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Abstract. Let L be an algebra over a őeld F with the binary

operations + and [ · , · ]. Then L is called a left Leibniz algebra if

[[a, b], c] = [a, [b, c]] − [b, [a, c]] for all a, b, c ∈ L. We describe the

inner structure of left Leibniz algebras having dimension 3.

1. Introduction

Let L be an algebra over a őeld F with the binary operations + and
[ · , · ]. Then, L is called a Leibniz algebra (more precisely, a left Leibniz

algebra) if, for all elements a, b, c ∈ L, it satisőes the Leibniz identity:

[[a, b], c] = [a, [b, c]]− [b, [a, c]].

We will also use another form of this identity:

[a, [b, c]] = [[a, b], c] + [b, [a, c]].

Leibniz algebras őrst appeared in the paper of A. Blokh [2] where they
were called D-algebras. However, at that time, these works were not in
demand. Only after two decades was there a real rise in interest towards
Leibniz algebras. It happened thanks to the rediscovery of these algebras
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by J.-L. Loday [9] (see also [8, Section 10.6]), who used the term łLeibniz
algebrasž since it was Leibniz who discovered and proved the Leibniz
rule for differentiation of the product of functions. The main motivation
for the introduction of Leibniz algebras was the study of periodicity
phenomena in algebraic K-theory. The Leibniz algebras appeared to be
naturally related to several areas such as differential geometry, homological
algebra, classical algebraic topology, algebraic K-theory, loop spaces, non-
commutative geometry, physics and so on. Nowadays, the theory of Leibniz
algebras is one of actively developing areas of modern algebra.

Note that Lie algebras are a partial case of Leibniz algebras. Conversely,
if L is a Leibniz algebra in which [a, a] = 0 for every element a ∈ L, then it
is a Lie algebra. Thus, Leibniz algebras can be seen as a non-commutative
generalization of Lie algebras.

The theory of Leibniz algebras has been intensely developing in many
different directions. Some results of this theory were presented in the
recent book [1].

One of the őrst steps in the theory of Leibniz algebras is the description
of algebras with small dimensions. Unlike Lie algebras, the situation
with Leibniz algebras of dimension 3 is very diverse. Leibniz algebras of
dimension 3 are mostly described. The description of Leibniz algebras
of dimensions 4 and 5 is quite complex. The list of papers devoted to
these studies is quite large and we will not give it here in full. We only
note that the Section 3.1 of book [1] is devoted to study of right Leibniz
algebras having dimension 3. The investigation of Leibniz algebras having
dimension 3 was carried out in articles [3–5,10–12]. Some of these papers
use the language of the right Leibniz algebras, whilst others use the
language of left Leibniz algebras. Basically, the description is reduced
to determining the structural constants of these algebras. However, the
structural constants do not always give an idea of the internal structure
of these algebras. Elucidation of the structure requires some additional
analysis. The overall picture seems fragmented. Thus, the articles dealt
with Leibniz algebras over concrete őelds of real, complex, p-adic numbers,
etc. Therefore, we cannot decide if the internal structure of these algebras
really contains a complete description. For example, when passing from
the őeld of rational numbers to the őeld of real numbers, some types of
algebras disappear altogether. Furthermore, some sections describe right
Leibniz algebras, while others describe left Leibniz algebras. Moreover,
only structural constants were found. None of the articles considered the
internal structure. So, under these circumstances, in order to observe the
entire scope, there are two options that arise: analyze these articles and
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really make sure everything is done there or do it yourself all over again.
The second option is preferable since it is better to complete the list within
your own framework if it turns out that not all types of algebras have
been considered. More importantly, we are interested in the description
of the inner structure, not just structural constants. Of course, you can
extract some information about the structure from structural constants,
but it is more logical to obtain the structural constants in the process of
describing the inner structure.

Therefore, in the current article, we present a description of left Leibniz
algebras having dimension 3, focusing on clarifying their structure and
obtaining structural constants by passing. This consideration of the struc-
ture of Leibniz algebras of dimension 3 is carried out over an arbitrary őeld
F , and when studying these speciőc types of algebras, additional natural
restrictions on the őeld F appear. These restrictions are very signiőcant
in some cases. Some types of algebras can exist only if sufficiently strict
restrictions are imposed. Our goal was the most detailed description of
these algebras, reŕecting all the nuances of their structure.

2. Main results

Let L be a Leibniz algebra over a őeld F . Then L is called abelian if
[a, b] = 0 for every elements a, b ∈ L. In particular, an abelian Leibniz
algebra is a Lie algebra.

If A,B are subspaces of L, then [A,B] will denote a subspace generated
by all elements [a, b] where a ∈ A, b ∈ B. As usual, a subspace A of L
is called a subalgebra of L, if [a, b] ∈ A for every a, b ∈ A. It follows that
[A,A] ⩽ A. A subalgebra A of L is called a left (respectively right) ideal

of L, if [b, a] ∈ A (respectively [a, b] ∈ A) for every a ∈ A, b ∈ L. In other
words, if A is a left (respectively right) ideal, then [L,A] ⩽ A (respectively
[A,L] ⩽ A). A subalgebra A of L is called an ideal of L (more precisely,
two-sided ideal) if it is both a left ideal and a right ideal.

Every Leibniz algebra L possesses the following speciőc ideal. Denote
by Leib(L) the subspace generated by the elements [a, a], a ∈ L. It is not
hard to prove that Leib(L) is an ideal of L. The ideal Leib(L) is called
the Leibniz kernel of algebra L.

We note the following important property of the Leibniz kernel:

[[a, a], x] = [a, [a, x]]− [a, [a, x]] = 0.
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The left (respectively right) center ζ left(L) (respectively ζright(L)) of
a Leibniz algebra L is deőned by the rule:

ζ left(L) = {x ∈ L| [x, y] = 0 for each element y ∈ L}

(respectively,

ζright(L) = {x ∈ L| [y, x] = 0 for each element y ∈ L}).

It is not hard to prove that the left center of L is an ideal, but that is not
true for the right center. Moreover, Leib(L) ⩽ ζ left(L) so that L/ζ left(L)
is a Lie algebra. The right center is a subalgebra of L and, in general, the
left and right centers are distinct (see, for example, [7]).

The center ζ(L) of L is deőned by the rule:

ζ(L) = {x ∈ L| [x, y] = 0 = [y, x] for each element y ∈ L}.

The center is an ideal of L.
Now we deőne the upper central series

⟨0⟩ = ζ0(L) ⩽ ζ1(L) ⩽ . . . ζα(L) ⩽ ζα+1(L) ⩽ . . . ζη(L)

of a Leibniz algebra L by the following rule: ζ1(L) = ζ(L) is the center of
L, and recursively, ζα+1(L)/ζα(L) = ζ(L/ζα(L)) for all ordinals α, and
ζλ(L) =

⋃
µ<λ ζµ(L) for the limit ordinals λ. By deőnition, each term of

this series is an ideal of L.
Deőne the lower central series of L

L = γ1(L) ⩾ γ2(L) ⩾ . . . γα(L) ⩾ γα+1(L) ⩾ . . . γτ (L)

by the rule: γ1(L) = L, γ2(L) = [L,L], γα+1(L) = [L, γα(L)] for all
ordinals α and γλ(L) =

⋂
µ<λ γµ(L) for the limit ordinals λ.

As usual, we say that a Leibniz algebra L is nilpotent, if there exists
a positive integer k such that γk(L) = ⟨0⟩. More precisely, L is said to
be nilpotent of nilpotency class c if γc+1(L) = ⟨0⟩, but γc(L) ̸= ⟨0⟩. We
denote the nilpotency class of L by ncl(L).

Deőne the lower derived series of L

L = δ0(L) ⩾ δ1(L) ⩾ . . . δα(L) ⩾ δα+1(L) ⩾ . . . δν(L)

by the rule: δ0(L) = L, δ1(L) = [L,L], and recursively δα+1(L) =
[δα(L), δα(L)] for all ordinals α and δλ(L) =

⋂
µ<λ δµ(L) for the limit
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ordinals λ. If δn(L) = ⟨0⟩ for some positive integer n, then we say that L
is a soluble Leibniz algebra.

As usual, we say that a Leibniz algebra L is őnite dimensional if the
dimension of L as a vector space over F is őnite.

If dimF (L) = 1, then L is abelian.
If dimF (L) = 2, then we obtain the following types of Leibniz algebras:

Lei1(2, F ) = Fa⊕ Fb where [a, a] = b, [a, b] = [b, a] = [b, b] = 0;

Lei2(2, F ) = Fc⊕ Fd where [c, c] = [c, d] = d, [d, c] = [d, d] = 0

(see, for example, [6]).
Moving on to Leibniz algebras of dimension 3, we immediately note

that we will consider Leibniz algebras, which are not Lie algebras. This
means that their Leibniz kernel is non-zero. Then, the factor-algebra over
Leibniz kernel has dimension, at most, 2. Note that Lie algebras having
dimension at most 2 are soluble. Thus, we obtain the following

Proposition 1. Let L be a Leibniz algebra over a őeld F . Suppose that

L is not a Lie algebra. If L has dimension 3, then L is soluble.

For the Leibniz kernel Leib(L) of a Leibniz but not a Lie algebra, L
having dimension 3 will give us only two possibilities: dimF (Leib(L)) = 1
and dimF (Leib(L)) = 2.

First, we will consider the situation when dimF (Leib(L)) = 1. Imme-
diately, we obtain the following two subcases:

(IA) the center of L includes Leib(L);
(IB) the Leibniz kernel of L is not central.

For each of these subcases, we have the following two possibilities:
(IA1) the factor-algebra L/Leib(L) is abelian;
(IA2) the factor-algebra L/Leib(L) is not abelian;

and
(IB1) the factor-algebra L/Leib(L) is abelian;
(IB2) the factor-algebra L/Leib(L) is not abelian.
Consider these cases.

Theorem 1. Let L be a Leibniz algebra over a őeld F having dimension 3.
Suppose that L is not a Lie algebra. If the center of L includes the Leibniz

kernel, dimF (Leib(L)) = 1 and the factor-algebra L/Leib(L) is abelian,

then L is an algebra of one of the following types.

(i) Lei3(3, F ) = L3 is a direct sum of two ideals A = Fa1 ⊕ Fa3 and

B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2,
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[A,B] = [B,A] = ⟨0⟩, so that L3 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,
[a1, a2] = [a1, a3] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] =
[a3, a3] = 0, Leib(L3) = [L3, L3] = Fa3, ζ

left(L3) = ζright(L3) = ζ(L3) =
Fa2 ⊕ Fa3, L3 is nilpotent and ncl(L3) = 2.

(ii) Lei4(3, F ) = L4 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra of

dimension 2, [A,B] = Fa3, [B,A] = ⟨0⟩, so that L4 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = [a1, a2] = a3, [a1, a3] = [a2, a1] = [a2, a2] = [a2, a3] =
[a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L4) = [L4, L4] = ζright(L4) =
ζ(L4) = Fa3, ζ

left(L4) = Fa2 ⊕ Fa3, L4 is nilpotent and ncl(L4) = 2.

(iii) Lei5(3, F ) = L5 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra of

dimension 2, [A,B] = ⟨0⟩, [B,A] = Fa3, so that L5 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = [a2, a1] = a3, [a1, a2] = [a1, a3] = [a2, a2] = [a2, a3] =
[a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L5) = [L5, L5] = ζ left(L5) =
ζ(L5) = Fa3, ζ

right(L5) = Fa2 ⊕ Fa3, L5 is nilpotent and ncl(L5) = 2.

(iv) Lei6(3, F ) = L6 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra of

dimension 2, [A,B] = [B,A] = Fa3, so that L6 = Fa1⊕Fa2⊕Fa3 where

[a1, a1] = [a2, a1] = a3, [a1, a2] = αa3 (α ≠ 0), [a1, a3] = [a2, a2] =
[a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L6) = [L6, L6] =
ζright(L6) = ζ left(L6) = ζ(L6) = Fa3, L6 is nilpotent and ncl(L6) = 2.

(v) Lei7(3, F ) = L7 is a sum of two nilpotent cyclic ideals A =
Fa1 ⊕ Fa3 and C = Fa2 ⊕ Fa3, [A,C] = [C,A] = ⟨0⟩, so that L7 =
Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a2, a2] = βa3 (β ̸= 0), [a1, a2] =
[a1, a3] = [a2, a1] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L7) =
[L7, L7] = ζright(L7) = ζ left(L7) = ζ(L7) = Fa3. Moreover, polynomial

X2 + β has no root in őeld F , L7 is nilpotent and ncl(L7) = 2.

(vi) Lei8(3, F ) = L8 is a sum of two nilpotent cyclic ideals A =
Fa1 ⊕ Fa3 and C = Fa2 ⊕ Fa3, [A,C] = Fa3, [C,A] = ⟨0⟩, so that

L8 = Fa1 ⊕ Fa2 ⊕ Fa3, [a1, a1] = a3, [a1, a2] = αa3, [a2, a2] = βa3
(α, β ̸= 0), [a1, a3] = [a2, a1] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L8) = [L8, L8] = ζright(L8) = ζ left(L8) = ζ(L8) = Fa3. Moreover,

polynomial X2 + αX + β has no root in őeld F , L8 is nilpotent and

ncl(L8) = 2.

(vii) Lei9(3, F ) = L9 is a sum of two nilpotent cyclic ideals A = Fa1⊕
Fa3 and B = Fa2⊕Fa3 such that [A,B] = ⟨0⟩, [B,A] = Fa3, so that L9 =
Fa1⊕Fa2⊕Fa3 where [a1, a1] = a3, [a2, a1] = a3, [a2, a2] = σa3 (σ ≠ 0),
[a1, a2] = [a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L9) =
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[L9, L9] = ζright(L9) = ζ(L9) = ζ left(L9) = Fa3. Moreover, polynomial

X2 +X + σ has no root in őeld F , L9 is nilpotent and ncl(L9) = 2.

(viii) Lei10(3, F ) = L10 is a sum of two nilpotent cyclic ideals A =
Fa1 ⊕ Fa3 and B = Fa2 ⊕ Fa3 such that [A,B] = [B,A] = Fa3, so

that L10 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a2, a1] = a3, [a1, a2] =
τa3 (τ ̸= 0), [a2, a2] = σa3 (σ ≠ 0), [a1, a3] = [a2, a3] = [a3, a1] =
[a3, a2] = [a3, a3] = 0, Leib(L10) = [L10, L10] = ζright(L10) = ζ left(L10) =
ζ(L10) = Fa3. Moreover, polynomial X2 + (τ + 1)X + σ has no root in

őeld F , L10 is nilpotent and ncl(L10) = 2.

Proof. We note that the center ζ(L) has dimension at most 2. Suppose
őrst that dimF (ζ(L)) = 2. Since L is not a Lie algebra, there is an element
a1 such that [a1, a1] = a3 ≠ 0. We note that a3 ∈ ζ(L). It follows that
[a1, a3] = [a3, a1] = [a3, a3] = 0. Being an abelian algebra of dimension 2,
ζ(L) has a direct decomposition ζ(L) = Fa2 ⊕ Fa3 for some element a2.
Put A = Fa1 ⊕ Fa3 and B = Fa2, then B ⩽ ζ(L), so that B is an ideal
of L. Clearly, L = Fa1 ⊕ Fa2 ⊕ Fa3 = A⊕B and A is also an ideal of L.
Moreover, A is a nilpotent cyclic Leibniz algebra of dimension 2. Thus,
we come to the following type of nilpotent Leibniz algebras:

L3 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = [a1, a3] = [a2, a1] = [a2, a2]

= [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L3) = [L3, L3] = Fa3, ζ
left(L3) = ζright(L3) =

ζ(L3) = Fa2 ⊕ Fa3, ncl(L3) = 2.

Suppose now that the center of L has dimension 1. In this case,
ζ(L) = Leib(L). Since L is not a Lie algebra, there is an element a1 such
that [a1, a1] = a3 ̸= 0. We note that a3 ∈ ζ(L). It follows that [a1, a3] =
[a3, a1] = [a3, a3] = 0. Then ζ(L) = Fa3. Since L/Leib(L) is abelian, for
every element x ∈ L we have [a1, x], [x, a1] ∈ ζ(L) ⩽ ⟨a1⟩ = Fa1 ⊕ Fa3.
It follows that subalgebra ⟨a1⟩ is an ideal of L. Since dimF (⟨a1⟩) = 2,
⟨a1⟩ ≠ L.

Suppose őrst that there exists an element b such that b /∈ ⟨a1⟩ and
[b, b] = 0. We have [b, a1] = γa3 for some γ ∈ F . The following two
cases appear here: γ = 0 and γ ̸= 0. Let γ = 0. Then [a1, b] = αa3 for
some α ∈ F . If we suppose that α = 0, then b ∈ ζ(L). But in this case,
dimF (ζ(L)) = 2, and we obtain a contradiction, which shows that α ≠ 0.
Put a2 = α−1b, then [a2, a2] = [a2, a1] = 0, [a1, a2] = a3, and we come to
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the following nilpotent Leibniz algebra:

L4 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a2] = a3,

[a1, a3] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L4) = [L4, L4] = Fa3, ζ left(L4) = Fa2 ⊕ Fa3,
ζright(L4) = ζ(L4) = Fa3, ncl(L4) = 2.

Let γ ≠ 0. Put a2 = γ−1b, then [a2, a2] = 0, [a2, a1] = a3. We have
[a1, a2] = αa3 for some element α ∈ F . If α = 0, then a2 ∈ ζright(L), and
we come to the following nilpotent Leibniz algebra:

L5 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a2, a1] = a3,

[a1, a2] = [a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L5) = [L5, L5] = Fa3, ζ
right(L5) = Fa2 ⊕ Fa3,

ζ left(L5) = ζ(L5) = Fa3, ncl(L5) = 2.
Suppose that α ≠ 0. Then, we come to the following type of nilpotent

Leibniz algebras:

L6 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a2, a1] = a3,

[a1, a2] = αa3 (α ̸= 0),

[a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L6) = [L6, L6] = ζright(L6) = ζ left(L6) = ζ(L6) =
Fa3, ncl(L6) = 2.

Suppose now that [b, b] ̸= 0 for every element b /∈ ⟨a1⟩. In particular, it
follows that b /∈ ζ(L). Put [b, b] = βa3 where β ∈ F . We have [b, a1] = γa3
and [a1, b] = αa3 for some elements α, γ ∈ F . If α = γ = 0, then put
a2 = b and denote by C the subalgebra generates by a2. Then C is
a cyclic nilpotent ideal such that [A,C] = [C,A] = ⟨0⟩. Furthermore, let
u = λa1 + µa2 + νa3 be the arbitrary element of L. Then,

[λa1 + µa2 + νa3, λa1 + µa2 + νa3] = λ2[a1, a1] + µ2[a2, a2] =

λ2a3 + βµ2a3 = (λ2 + βµ2)a3.

If u /∈ ⟨a1⟩, then (λ, µ) ̸= (0, 0). It follows that polynomial X2 + β has no
root in őeld F . Thus, we come to the following type of nilpotent Leibniz
algebras:

L7 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a2, a2] = βa3 (β ̸= 0),

[a1, a2] = [a1, a3] = [a2, a1] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.
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Note also that Leib(L7) = [L7, L7] = ζright(L7) = ζ left(L7) = ζ(L7) =
Fa3. Moreover, polynomial X2 + β has no root in őeld F , ncl(L7) = 2.

Suppose now that γ = 0 and α ≠ 0. Put a2 = b. Then, [a2, a1] = 0,
[a1, a2] = αa3, [a2, a2] = βa3. Let λa1+µa2+νa3 be an arbitrary element
of L. Then,

[λa1 + µa2 + νa3, λa1 + µa2 + νa3] =

λ2[a1, a1] + λµ[a1, a2] + λµ[a2, a1] + µ2[a2, a2] =

λ2a3 + λµαa3 + µ2βa3 = (λ2 + λµα+ µ2β)a3.

As above, λ ̸= 0, µ ̸= 0. It follows that polynomial X2 + αX + β has no
root in őeld F . Thus, we come to the following type of nilpotent Leibniz
algebras:

L8 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = αa3 (α ̸= 0), [a2, a2] = βa3 (β ̸= 0),

[a1, a3] = [a2, a1] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L8) = [L8, L8] = ζright(L8) = ζ left(L8) = ζ(L8) =
Fa3. Moreover, polynomial X2+αX+β has no root in őeld F , ncl(L8) = 2.

Suppose now that γ ̸= 0 and α = 0. Put a2 = γ−1b. Then, [a2, a1] = a3,
[a1, a2] = 0, [a2, a2] = γ−2βa3 = σa3. Let λa1+µa2+ νa3 be an arbitrary
element of L. Then,

[λa1 + µa2 + νa3, λa1 + µa2 + νa3] =

λ2[a1, a1] + λµ[a2, a1] + µ2[a2, a2] =

λ2a3 + λµa3 + µ2σa3 = (λ2 + λµ+ µ2σ)a3.

As above, λ ̸= 0, µ ≠ 0. It follows that polynomial X2 +X + σ has no
root in őeld F . Thus, we come to the following type of nilpotent Leibniz
algebras:

L9 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a2, a1] = a3,

[a2, a2] = σa3 (σ ̸= 0),

[a1, a2] = [a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L9) = [L9, L9] = ζright(L9) = ζ left(L9) = ζ(L9) =
Fa3. Moreover, polynomial X2+X+σ has no root in őeld F , ncl(L9) = 2.
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Suppose now that γ ̸= 0 and α ≠ 0. Put a2 = γ−1b. Then, [a2, a1] = a3,
[a1, a2] = γ−1αa3 = τa3, [a2, a2] = γ−2βa3 = σa3. Let λa1 + µa2 + νa3
be an arbitrary element of L. Then,

[λa1 + µa2 + νa3, λa1 + µa2 + νa3] =

λ2[a1, a1] + λµ[a1, a2] + λµ[a2, a1] + µ2[a2, a2] =

λ2a3 + λµτa3 + λµa3 + µ2σa3 = (λ2 + λµ(τ + 1) + µ2σ)a3.

As above, λ ≠ 0, µ ≠ 0. It follows that polynomial X2 + (τ + 1)X + σ
has no root in őeld F . Thus, we come to the following type of nilpotent
Leibniz algebras:

L10 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a2, a1] = a3,

[a1, a2] = τa3 (τ ̸= 0), [a2, a2] = σa3 (σ ̸= 0),

[a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L10) = [L10, L10] = ζright(L10) = ζ left(L10) =
ζ(L10) = Fa3. Moreover, polynomial X2 + (τ + 1)X + σ has no root
in őeld F , ncl(L10) = 2.

Theorem 2. Let L be a Leibniz algebra of dimension 3 over a őeld F .

Suppose that L is not a Lie algebra. If the center of L includes the Leibniz

kernel, dimF (Leib(L)) = 1 and factor-algebra L/Leib(L) is non-abelian,

then L is an algebra of one of the following types.

(i) Lei11(3, F ) = L11 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra of

dimension 2, [A,B] = [B,A] = Fa1, so that L11 = Fa1⊕Fa2⊕Fa3 where

[a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1, [a1, a3] = [a2, a2] = [a2, a3] =
[a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L11) = ζ left(L11) = ζright(L11) =
ζ(L11) = Fa3, [L11, L11] = Fa1 ⊕ Fa3, L11 is non-nilpotent.

(ii) Lei12(3, F ) = L12 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra

of dimension 2, [A,B] = [B,A] = Fa1 ⊕ Fa3, so that L12 = Fa1 ⊕
Fa2 ⊕ Fa3 where [a1, a1] = a3, [a1, a2] = −a1 − αa3, [a2, a1] = a1 +
αa3 (α ̸= 0), [a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] =
0, Leib(L12) = ζ left(L12) = ζright(L12) = ζ(L12) = Fa3, [L12, L12] =
Fa1 ⊕ Fa3, L12 is non-nilpotent.

(iii) Lei13(3, F ) = L13 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Moreover, A, B are nilpotent cyclic Leibniz algebras

of dimension 2, [A,B] = [B,A] = Fa1, so that L13 = Fa1 ⊕ Fa2 ⊕ Fa3
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where [a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1, [a2, a2] = γa3 (γ ̸= 0),
[a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L13) =
ζ left(L13) = ζright(L13) = ζ(L13) = Fa3, [L13, L13] = Fa1 ⊕ Fa3. More-

over, polynomial X2 + γ has no root in őeld F , L13 is non-nilpotent.

(iv) Lei14(3, F ) = L14 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Moreover, A,B are nilpotent cyclic Leibniz algebras of

dimension 2, [A,B] = [B,A] = Fa1⊕Fa3, so that L14 = Fa1⊕Fa2⊕Fa3
where [a1, a1] = a3, [a1, a2] = −a1 − αa3, [a2, a1] = a1 + αa3 (α ̸= 0),
[a2, a2] = γa3 (γ ̸= 0), [a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] =
0, Leib(L14) = ζ left(L14) = ζright(L14) = ζ(L14) = Fa3, [L14, L14] =
Fa1 ⊕ Fa3. Moreover, polynomial X2 + γ has no root in őeld F , L14 is

non-nilpotent.

(v) Lei15(3, F ) = L15 is a direct sum of ideal B = Fa2 and a subalgebra

A = Fa1 ⊕ Fa3. Moreover, A is a nilpotent cyclic Leibniz algebra of

dimension 2, [A,B] = [B,A] = Fa2, so that L15 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = a3, [a1, a2] = a2, [a2, a1] = −a2, [a1, a3] = [a2, a2] =
[a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L15) = ζ left(L15) =
ζright(L15) = ζ(L15) = Fa3, [L15, L15] = Fa2 ⊕Fa3, L15 is non-nilpotent.

(vi) Lei16(3, F ) = L16 is a sum of abelian ideal B = Fa2 ⊕ Fa3 and

a subalgebra A = Fa1 ⊕ Fa3. Moreover, A is a nilpotent cyclic Leibniz

algebra of dimension 2, [A,B] = [B,A] = Fa2 ⊕ Fa3, so that L16 =
Fa1⊕Fa2⊕Fa3 where [a1, a1] = a3, [a1, a2] = a2+αa3, [a2, a1] = −a2−
αa3 (α ̸= 0), [a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] =
0, Leib(L16) = ζ left(L16) = ζright(L16) = ζ(L16) = Fa3, [L16, L16] =
Fa2 ⊕ Fa3, L16 is non-nilpotent.

Proof. We note that the center ζ(L) has dimension at most 2. Suppose
őrst that dimF (ζ(L)) = 2. Since L is a not Lie algebra, there is an element
a1 such that [a1, a1] = a3 ≠ 0. We note that a3 ∈ ζ(L). It follows that
[a1, a3] = [a3, a1] = [a3, a3] = 0. Being an abelian algebra of dimension
2, ζ(L) has a direct decomposition ζ(L) = Fa2 ⊕ Fa3 for some element
a2. We have [a1, a2] = [a2, a1] = 0. But, in this case, the factor-algebra
L/Leib(L) is abelian, and we obtain a contradiction. This contradiction
shows that ζ(L) has dimension 1 and hence, ζ(L) = Leib(L).

As noted above, L/Leib(L) has an ideal C/Leib(L) of dimension 1
(i.e., C = Fc⊕ Leib(L) for some element c). If [c, c] ̸= 0 without loss of
generality, we can put c = a1. The ideal ⟨a1⟩ = Fa1⊕Fa3 = A is nilpotent
and has codimension 1. Let b be an element such that L = A⊕ Fb. We
have [b, b] = γa3 for some element γ ∈ F . As noted above, in this case,
[b, a1] ∈ a1 + Fa3 so that [b, a1] = a1 + αa3 for some element α ∈ F . We
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have also [a1, b] = −a1 + βa3 for some element β ∈ F . Using the equality

[b, [a1, b]] = [[b, a1], b] + [a1, [b, b]] = [[b, a1], b],

we obtain [b,−a1 + βa3] = [a1 + αa3, b]. It follows that −[b, a1] = [a1, b],
so that [a1, b] = −a1 − αa3.

Suppose that γ = α = 0. Put a2 = b. Then, [a2, a2] = 0, [a1, a2] = −a1,
[a2, a1] = a1. Thus, we come to the following type of Leibniz algebras:

L11 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1,

[a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L11) = ζ left(L11) = ζright(L11) = ζ(L11) = Fa3,
[L11, L11] = Fa1 ⊕ Fa3, L11 is non-nilpotent.

Suppose now that γ = 0 and α ̸= 0. Put again a2 = b. Then, [a2, a2] =
0, [a1, a2] = −a1−αa3, [a2, a1] = a1+αa3. Then, we come to the following
type of Leibniz algebras:

L12 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = −a1 − αa3, [a2, a1] = a1 + αa3 (α ̸= 0),

[a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L12) = ζ left(L12) = ζright(L12) = ζ(L12) = Fa3,
[L12, L12] = Fa1 ⊕ Fa3, L12 is non-nilpotent.

Suppose that γ ̸= 0 and α = 0. Put again a2 = b. Then, [a2, a2] = γa3,
[a1, a2] = −a1, [a2, a1] = a1. Let λa1 + µa2 + νa3 be an arbitrary element
of L. Then,

[λa1 + µa2 + νa3, λa1 + µa2 + νa3] =

λ2[a1, a1] + λµ[a1, a2] + λµ[a2, a1] + µ2[a2, a2] =

λ2a3 − λµa1 + λµa1 + µ2γa3 = (λ2 + µ2γ)a3.

As above, λ ≠ 0, µ ̸= 0. It follows that polynomial X2 + γ has no root in
őeld F . Then, we come to the following type of Leibniz algebras:

L13 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1,

[a2, a2] = γa3 (γ ̸= 0),

[a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L13) = ζ left(L13) = ζright(L13) = ζ(L13) = Fa3,
[L13, L13] = Fa1 ⊕Fa3. Moreover, polynomial X2 + γ has no root in őeld
F , L13 is non-nilpotent.
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Suppose now that γ ̸= 0 and α ̸= 0. Put again a2 = b. Then, [a2, a2] =
γa3, [a1, a2] = −a1 − αa3, [a2, a1] = a1 + αa3. Let λa1 + µa2 + νa3 be an
arbitrary element of L. Then,

[λa1 + µa2 + νa3, λa1 + µa2 + νa3] =

λ2[a1, a1] + λµ[a1, a2] + λµ[a2, a1] + µ2[a2, a2] =

λ2a3 − λµ(−a1 − αa3) + λµ(a1 + αa3) + µ2γa3 = (λ2 + µ2γ)a3.

As above, λ ≠ 0, µ ̸= 0. It follows that polynomial X2 + γ has no root in
őeld F . Then, we come to the following type of Leibniz algebras:

L14 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = −a1 − αa3, [a2, a1] = a1 + αa3 (α ̸= 0),

[a2, a2] = γa3 (γ ̸= 0),

[a1, a3] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L14) = ζ left(L14) = ζright(L14) = ζ(L14) = Fa3,
[L14, L14] = Fa1 ⊕Fa3. Moreover, polynomial X2 + γ has no root in őeld
F , L14 is non-nilpotent.

Suppose now that [c, c] = 0. Put again Leib(L) = Fa3. Since Leib(L) =
ζ(L), the ideal C = Fc⊕ Leib(L) is abelian. Suppose that there exists an
element b /∈ C such that [b, b] = 0. Using the above arguments without
loss of generality, we can assume that [b, c] ∈ c+Fa3, [c, b] ∈ −c+Fa3, so
that [b, c] = c+ αa3, [c, b] = −c+ βa3 for some elements α, β ∈ F . Using
the equality

[[b, c], b] = [b, [c, b]]− [c, [b, b]] = [b, [c, b]],

we obtain [c + αa3, b] = [b,−c + βa3]. It follows that [c, b] = −[b, c], so
that [c, b] = −c− αa3. Let u = λc+ µb+ νa3 be an arbitrary element of
L. Then,

[λc+ µb+ νa3, λc+ µb+ νa3] =

λ2[c, c] + λµ[c, b] + λµ[b, c] + µ2[b, b] = λµ[c, b] + λµ[b, c] = 0.

Thus, we obtain a contradiction with the fact that L is not a Lie algebra.
This contradiction shows that [b, b] ̸= 0 for every element b /∈ C. Hence,
[b, b] = γa3 where γ is a non-zero element of őeld F . Without loss of
generality, we can assume that [b, b] = a3. Since [b, b] ∈ Leib(L) = ζ(L),
we obtain that [c, b] = −[b, c], so that [c, b] = −c− αa3.
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If α = 0, then [b, c] = c, [c, b] = −c. Put b = a1, c = a2, then Fa2 is
an ideal of L, and we come to the following type of Leibniz algebras:

L15 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a1, a2] = a2, [a2, a1] = −a2,

[a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L15) = ζ left(L15) = ζright(L15) = ζ(L15) = Fa3,
[L15, L15] = Fa2 ⊕ Fa3, L15 is non-nilpotent.

If α ̸= 0, then [b, c] = c+ αa3, [c, b] = −c− αa3, and we come to the
following type of Leibniz algebras:

L16 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = a2 + αa3, [a2, a1] = −a2 − αa3 (α ̸= 0),

[a1, a3] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L16) = ζ left(L16) = ζright(L16) = ζ(L16) = Fa3,
[L16, L16] = Fa2 ⊕ Fa3, L16 is non-nilpotent.

Theorem 3. Let L be a Leibniz algebra of dimension 3 over a őeld F .

Suppose that L is not a Lie algebra. If the center of L does not include

the Leibniz kernel, dimF (Leib(L)) = 1 and the factor-algebra L/Leib(L)
is abelian, then L is an algebra of one of the following types.

(i) Lei17(3, F ) = L17 is a direct sum of two ideals A = Fa1 ⊕ Fa3
and B = Fa2. Moreover, A is a non-nilpotent cyclic Leibniz algebra of

dimension 2 and B = ζ(L), [A,B] = [B,A] = ⟨0⟩, so that L17 = Fa1 ⊕
Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3, [a1, a2] = [a2, a1] = [a2, a2] =
[a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L17) = [L17, L17] = Fa3,
ζ left(L17) = Fa2 ⊕ Fa3, ζ

right(L17) = ζ(L17) = Fa2, L17 is non-nilpotent.

(ii) Lei18(3, F ) = L18 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

a subalgebra B = Fa2. Moreover, A is a non-nilpotent cyclic Leibniz

algebra of dimension 2, [A,B] = Fa3, [B,A] = ⟨0⟩, so that L18 = Fa1 ⊕
Fa2 ⊕ Fa3 where [a1, a1] = [a1, a2] = [a1, a3] = a3, [a2, a1] = [a2, a2] =
[a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L18) = [L18, L18] = Fa3,
ζ left(L18) = Fa2 ⊕ Fa3, ζ

right(L18) = ζ(L18) = ⟨0⟩, L18 is non-nilpotent.

(iii) Lei19(3, F ) = L19 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

a subalgebra B = Fa2. Moreover,A is a non-nilpotent cyclic Leibniz algebra

of dimension 2, [A,B] = ⟨0⟩, [B,A] = Fa3, so that L19 = Fa1⊕Fa2⊕Fa3
where [a1, a1] = [a1, a3] = [a2, a1] = [a2, a3] = a3, [a1, a2] = [a2, a2] =
[a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L19) = [L19, L19] = ζ left(L19) =
Fa3, ζ

right(L19) = Fa2, ζ(L19) = ⟨0⟩, L19 is non-nilpotent.
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(iv) Lei20(3, F ) = L20 is a sum of two ideals A = Fa1 ⊕ Fa3 and

B = Fa2 ⊕ Fa3. Furthermore, A is a non-nilpotent cyclic Leibniz algebra

of dimension 2, B is a nilpotent cyclic Leibniz algebra of dimension 2,
[A,B] = Fa3, [B,A] = ⟨0⟩, so that L20 = Fa1⊕Fa2⊕Fa3 where [a1, a1] =
[a1, a3] = a3, [a2, a2] = σa3 (σ ̸= 0), [a1, a2] = [a2, a1] = [a2, a3] =
[a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L20) = [L20, L20] = ζ left(L20) =
Fa3, ζ

right(L20) = ζ(L20) = ⟨0⟩. Moreover, if αa1 + βa2 + γa3 /∈ A, then

α2 + αγ + β2σ ̸= 0, L20 is non-nilpotent.

(v) Lei21(3, F ) = L21 is a sum of two ideals A = Fa1 ⊕ Fa3 and

B = Fa2 ⊕ Fa3. Furthermore, A is a non-nilpotent cyclic Leibniz algebra

of dimension 2, B is a nilpotent cyclic Leibniz algebra of dimension 2,
[A,B] = Fa3, [B,A] = ⟨0⟩, so that L21 = Fa1⊕Fa2⊕Fa3 where [a1, a1] =
[a1, a2] = [a1, a3] = a3, [a2, a2] = τa3 (τ ̸= 0), [a2, a1] = [a2, a3] =
[a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L21) = [L21, L21] = ζ left(L21) =
Fa3, ζ

right(L21) = ζ(L21) = ⟨0⟩. Moreover, if αa1 + βa2 + γa3 /∈ A, then

α2 + αβ + αγ + β2τ ̸= 0, L21 is non-nilpotent.

(vi) Lei22(3, F ) = L22 is a sum of two ideals A = Fa1 ⊕Fa3 and B =
Fa2 ⊕ Fa3. Furthermore, A,B are non-nilpotent cyclic Leibniz algebras

of dimension 2, [A,B] = [B,A] = Fa3, so that L22 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = [a1, a3] = [a2, a1] = [a2, a3] = a3, [a2, a2] = τa3 (τ ≠ 0),
[a1, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L22) = [L22, L22] =
ζ left(L22) = Fa3, ζ

right(L22) = ζ(L22) = ⟨0⟩. Moreover, if αa1 + βa2 +
γa3 /∈ A, then α2 + αγ + αβ + β2τ + βγ ̸= 0, L22 is non-nilpotent.

(vii) Lei23(3, F ) = L23 is a sum of two ideals A = Fa1⊕Fa3 and B =
Fa2 ⊕ Fa3. Furthermore, A,B are non-nilpotent cyclic Leibniz algebras

of dimension 2, [A,B] = [B,A] = Fa3, so that L23 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = [a1, a3] = [a2, a1] = [a2, a3] = a3, [a1, a2] = δa3 (δ ̸= 0),
[a2, a2] = τa3 (τ ̸= 0), [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L23) =
[L23, L23] = ζ left(L23) = Fa3, ζ

right(L23) = ζ(L23) = ⟨0⟩. Moreover, if

αa1 + βa2 + γa3 /∈ A, then α2 + αβδ + αγ + αβ + β2τ + βγ ≠ 0, L23 is

non-nilpotent.

Proof. Since dimF (Leib(L)) = 1, Leib(L) ∩ ζ(L) = ⟨0⟩. If we suppose
that the center ζ(L) has dimension 2, then L = Leib(L)⊕ ζ(L). But, in
this case, L is abelian and we obtain a contradiction. Suppose now that
dimF (ζ(L)) = 1.

Since L is not a Lie algebra, there is an element a1 such that [a1, a1] =
a3 ≠ 0. Then, Leib(L) = Fa3. Then,A = ⟨a1⟩ = Fa1⊕Fa3 is a subalgebra
of L. It is obvious that A ∩ ζ(L) = ⟨0⟩, so that L = A ⊕ ζ(L), A is an
ideal of L and B = ζ(L) = Fa2. If we suppose that A is nilpotent (that
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is, [a1, a3] = 0), then Leib(L) = Leib(A) = ζ(A) ⩽ ζ(L), and we obtain
a contradiction. Thus, A is not nilpotent. As we have seen above, we
can choose an element a1 such that [a1, a3] = a3. Thus, we come to the
following type of Leibniz algebras:

L17 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3,

[a1, a2] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L17) = [L17, L17] = Fa3, ζ
left(L17) = Fa2 ⊕ Fa3,

ζright(L17) = ζ(L17) = Fa2, L17 is non-nilpotent.

Suppose now that ζ(L) is zero. Since L is not a Lie algebra, there is
an element a1 such that [a1, a1] = a3 ≠ 0. Then, Leib(L) = Fa3. Since
L/Leib(L) is abelian, a subalgebra A = ⟨a1⟩ = Fa1 ⊕ Fa3 is an ideal of
L. Suppose that A is nilpotent (that is, [a1, a3] = 0). Let b be an element
of L such that b /∈ A. We have:

[b, a3] = [b, [a1, a1]] = [[b, a1], a1] + [a1, [b, a1]] = [λa3, a1] + [a1, λa3] = 0.

Since [a3, b] = 0, we obtain that a3 ∈ ζ(L), and we obtain a contradiction.
This contradiction shows that subalgebra A = ⟨a1⟩ = Fa1 ⊕ Fa3 is not
nilpotent. As we have seen above, we can choose an element a1 such that
[a1, a3] = a3.

Suppose that L contains an element b such that b /∈ A and [b, b] = 0.
Since L/Leib(L) is abelian, [b, a1] = λa3, [a1, b] = µa3 for some elements
λ, µ ∈ F . As above,

[b, a3] = [a1, [b, a1]] = [a1, λa3] = λ[a1, a3] = λa3.

If λ = µ = 0, then b ∈ ζ(L), and we obtain a contradiction with our
assumption concerning the inclusion of ζ(L).

Suppose, now, that λ = 0, µ ̸= 0. Put a2 = µ−1b, then [a2, a1] = 0,
[a1, a2] = a3, [a2, a2] = 0. As seen above, we can observe that [a2, a3] = 0,
and we obtain that [a2, A] = ⟨0⟩. It follows that a2 ∈ ζ left(L). Thus, we
come to the following type of Leibniz algebras:

L18 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a2] = [a1, a3] = a3,

[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L18) = [L18, L18] = Fa3, ζ
left(L18) = Fa2 ⊕ Fa3,

ζright(L18) = ζ(L14) = ⟨0⟩, L18 is non-nilpotent.
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Suppose now that λ ̸= 0, µ = 0. Put a2 = λ−1b, then [a2, a1] = a3,
[a1, a2] = 0, [a2, a2] = 0. Since [a3, a2] = 0, [A, a2] = ⟨0⟩. It follows that
a2 ∈ ζright(L). Thus, we come to the following type of Leibniz algebras:

L19 = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = [a1, a3] = [a2, a1] = [a2, a3] = a3,

[a1, a2] = [a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L19) = [L19, L19] = ζ left(L19) = Fa3, ζ
right(L19) =

Fa2, ζ(L19) = ⟨0⟩, L19 is non-nilpotent.
Suppose now that µ ̸= 0, λ ̸= 0. We have:

0 = [a1, 0] = [a1, [b, b]] = [[a1, b], b] + [b, [a1, b]] =

[b, [a1, b]] = [b, µa3] = µ[b, a3] = µλa3.

It follows that µλ = 0, and we obtain a contradiction.
Suppose that [b, b] ̸= 0 for every element b such that b /∈ A. Since

L/Leib(L) is abelian, [b, a1] = λa3, [a1, b] = µa3 for some elements λ, µ ∈
F , and [b, b] = σa3 for some non-zero element σ ∈ F .

As above,

[b, a3] = [a1, [b, a1]] = [a1, λa3] = λ[a1, a3] = λa3.

If λ = µ = 0, then [b, a1] = [a1, b] = [b, a3] = 0. Put a2 = b. Let
u = αa1 + βa2 + γa3 be an arbitrary element of L. Then,

[u, u] = [αa1 + βa2 + γa3, αa1 + βa2 + γa3] =

α2[a1, a1] + αγ[a1, a3] + β2[a2, a2] =

α2a3 + αγa3 + β2a3 = (α2 + αγ + β2σ)a3.

If u /∈ A, then [u, u] ̸= 0. It follows that α2 + αγ + β2σ ̸= 0. Thus, we
come to the following type of Leibniz algebras:

L20 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3,

[a2, a2] = σa3 (σ ̸= 0),

[a1, a2] = [a2, a1] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L20) = [L20, L20] = ζ left(L20) = Fa3, ζ
right(L20) =

ζ(L20) = ⟨0⟩. Moreover, if αa1 + βa2 + γa3 /∈ A, then α2 + αγ + β2σ ̸= 0,
L20 is non-nilpotent.
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Suppose now that λ = 0, µ ≠ 0. Put a2 = µ−1b. Then [a2, a1] =
[a2, a3] = 0, [a1, a2] = a3, [a2, a2] = µ−2[b, b] = µ−2σa3 = τa3. Let
αa1 + βa2 + γa3 be an arbitrary element of L. Then,

[αa1 + βa2 + γa3, αa1 + βa2 + γa3] =

α2[a1, a1] + αβ[a1, a2] + αγ[a1, a3] + β2[a2, a2] =

α2a3 + αβa3 + αγa3 + β2τa3 = (α2 + αβ + αγ + β2τ)a3.

As above, α2 + αβ + αγ + β2τ ≠ 0. Thus, we come to the following type
of Leibniz algebras:

L21 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a2] = [a1, a3] = a3,

[a2, a2] = τa3 (τ ̸= 0),

[a2, a1] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L21) = [L21, L21] = ζ left(L21) = Fa3, ζ
right(L21) =

ζ(L21) = ⟨0⟩. Moreover, if αa1+βa2+γa3 /∈ A, then α2+αβ+αγ+β2τ ̸= 0,
L21 is non-nilpotent.

Suppose now that λ ̸= 0, µ = 0. Put a2 = λ−1b. Then [a2, a1] =
[a2, a3] = a3, [a1, a2] = 0, [a2, a2] = λ−2[b, b] = λ−2σa3 = τa3. Let
αa1 + βa2 + γa3 be an arbitrary element of L. Then,

[αa1 + βa2 + γa3, αa1 + βa2 + γa3] =

α2[a1, a1] + αγ[a1, a3] + αβ[a2, a1] + β2[a2, a2] + βγ[a2, a3] =

α2a3 + αγa3 + αβa3 + β2τa3 + βγa3 =

(α2 + αγ + αβ + β2τ + βγ)a3.

As above, α2 + αγ + αβ + β2τ + βγ ̸= 0. Thus, we come to the following
type of Leibniz algebras:

L22 = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = [a1, a3] = [a2, a1] = [a2, a3] = a3,

[a2, a2] = τa3 (τ ̸= 0),

[a1, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L22) = [L22, L22] = ζ left(L22) = Fa3, ζ
right(L22) =

ζ(L22) = ⟨0⟩. Moreover, if αa1 + βa2 + γa3 ̸ inA, then α2 + αγ + αβ +
β2τ + βγ ̸= 0, L22 is non-nilpotent.
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Suppose now that λ ≠ 0, µ ̸= 0. Put a2 = λ−1b. Then [a2, a1] =
[a2, a3] = a3, [a1, a2] = λ−1[a1, b] = λ−1µa3 = δa3, [a2, a2] = λ−2[b, b] =
λ−2σa3 = τa3. Let αa1 + βa2 + γa3 be an arbitrary element of L. Then,

[αa1 + βa2 + γa3, αa1 + βa2 + γa3] =

α2[a1, a1] + αβ[a1, a2] + αγ[a1, a3]+

αβ[a2, a1] + β2[a2, a2] + βγ[a2, a3] =

α2a3 + αβδa3 + αγa3 + αβa3 + β2τa3 + βγa3 =

(α2 + αβδ + αγ + αβ + β2τ + βγ)a3.

As above, α2 + αβδ + αγ + αβ + β2τ + βγ ̸= 0. Thus, we come to the
following type of Leibniz algebras:

L23 = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = [a1, a3] = [a2, a1] = [a2, a3] = a3,

[a1, a2] = δa3 (δ ̸= 0), [a2, a2] = τa3 (τ ̸= 0),

[a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L23) = [L23, L23] = ζ left(L23) = Fa3, ζ
right(L23) =

ζ(L23) = ⟨0⟩. Moreover, if αa1 + βa2 + γa3 /∈ A, then α2 + αβδ + αγ +
αβ + β2τ + βγ ̸= 0, L23 is non-nilpotent.

Let L be a Leibniz algebra over a őeld F , M be non-empty subset of
L and H be a subalgebra of L. Put

AnnleftH (M) = {a ∈ H| [a,M ] = ⟨0⟩},

AnnrightH (M) = {a ∈ H| [M,a] = ⟨0⟩}.

The subset AnnleftH (M) is called the left annihilator of M in subalgebra H .

The subset AnnrightH (M) is called the right annihilator of M in subalgebra
H. The intersection

AnnH(M) = AnnleftH (M) ∩AnnrightH (M)

is called the annihilator of M in subalgebra H.

It is not hard to see that all of these subsets are subalgebras of L.
Moreover, if M is an ideal of L, then AnnH(M) is an ideal of L (see, for
example, [7]).
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Theorem 4. Let L be a Leibniz algebra over a őeld F having dimension

3. Suppose that L is not a Lie algebra. Suppose that the center of L does

not include the Leibniz kernel, dimF (Leib(L)) = 1, and the factor-algebra

L/Leib(L) is non-abelian. Then, L is an algebra of one of the following

types.

(i) Lei24(3, F ) = L24 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra of

dimension 2, char(F ) ̸= 2, [A,B] = Fa1, [B,A] = Fa1 ⊕ Fa3, so that

L24 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1,
[a2, a3] = 2a3, [a1, a3] = [a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L24) = ζ left(L24) = Fa3, ζ

right(L24) = ζ(L24) = ⟨0⟩, [L24, L24] =
Fa1 ⊕ Fa3, L24 is non-nilpotent.

(ii) Lei25(3, F ) = L25 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a nilpotent cyclic Leibniz algebra

of dimension 2, char(F ) ̸= 2, [A,B] = [B,A] = Fa1 ⊕ Fa3, so that

L25 = Fa1⊕Fa2⊕Fa3 where [a1, a1] = a3, [a1, a2] = −a1+αa3, [a2, a1] =
a1 + αa3 (α ̸= 0), [a2, a3] = 2a3, [a1, a3] = [a2, a2] = [a3, a1] = [a3, a2] =
[a3, a3] = 0, Leib(L25) = ζ left(L25) = Fa3, ζ

right(L25) = ζ(L25) = ⟨0⟩,
[L25, L25] = Fa1 ⊕ Fa3, L25 is non-nilpotent.

(iii) Lei26(3, F ) = L26 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Furthermore, A is a non-nilpotent cyclic Leibniz

algebra of dimension 2, [A,B] = Fa1, [B,A] = Fa1 ⊕ Fa3, so that L26 =
Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3, [a1, a2] = −a1, [a2, a1] =
a1, [a2, a3] = 2a3, [a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L26) =
ζ left(L26) = Fa3, [L26, L26] = Fa1 ⊕ Fa3, ζ

right(L26) = ζ(L26) = ⟨0⟩.
Moreover, char(F ) ̸= 2, L26 is non-nilpotent.

(iv) Lei27(3, F ) = L27 is a direct sum of ideal A = Fa1 ⊕ Fa3 and

subalgebra B = Fa2. Moreover, A is a non-nilpotent cyclic Leibniz algebra

of dimension 2, [A,B] = [B,A] = Fa1 ⊕Fa3, so that L27 = Fa1 ⊕Fa2 ⊕
Fa3 where [a1, a1] = [a1, a3] = a3, [a1, a2] = −a1 + βa3 (β = α(1 +α)−1),
[a2, a1] = a1 + αa3, [a2, a3] = (2 + α)a3 (α ̸= 0, α ̸= −1, α ̸= −2),
[a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L27) = ζ left(L27) = Fa3,
[L27, L27] = Fa1 ⊕ Fa3, ζ

right(L27) = ζ(L27) = ⟨0⟩, L27 is non-nilpotent.

(v) Lei28(3, F ) = L28 is a sum of ideal A = Fa1 ⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Furthermore, A is a nilpotent cyclic Leibniz algebra of

dimension 2, B is a non-nilpotent cyclic Leibniz algebra of dimension 2,
char(F ) ̸= 2, [A,B] = Fa1, [B,A] = Fa1 ⊕ Fa3, so that L28 = Fa1 ⊕
Fa2⊕Fa3 where [a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1, [a2, a2] = γa3
(γ ̸= 0), [a2, a3] = 2a3, [a1, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L28) = ζ left(L28) = Fa3, [L28, L28] = Fa1 ⊕ Fa3, ζright(L28) =
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ζ(L28) = ⟨0⟩. Moreover, if λa1+µa2+ νa3 /∈ A, then λ2+µ2γ+2µν ≠ 0,
L28 is non-nilpotent.

(vi) Lei29(3, F ) = L29 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Furthermore, A is a nilpotent cyclic Leibniz algebra of

dimension 2, B is a non-nilpotent cyclic Leibniz algebra of dimension 2,
char(F ) ̸= 2, [A,B] = [B,A] = Fa1⊕Fa3, so that L29 = Fa1⊕Fa2⊕Fa3
where [a1, a1] = a3, [a1, a2] = −a1 + αa3, [a2, a1] = a1 + αa3 (α ̸= 0),
[a2, a2] = γa3 (γ ≠ 0), [a2, a3] = 2a3, [a1, a3] = [a3, a1] = [a3, a2] =
[a3, a3] = 0, Leib(L29) = ζ left(L29) = Fa3, [L29, L29] = Fa1 ⊕ Fa3,
ζright(L29) = ζ(L29) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then

λ2 + 2λµα+ µ2γ + 2µν ̸= 0, L29 is non-nilpotent.

(vii) Lei30(3, F ) = L30 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2 ⊕Fa3. Moreover, A, B are non-nilpotent cyclic Leibniz algebras

of dimension 2, char(F ) ̸= 2, [A,B] = [B,A] = Fa1 ⊕ Fa3, so that

L30 = Fa1⊕Fa2⊕Fa3 where [a1, a1] = [a1, a3] = a3, [a1, a2] = −a1+γa3
(γ ̸= 0), [a2, a1] = a1, [a2, a2] = γa3, [a2, a3] = 2a3, [a3, a1] = [a3, a2] =
[a3, a3] = 0, Leib(L30) = ζ left(L30) = Fa3, [L30, L30] = Fa1 ⊕ Fa3,
ζright(L30) = ζ(L30) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then

λ2 + λµγ + λν + µ2γ + 2µν ̸= 0, L30 is non-nilpotent.

(viii) Lei31(3, F ) = L31 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2⊕Fa3. Moreover, A,B are non-nilpotent cyclic Leibniz algebras of

dimension 2, [A,B] = [B,A] = Fa1⊕Fa3, so that L31 = Fa1⊕Fa2⊕Fa3
where [a1, a1] = [a1, a3] = [a2, a2] = [a2, a3] = a3, [a1, a2] = −a1, [a2, a1] =
a1 − a3, [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L31) = ζ left(L31) = Fa3,
[L31, L31] = Fa1 ⊕ Fa3, ζ

right(L31) = ζ(L31) = ⟨0⟩. Moreover, if λa1 +
µa2 + νa3 /∈ A, then λ2 + λν − λµ+ µ2 + µν ̸= 0, L31 is non-nilpotent.

(ix) Lei32(3, F ) = L31 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Moreover, A,B are non-nilpotent cyclic Leibniz algebras

of dimension 2, [A,B] = [B,A] = Fa1 ⊕ Fa3, so that L32 = Fa1 ⊕
Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = [a2, a2] = [a2, a3] = a3, [a1, a2] =
−a1 + βa3 (β ̸= 0), [a2, a1] = a1 − a3, [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L32) = ζ left(L32) = Fa3, [L32, L32] = Fa1 ⊕ Fa3, ζright(L32) =
ζ(L32) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then λ2 + λµβ + λν −
λµ+ µ2 + µν ̸= 0, L32 is non-nilpotent.

(x) Lei33(3, F ) = L31 is a sum of ideal A = Fa1 ⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Moreover, A,B are non-nilpotent cyclic Leibniz algebras

of dimension 2, [A,B] = [B,A] = Fa1 ⊕ Fa3, L33 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = [a1, a3] = a3, [a1, a2] = −a1, [a2, a1] = a1 − γa3 (γ ≠
0, γ ̸= 1, γ ≠ 2), [a2, a2] = γa3, [a2, a3] = (2− γ)a3, [a3, a1] = [a3, a2] =
[a3, a3] = 0, Leib(L33) = ζ left(L33) = Fa3, [L33, L33] = Fa1 ⊕ Fa3,
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ζright(L33) = ζ(L33) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then

λ2 + λν − λµγ + µ2γ + µν(2− γ) ̸= 0, L33 is non-nilpotent.

(xi) Lei34(3, F ) = L34 is a sum of ideal A = Fa1⊕Fa3 and subalgebra

B = Fa2 ⊕ Fa3. Moreover, A,B are non-nilpotent cyclic Leibniz algebras

of dimension 2, [A,B] = [B,A] = Fa1 ⊕ Fa3, L34 = Fa1 ⊕ Fa2 ⊕ Fa3
where [a1, a1] = [a1, a3] = a3, [a1, a2] = −a1+βa3 (β = (α+γ)(1+α)−1),
[a2, a1] = a1 + αa3 (α ̸= 0, α ̸= −1, α ̸= −2), [a2, a2] = γa3 (γ ̸=
0), [a2, a3] = (2 + α)a3, [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L34) =
ζ left(L34) = Fa3, [L34, L34] = Fa1 ⊕ Fa3, ζ

right(L34) = ζ(L34) = ⟨0⟩.
Moreover, if λa1 + µa2 + νa3 /∈ A, then λ2 + λµβ + λν + λµα + µ2γ +
µν(2 + α) ̸= 0, L34 is non-nilpotent.

(xii) Lei35(3, F ) = L35 is a direct sum of ideal B = Fa2 and a cyclic

non-nilpotent subalgebra A = Fa1⊕Fa3 of dimension 2, [A,B] = [B,A] =
Fa2, so that L35 = Fa1⊕Fa2⊕Fa3 where [a1, a1] = γa3 (γ ̸= 0), [a1, a2] =
a2, [a1, a3] = a3, [a2, a1] = −a2, [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] =
[a3, a3] = 0, Leib(L35) = ζ left(L35) = Fa3, [L35, L35] = Fa2 ⊕ Fa3,
ζright(L35) = ζ(L35) = ⟨0⟩, L35 is non-nilpotent.

(xiii) Lei36(3, F ) = L36 is a sum of abelian ideal B = Fa2 ⊕ Fa3
and a cyclic non-nilpotent subalgebra A = Fa1 ⊕ Fa3 of dimension 2,
[A,B] = [B,A] = Fa2 ⊕ Fa3, so that L36 = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = γa3 (γ ≠ 0), [a1, a2] = a2, [a1, a3] = a3, [a2, a1] = −a2 +
βa3 (β ≠ 0), [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L36) = ζ left(L36) = Fa3, [L36, L36] = Fa2 ⊕ Fa3, ζright(L36) =
ζ(L36) = ⟨0⟩, L36 is non-nilpotent.

Proof. As in the previous theorem, we can see that dimF (ζ(L)) ⩽ 1.
Suppose that dimF (ζ(L)) = 1. Since L is not a Lie algebra, there is
an element a1 such that [a1, a1] = a3 ≠ 0. Then, Leib(L) = Fa3. Let
A = ⟨a1⟩ = Fa1 ⊕ Fa3. An equality Leib(L) ∩ ζ(L) = ⟨0⟩ implies that
A∩ζ(L) = ⟨0⟩, so that L = A⊕ζ(L) and A is an ideal of L. But, in this case,
the factor-algebra L/Leib(L) is abelian, and we obtain a contradiction.
This contradiction shows that ζ(L) = ⟨0⟩.

By what is noted above, L/Leib(L) has an ideal C/Leib(L) of dimen-
sion 1 (i.e., C = Fc⊕Leib(L) for some element c). If [c, c] ̸= 0 without loss
of generality, we can put c = a1. Then, subalgebra ⟨a1⟩ = Fa1 ⊕Fa3 = A
is an ideal which has codimension 1. Then, for every element b such
that b /∈ A, we have L = A ⊕ Fb. By what is noted above, in this case,
[b, a1] ∈ a1 + Fa3, so that [b, a1] = a1 + αa3 for some element α ∈ F . We
have also [a1, b] = −a1+βa3 for some element β ∈ F . Since [b, b] ∈ Leib(L),
[b, b] = γa3 for some element γ ∈ F .
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Suppose őrst that γ = 0. In other words, we suppose that there exists
an element b such that b /∈ A and [b, b] = 0. Consider őrst the case when
A is nilpotent. We have:

[b, a3] = [b, [a1, a1]] = [[b, a1], a1] + [a1, [b, a1]] =

[a1 + αa3, a1] + [a1, a1 + αa3] = [a1, a1] + [a1, a1] = 2a3.

In particular, if we suppose that char(F ) = 2, then [b, a3] = 0. Since
[a1, a3] = [a3, a1] = [a3, b] = 0, Leib(L) = Fa3 ⩽ ζ(L), and we obtain
a contradiction. This contradiction shows that char(F ) ̸= 2. Further,

[b, [a1, b]] = [[b, a1], b] + [a1, [b, b]] = [a1 + αa3, b] = [a1, b] = −a1 + βa3.

On the other hand,

[b, [a1, b]] = [b,−a1 + βa3] = −[b, a1] + β[b, a3] =

−(a1 + αa3) + 2βa3 = −a1 + (2β − α)a3.

It follows that 2β − α = β or β = α and [a1, b] = −a1 + αa3.
Suppose that α = 0. Put a2 = b. Then [a1, a2] = −a1, [a2, a1] = a1,

[a2, a2] = 0, [a2, a3] = 2a3. Thus, we come to the following type of Leibniz
algebras:

L24 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = −a1, [a2, a1] = a1, [a2, a3] = 2a3,

[a1, a3] = [a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L24) = ζ left(L24) = Fa3, ζ
right(L24) = ζ(L24) = ⟨0⟩,

[L24, L24] = Fa1 ⊕ Fa3, char(F ) ̸= 2, L24 is non-nilpotent.
Suppose now that α ̸= 0. Put again a2 = b. Thus, we come to the

following type of Leibniz algebras:

L25 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = −a1 + αa3, [a2, a1] = a1 + αa3 (α ̸= 0),

[a2, a3] = 2a3, [a1, a3] = [a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L25) = ζ left(L25) = Fa3, ζ
right(L25) = ζ(L25) = ⟨0⟩,

[L25, L25] = Fa1 ⊕ Fa3, char(F ) ̸= 2, L25 is non-nilpotent.
Consider now the case when A is not nilpotent. As we have seen above,

we can choose an element a1 such that [a1, a3] = a3. Then,

[b, a3] = [b, [a1, a1]] = [[b, a1], a1] + [a1, [b, a1]] =

[a1 + αa3, a1] + [a1, a1 + αa3] =

[a1, a1] + [a1, a1] + α[a1, a3] = (2 + α)a3.
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Further,

[b, [a1, b]] = [[b, a1], b] + [a1, [b, b]] =

[a1 + αa3, b] = [a1, b] = −a1 + βa3.

On the other hand,

[b, [a1, b]] = [b,−a1 + βa3] = −[b, a1] + β[b, a3] =

−(a1 + αa3) + β(2 + α)a3 = −a1 + (2β + βα− α)a3.

It follows that 2β + βα − α = β or β + βα − α = 0. It follows that
β(1 + α) = α. We consider separately the case when α = 0. Then,
β = 0. If we suppose that char(F ) = 2, then [b, a3] = 0. Since [a3, b] = 0,
b ∈ AnnL(Fa3) = AnnL(Leib(L)). But, AnnL(Leib(L)) is an ideal of
L. Then, [b, a1] = a1 ∈ Fb ⊕ Fa3, and we obtain a contradiction. This
contradiction shows that char(F ) ̸= 2. Put a2 = b. We come to the
following type of Leibniz algebras:

L26 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3, [a1, a2] = −a1,

[a2, a1] = a1, [a2, a3] = 2a3, [a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L26) = ζ left(L26) = Fa3, [L26, L26] = Fa1 ⊕ Fa3,
ζright(L26) = ζ(L26) = ⟨0⟩, char(F ) ̸= 2, L26 is non-nilpotent.

Suppose that α ̸= 0. The equality β(1 + α) = α shows that α ̸= −1.
In this case, β = α(1 + α)−1. If we suppose that α = −2, then [b, a3] = 0.
Using the above arguments, we obtain a contradiction. This contradiction
shows that α ̸= −2. Put a2 = b. We come to the following type of Leibniz
algebras:

L27 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3,

[a1, a2] = −a1 + βa3 (β = α(1 + α)−1), [a2, a1] = a1 + αa3,

[a2, a3] = (2 + α)a3 (α ̸= 0, α ̸= −1, α ̸= −2),

[a2, a2] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L27) = ζ left(L27) = Fa3, [L27, L27] = Fa1 ⊕ Fa3,
ζright(L27) = ζ(L27) = ⟨0⟩, L27 is non-nilpotent.

Suppose now that [b, b] ̸= 0 for every element b such that b /∈ A, so
that [b, b] = γa3 and γ ̸= 0. Consider őrst the case when A is nilpotent.
We have:

[b, a3] = [b, [a1, a1]] = [[b, a1], a1] + [a1, [b, a1]] =

[a1 + αa3, a1] + [a1, a1 + αa3] = [a1, a1] + [a1, a1] = 2a3.
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Again, we obtain that char(F ) ̸= 2. Using the arguments above, we can
get that [a1, b] = −a1 + αa3 again. We consider separately the case when
α = 0 (that is, [a1, b] = −a1, [b, a1] = a1). Let λa1 + µb + νa3 be the
arbitrary element of L. We have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 − λµa1 + λµa1 + µ2γa3 + 2µνa3 =

(λ2 + µ2γ + 2µν)a3.

Then, a condition [b, b] ̸= 0 for every element b /∈ A yields that λ2 + µ2γ +
2µν ≠ 0. Put a2 = b. Thus, we come to the following type of Leibniz
algebras:

L28 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3, [a1, a2] = −a1, [a2, a1] = a1,

[a2, a2] = γa3 (γ ̸= 0), [a2, a3] = 2a3,

[a1, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L28) = ζ left(L28) = Fa3, [L28, L28] = Fa1 ⊕ Fa3,
ζright(L28) = ζ(L28) = ⟨0⟩, char(F ) ̸= 2. Moreover, if λa1+µa2+νa3 /∈ A,
then λ2 + µ2γ + 2µν ̸= 0, L28 is non-nilpotent.

Suppose that α ̸= 0. Let λa1 + µb+ νa3 be the arbitrary element of L.
We have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 + λµ(−a1 + αa3) + λµ(a1 + αa3) + µ2γa3 + 2µνa3 =

λ2a3 − λµa1 + λµαa3 + λµa1 + λµαa3 + µ2γa3 + 2µνa3 =

(λ2 + 2λµα+ µ2γ + 2µν)a3.

As above, λ2 + 2λµα+ µ2γ + 2µν ≠ 0. Put again a2 = b. Then, we come
to the following type of Leibniz algebras:

L29 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a3,

[a1, a2] = −a1 + αa3, [a2, a1] = a1 + αa3 (α ̸= 0),

[a2, a2] = γa3 (γ ̸= 0), [a2, a3] = 2a3,

[a1, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.
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Note also that Leib(L29) = ζ left(L29) = Fa3, [L29, L29] = Fa1 ⊕ Fa3,
ζright(L29) = ζ(L29) = ⟨0⟩, char(F ) ̸= 2. Moreover, if λa1+µa2+νa3 /∈ A,
then λ2 + 2λµα+ µ2γ + 2µν ̸= 0, L29 is non-nilpotent.

Suppose, now, that [b, b] ̸= 0 for every element b such that b /∈ A and
a subalgebra A is not nilpotent. As we have seen above, we can choose an
element a1 such that [a1, a3] = a3. Then,

[b, a3] = [b, [a1, a1]] = [[b, a1], a1] + [a1, [b, a1]] =

[a1 + αa3, a1] + [a1, a1 + αa3] =

[a1, a1] + [a1, a1] + α[a1, a3] = (2 + α)a3.

If we suppose that α = −2, then [b, a3] = 0. Since [a3, b] = 0, b ∈
AnnL(Fa3) = AnnL(Leib(L)). But, AnnL(Leib(L)) is an ideal of L. Then,
[b, a1] ∈ Fb ⊕ Fa3, and we obtain a contradiction. This contradiction
shows that α ̸= −2. Further,

[b, [a1, b]] = [[b, a1], b] + [a1, [b, b]] = [a1 + αa3, b] + [a1, γa3] =

[a1, b] + γ[a1, a3] = −a1 + βa3 + γa3 = −a1 + (β + γ)a3.

On the other hand,

[b, [a1, b]] = [b,−a1 + βa3] = −[b, a1] + β[b, a3] =

−(a1 + αa3) + β(2 + α)a3 = −a1 + (2β + βα− α)a3.

It follows that 2β + βα − α = β + γ or β(1 + α) = α + γ. We consider
separately the case when α = 0 and α = −1.

Let α = 0, then β = γ and [b, a3] = 2a3. Using the arguments given
above, we can obtain that char(F ) ̸= 2. In this case, [b, a1] = a1 and
[a1, b] = −a1 + γa3. Let λa1 +µb+ νa3 be the arbitrary element of L. We
have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λν[a1, a3] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 + λµ(−a1 + γa3) + λµa3 + λµa1 + µ2γa3 + 2µνa3 =

λ2a3 − λµa1 + λµγa3 + λνa3 + λµa1 + µ2γa3 + 2µνa3 =

(λ2 + λµγ + λν + µ2γ + 2µν)a3.

Then, the condition [b, b] ̸= 0 for every element b /∈ A yields that λ2 +
λµγ + λν + µ2γ + 2µν ≠ 0. Put a2 = b. Thus, we come to the following
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type of Leibniz algebras:

L30 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3,

[a1, a2] = −a1 + γa3 (γ ̸= 0), [a2, a1] = a1, [a2, a2] = γa3, [a2, a3] = 2a3,

[a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L30) = ζ left(L30) = Fa3, [L30, L30] = Fa1 ⊕ Fa3,
ζright(L30) = ζ(L30) = ⟨0⟩, char(F ) ̸= 2. Moreover, if λa1+µa2+νa3 /∈ A,
then λ2 + λµγ + λν + µ2γ + 2µν ̸= 0, L30 is non-nilpotent.

Let now α = −1. Then γ = 1, [b, b] = [b, a3] = a3, [b, a1] = a1 − a3,
[a1, b] = −a1 + βa3. If β = 0, then [a1, b] = −a1. Let λa1 + µb+ νa3 be
the arbitrary element of L. We have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λν[a1, a3] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 − λµa1 + λνa3 + λµ(a1 − a3) + µ2a3 + µνa3 =

λ2a3 − λµa1 + λνa3 + λµa1 − λµa3 + µ2a3 + µνa3 =

(λ2 + λν − λµ+ µ2 + µν)a3.

As above, λ2 + λν − λµ+ µ2 + µν ̸= 0. Put a2 = b. Thus, we come to the
following type of Leibniz algebras:

L31 = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = [a1, a3] = [a2, a2] = [a2, a3] = a3,

[a1, a2] = −a1, [a2, a1] = a1 − a3,

[a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L31) = ζ left(L31) = Fa3, [L31, L31] = Fa1 ⊕ Fa3,
ζright(L31) = ζ(L31) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then
λ2 + λν − λµ+ µ2 + µν ̸= 0, L31 is non-nilpotent.

Suppose that β ̸= 0. Let λa1 + µb+ νa3 be the arbitrary element of L.
We have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λν[a1, a3] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 + λµ(−a1 + βa3) + λνa3 + λµ(a1 − a3) + µ2a3 + µνa3 =

λ2a3 − λµa1 + λµβa3 + λνa3 + λµa1 − λµa3 + µ2a3 + µνa3 =

(λ2 + λµβ + λν − λµ+ µ2 + µν)a3.
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As above, λ2 + λµβ + λν − λµ+ µ2 + µν ≠ 0. Put a2 = b. Thus, we come
to the following type of Leibniz algebras:

L32 = Fa1 ⊕ Fa2 ⊕ Fa3 where

[a1, a1] = [a1, a3] = [a2, a2] = [a2, a3] = a3,

[a1, a2] = −a1 + βa3 (β ̸= 0), [a2, a1] = a1 − a3,

[a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L32) = ζ left(L32) = Fa3, [L32, L32] = Fa1 ⊕ Fa3,
ζright(L32) = ζ(L32) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then
λ2 + λµβ + λν − λµ+ µ2 + µν ̸= 0, L32 is non-nilpotent.

Suppose now that α ̸= 0 and α ̸= −1. As we have noted above, α ≠ −2.
We obtain β = (α + γ)(1 + α)−1. If β = 0, then α = −γ, [a1, b] = −a1,
[b, a1] = a1 − γa3, [b, a3] = (2− γ)a3. Let λa1 + µb+ νa3 be the arbitrary
element of L. We have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λν[a1, a3] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 − λµa1 + λνa3 + λµ(a1 − γa3) + µ2γa3 + µν(2− γ)a3 =

λ2a3 − λµa1 + λνa3 + λµa1 − λµγa3 + µ2γa3 + µν(2− γ)a3 =

(λ2 + λν − λµγ + µ2γ + µν(2− γ))a3.

As above, λ2 + λν − λµγ + µ2γ + µν(2 − γ) ̸= 0. Put a2 = b. Thus, we
come to the following type of Leibniz algebras:

L33 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3,

[a1, a2] = −a1, [a2, a1] = a1 − γa3 (γ ̸= 0, γ ̸= 1, γ ̸= 2),

[a2, a2] = γa3, [a2, a3] = (2− γ)a3, [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L33) = ζ left(L33) = Fa3, [L33, L33] = Fa1 ⊕ Fa3,
ζright(L33) = ζ(L33) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then
λ2 + λν − λµγ + µ2γ + µν(2− γ) ̸= 0, L33 is non-nilpotent.

Suppose that β ≠ 0. Then [a1, b] = −a1 + βa3 (β = (α+ γ)(1 +α)−1),
[b, a1] = a1 +αa3, [b, a3] = (2 +α)a3. Let λa1 + µb+ νa3 be the arbitrary
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element of L. We have:

[λa1 + µb+ νa3, λa1 + µb+ νa3] =

λ2[a1, a1] + λµ[a1, b] + λν[a1, a3] + λµ[b, a1] + µ2[b, b] + µν[b, a3] =

λ2a3 + λµ(−a1 + βa3) + λνa3 + λµ(a1 + αa3) + µ2γa3 + µν(2 + α)a3 =

λ2a3 − λµa1 + λµβa3 + λνa3 + λµa1 + λµαa3 + µ2γa3 + µν(2 + α)a3 =

(λ2 + λµβ + λν + λµα+ µ2γ + µν(2 + α))a3.

As above, λ2 + λµβ + λν + λµα+ µ2γ + µν(2 +α) ̸= 0. Put a2 = b. Thus,
we come to the following type of Leibniz algebras:

L34 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a3] = a3,

[a1, a2] = −a1 + βa3 (β = (α+ γ)(1 + α)−1),

[a2, a1] = a1 + αa3 (α ̸= 0, α ̸= −1, α ̸= −2),

[a2, a2] = γa3 (γ ̸= 0), [a2, a3] = (2 + α)a3,

[a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L34) = ζ left(L34) = Fa3, [L34, L34] = Fa1 ⊕ Fa3,
ζright(L34) = ζ(L34) = ⟨0⟩. Moreover, if λa1 + µa2 + νa3 /∈ A, then
λ2 + λµβ + λν + λµα+ µ2γ + µν(2 + α) ̸= 0, L34 is non-nilpotent.

Suppose now that [c, c] = 0. Put again Leib(L) = Fa3. Let b be an
element such that b /∈ C.

Suppose that a subalgebra C = Fc ⊕ Leib(L) is not abelian. As we
have seen above, we can choose an element a3 such that [c, a3] = a3.
Since Leib(L) = Fa3 is an ideal, [b, a3] = ηa3 for some element η ∈ F .
Using the above arguments without loss of generality we can assume that
[b, c] ∈ c+Fa3, [c, b] ∈ −c+Fa3, so that [b, c] = c+αa3, [c, b] = −c+βa3
for some elements α, β ∈ F . Then

a3 = [c, a3] = [c+ αa3, a3] = [[b, c], a3] = [b, [c, a3]]− [c, [b, a3]] =

[b, a3]− [c, ηa3] = ηa3 − η[c, a3] = ηa3 − ηa3 = 0.

This contradiction shows that a subalgebra C is abelian.

Note that η ≠ 0. In fact, otherwise a3 ∈ ζ(L), and we obtain a contra-
diction. This contradiction shows that [b, a3] ̸= 0 for every element b /∈ C.
As we have seen above, we can choose an element b such that [b, a3] = a3.

Suppose őrst that there exists an element b /∈ C such that [b, b] ̸= 0.
It follows that [b, b] = γa3 where γ is a non-zero element of F . Then,
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subalgebra B = Fb⊕ Fa3 is non-abelian. We have now

[c, a3] = [c, γ−1[b, b]] = γ−1[c, [b, b]] = γ−1([[c, b], b] + [b, [c, b]]) =

γ−1([−c+ βa3, b] + [b,−c+ βa3]) = γ−1(−[c, b]− [b, c] + β[b, a3]) =

γ−1(c− βa3 − c− αa3 + βa3) = −αγ−1a3.

On the other hand, we proved above that [c, a3] = 0. Since γ ̸= 0, it follows
that α = 0. Hence, [b, c] = c.

If β = 0, then put a1 = b, a2 = c. A subalgebra Fc is an ideal of L
and we come to the following type of Leibniz algebras:

L35 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = γa3 (γ ̸= 0),

[a1, a2] = a2, [a1, a3] = a3, [a2, a1] = −a2,

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L35) = ζ left(L35) = Fa3, [L35, L35] = Fa2 ⊕ Fa3,
ζright(L35) = ζ(L35) = ⟨0⟩, L35 is non-nilpotent.

If β ̸= 0, then put a1 = b, a2 = c. A subalgebra Fc is not an ideal of
L and we come to the following type of Leibniz algebras:

L36 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = γa3 (γ ̸= 0),

[a1, a2] = a2, [a1, a3] = a3, [a2, a1] = −a2 + βa3 (β ̸= 0),

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L36) = ζ left(L36) = Fa3, [L36, L36] = Fa2 ⊕ Fa3,
ζright(L36) = ζ(L36) = ⟨0⟩, L36 is non-nilpotent.

Suppose now that [b, b] = 0 for each element b /∈ C. Let u = λc+ µb+
νa3 be an arbitrary element of L. Then,

[λc+ µb+ νa3, λc+ µb+ νa3] = λµ[c, b] + λµ[b, c] + µν[b, a3] =

λµ(−c+ βa3) + λµ(c+ αa3) + µνa3 =

(λµβ + λµα+ µν)a3.

If u /∈ C, then µ ≠ 0. If λ = 0, µ = ν = 1, then [u, u] = a3 ̸= 0, and we
obtain a contradiction. This contradiction shows that this situation is not
possible.

The following natural situation appears when dimF (Leib(L)) = 2.
Immediately, we obtain the following two subcases:

(IIA) the intersection ζ(L) ∩ Leib(L) is not trivial;
(IIB) ζ(L) ∩ Leib(L) = ⟨0⟩.
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Theorem 5. Let L be a nilpotent Leibniz algebra over a őeld F having

dimension 3, which is not a Lie algebra. Suppose that dimF (Leib(L)) = 2.
Then, L is an algebra of the following type:

Lei37(3, F ) = L37 is a cyclic nilpotent Leibniz algebra, so that L37 =
Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a3, [a1, a3] =
[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L37) = [L37, L37] = ζ left(L37) = Fa2 ⊕ Fa3, ζright(L37) =
ζ(L37) = Fa3, ncl(L37) = 3.

Proof. Since dimF (L) = 3, ncl(L) ⩽ 3. Suppose őrst that ncl(L) = 3.
Then, L has an upper central series of a length 3:

⟨0⟩ = C0 ⩽ C1 ⩽ C2 ⩽ C3 = L.

Every factor of this series must be non-trivial. Therefore every factor of
this series has dimension 1. Let a1 be an element of L such that a1 /∈ C2.
The fact that L/C2 is abelian implies that a2 = [a1, a1] ∈ C2. Suppose
that a2 ∈ C1. Since dimF (C1) = 1, C1 = Fa2. Choose an element b ∈ C2

such that b /∈ C1. Then, [a1, b], [b, a1], [b, b] ∈ C1, so that [a1, b] = αa2,
[b, a1] = βa2, [b, b] = γa2 for some elements α, β, γ ∈ F . It is not hard
to see that the elements a1, b, a2 generate L. Let λ1a1 + λ2b + λ3a2,
µ1a1 + µ2b+ µ3a2 be two arbitrary elements of L. We have:

[λ1a1 + λ2b+ λ3a2, µ1a1 + µ2b+ µ3a2] =

λ1µ1[a1, a1] + λ1µ2[a1, b] + λ1µ3[a1, a2]+

λ2µ1[b, a1] + λ2µ2[b, b] + λ2µ3[b, a2] =

λ1µ1a2 + λ1µ2αa2 + λ2µ1βa2 + λ2µ2γa2 ∈ C1.

It follows that [L,L] ⩽ C1 = ζ(L) and hence, ncl(L) = 2. This contradic-
tion shows that a2
notinC1. Then, a3 = [a1, a2] ̸= 0. It follows that C2 = Fa2 ⊕ Fa3.
We have [a2, a3] = [a3, a2] = 0, so that C2 is an abelian subalgebra,
[a1, a3] = [a3, a1] = [a2, a1] = 0. It follows that

[a1 + a2, a1 + a2] = [a1, a1] + [a1, a2] + [a2, a1] + [a2, a2] =

a2 + a3 ∈ Leib(L),

and hence, Leib(L) = C2. Thus, we come to the following type of Leibniz
algebras:

L37 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a3,

[a1, a3] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.
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Note also that Leib(L37) = [L37, L37] = ζ left(L37) = Fa2 ⊕Fa3, ζ(L37) =
ζright(L37) = Fa3, ncl(L37) = 3.

Suppose now that ncl(L) = 2. Then, L has an upper central series of
a length 2:

⟨0⟩ = C0 ⩽ C1 ⩽ C2 = L.

Here, we have two possibilities: dimF (C1) = 1 or dimF (C1) = 2. Since
L/C1 is abelian, Leib(L) ⩽ C1. Then, the fact that dimF (Leib(L)) = 2
implies that dimF (C1) = 2.

Since L is a not Lie algebra, there is an element a1 such that [a1, a1] =
a3 ≠ 0. Then, a1 /∈ ζ(L), a3 ∈ Leib(L) ⩽ ζ(L). It follows that [a1, a3] =
[a3, a1] = [a3, a3] = 0. We can see that A = ⟨a1⟩ = Fa1 ⊕ Fa3. In
particular, A ∩ C1 = Fa3. We have C1 = Fa2 ⊕ Fa3 for some element a2.
Then, L = A ⊕ Fa2. Since a2 ∈ ζ(L), Fa2 is an ideal of L. The choice
of a2 implies that [a1, a2] = [a2, a1] = [a2, a3] = [a3, a2] = [a2, a2] = 0.
It follows that factor-algebra L/Fa3 is abelian. Then, Leib(L) ⩽ Fa3,
in particular, dimF (Leib(L)) = 1, and we obtain a contradiction. This
contradiction shows that the case ncl(L) = 2 is not possible.

Theorem 6. Let L be a non-nilpotent Leibniz algebra over a őeld F having

dimension 3, which is not a Lie algebra. Suppose that ζ(L) ̸= ⟨0⟩ and that

dimF (Leib(L)) = 2. Then, L is an algebra of the following type:

Lei38(3, F ) = L38 is a cyclic Leibniz algebra, L24 = Fa1⊕Fa2⊕Fa3
where [a1, a1] = a2, [a1, a2] = a2 + a3, [a1, a3] = [a2, a1] = [a2, a2] =
[a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0, Leib(L38) = ζ left(L38) =
[L38, L38] = Fa2 ⊕ Fa3, ζ

right(L38) = ζ(L38) = Fa3.

Proof. We note that a Leibniz algebra of dimension 1 is abelian. Then,
by our conditions, we obtain that dimF (ζ(L)) = 1. If we suppose that
ζ(L)∩Leib(L) = ⟨0⟩, then L = ζ(L)⊕Leib(L), so that L is abelian, and we
obtain a contradiction. This contradiction shows that ζ(L) ⩽ Leib(L). Put
C = ζ(L) and let c be an element such that C = Fc. Since C ̸= Leib(L),
the factor-algebra L/C is not a Lie algebra. Using the information above
about the structure of the Leibniz algebras of dimension 2, we obtain that
L/C = F (b+ C)⊕ F (d+ C) where

[d+ C, d+ C] = b+ C, [d+ C, b+ C] = b+ C,

[b+ C, d+ C] = [b+ C, b+ C] = C.

Without loss of generality, we may assume that [d, d] = b. Then, we have
[d, b] = b+ αc, [b, d] = 0 for some element α ∈ F . The fact that Leib(L)
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is abelian implies that [b, b] = [b, c] = [c, b] = 0. Let λ1d+ λ2b+ λ3c be an
arbitrary element of L. We have:

[λ1d+ λ2b+ λ3c, λ1d+ λ2b+ λ3c] = λ2
1b+ λ1λ2(b+ αc) =

(λ2
1 + λ1λ2)b+ λ1λ2αc.

Thus, we can see that if α = 0, then Leib(L) = Fb, in particular,
dimF (Leib(L)) = 1, and we obtain a contradiction. This contradiction
shows that α ̸= 0. Put a1 = d, a2 = b, a3 = αc, then

[a1−a2, a1−a2] = [a1, a1]−[a2, a1]−[a1, a2]+[a2, a2] = a2−a2−a3 = −a3.

Thus, Leib(L) = Fa2⊕Fa3, and we come to the following type of Leibniz
algebras:

L38 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a2 + a3,

[a1, a3] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L38) = ζ left(L38) = [L38, L38] = Fa2 ⊕Fa3, ζ(L38) =
ζright(L38) = Fa3.

Theorem 7. Let L be a Leibniz algebra over a őeld F having dimen-

sion 3 and L not be a Lie algebra. Suppose that ζ(L) = ⟨0⟩ and that

dimF (Leib(L)) = 2. Then, L is an algebra of one of the following types.

(i) Lei39(3, F ) = L39 is a direct sum of ideal B = Fa3 and cyclic

non-nilpotent subalgebra A = Fa1 ⊕ Fa2, [A,B] = Fa3, [B,A] = ⟨0⟩, so

that L39 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a2] = a2, [a1, a3] =
βa3 (β ̸= 0), [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] =
0, Leib(L39) = ζ left(L39) = [L39, L39] = Fa2⊕Fa3, ζ

right(L39) = ζ(L39) =
⟨0⟩.

(ii) Lei40(3, F ) = L40 is a cyclic Leibniz algebra, so that L40 = Fa1 ⊕
Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a2 + γa3 (γ ̸= 0), [a1, a3] =
βa3 (β ̸= 0), [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] =
0, Leib(L40) = ζ left(L40) = [L40, L40] = Fa2⊕Fa3, ζ

right(L40) = ζ(L40) =
⟨0⟩.

(iii) Lei41(3, F ) = L41 is a cyclic Leibniz algebra, so that L41 =
Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = γa3 (γ ̸= 0), [a1, a3] =
a3, [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L41) = ζ left(L41) = [L41, L41] = Fa2 ⊕ Fa3, ζ

right(L41) = ζ(L41) =
⟨0⟩.

(iv) Lei42(3, F ) = L42 is a cyclic Leibniz algebra, so that L42 =
Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a3, [a1, a3] = βa2 +



L. A. Kurdachenko, O. O. Pypka, I. Ya. Subbotin 101

γa3, [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0,
Leib(L42) = ζ left(L42) = [L42, L42] = Fa2 ⊕ Fa3, ζ

right(L42) = ζ(L42) =
⟨0⟩. Moreover, polynomial X2 − γX − β is irreducible over őeld F .

Proof. Suppose őrst that Leib(L) includes an ideal K of dimension 1.
Let c be an element such that K = Fc. Since K ≠ Leib(L), the factor-
algebra L/K is not a Lie algebra. Using the above information about
the structure of the Leibniz algebras of dimension 2, we obtain that
L/K = F (b+K)⊕ F (d+K) where

[d+K, d+K] = b+K, [d+K, b+K] = b+K,

[b+K, d+K] = [b+K, b+K] = K

or

[d+K, d+K] = b+K,

[d+K, b+K] = [b+K, d+K] = [b+K, b+K] = K.

Consider the őrst situation. Without loss of generality, we may assume that
[d, d] = b. Then, we have [b, d] = 0, [d, b] = b+αc for some element α ∈ F .
The fact that Leib(L) is abelian implies that [b, b] = [b, c] = [c, b] = 0.
Since ζ(L) = ⟨0⟩, [d, c] = βc for some non-zero element β ∈ F . Put
a3 = βc, then K = Fa3 and [b, a3] = [a3, b] = [a3, d] = [a3, a3] = 0,
[d, b] = b+γa3 where γ = αβ−1. Let u = λ1d+λ2b+λ3a3 be an arbitrary
element of L. We have:

[u, u] = [λ1d+ λ2b+ λ3a3, λ1d+ λ2b+ λ3a3] =

λ2
1[d, d] + λ1λ2[d, b] + λ1λ3[d, a3] =

λ2
1b+ λ1λ2(b+ γa3) + λ1λ3βa3 =

(λ2
1 + λ1λ2)b+ (γλ1λ2 + λ1λ3β)a3.

If we put λ1 = 1, λ2 = −1, λ3 = β−1(1 + γ), then we obtain [u, u] = a3.
Put a1 = d, a2 = b.

If α = 0 and hence, γ = 0, then a subalgebra Fa2 is an ideal of L
and A = ⟨a1⟩ = Fa1 ⊕ Fa2 is a cyclic subalgebra. Thus, we come to the
following type of Leibniz algebras:

L39 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = [a1, a2] = a2,

[a1, a3] = βa3 (β ̸= 0),

[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.
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Note also that Leib(L39) = ζ left(L39) = [L39, L39] = Fa2 ⊕Fa3, ζ(L39) =
ζright(L39) = ⟨0⟩.

If α ̸= 0, then a3 = γ−1([a1, a2] − a2). It follows that L is a cyclic
algebra. Thus, we come to the following type of Leibniz algebras:

L40 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2,

[a1, a2] = a2 + γa3 (γ ̸= 0), [a1, a3] = βa3 (β ̸= 0),

[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L40) = ζ left(L40) = [L40, L40] = Fa2 ⊕Fa3, ζ(L40) =
ζright(L40) = ⟨0⟩.

Consider now a situation when L/K = F (b+K)⊕ F (d+K) where

[d+K, d+K] = b+K,

[d+K, b+K] = [b+K, d+K] = [b+K, b+K] = K.

Without loss of generality we may assume that [d, d] = b. Then we have
[b, d] = 0, [d, b] = αc for some element α ∈ F . The fact that Leib(L) is
abelian implies that [b, b] = [b, c] = [c, b] = 0. Since ζ(L) = ⟨0⟩, [d, c] = βc
for some non-zero element β ∈ F . Put a3 = c, then K = Fa3 and
[b, a3] = [a3, b] = [a3, d] = [a3, a3] = 0, [d, b] = αa3.

If α = 0, then Fb lies in the center of L, and we obtain a contradiction.

Suppose that α ≠ 0. Put a1 = β−1d, then [a1, c] = c. Further [a1, a1] =
[β−1d, β−1d] = β−2b = a2. We have [a2, a2] = [a2, a1] = [a2, c] = [c, a2] =
0, [a1, a2] = [β−1d, β−2b] = β−3αc = γc. Thus we come to the following
type of Leibniz algebra:

L41 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2,

[a1, a2] = γa3 (γ ̸= 0), [a1, a3] = a3,

[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L41) = ζ left(L41) = [L41, L41] = Fa2 ⊕Fa3, ζ(L41) =
ζright(L41) = ⟨0⟩.

Suppose now that Leib(L) does not include proper non-zero ideals.
Since L is a non-Lie algebra, there is an element d such that [d, d] = b ≠ 0.
Then, d /∈ Leib(L). Put K = Leib(L). By our assumption, [d, b] = c /∈ Fb.
The fact that dimF (K) = 2 implies that K = Fb ⊕ Fc. Then, [d, c] =
βb + γc for some elements β, γ ∈ F . The mapping x → [d, x], x ∈ K is
linear. Our conditions imply that a polynomial X2−γX−β is irreducible
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over a őeld F . Put a1 = d, a2 = b, a3 = c. Thus, we come to the following
type of Leibniz algebras:

L42 = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a3,

[a1, a3] = βa2 + γa3,

[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Note also that Leib(L42) = ζ left(L42) = [L42, L42] = Fa2 ⊕Fa3, ζ(L42) =
ζright(L42) = ⟨0⟩, polynomial X2 − γX − β is irreducible over őeld F .
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