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ABSTRACT. In this paper we generalize to associative su-
peralgebras Gerstenhaber’s work on cohomology structure of an
associative algebra. We introduce formal deformation theory of
associative superalgebras.

1. Introduction

The cohomology theory of associative algebra was studied by G.
Hochschild in [1], [2], [3]; and by Murray Gerstenhaber in [4]. Gerstenhaber
proved that there exists a cup product multiplication U in H*(A; A) with
respect to which it is a commutative graded associative algebra. It was
shown that if P is a two sided module over A, then H*(A; P) is a two
sided module over H*(A; A). He introduced a bracket product [—, —] with
respect to which H*(A; A) is a graded Lie algebra.

The deformation is a tool to study a mathematical object by deforming
it into a family of the same kind of objects depending on a certain
parameter. Deformation theory of algebraic structures was introduced by
Gerstenhaber for rings and algebras in a series of papers [4], 5], [6], [7].
Recently, deformation theory of superalgebraic structures has been studied
by many authors [8], [9], [10], [11], [12].

Graded algebras are of interest in physics in the context of ‘supersym-
metries’ relating particles of differing statistics. In mathematics, graded
algebras are known for some time in the context of deformation theory [13].
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A superalgebra is a Zy-graded algebra A = Ay @ A; (that is, if a € A,,
be Ag, then ab e A,15, a, B € Zy = {0,1}). An associative superalgebra
is a superalgebra A = Ag @ A; such that (ab)c = a(be), for all a, b, ¢ in A.

The goal of this paper is to study different algebraic structures on the
cochain complex C*(A; A), the cohomology H*(A; A) of an associative
superalgebra and application of this study in the formal deformation
theory of A. Organization of the paper is as follows. In section 2, we recall
some basic definitions. In section 3, we introduce Z-graded Lie and pre-Lie
superalgebras. In section 4, we introduce supermodules over superalge-
bras. In section 5, we introduce derivations of Z-graded superalgebras.
In section 6, we discuss cohomology of associative superalgebras. In this
section we establish a fundamental isomorphism between H]'(A; P) and
H' Y(A;CY(A; P)), for n > 2,i = 0,1 as in [1] for associative algebras.
In section 7, we compute cohomology of associative superalgebras in di-
mensions 0, 1 and 2. In section 8, we introduce a cup product U for the
cohomology of an associative superalgebra A. In this section we prove that
{C*(A; A),U} is a Z-graded associative superalgebra and coboundary map
d is a derivation on it. Also, we prove that {H*(A; A),U} is a Z-graded
associative superalgebra. In section 9, we introduce Z-graded right pre-Lie
supersystem and discuss the Z-graded right pre-Lie superalgebra given by

it. We show the existence of a bracket product [—, —] on C*(4; A) with
respect to which it is a Z-graded Lie superalgebra and ¢ is a derivation
on {C*(A4;A),[—,—]}. We prove that {H*(A;A),[—, —]} Z-graded Lie

superalgebra. If P is a two sided module over an associative superalgebra
A, then H*(A; P) is a two sided module over { H*(A; A),U}. In section 10,
we introduce formal deformation theory of associative superalgebras. We
prove that obstruction cochain to the deformations are 3-cocycles. We dis-
cuss equivalence of deformations and prove that cohomology class of the
infinitesimal of a deformation depends only on its equivalence class.

2. Associative superalgebra

In this section, we recall definitions of graded algebra, associative
superalgebra, Lie superalgebra. We give some examples of associative su-
peralgebras. Throughout the paper we denote a fixed field of characteristic
0 by K.
Definition 2.1. Let A be any nonempty set and K be a field. A A-
graded vector space is a vector space V over K together with a family of
subspaces {V“}aeca, indexed by A such that V =@ A V¢, the direct
sum of V*’s. An element a in V' is called homogeneous of degree «, we
write deg(a) = a.
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Let A be a commutative group. A A-graded algebra over K is a A-
graded vector space £ = @, o E* together with a bilinear map m :
E x E — E such that m(E* x E®) ¢ E*™8 for all a, B € A. An
associative superalgebra is a Zs-graded algebra A = Ag @& A; such that
m(m(a,b),c) = m(a,m(b,c)), for all a,b,c € A. A Lie superalgebra is
a Zg-graded algebra such that following conditions are satisfied:

1) m(avb) = _(_l)aﬁm(ba a)v
2) (=1)*"m(m(a,b),c)+ (—=1)P¥m(m(b,c),a) + (=1)Pm(m(c, a),b) =
07
foralla € By, b€ Eg, cc€ Ey, o, 3,7 € Zs.

In any Zs-graded vector space V = V@ V] we use a notation in which
we replace degree deg(a) of a homogeneous element a € V' by ‘a’ whenever
deg(a) appears in an exponent; thus, for example (—1)% = (—1)deg(a)deg(b)
Let V. =Vyg& Vi and W = Wy & Wy be Zo-graded vector spaces over
a field K. A linear map f: V — W is said to be homogeneous of degree «
if f(a) € W is homogeneous and deg(f(a)) — deg(a) = a, for all a € V3,
B € {0,1}. We denote degree of f by deg(f).

Example 2.1. Let V = V3@ V] be a Zs-graded vector space. Consider
the vector space A of all homogeneous endomorphisms of V. Then A =
Endy(V) & Endi(V'), where

Endo(V)={f € End(V) : f(Vg) C Vaup, VB € Lo}, o € ZLs.

A is an associative superalgebra with respect to composition operation.

3. Graded Lie and pre-Lie superalgebras

Definition 3.1. We call a Z x Zs-graded algebra F = @(a,ﬁ)erZQ B
a Z-graded superalgebra. An element a in EF is said to be homogeneous
of degree (a, ), for all (o, B) € Z x Zg. The anti-isomorph or opposite
A’ of a Z-graded superalgebra is the superalgebra which as a K-vector
space, is identical with A, but in which multiplication m’ is given by
m/(a,b) = m(b,a), where m is the multiplication in A.

For all « € Z, B € Zs, from here onwards whenever o+ 3 appears in an
exponent we understand it as &+ f mod 2. Since the exponentes will be
of (—=1), it is well defined. We call a Z-graded superalgebra E a Z-graded
associative superalgebra if

m(m(a,b),c) = m(a,m(b,c)),
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for all homogeneous a,b,c € E. Clearly every Z-graded associative su-
peralgebra is an associative algebra. We call a Z-graded superalgebra E
unital if there exists an element e € EJ such that m(e,a) = m(a,e) = a,
for every a € Eg We call the element e the unity of F. We call a Z-graded
superalgebra F a Z-graded commutative superalgebra if

m(a,b) = (~1)*102 1 %m(b, a),

for all a € Egll, be Eg; We call a Z-graded superalgebra E a Z-graded
Lie superalgebra if following conditions are satisfied
1) lfa € E5' and b € E5? then

m(a,b) = —(=1)212+5182(p ).
2) Iface Eg‘ll, be Eg; and ¢ € Eg‘;, then

(—1)0‘10‘3+ﬁ1’83m(m(a, b),c) + (—1)a2a1+ﬂ2ﬂ1m(m(b, ¢),a)
+ (—1)*392 83820 (m(c, a), b) = 0. (1)

Definition 3.2. We call a Z-graded superalgebra E a Z-graded right
pre-Lie superalgebra if

m(m(c,a),b) — (—1)1°2 5182 (m(c, b), a)
= m(c,m(a, b)) — (—1)a1a2+ﬂlﬂ2m(c,m(b, a)), (2)

for all a € EO‘1 be Ea2 and ¢ € Eo‘3 An antiisomorph A’ of a Z-graded
right pre- Lle superalgebra is called Z graded left pre-Lie superalgebra.

Theorem 3.1. Let A be a Z-graded pre-Lie superalgebra. Define a multi-
plication [—,—] : Ax A — A by

[a,b] = m(a,b) — (=1)*1°= %= m(b, a), (3)

for alla € AZl, b € Ag>. Then in the bracket product [—,—] A is a Z-
graded Lie superalgebra.

Proof. Clearly the bracket product [—, —] satisfies

[a,b] = _(_1)a1a2+,81,82 b, al
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foi ?H a 6214?11, b 161 Ags For all a € Agll, be Ag; and ¢ € Ag:’ by using
relations 2, 3, we have
(_1)a1a3+,81,83[[a’ b]vc]
= (=) m(m(a,b), ¢) — (=1)*2 2 m(m(b, a), ¢)}
(~1) 55 (e, m(a,B) + (1)1 B, m(b,a))}
= (1)t fm(m(a, b), ¢) — (=) 2 m(m(b, a), )}
(=12 B02{—m(m(c, a),b) + (=1)**2 1 2m(m(c,b), a)} (4)

(_1)012011+5251 Hbv C], a]
= (=1) 220 m(m(b, ), a) — (=1)*2 2B m(m(c,b), a)}
(1)t (g, m(b, ) + (1) m(a,m(c, b))}
= (- 1)a2a1+5251{m( (b,¢),a) — (—1 )a2a3+52ﬁ3m( (¢,b),a)}
+ (—1)* AL —m(m(a,b), ¢) + (-d+8
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Definition 4.2. If A is a Z-graded Lie superalgebra, then we say that
P is a right supermodule over A, denoting p(z,a) by [z, a] and m(a,b)
by [a,b], provided [[z,a],b] = [z, [a,b]] + (—1)*3@2+B382[[z b], a], for all
x € Pgll, a € Agi, be Ag;”.

If Ais a Z-graded right pre-Lie superalgebra, then we say that P is
a right supermodule over A, denoting p(z,a) by z o a and m(a,b) by ab,
provided

(xoa)ob— (_1)a3a2+ﬁsﬁz (zob)oa = xo(ab)— (_1)a3a2+53[32 (z o (ba)),

for all z € P/g‘ll, a € A3 and b € Aj®. Every Z-graded right pre-Lie
superalgebra is a right supermodule over itself.

We call a right supermodule P over the anti-isomorph A’ of a Z-
graded associative or Lie superalgebra A as left supermodule over it. We
say that P is a (two sided) supermodule over a Z-graded (associative or
Lie) superalgebra A if A® P is a Z-graded (associative or Lie) superalgebra
such that A is subsuperalgebra of A® P and m(z,y) =0, for all z,y € P.

Clearly, if P is a (two sided) supermodule over a Z-graded (associative
or Lie) superalgebra A then it is a right as well as left supermodule over
A. If P is a right supermodule over a Z-graded commutative superalgebra
A, then if we define a left action A x P — P of A on P by ar =
(—1)ezthbBagg for all o € Pgl, a € A3, then P becomes a (two sided)
supermodule over A. If P is a right supermodule over a Z-graded Lie
superalgebra A, then if we define a left action A x P — P of A on P given
by [a,z] = —(—1)M2tAP2[g q], for all 2 € Pgl, a € A3, P becomes
a (two sided) supermodule over A.

5. Derivations of Z-graded superalgebras

Definition 5.1. Let A = @(a B)eZxZs Ag‘ be a Z-graded superalgebra.
A K-linear map D : A — A is called left derivation of degree (o, ) of A
if D is homogeneous of degree (v, ) and

D(ab) = (Da)b + (—1)*8814(Db), (7)

for all a € Agll and b € Ag; A K-linear map D : A — A is called a right
derivation of degree («, ) of A if D is homogeneous of degree (o, ) and

D(ab) = (=1)*2852(Da)b + a(Db), (8)

for all a € Agll and b € Ag; Let D = ®(a,5)EZXZQ Dj be the vector space
obtained by taking direct sum of the vector spaces Dj of right derivations



92 COHOMOLOGY OF ASSOCIATIVE SUPERALGEBRAS

of A of degree (a, ), (o, ) € Z x Z». For Dy € Dg}, Dy € D2, if we
define
[D1, D3] = D1Dy — (—1)a1a2+6162D2D1’

then it can be easily verified that [D1, Do] is a right derivation of A of
degree (a1 + ag, 1 + P2) and with this multiplication D is a Z-graded Lie
superalgebra. Similar statement can be given if D = ®(a,ﬁ)erZQ Dy is the
vector space obtained by taking direct sum of the vector spaces Dj of left
derivations of A of degree (o, ), (o, 8) € Z X Zy. If A = Ga(a,ﬁ)erZg A
is a Z-graded associative superalgebra and a € Ag, then if we define two
K-linear maps D{, D : A — A by

Db = ab — (—1)**+88pq (9)

D§b = ba — (—1)**+55qp, (10)
for all b € Ag: , then D{ and D§ are left and right derivations of A,

respectively of degree (a,3). Similarly if A = @, g)ezxz, 45 1s & Z-
graded Lie superalgebra and a € Ag, then if we define

D% = [a, ] (11)

D3b = [b,al, (12)

for all b € Ag: , then D and D§ are left and right derivations of A,
respectively of degree (a, 8). D{ and D§ are called inner derivations of A
induced by a.

Let A be a Z-graded superalgebra and P be a (two sided) module over
A. A K-linear map D : A — P is called a left derivation, respectively
a right derivation, of degree v of A into P if 7, respectively 8 holds, for all
a € Agll and b € Ag; If A is Z-graded associative or Lie superalgebra, then
we can define left and right inner derivations using relations 9, 10,11, 12.
In this case, we choose a € Pg.

Definition 5.2. We call a Z-graded superalgebra A as a differential
graded superalgebra if it is equipped with a (right or left) derivation
D : A — A of degree (1,0) such that D? = 0.

6. Cohomology of associative superalgebras

Let V.=V Vi, W = Wy & W1 be Zs-graded K-vector spaces.
An n-linear map f : Vx-.--xV — W is said to be homogeneous of

n times
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degree « if for all homogeneous z; € V, 1 < i < n, f(z1, - ,zy) 18
a homogeneous element in W and deg(f (1, -+, zy))— > q deg(z;)) = a.
We denote the degree of a homogeneous f by deg(f). We use a notation
in which we replace degree deg(f) by ‘f’ whenever deg(f) appears in an
exponent; thus, for example (—1)3¢e(f) = (—=1)7. For each n > 0, we define
a K-vector space C™(V;W) as follows: For n > 1, C"(V; W) consists
of n-linear maps f : Vx---xV — W, and C°(V;W) = W. Clearly,

n times
CM(V; W) = Cp(V; W) & CH(V; W), where C7'(V; W) is the K-vector
subspace of C™(A; P) consisting of elements of degree ¢ with i = 0, 1.
Let A = Ag® Ay be an associative superalgebra and P = Py & P be
a (two sided) supermodule over A. We define two K-bilinear maps

Ax CYA; P) = C*(A; P) and CY(A; P) x A — CY(A; P)

(we use same symbol * for both the maps and differentiate them from
context) by

(ax f)(a1) = af(a1), (13)

(f xa)(ar) = flaar) — f(a)ar, (14)
for all a,a; € A, f € C'(A; P). We have following proposition:
Proposition 6.1. C'(A; P) is a (two sided) supermodule over A.

Proof. Proof is a direct consequence of the two actions of A on C*(A; P)
given by relations 13, 14 and the definition of supermodule. O

We define a K-linear map 6" : C"(4; P) — C""1(4; P) by

0" (w1, angr) = (=)™ wrf w2, 2ng)

+ Y (1) f(z1, T Tig1, o Tng)
—1

(2

(1) T (e wn) @, (15)

for all fin C™(A; P),n > 1,and §°f(x1) = (=1)" T2y f — f.xq, for all f in
C%(A; P) = P. Clearly, for each f € C"(A; P), n > 0, deg(df) = deg(f).

Lemma 6.1. For n >0, C"(A; P) = C"Y(A; CY(A; P)).
Proof. Define ¢ : C"(A; P) — C""Y(A; C1(A4; P)) by ¢(f) = fa_1, where
fnfl(ab to aanfl)(an) = f(ah e 7an)7

for each f € C"(A; P), n > 0. Clearly, ¢ is linear and bijection.  [J
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Theorem 6.1. §§ = 0, that is, (C*(A; P),d) is a cochain complezx.

Proof. For f € CY(A; P), we have

86 f (w1, w0) = (—1)" Y210 f(2) — 0f(x1.22) + 6f(21).22
== (—1)$1fl‘1.((—1)x2f$2.f - fl’g) - (—1)m2f+x1f(l'1.l‘2).f
+ f.([]}l..%'2> + (—1>I1f($1.f).[132 — (f.xl).xg
0.

For f € C"(A; P), n > 1, we have

O (w1, 2n)(Tng1) = 6f (21, Tng1)
= (=) a1.f(xa, -+, Tny1)

n
+ g flz1, -, @iTig1, - Tng1)
1

+ (=DM f (@, m) g
= (—1)x1f( 1% fuo1(w2, - T0)(Tng1)

+Z ) a1 (@, witiga, - 2) (Tng)

+ (_ ) (fn—l(xla T 7xn—1) * xn)xn—i-l
= 5fn—1(x17 te 751771)(3771—&—1) (16)

Thus (0f)n = d(fn—1). This implies that for all f € C"(A4;P), n > 1,

(00f)ns1 = 0((0f)n) = 66(frn-1) (17)

Assume that 00 f = 0 holds, for all f € C?(A; P), where P is an arbitrary
supermodule over A, 0 < ¢ < n. Using Equation 17, for f € C"t1(A; P)
we have d(f,) = (00 f)n+2. By induction hypothesis dd(f,) = 0. This
implies that (06 f)p+2 = 0. Since f = 0 if and only if f,—1 = 0, for all
feC™(A; P),n > 1, we conclude that §d f = 0. So, by using mathematical
induction we conclude that 66 = 0. O

We denote ker(6") by Z"(A; P) and image of §"~! by B"(A; P). We
call the n-th cohomology Z"™(A; P)/B"(A; P) of the cochain complex
(C*(A; P),0) as the n-th cohomology of A with coefficients in P and
denote it by H"(A; P). Since A is a supermodule over itself. So we can
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consider cohomology groups H™(A; A). We call H"(A; A) as the n-th
cohomology group of A. We have

Z"(A; P) = Zy(A; P) @ Z7(A; P), B"(A; P) = By(A; P) @ BY'(A; P),

Z{(A; P) = {f € Z"(A; P) : deg(f) =i}, Bi(A; P) = {f € B"(A; P) :
deg(f) =i} are vector subspaces of Z"(A; P) and B"(A; P),respectively,
i = 0,1. Since boundary map 6" : C"(4; P) — C""(A; P) is homoge-
neous of degree 0, we conclude that H"(A; P) is Zs-graded and

H"(A; P) = Hi(A; P) @ HY' (A; P),
where H"(A; P) = Z"(A; P)/BMA; P), i =0, 1.
Theorem 6.2. Forn > 2, H(A; P) = H'" '(A;CY(A; P)), i =0,1.

Proof. Clearly, for ¢ = 0,1, the mapping f + f,—1 is an isomorphism from
CP(A; P) onto O (A; CY(A; P)). Since (6f)y = 0(fn-1), Z"(A; P) and
B7'(A; P) are mapped by the mapping f — f,—1 onto Zi"_l(A; Cl(4; P))
and B;“l(A; C(A; P)), respectively. Hence, for i = 0, 1, the mapping f
fn—1 induces an isomorphism from H(A; P) onto H' ' (A; C'(A; P)).

]

7. Cohomology of associative superalgebras in low
dimensions

Let A= Ay ® A; be an associative superalgebra and P = Py @ Py be
a supermodule over A. For any m € C?(A; P) = P, f € C}(4; P) and
g€ CHA;P),i=0,1

Om(z) = (=)™ z.m — m.x, (18)

0 f(w1,m0) = —f(@r.@a) + (=1)" 21 f(z2) + flz1)w2,  (19)
(529(3;1,3:2,3:3) = —g(x1.29,23) + g(x1,22.73)

+ (=1)"921.g(x2, 23) — g(T1,22).23. (20)

We denote the set {m € P;jm.x = (—1)™*x.m, for all homogeneous = €
A} by Comp, A. We have

H)(A; P) = {m € P;|(—=1)™*z.m — m.z = 0 for all homogeneous = € A}
= Comp, A.
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For every m € P; the map z + (—1)®x.m — m.z is a left inner derivation
of A into P of degree i and induced by —m. We denote the vector spaces
of left derivations and left inner derivations of degree i of A into P by
Der;(A; P) and Der{””(A; P) respectively. By using 18, 19 we have

H}(A; P) = Deri(A; P)/Derl™(A; P).

Let A be an associative superalgebra and P be a supermodule over A. We
regard P as an associative superalgebra with trivial product zy = 0, for
all x,y € P. We define an exact sequence of superalgebras as a sequence
of superalgebra morphisms

fn—1 fn fn+1

e A I, 4,

such that Imf, = ker f,, 11, for every n. We define extension of A by P of
degree 0 to be an exact sequence

0 P—lsg-Ts4 0 (%)

of associative superalgebras such that deg(i) = 0 = deg(7) and
z.i(m) = w(x).m, i(m).x = m.m(x), (21)

for all homogeneous = € £, m € P. The exact sequence (x) regarded
as a sequence of K-vector spaces splits. Therefore without any loss of
generality we may assume that £ as a K-vector space coincides with the
direct sum A® P and that i(m) = (0,m), m(x, m) = x. Hence relation 21 is
meaningful. Thus we have £ = Eg B &1, where &y = Ag P Py, E1 = A1 B Py
The multiplication in £ = A @ P has then necessarily the form

(O,ml).(O,mz) = (0,0), (xl,O).(O,ml) = (O,xl.ml),

(O,m2).(l‘2,0) = (O,mg.ibg), (1'1,0).(1‘2,0) = (:L'l.ZL‘Q, h(lL‘l,ZL'Q)),

for some h € C2(A; P), for all homogeneous 1,2 € A, my, ma € P. Thus,
in general, we have

(z,m).(y,n) = (z.y,z.n+m.y+ h(z,y)), (22)

for all homogeneous (z,m), (y,n)in &€ =A@ P.
Conversely, let h : A x A — P be a bilinear homogeneous map of degree 0.
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For homogeneous (x,m), (y,n) in £ = A @® P we define multiplication by
Equation 22. For homogeneous (z,m), (y,n) and (z,p) in & we have

((x,m).(y,n)).(2,p) = ((x.y).2, (z.y).p + (¥.1n).2 + (M.y).2

+ h(z,y).z2 + h(z.y,2) (23)
(x,m).((y,n).(z,p)) = (x.(y.2), z.(y.p) + z.(n.2) + m.(y.2)
+x.h(y, 2) + h(z,y.2) (24)

From Equations 23, 24, we conclude that £ = A ¢ P is an associative
superalgebra with product given by Equation 22 if and only if 6k = 0. We
denote the associative superalgebra given by Equation 22 using notation
Ep. Thus for every cocycle h in C§(A; P) there exists an extension

Ey: 0 Plog "o A 0

of A by P of degree 0, where i and 7 are inclusion and projection maps,
that is, i(m) = (0,m), w(x,m) = x. We say that two extensions

0 P &t A 0 (i=1,2)

of A by P of degree 0 are equivalent if there is an associative superalge-
bra isomorphism ) : E1 — &£2 of degree 0 such that following diagram
commutes:

0 P £l A 0 (%)
Idpl wl lIdA
0 P £? A 0

We use F(A, P) to denote the set of all equivalence classes of extensions
of A by P of degree 0. Equation 22 defines a mapping of Z3(A; P) onto
F(A, P). If for h, W € Z2(A; P) Ej, is equivalent to Ej,, then commuta-
tivity of diagram (%) is equivalent to

¢($am) = (x’m + f(l‘)),
for some f € C§(A; P). We have
1/)((.1‘1,7711).(1’2, mg)) = w(wl.xg,xl.mg + mq.x0 + h(l‘l,:tz))
= (.Z‘l.xg, xr1.mo + mi.xo + h(.%’l, .1‘2) + f($1..7)2)),

Y@, m1) (2, me) = (x1,m1 + f(21)).(v2, m2 + f(22))
= (z1.02,x1.(ma + f(22)) + (M1 + f(x1)).22 + B (21, 22)).
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Since (21, m1).(z2,m2)) = Y (21, m1).1 (22, Mm2), we have

W1, 22) — W' (21, 22) = — f(21.22) + 21.f(22) + f(21).22
= &' (f) (1, 2) (25)
Thus two extensions Ej and Ejs of degree 0 are equivalent if and only

if there exists some f € C}(A; P) such that 6'f = h — h'. We thus have
following theorem:

Theorem 7.1. The set F(A, P) of all equivalence classes of extensions
of A by P of degree 0 is in one to one correspondence with the cohomol-
ogy group HZ(A; P). This correspondence w : H3(A; P) — F(A, P) is
obtained by assigning to each cocycle h € Z3(A; P), the extension given
by multiplication 22.

8. Cup product for H*(A; A)

Definition 8.1. Let P be a (two sided) supermodule over an associative
superalgebra A. Also, assume that P has an structure associative super-
algebra, in particular we may take P = A. We define a multiplication
U on C*(A; P) = @ C™(A; P) by defining U : C™(A; P) x C"(A; P) —
C™H(A; P) by

ng((ll,"' 7am7b17"‘ 7bn)
= (_1)§(a1+m+am)f(ala T 7am)g(b17 e abn)a (26)
forall f € C}”(A; P),g € CF(A; P), forallm,n > 0. If we put C"(4; P) =

0 for n < 0, then C*(A; P) is a Z-graded associative superalgebra with
respect to the multiplication U.

As a direct consequence of definitions of coboundary map 0 15 and U
we have following proposition:

Proposition 8.1. For f € CJ’?(A; P), g€ CJ(A; P),

6(fUg)=0ofUg+(=1)"fuUdg. (27)

From Proposition 8.1, we conclude that § is a derivation of
{C*(A; P),U} of degree (1,0). Hence the cochain complex C*(A; A) of an
associative super algebra is a differential graded associative superalgebra
with respect to the multiplication U. Next, we have some observations as
following theorem.
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Theorem 8.1. (i) {Z*(A4; P),U} is a subsuperalgebra of {C*(A; P), U},
where Z*(A; P) = @ Z™(A; P
(ii) If one of f or g is in B™(A; P) and other in Z™(A; P), then fUg €
B™t(A; P), that is, B*(A; P) = @ B"™(A; P) is a (two sided) ideal
of Z*(4; P);
(i) H*(A; P) =@ H™(A; P) is a Z-graded associative superalgebra with
respect to multiplication U (called as cup product) defined by

);
)

(f + B™(A; P)) U (g + B"(A; P)) = (fUg) + B"(4; P),
forall f € Z™(A; P), g€ Z"(A; P).

Remark 8.1. If A® is the enveloping algebra of A, then H™(A, P) =
Extae(A, P), and that using this equality, the cup product is the Yoneda

product [14], [15], [16].

Let A be an associative superalgebra and P be a (two sided) super-
module over A. If we define two actions of C*(A; A) = ®C"(A; A) on
C*(A; P) = ®C"™(A; P) (we use same symbol U for both the actions and
differentiate them from context) by

ng(alv"' 7am7b17"' 7bn)
= (_1)g(a1++am)f(a1’ e 7am)g(b1, e ,bn)7

forall f € C;IL(A;A), geCH(A;P)or fe C}Z“(A; P), g € C§(A; A). With
these two actions C*(A; P) is a (two sided) supermodule over C*(A; A)

It is clear that Equation 27 holds also when either f € C™(A; P),
g € C"A;A) or f e C™AA), g € C"(A; P). This implies that
Z™(A;A) U Z"(A; P) and Z™(A;P) U Z™(A; A) are contained in
Zmt(A; P), and Z™(A; A) U B"(A; P) and B™(A; A) U Z"(A; P) are
contained in B"™1"(A; P). Hence we conclude that H*(A; P) is a (two
sided) supermodule over { H*(A; A), U}.

9. Bracket product for H*(A; A)

Definition 9.1. A right pre-Lie super system {V,,,o;} is defined as
a sequence

7V717‘/07V13‘/2"' 7VTL’"'

of Zg-graded K-vector spaces V,,, = V" @ V] together with an assignment
for every triple of integers m,n, i > 0 with ¢ < m, of a homogeneous K-
bilinear map o; = o;(m,n) of V,,, x V,, into V;,,4,, of degree 0 such that
following conditions are satisfied:
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<i—1
. (28)
<n+1

(=) (fo; h)oirpg, if0<
foilgoj—ih), if i < j
for all f € Vf”‘, geVyand he V}{’. Here o;(f,g) = f

case of Equation 28, we have

(foig)ojh:{

0; g. From the first

(fojh)oipg=(=1)"(f oirpg) ojun b, HO<i+p<j—1 (29
In Equation 29, replacing i + p by ¢ and j + n by j we have
(foig)ojh= (=1 (fo; nh)oig, ifn+i+1<j<m+n, (30)

Example 9.1. Let A = Ag ® A; be an associative superalgebra. Put
Vo= A, and V,,, =0, for all m € Z with m # 0. We define o; = o;(m,n) :
Vin X Vi, = Vg by

ab, ifi=m=n=0
ao;b=
0, otherwise.

Clearly, {V,,0;} is a right pre-Lie supersystem.

Example 9.2. Let U = Uy ® Vi, W = Wy @ Wy Zs-graded K-vector
spaces. Let ¢ : W — U be a homogeneous K-linear map of degree 0. Put

” _{Cm+1(U;W), ifmeZm>—1

0, otherwise.

For integers m,n,i > 0, i < m we define o; : V;, X V; = Vian by

f 04 g(xb Ty YLyttt Ynd1, Tig2, 7$m+1)
= (_1)§(I1+"~+Ii)f(x1’ cr Ty, ¢g(y17 o ;yn+1)7x7j+27 T 7xm+1)7
(31)
for all f € me = C}?Jrl(A;P), ge V] = C’g“ (A; P). The definition of
o; can be extended to the case when n = —1 as follows
f O; g(xlu oy Lgy T2, 7$m+1)

- (_1)!}($1+“'+Ii)f(x1’ s, Ty, (bg? Tig2y ,$m+1) (32)

One can readily verify that the condition 28 holds and {V,,,0;} is a right
pre-Lie supersystem.
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Definition 9.2. Let (V;,,0;) be a pre-Lie supersystem. For every m and
n we define a homogeneous K-bilinear map o : V,;, x V;; — Vi, 4y of degree
(0,0) by

fog— {zzzomwfoig, itm >0 )

0, if m <0,

for all f € Vi, g € Vy.

Theorem 9.1. Let (Vi,,0;) be a right pre-Lie supersystem. Then for
fe‘/j}”,gevgl,hevﬁO

(a)
(fog)oh—fol(goh)= Y (=1)"(foig)o;h

0<j<i—1
n+i+1<j<m+n

(b) (fog)oh—fo(goh)=(=1)"*3((foh)og—fo(hog)).

Proof. By using Definitions 33, 28

(fog)oh—fo(goh)
= Y (1P (foig)ojh— > (—1)PTREo, (g0, h)

0<j<m+n 0<A<m
0o<i<m ousn

= Z (=) (f o; g) oj b + Z (—1)P " (f oig) o h
0<i<m 0<is<m
0<j<i—1 i<j<n+ti
n+i+1<j<m+n

— > ()RR f oy (g0, )
o<A<m
O<u<n

= Z (—1)P*"(foig)oj b+ Z (=17 fo; (goj_i h)
0<i<m 0<i<m
0<<i—1 i<j<nti
n+i+1<j<m+n

— Y (1R o (g0, h)
o<A<m
Ospsn

= > (=D)P(foig)ojh (34)
0<i<m
0<j<i—1

n+i+1<j<m+n
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From Equation 34,

(fog)oh—fo(goh)
= > (=DP(foig)ojh

0<i<m
0<j<i—1
n+i+1<j<m+4n
_ i+ni+gh
= (—1)prrmTe { " (fojh)oirpg+ > (foj-nh) Oz‘g}
0<i<m 0<ism
0<y<i—1 n+i+1<j<m+n

(35)

Putting j = X\, i + p = p in the first sum and j —n = A, ¢ = p in the
second sum of Equation 35, we get

(fog)oh—fo(goh)
= > (—1ypMmtntdh(f oy by o, g

o<A<m
Atp+l<p<m+p

+ Y (Pt oy hy o, g
o<A<m
O<psA—1

= (=1)""*"((foh)og—fo(hog)) O

Corollary 9.1. Let {V,,,0;} be a right pre-Lie supersystem and let V =
D Vi, be the direct sum of the Za-graded K -vector spaces Vy, = V§" & V™.
Then with respect to multiplication given by o in Definition 9.2 V is
a Z-graded right pre-Lie superalgebra.

Definition 9.3. Let {V;,,,0;} be a right pre-Lie supersystem and W =
D (in,n) Wi be a ZxZsy-graded K-vector space. We write Wy, = Wg"@Wi"
for all m € Z. We say that W has the structure of a right supermodule
over the right pre-Lie supersystem {V,,,o;} if there exist homogeneous
linear maps (for which we use the same notation o;) from W, x V,, to
Win4n such that Equation 28 holds for all f € W,,, g € V}, and h € V,.
Now define o: W x V — W by

mo(=D)"foig, ifm=>0
fog:{z o(-1)

36
0, if m <0, (36)

for all f € Wy, g € V,,. Let V.= @V, be the Z-graded right pre-
Lie superalgebra given by the right pre-Lie supersystem {V;,,o;}. Using
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similar arguments as in the proof of Theorem 9.1 we conclude that W is
a right supermodule over the Z-graded right pre-Lie superalgebra V' with
respect to the action o of V' on W given by Equation 36. Consider the
Z-graded Lie superalgebra structure given by the Z-graded right pre-Lie
superalgebra using Theorem 3.1. If we define a right action of the Z-graded
Lie superalgebra V on W by [X, f]|=Xo f, X € W, f € V, then W is
a right supermodule over the Z-graded Lie superalgebra V.

As in Example 9.2, if we consider only Zs-graded K-vector space
structure of A and put U = W = A, ¢ = Ida, then {C™(A;A),0;}
is a right pre-Lie supersystem where elements of C"(A; A) has degree
m — 1 and dimension m. For f € C™(A;P), g € C"(A; A) we define
foig e C™ T A; P) by

f 04 g(‘rla s T YLyttt s Yndl, L2, 7$m+1)
= (_1)§(I1+"'+mi)f(x17 T 7'Cci7g(y17 T 7yn+1)7 Lij42, " 7xm+1)7
(37)
The definition of o; can be extended to the case when n = —1 as follows
f O; g(xh oy Lgy L2, 7 ,.'Ifm+1)

= (_1)§(w1+.7'+mi)f(xlv Ly Gy Lgg2, axm+1) (38)

We can easily verify that C*(A; P) is a right supermodule over the right pre-
Lie supersystem {C™(A; A), 0;}. From Corollary 9.1, {C*(A; A), o} is right
pre-Lie superalgebra. By Theorem 3.1, {C*(A; A), [—, —]} is a Z-graded
Lie superalgebra. Also, from Definition 9.3, we can see that C*(A; P) is
a right supermodule over the right pre-Lie superalgebra {C*(A4; A),o}.
For f € C’}”(A; P), g € C7(A; A), if we define [f, g] = fog, and [g, f] =

f(fl)m"“‘fg[f, g, then C*(A; P) is (two-sided) supermodule over the
Z-graded Lie superalgebra {C*(A; A), [—, —]}.
We define m € C2(A; A) by 7(a,b) = ab. We observe that 67 = 0 and
§Idy = 7, that is, 7 € B3(A; A). By using direct definitions we have
fUg=(moo [f)omg, (39)
for all f € C™(A;A) and g € C™(A; A). Also, one can easily verify using
definitions of 7, 0 and o that
Sf =—fom+ (=1)"nof
= ()" o f = (=)™ fom), (40)
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for all f € C’;}”‘(A; A). By using Equation 3, we have

of =[f,—nl = (=1)" [z, f]. (41)

From Equation 40 it is clear that J is a right inner derivation of degree
(1,0) of the Z-graded Lie superalgebra {C*(A; A), [—, —]} induced by —.
Hence {C*(A; A),[—, —]} is a differential Z-graded Lie superalgebra. Next,
we have following result:

Theorem 9.2. Let A be a associative superalgebra. Then

fodg—d(fog)+(~1)""tofog
= ()" Y=g U f - (=)™ fug}, (42)
for all f € C}”(A;A) and g € C7(A; A).
Proof. Using the Equation 40 and Definition 3.2, we have
fodg—d(fog)+(-1)"1éfoyg
= (- folmog) ~ folgom) ~ (-1 o (fog)
F(fog)om+ (—1 T (ro flog— (—1)" L (fom) og

= ()" {(rof)og—mo(fog)} (43)

Using Theorem 9.1 (a) and Equations 39, 30 we have
(rof)og—mo(fog)= Z (—1)(m_1)i+(”_1)j(ﬂ' o; f)ojg

0<y<i—1
m+i<j<m

™ (100 ) om g+ (=1)™ (w01 f)op g
1)U (70 f) o g + (—1) (109 g) 0y, f

= (—1)"~
= (—1)¢
= (=)D py g4 (—1) gy f
=(-1)

)" (=19 U f - ()™ f U g} (44)
Using Equations 43,44 we conclude Equation 42. This completes proof of
the theorem. ]

Corollary 9.2. If A is an associative superalgebra, then the Z-graded
associative superalgebra {H*(A; A),U} is commutative, that is, if u €
HT'(A;A), ve HY(A; A), then

wUv = (—1)"T%y oy,
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Proof. By using Theorem 9.2, for f € ZJT;”(A; A), g € ZF(A; A) we have

{(~1)f3gu f— (~1)™fug=(~1)"6(f o g).

Hence we conclude that u U v = (—1)™""%y Uy, for all u € HI(A; A),
ve HIAA). O

If A is an associative superalgebra and P is a (two sided ) supermodule
over A, then A @ P has the structure of an associative superalgebra with
respect to the multiplication given by

(a,2).(b,y) = (a.b,a.y + x.b),
for all a,b € A, x,y € P. Consider the natural inclusions
C"(A;A),C"(A;P)c C*"(A@ P; A P)

defined by f(ai,---,a,) = 0, if some a; is in P.for all f in C"(A;A)
or C"(A; P). Now, Theorem 9.2 holds for the associative superalgebra
A @ P. Observe that if f € C™(A; A), g € C"(A; P) are cocyles, then
ge C"(A@ P; A® P) is a cocycle but f € C"(A® P; A® P) need not be
a cocycle. Also, observe that if f € Z™(A; A), g € Z™(A; P), then in the
Equation 42 in the Theorem 9.2 for the associative superalgebra A & P,
(6f)og =0, fo(dg) = 0. This implies that if f € Z™(A; A), g € Z"(A; P),
then .
5(f 0 9) = —(—1)" H(=1)Tg U f — (~1)™ f U g}.

Hence we have following result:

Corollary 9.3. Let A be a Z-graded associative superalgebra and P be
a supermodule over A. Then

wUv = (=1)™T % Yy,

ifue HI'(A; A), v e HJ'(A; P).
Theorem 9.3. Let A be a associative superalgebra and P be a (two sided)

supermodule over A. Then C*(A; P) is a (two sided) supermodule over
the Z-graded Lie superalgebra {C*(A; A), [—, —|}. Also, we have
[Z3(A; P), Z32 (A; A)] € Zy 2 (A; P);

n1+n2

(Bt (A; P), Z32 (A; A)LL (20 (A; P), Z3i2 (A5 A)) € Bifme (A; P,

ni+ng
{H*(A; A),[—,—]} is a Z-graded Lie superalgebra and H*(A; P) is a (two
sided) supermodule over {H*(A; A), [—, —]}.
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Proof. From our previous discussion we already know that C*(A; P) is
a supermodule over the Z-graded Lie superalgebra {C*(4;A), [—, —]}.
Consider the associative superalgebra A® P and Z-graded Lie superalgebra
{C*(A® P;A® P),[—,—]}. Since coboundary map 0 is an inner right
derivation of {C*(A® P; A& P),[—, —|} induced by —7, we have

o[f. 9] = [f.89] + (=1)""'[6f, ] (45)

forall f €e C"(A@® P;A® P),g € C"(A® P; A® P). In particular,
Equation 45 holds for f in C™(A;A) or C™(A;P), g in C"(A; P) or
C"(A; A); and for ¢ as a coboundary map on C*(A; A) or C*(A; P). From
this we conclude the theorem. O

10. Formal Deformation of Associative Superalgebras

Given an associative superalgebra A = Ay @ A1, we denote the ring
of all formal power series with coefficients in A by A[[t]]. Thus A[[t]] =
Aol[t]] @ Aq[[t]. If a¢ € A[[t]], then a; = ay, @ ar,, where ay, € Apl[[t]]
and ay, € Aq[[t]]. K][t]] denotes the ring of all formal power series with
coefficients in K.

Definition 10.1. A formal one-parameter deformation of an associative
superalgebra A = Ay @ A; is a K|[[t]]-bilinear map

pe+ A[[E] < A[[E] — Af[¢]]

satisfying the following properties:

(a) w(a,b) = Y2 pmi(a,b)t’, for all a,b € A, where p; : A x A —
A, i > 0 are bilinear homogeneous mappings of degree zero and
to(a,b) = p(a,b) is the original product on A.

(b)

Kt (:U’t (a> b)’ C) = Mt(a’a Mt(bv C))v (46)
for all homogeneous a, b, c € A.
The Equation 46 is equivalent to following equation:

Z pi(pj(a, b), Z {uila, pj(d,c)), (47)

i+j=r i+j=r
for all homogeneous a, b, c € A.

Next we give definition of a formal deformation of finite order of an
associative superalgebra A.
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Definition 10.2. A formal one-parameter deformation of order n of an
associative superalgebra A = Ay @ A; is a K[[t]]-bilinear map

pe = A[[t]] < A[[t]] — A[lt]]
satisfying the following properties:
(a) pe(a,b) = S0 o pi(a,b)t!, Va,b,c € A, where p; © A x A — A,

0 < i < n, are K-bilinear homogeneous maps of degree 0, and g is
the original product on A.

(b)
ot (Mt(a, b)? C) = :U’t(aa Mt(b, C)), (48)

for all homogeneous a, b, c € A.

Remark 10.1. 1) Forr = 0, conditions 47 is equivalent to the fact
that A is an associative superalgebra.
2) Forr =1, conditions 47 is equivalent to

0=—m (MO(CL, b)a C) - :UJO(:ul(a? b)7 C) (49)
+ pa(a, po(b; ) + po(a, pa (b, ¢)) (50)
= 0%p1(a, b, ¢); for all homogeneous a,b,c € A. (51)

)

Thus for r = 1, /7 is equivalent to saying that py € C3(A; A) is
a cocycle. In general, for r > 0, u, is just a 2-cochain, that is,
pr € C3(A; A).

Definition 10.3. We call the cochain 1 € C3(4; A) infinitesimal of the
deformation py. In general, if p; = 0, for 1 <4 <n—1, and u, is a nonzero
cochain in C?(A; A), then we call p, n-infinitesimal of the deformation

ot

Proposition 10.1. The infinitesimal uy € C3(A; A) of the deformation
e s a cocycle. In general, n-infinitesimal py, is a cocycle in Cg(A; A).
Proof. For n=1, proof is obvious from the Remark 10.1. For n > 1, proof

is similar. ]

From Equation 47, we have

> milpga,b),e) = > {pila, pi(b,0)

i+j=r i+j=r
2,7>0 4,7>0

= :ur(a> MO(bv C)) + ,U()(aa ,Ur(b7 C)) - MO(MT(av b)? C) - ,ur(:uO(a? b): C)
= 0%p,(a, b, c) (52)
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Definition 10.4. Given a formal deformation p; of order n of an as-
sociative superalgebra A = Ay @& A;, we define a 3-cochain Ob,1(A)
by

Obpy1(A4) = Z pi(pj(a, b), Z {ui(a, 1 (b, c)).

i+j=r i+j=r
i,7>0 4,7>0

We call Obyp+1(A) (n + 1)th obstruction cochain for extending i to
a deformation of A of order n 4 1.

As an application of Theorem 9.1 we conclude following Lemma:

Lemma 10.1. For all puy, g, iy € Cg(A; A) with B,y an even integer,
we have

(a) pa o (g o pg) = (pa © pg) o i,
(b) (ka o pg) o py — pa © (g © piy) = —(ka © py) © g + pa © (ky © ).

Theorem 10.1. The (n + 1)th obstruction cochain is a 3-cocycle.

Proof. Consider the right pre-Lie superalgebra {cx (A, A), o}. By definition
of o, we have

Oby+1(A)(a,b,c) Z i © p(a,b,c). (53)

i+j=n-+1
1,7>0

By using Theorem 9.2 we have

i © Ot — 6(pi © pj) — Ot © puj = —puj U i + i U pu, (54)

for all u;, p; € C3(A; A). From relations 53 and 54 we have

00bni1(A) = Y S(miop)
i+j=n+1
4,7>0

> {piodpy — i oy + 113 U i — i U gy}

i+j=n+1
1,j>0

= > {piodu; — Spio i} (55)

z—i—] n+1
4,7>0

Observe that if gy = Y ;" pit' is a deformation of A of order n, then

dpiy(a, b, c) Z o © pg(a, b, c), (56)

a+p=y
a,,6’>0
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Vv < n. Using Equations 55 and 56 we have

80bni1(A) = D> {pio (o) — (ni o muy) o g}
i+j+k=n+1
i,5,k>0
= Y {pio (o + pr o ) — (i 0 1) © e + (i © i) o i}
itjt+k=n+1
1,7,k>0,5<k

(Using Lemma 10.1 Part (a))
=0 (Using Lemma 10.1 Part (b)) O

As a consequence of above theorem we conclude following corollary

Corollary 10.1. If H3(A; A) = 0, then every 2-cocycle in C3(A; A) is an
infinitesimal of some deformation of A.

Definition 10.5. Let p; and f; be two formal deformations of an as-
sociative superalgebra A = Ay & A;. A formal isomorphism from the
deformation 1 to fiy is a K[[t]]-linear automorphism ¥, : A[[t]] — A[[t]]

given by
oo
\Ilt = Z ¢itl7
1=0

where each 1); is a homogeneous K-linear map A — A of degree 0, ¢y(a) =
a, for all a € A and

ﬂt(‘I’t(@)7 \Ilt(b)) =VY;o0 Mt<a7 b)?

for all a,b € A.

We call two deformations u; and fi; of an associative superalgebra
A to be equivalent if there exists a formal isomorphism W, from pu; to
fit. Observe that Formal isomorphism on the collection of all formal
deformations of an associative superalgebra A is an equivalence relation.
We call a formal deformation of A that is equivalent to the deformation
1o a trivial deformation.

Theorem 10.2. The cohomology class of the infinitesimal of a deformation
e of an associative superalgebra A is same for each member of equivalence
class of .

Proof. 1f W, is a formal isomorphism from pu; to iy, the we have, for all
a,b e A, y(Via, ¥ib) = Uy o py(a,b). In particular, we have

(11 — fin)(a,b) = po(¥1a,b) + po(a, ¥1b) — ¢1(po(a, b)) = 641 (a, b).
Thus we have ji; — iy = 6. This completes the proof. O
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