_{1} \mu_{2}\left[a_{1}, b\right]+\lambda_{1} \mu_{3}\left[a_{1}, a_{2}\right]+ \\
\lambda_{2} \mu_{1}\left[b, a_{1}\right]+\lambda_{2} \mu_{2}[b, b]+\lambda_{2} \mu_{3}\left[b, a_{2}\right]= \\
\lambda_{1} \mu_{1} a_{2}+\lambda_{1} \mu_{2} \alpha a_{2}+\lambda_{2} \mu_{1} \beta a_{2}+\lambda_{2} \mu_{2} \gamma a_{2} \in C_{1}
\end{gathered}
$$

It follows that $[L, L] \leqslant C_{1}=\zeta(L)$ and hence, $\operatorname{ncl}(L)=2$. This contradiction shows that a_{2}
notin C_{1}. Then, $a_{3}=\left[a_{1}, a_{2}\right] \neq 0$. It follows that $C_{2}=F a_{2} \oplus F a_{3}$. We have $\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{2}\right]=0$, so that C_{2} is an abelian subalgebra, $\left[a_{1}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{2}, a_{1}\right]=0$. It follows that

$$
\begin{aligned}
{\left[a_{1}+a_{2}, a_{1}+a_{2}\right]=} & {\left[a_{1}, a_{1}\right]+\left[a_{1}, a_{2}\right]+\left[a_{2}, a_{1}\right]+\left[a_{2}, a_{2}\right]=} \\
& a_{2}+a_{3} \in \operatorname{Leib}(L)
\end{aligned}
$$

and hence, $\operatorname{Leib}(L)=C_{2}$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{37}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{3} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{37}\right)=\left[L_{37}, L_{37}\right]=\zeta^{\text {left }}\left(L_{37}\right)=F a_{2} \oplus F a_{3}, \zeta\left(L_{37}\right)=$ $\zeta^{\mathrm{right}}\left(L_{37}\right)=F a_{3}, \operatorname{ncl}\left(L_{37}\right)=3$.

Suppose now that $\operatorname{ncl}(L)=2$. Then, L has an upper central series of a length 2 :

$$
\langle 0\rangle=C_{0} \leqslant C_{1} \leqslant C_{2}=L .
$$

Here, we have two possibilities: $\operatorname{dim}_{F}\left(C_{1}\right)=1$ or $\operatorname{dim}_{F}\left(C_{1}\right)=2$. Since L / C_{1} is abelian, $\operatorname{Leib}(L) \leqslant C_{1}$. Then, the fact that $\operatorname{dim}_{F}(\operatorname{Leib}(L))=2$ implies that $\operatorname{dim}_{F}\left(C_{1}\right)=2$.

Since L is a not Lie algebra, there is an element a_{1} such that $\left[a_{1}, a_{1}\right]=$ $a_{3} \neq 0$. Then, $a_{1} \notin \zeta(L), a_{3} \in \operatorname{Leib}(L) \leqslant \zeta(L)$. It follows that $\left[a_{1}, a_{3}\right]=$ $\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{3}\right]=0$. We can see that $A=\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{3}$. In particular, $A \cap C_{1}=F a_{3}$. We have $C_{1}=F a_{2} \oplus F a_{3}$ for some element a_{2}. Then, $L=A \oplus F a_{2}$. Since $a_{2} \in \zeta(L), F a_{2}$ is an ideal of L. The choice of a_{2} implies that $\left[a_{1}, a_{2}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{2}\right]=\left[a_{2}, a_{2}\right]=0$. It follows that factor-algebra $L / F a_{3}$ is abelian. Then, $\operatorname{Leib}(L) \leqslant F a_{3}$, in particular, $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$, and we obtain a contradiction. This contradiction shows that the case $\operatorname{ncl}(L)=2$ is not possible.

Theorem 6. Let L be a non-nilpotent Leibniz algebra over a field F having dimension 3, which is not a Lie algebra. Suppose that $\zeta(L) \neq\langle 0\rangle$ and that $\operatorname{dim}_{F}(\operatorname{Leib}(L))=2$. Then, L is an algebra of the following type:
$\operatorname{Lei}_{38}(3, F)=L_{38}$ is a cyclic Leibniz algebra, $L_{24}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{2}+a_{3},\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=$ $\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0, \operatorname{Leib}\left(L_{38}\right)=\zeta^{\text {left }}\left(L_{38}\right)=$ $\left[L_{38}, L_{38}\right]=F a_{2} \oplus F a_{3}, r^{\text {right }}\left(L_{38}\right)=\zeta\left(L_{38}\right)=F a_{3}$.

Proof. We note that a Leibniz algebra of dimension 1 is abelian. Then, by our conditions, we obtain that $\operatorname{dim}_{F}(\zeta(L))=1$. If we suppose that $\zeta(L) \cap \operatorname{Leib}(L)=\langle 0\rangle$, then $L=\zeta(L) \oplus \operatorname{Leib}(L)$, so that L is abelian, and we obtain a contradiction. This contradiction shows that $\zeta(L) \leqslant \operatorname{Leib}(L)$. Put $C=\zeta(L)$ and let c be an element such that $C=F c$. Since $C \neq \operatorname{Leib}(L)$, the factor-algebra L / C is not a Lie algebra. Using the information above about the structure of the Leibniz algebras of dimension 2, we obtain that $L / C=F(b+C) \oplus F(d+C)$ where

$$
\begin{gathered}
{[d+C, d+C]=b+C,[d+C, b+C]=b+C,} \\
{[b+C, d+C]=[b+C, b+C]=C .}
\end{gathered}
$$

Without loss of generality, we may assume that $[d, d]=b$. Then, we have $[d, b]=b+\alpha c,[b, d]=0$ for some element $\alpha \in F$. The fact that Leib (L)
is abelian implies that $[b, b]=[b, c]=[c, b]=0$. Let $\lambda_{1} d+\lambda_{2} b+\lambda_{3} c$ be an arbitrary element of L. We have:

$$
\begin{gathered}
{\left[\lambda_{1} d+\lambda_{2} b+\lambda_{3} c, \lambda_{1} d+\lambda_{2} b+\lambda_{3} c\right]=\lambda_{1}^{2} b+\lambda_{1} \lambda_{2}(b+\alpha c)=} \\
\left(\lambda_{1}^{2}+\lambda_{1} \lambda_{2}\right) b+\lambda_{1} \lambda_{2} \alpha c
\end{gathered}
$$

Thus, we can see that if $\alpha=0$, then $\operatorname{Leib}(L)=F b$, in particular, $\operatorname{dim}_{F}(\operatorname{Leib}(L))=1$, and we obtain a contradiction. This contradiction shows that $\alpha \neq 0$. Put $a_{1}=d, a_{2}=b, a_{3}=\alpha c$, then
$\left[a_{1}-a_{2}, a_{1}-a_{2}\right]=\left[a_{1}, a_{1}\right]-\left[a_{2}, a_{1}\right]-\left[a_{1}, a_{2}\right]+\left[a_{2}, a_{2}\right]=a_{2}-a_{2}-a_{3}=-a_{3}$.
Thus, $\operatorname{Leib}(L)=F a_{2} \oplus F a_{3}$, and we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{38}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{2}+a_{3} \\
{\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{38}\right)=\zeta^{\text {left }}\left(L_{38}\right)=\left[L_{38}, L_{38}\right]=F a_{2} \oplus F a_{3}, \zeta\left(L_{38}\right)=$ $\zeta^{\mathrm{right}}\left(L_{38}\right)=F a_{3}$.

Theorem 7. Let L be a Leibniz algebra over a field F having dimension 3 and L not be a Lie algebra. Suppose that $\zeta(L)=\langle 0\rangle$ and that $\operatorname{dim}_{F}(\operatorname{Leib}(L))=2$. Then, L is an algebra of one of the following types.
(i) $\operatorname{Lei}_{39}(3, F)=L_{39}$ is a direct sum of ideal $B=F a_{3}$ and cyclic non-nilpotent subalgebra $A=F a_{1} \oplus F a_{2},[A, B]=F a_{3},[B, A]=\langle 0\rangle$, so that $L_{39}=F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=a_{2},\left[a_{1}, a_{3}\right]=$ $\beta a_{3}(\beta \neq 0),\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=$ $0, \operatorname{Leib}\left(L_{39}\right)=\zeta^{\text {left }}\left(L_{39}\right)=\left[L_{39}, L_{39}\right]=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{39}\right)=\zeta\left(L_{39}\right)=$ $\langle 0\rangle$.
(ii) $\operatorname{Lei}_{40}(3, F)=L_{40}$ is a cyclic Leibniz algebra, so that $L_{40}=F a_{1} \oplus$ $F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{2}+\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{3}\right]=$ $\beta a_{3}(\beta \neq 0),\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=$ $0, \operatorname{Leib}\left(L_{40}\right)=\zeta^{\text {left }}\left(L_{40}\right)=\left[L_{40}, L_{40}\right]=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{40}\right)=\zeta\left(L_{40}\right)=$ $\langle 0\rangle$.
(iii) $\operatorname{Lei}_{41}(3, F)=L_{41}$ is a cyclic Leibniz algebra, so that $L_{41}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{3}\right]=$ $a_{3},\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{41}\right)=\zeta^{\text {left }}\left(L_{41}\right)=\left[L_{41}, L_{41}\right]=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{41}\right)=\zeta\left(L_{41}\right)=$ $\langle 0\rangle$.
(iv) $\operatorname{Lei}_{42}(3, F)=L_{42}$ is a cyclic Leibniz algebra, so that $L_{42}=$ $F a_{1} \oplus F a_{2} \oplus F a_{3}$ where $\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{3},\left[a_{1}, a_{3}\right]=\beta a_{2}+$
$\gamma a_{3},\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0$, $\operatorname{Leib}\left(L_{42}\right)=\zeta^{\text {left }}\left(L_{42}\right)=\left[L_{42}, L_{42}\right]=F a_{2} \oplus F a_{3}, \zeta^{\text {right }}\left(L_{42}\right)=\zeta\left(L_{42}\right)=$ $\langle 0\rangle$. Moreover, polynomial $X^{2}-\gamma X-\beta$ is irreducible over field F.

Proof. Suppose first that $\operatorname{Leib}(L)$ includes an ideal K of dimension 1. Let c be an element such that $K=F c$. Since $K \neq \operatorname{Leib}(L)$, the factoralgebra L / K is not a Lie algebra. Using the above information about the structure of the Leibniz algebras of dimension 2, we obtain that $L / K=F(b+K) \oplus F(d+K)$ where

$$
\begin{gathered}
{[d+K, d+K]=b+K,[d+K, b+K]=b+K} \\
{[b+K, d+K]=[b+K, b+K]=K}
\end{gathered}
$$

or

$$
\begin{gathered}
{[d+K, d+K]=b+K} \\
{[d+K, b+K]=[b+K, d+K]=[b+K, b+K]=K}
\end{gathered}
$$

Consider the first situation. Without loss of generality, we may assume that $[d, d]=b$. Then, we have $[b, d]=0,[d, b]=b+\alpha c$ for some element $\alpha \in F$. The fact that $\operatorname{Leib}(L)$ is abelian implies that $[b, b]=[b, c]=[c, b]=0$. Since $\zeta(L)=\langle 0\rangle,[d, c]=\beta c$ for some non-zero element $\beta \in F$. Put $a_{3}=\beta c$, then $K=F a_{3}$ and $\left[b, a_{3}\right]=\left[a_{3}, b\right]=\left[a_{3}, d\right]=\left[a_{3}, a_{3}\right]=0$, $[d, b]=b+\gamma a_{3}$ where $\gamma=\alpha \beta^{-1}$. Let $u=\lambda_{1} d+\lambda_{2} b+\lambda_{3} a_{3}$ be an arbitrary element of L. We have:

$$
\begin{gathered}
{[u, u]=\left[\lambda_{1} d+\lambda_{2} b+\lambda_{3} a_{3}, \lambda_{1} d+\lambda_{2} b+\lambda_{3} a_{3}\right]=} \\
\lambda_{1}^{2}[d, d]+\lambda_{1} \lambda_{2}[d, b]+\lambda_{1} \lambda_{3}\left[d, a_{3}\right]= \\
\lambda_{1}^{2} b+\lambda_{1} \lambda_{2}\left(b+\gamma a_{3}\right)+\lambda_{1} \lambda_{3} \beta a_{3}= \\
\left(\lambda_{1}^{2}+\lambda_{1} \lambda_{2}\right) b+\left(\gamma \lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3} \beta\right) a_{3} .
\end{gathered}
$$

If we put $\lambda_{1}=1, \lambda_{2}=-1, \lambda_{3}=\beta^{-1}(1+\gamma)$, then we obtain $[u, u]=a_{3}$. Put $a_{1}=d, a_{2}=b$.

If $\alpha=0$ and hence, $\gamma=0$, then a subalgebra $F a_{2}$ is an ideal of L and $A=\left\langle a_{1}\right\rangle=F a_{1} \oplus F a_{2}$ is a cyclic subalgebra. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{39}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=\left[a_{1}, a_{2}\right]=a_{2}, \\
{\left[a_{1}, a_{3}\right]=\beta a_{3}(\beta \neq 0),} \\
{\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that Leib $\left(L_{39}\right)=\zeta^{\text {left }}\left(L_{39}\right)=\left[L_{39}, L_{39}\right]=F a_{2} \oplus F a_{3}, \zeta\left(L_{39}\right)=$ $\zeta^{\text {right }}\left(L_{39}\right)=\langle 0\rangle$.

If $\alpha \neq 0$, then $a_{3}=\gamma^{-1}\left(\left[a_{1}, a_{2}\right]-a_{2}\right)$. It follows that L is a cyclic algebra. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{40}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{2}, \\
{\left[a_{1}, a_{2}\right]=a_{2}+\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{3}\right]=\beta a_{3}(\beta \neq 0),} \\
{\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that Leib $\left(L_{40}\right)=\zeta^{\text {left }}\left(L_{40}\right)=\left[L_{40}, L_{40}\right]=F a_{2} \oplus F a_{3}, \zeta\left(L_{40}\right)=$ $\zeta^{\text {right }}\left(L_{40}\right)=\langle 0\rangle$.

Consider now a situation when $L / K=F(b+K) \oplus F(d+K)$ where

$$
\begin{gathered}
{[d+K, d+K]=b+K,} \\
{[d+K, b+K]=[b+K, d+K]=[b+K, b+K]=K .}
\end{gathered}
$$

Without loss of generality we may assume that $[d, d]=b$. Then we have $[b, d]=0,[d, b]=\alpha c$ for some element $\alpha \in F$. The fact that Leib (L) is abelian implies that $[b, b]=[b, c]=[c, b]=0$. Since $\zeta(L)=\langle 0\rangle,[d, c]=\beta c$ for some non-zero element $\beta \in F$. Put $a_{3}=c$, then $K=F a_{3}$ and $\left[b, a_{3}\right]=\left[a_{3}, b\right]=\left[a_{3}, d\right]=\left[a_{3}, a_{3}\right]=0,[d, b]=\alpha a_{3}$.

If $\alpha=0$, then $F b$ lies in the center of L, and we obtain a contradiction.
Suppose that $\alpha \neq 0$. Put $a_{1}=\beta^{-1} d$, then $\left[a_{1}, c\right]=c$. Further $\left[a_{1}, a_{1}\right]=$ $\left[\beta^{-1} d, \beta^{-1} d\right]=\beta^{-2} b=a_{2}$. We have $\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{1}\right]=\left[a_{2}, c\right]=\left[c, a_{2}\right]=$ $0,\left[a_{1}, a_{2}\right]=\left[\beta^{-1} d, \beta^{-2} b\right]=\beta^{-3} \alpha c=\gamma c$. Thus we come to the following type of Leibniz algebra:

$$
\begin{gathered}
L_{41}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{2}, \\
{\left[a_{1}, a_{2}\right]=\gamma a_{3}(\gamma \neq 0),\left[a_{1}, a_{3}\right]=a_{3},} \\
{\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{41}\right)=\zeta^{\text {left }}\left(L_{41}\right)=\left[L_{41}, L_{41}\right]=F a_{2} \oplus F a_{3}, \zeta\left(L_{41}\right)=$ $\zeta^{\mathrm{right}}\left(L_{41}\right)=\langle 0\rangle$.

Suppose now that $\operatorname{Leib}(L)$ does not include proper non-zero ideals. Since L is a non-Lie algebra, there is an element d such that $[d, d]=b \neq 0$. Then, $d \notin \operatorname{Leib}(L)$. Put $K=\operatorname{Leib}(L)$. By our assumption, $[d, b]=c \notin F b$. The fact that $\operatorname{dim}_{F}(K)=2$ implies that $K=F b \oplus F c$. Then, $[d, c]=$ $\beta b+\gamma c$ for some elements $\beta, \gamma \in F$. The mapping $x \rightarrow[d, x], x \in K$ is linear. Our conditions imply that a polynomial $X^{2}-\gamma X-\beta$ is irreducible
over a field F. Put $a_{1}=d, a_{2}=b, a_{3}=c$. Thus, we come to the following type of Leibniz algebras:

$$
\begin{gathered}
L_{42}=F a_{1} \oplus F a_{2} \oplus F a_{3} \text { where }\left[a_{1}, a_{1}\right]=a_{2},\left[a_{1}, a_{2}\right]=a_{3} \\
{\left[a_{1}, a_{3}\right]=\beta a_{2}+\gamma a_{3},} \\
{\left[a_{2}, a_{1}\right]=\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{3}\right]=\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=\left[a_{3}, a_{3}\right]=0 .}
\end{gathered}
$$

Note also that $\operatorname{Leib}\left(L_{42}\right)=\zeta^{\text {left }}\left(L_{42}\right)=\left[L_{42}, L_{42}\right]=F a_{2} \oplus F a_{3}, \zeta\left(L_{42}\right)=$ $\zeta^{\text {right }}\left(L_{42}\right)=\langle 0\rangle$, polynomial $X^{2}-\gamma X-\beta$ is irreducible over field F.

References

[1] Sh. Ayupov, B. Omirov, I. Rakhimov, Leibniz Algebras: Structure and Classification, CRC Press, Taylor \& Francis Group, (2020).
[2] A. Blokh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165(3), 471-473 (1965) (in Russian).
[3] J.M. Casas, M.A. Insua, M. Ladra, S. Ladra, An algorithm for the classification of 3-dimensional complex Leibniz algebras, Linear Algebra Appl., 436(9), 3747-3756 (2012); DOI:10.1016/j.laa.2011.11.039.
[4] I. Demir, K.C. Misra, E. Stitzinger, On some structures of Leibniz algebras, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, 623, 41-54 (2014). DOI:10.1090/conm/623/12456.
[5] A.Kh. Khudoyberdiyev, T.K. Kurbanbaev, B.A. Omirov, Classification of threedimensional solvable p-adic Leibniz algebras, p-Adic Numbers Ultrametric Anal. Appl., 2(3), 207-221 (2010); DOI:10.1134/S2070046610030039.
[6] V.V. Kirichenko, L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin, Some aspects of Leibniz algebra theory, Algebra Discrete Math., 24(1), 1-33 (2017).
[7] L.A. Kurdachenko, J. Otal, A.A. Pypka, Relationships between the factors of the canonical central series of Leibniz algebras, Eur. J. Math., 2(2), 565-577 (2016); DOI:10.1007/s40879-016-0093-5.
[8] J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer Verlag, (1992); DOI:10.1007/978-3-662-11389-9.
[9] J.-L. Loday, Une version non commutative des algèbres de Lie; les algèbras de Leibniz, Enseign. Math., 39, 269-293 (1993).
[10] I.S. Rakhimov, I.M. Rikhsiboev, M.A. Mohammed, An algorithm for classifications of three-dimensional Leibniz algebras over arbitrary fields, JP Journal of Algebra, Number Theory and Applications, 40(2), 181-198 (2018); DOI:10.17654/NT040020181.
[11] I.M. Rikhsiboev, I.S. Rakhimov, Classification of three dimensional complex Leibniz algebras, AIP Conference Proceedings, 1450(1), 358-362 (2012); DOI:10.1063/1.4724168.
[12] V.S. Yashchuk, On some Leibniz algebras, having small dimension, Algebra Discrete Math., 27(2), 292-308 (2019).

Contact information

L. A. Kurdachenko, Oles Honchar Dnipro National University, O. O. Pypka Gagarin ave., 72, Dnipro, 49010, Ukraine E-Mail(s): lkurdachenko@gmail.com, sasha.pypka@gmail.com
I. Ya. Subbotin National University, 5245 Pacific Concourse Drive, Los Angeles, CA 90045-6904, USA E-Mail(s): isubboti@nu.edu

Received by the editors: 02.11.2022.

[^0]: The first author is grateful for the support Isaac Newton Institute for Mathematical Sciences and University of Edinburgh provided in the frame of LMS Solidarity Supplementary Grant Program.

 2020 MSC: 17A32, 17A60, 17A99.

