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Cohomology and deformation of an associative

superalgebra
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Abstract. In this paper we generalize to associative su-

peralgebras Gerstenhaber’s work on cohomology structure of an

associative algebra. We introduce formal deformation theory of

associative superalgebras.

1. Introduction

The cohomology theory of associative algebra was studied by G.
Hochschild in [1], [2], [3]; and by Murray Gerstenhaber in [4]. Gerstenhaber
proved that there exists a cup product multiplication ∪ in H∗(A;A) with
respect to which it is a commutative graded associative algebra. It was
shown that if P is a two sided module over A, then H∗(A;P ) is a two
sided module over H∗(A;A). He introduced a bracket product [−,−] with
respect to which H∗(A;A) is a graded Lie algebra.

The deformation is a tool to study a mathematical object by deforming
it into a family of the same kind of objects depending on a certain
parameter. Deformation theory of algebraic structures was introduced by
Gerstenhaber for rings and algebras in a series of papers [4], [5], [6], [7].
Recently, deformation theory of superalgebraic structures has been studied
by many authors [8], [9], [10], [11], [12].

Graded algebras are of interest in physics in the context of ‘supersym-
metries’ relating particles of differing statistics. In mathematics, graded
algebras are known for some time in the context of deformation theory [13].
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A superalgebra is a Z2-graded algebra A = A0 ⊕ A1 (that is, if a ∈ Aα,
b ∈ Aβ , then ab ∈ Aα+β , α, β ∈ Z2 = {0, 1}). An associative superalgebra
is a superalgebra A = A0 ⊕A1 such that (ab)c = a(bc), for all a, b, c in A.

The goal of this paper is to study different algebraic structures on the
cochain complex C∗(A;A), the cohomology H∗(A;A) of an associative
superalgebra and application of this study in the formal deformation
theory of A. Organization of the paper is as follows. In section 2, we recall
some basic deőnitions. In section 3, we introduce Z-graded Lie and pre-Lie
superalgebras. In section 4, we introduce supermodules over superalge-
bras. In section 5, we introduce derivations of Z-graded superalgebras.
In section 6, we discuss cohomology of associative superalgebras. In this
section we establish a fundamental isomorphism between Hn

i (A;P ) and
Hn−1
i (A;C1(A;P )), for n ⩾ 2, i = 0, 1 as in [1] for associative algebras.

In section 7, we compute cohomology of associative superalgebras in di-
mensions 0, 1 and 2. In section 8, we introduce a cup product ∪ for the
cohomology of an associative superalgebra A. In this section we prove that
{C∗(A;A),∪} is a Z-graded associative superalgebra and coboundary map
δ is a derivation on it. Also, we prove that {H∗(A;A),∪} is a Z-graded
associative superalgebra. In section 9, we introduce Z-graded right pre-Lie
supersystem and discuss the Z-graded right pre-Lie superalgebra given by
it. We show the existence of a bracket product [−,−] on C∗(A;A) with
respect to which it is a Z-graded Lie superalgebra and δ is a derivation
on {C∗(A;A), [−,−]}. We prove that {H∗(A;A), [−,−]} Z-graded Lie
superalgebra. If P is a two sided module over an associative superalgebra
A, then H∗(A;P ) is a two sided module over {H∗(A;A),∪}. In section 10,
we introduce formal deformation theory of associative superalgebras. We
prove that obstruction cochain to the deformations are 3-cocycles. We dis-
cuss equivalence of deformations and prove that cohomology class of the
inőnitesimal of a deformation depends only on its equivalence class.

2. Associative superalgebra

In this section, we recall deőnitions of graded algebra, associative
superalgebra, Lie superalgebra. We give some examples of associative su-
peralgebras. Throughout the paper we denote a őxed őeld of characteristic
0 by K.

Deőnition 2.1. Let ∆ be any nonempty set and K be a őeld. A ∆-
graded vector space is a vector space V over K together with a family of
subspaces {V α}α∈∆, indexed by ∆ such that V =

⊕

α∈∆ V
α, the direct

sum of V α’s. An element a in V α is called homogeneous of degree α, we
write deg(a) = α.
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Let ∆ be a commutative group. A ∆-graded algebra over K is a ∆-
graded vector space E =

⊕

α∈∆E
α together with a bilinear map m :

E × E → E such that m(Eα × Eβ) ⊂ Eα+β for all α, β ∈ ∆. An
associative superalgebra is a Z2-graded algebra A = A0 ⊕ A1 such that
m(m(a, b), c) = m(a,m(b, c)), for all a, b, c ∈ A. A Lie superalgebra is
a Z2-graded algebra such that following conditions are satisőed:

1) m(a, b) = −(−1)αβm(b, a),

2) (−1)αγm(m(a, b), c)+ (−1)βαm(m(b, c), a)+ (−1)γβm(m(c, a), b) =
0,

for all a ∈ Eα, b ∈ Eβ , c ∈ Eγ , α, β, γ ∈ Z2.

In any Z2-graded vector space V = V0⊕V1 we use a notation in which
we replace degree deg(a) of a homogeneous element a ∈ V by ‘a’ whenever
deg(a) appears in an exponent; thus, for example (−1)ab = (−1)deg(a)deg(b).
Let V = V0 ⊕ V1 and W = W0 ⊕W1 be Z2-graded vector spaces over
a őeld K. A linear map f : V →W is said to be homogeneous of degree α
if f(a) ∈W is homogeneous and deg(f(a))− deg(a) = α, for all a ∈ Vβ,
β ∈ {0, 1}. We denote degree of f by deg(f).

Example 2.1. Let V = V0 ⊕ V1 be a Z2-graded vector space. Consider
the vector space A of all homogeneous endomorphisms of V . Then A =
End0(V )⊕ End1(V ), where

Endα(V ) = {f ∈ End(V ) : f(Vβ) ⊂ Vα+β , ∀β ∈ Z2}, α ∈ Z2.

A is an associative superalgebra with respect to composition operation.

3. Graded Lie and pre-Lie superalgebras

Deőnition 3.1. We call a Z× Z2-graded algebra E =
⊕

(α,β)∈Z×Z2
Eαβ

a Z-graded superalgebra. An element a in Eαβ is said to be homogeneous
of degree (α, β), for all (α, β) ∈ Z × Z2. The anti-isomorph or opposite
A′ of a Z-graded superalgebra is the superalgebra which as a K-vector
space, is identical with A, but in which multiplication m′ is given by
m′(a, b) = m(b, a), where m is the multiplication in A.

For all α ∈ Z, β ∈ Z2, from here onwards whenever α+β appears in an
exponent we understand it as α+ β mod 2. Since the exponentes will be
of (−1), it is well deőned. We call a Z-graded superalgebra E a Z-graded
associative superalgebra if

m(m(a, b), c) = m(a,m(b, c)),
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for all homogeneous a, b, c ∈ E. Clearly every Z-graded associative su-
peralgebra is an associative algebra. We call a Z-graded superalgebra E
unital if there exists an element e ∈ E0

0 such that m(e, a) = m(a, e) = a,
for every a ∈ Eαβ . We call the element e the unity of E. We call a Z-graded
superalgebra E a Z-graded commutative superalgebra if

m(a, b) = (−1)α1α2+β1β2m(b, a),

for all a ∈ Eα1

β1
, b ∈ Eα2

β2
. We call a Z-graded superalgebra E a Z-graded

Lie superalgebra if following conditions are satisőed

1) If a ∈ Eα1

β1
and b ∈ Eα2

β2
then

m(a, b) = −(−1)α1α2+β1β2m(b, a).

2) If a ∈ Eα1

β1
, b ∈ Eα2

β2
and c ∈ Eα3

β3
, then

(−1)α1α3+β1β3m(m(a, b), c) + (−1)α2α1+β2β1m(m(b, c), a)

+ (−1)α3α2+β3β2m(m(c, a), b) = 0. (1)

Deőnition 3.2. We call a Z-graded superalgebra E a Z-graded right
pre-Lie superalgebra if

m(m(c, a), b)− (−1)α1α2+β1β2m(m(c, b), a)

= m(c,m(a, b))− (−1)α1α2+β1β2m(c,m(b, a)), (2)

for all a ∈ Eα1

β1
, b ∈ Eα2

β2
and c ∈ Eα3

β3
. An antiisomorph A′ of a Z-graded

right pre-Lie superalgebra is called Z-graded left pre-Lie superalgebra.

Theorem 3.1. Let A be a Z-graded pre-Lie superalgebra. Deőne a multi-
plication [−,−] : A×A→ A by

[a, b] = m(a, b)− (−1)α1α2+β1β2m(b, a), (3)

for all a ∈ Aα1

β1
, b ∈ Aα2

β2
. Then in the bracket product [−,−] A is a Z-

graded Lie superalgebra.

Proof. Clearly the bracket product [−,−] satisőes

[a, b] = −(−1)α1α2+β1β2 [b, a]
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for all a ∈ Aα1

β1
, b ∈ Aα2

β2
. For all a ∈ Aα1

β1
, b ∈ Aα2

β2
and c ∈ Aα3

β3
, by using

relations 2, 3, we have

(−1)α1α3+β1β3 [[a, b], c]

= (−1)α1α3+β1β3{m(m(a, b), c)− (−1)α1α2+β1β2m(m(b, a), c)}

(−1)α3α2+β3β2{−m(c,m(a, b)) + (−1)α1α2+β1β2m(c,m(b, a))}

= (−1)α1α3+β1β3{m(m(a, b), c)− (−1)α1α2+β1β2m(m(b, a), c)}

(−1)α3α2+β3β2{−m(m(c, a), b) + (−1)α1α2+β1β2m(m(c, b), a)} (4)

(−1)α2α1+β2β1 [[b, c], a]

= (−1)α2α1+β2β1{m(m(b, c), a)− (−1)α2α3+β2β3m(m(c, b), a)}

+ (−1)α1α3+β1β3{−m(a,m(b, c)) + (−1)α2α3+β2β3m(a,m(c, b))}

= (−1)α2α1+β2β1{m(m(b, c), a)− (−1)α2α3+β2β3m(m(c, b), a)}

+ (−1)α1α3+β1β3{−m(m(a, b), c) + (−1α3+β +β
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Deőnition 4.2. If A is a Z-graded Lie superalgebra, then we say that
P is a right supermodule over A, denoting ρ(x, a) by [x, a] and m(a, b)
by [a, b], provided [[x, a], b] = [x, [a, b]] + (−1)α3α2+β3β2 [[x, b], a], for all
x ∈ Pα1

β1
, a ∈ Aα2

β2
, b ∈ Aα3

β3
.

If A is a Z-graded right pre-Lie superalgebra, then we say that P is
a right supermodule over A, denoting ρ(x, a) by x ◦ a and m(a, b) by ab,
provided

(x ◦ a) ◦ b− (−1)α3α2+β3β2(x ◦ b) ◦ a = x ◦ (ab)− (−1)α3α2+β3β2(x ◦ (ba)),

for all x ∈ Pα1

β1
, a ∈ Aα2

β2
and b ∈ Aα3

β3
. Every Z-graded right pre-Lie

superalgebra is a right supermodule over itself.
We call a right supermodule P over the anti-isomorph A′ of a Z-

graded associative or Lie superalgebra A as left supermodule over it. We
say that P is a (two sided) supermodule over a Z-graded (associative or
Lie) superalgebra A if A⊕P is a Z-graded (associative or Lie) superalgebra
such that A is subsuperalgebra of A⊕P and m(x, y) = 0, for all x, y ∈ P.

Clearly, if P is a (two sided) supermodule over a Z-graded (associative
or Lie) superalgebra A then it is a right as well as left supermodule over
A. If P is a right supermodule over a Z-graded commutative superalgebra
A, then if we deőne a left action A × P → P of A on P by ax =
(−1)α1α2+β1β2xa, for all x ∈ Pα1

β1
, a ∈ Aα2

β2
, then P becomes a (two sided)

supermodule over A. If P is a right supermodule over a Z-graded Lie
superalgebra A, then if we deőne a left action A×P → P of A on P given
by [a, x] = −(−1)α1α2+β1β2 [x, a], for all x ∈ Pα1

β1
, a ∈ Aα2

β2
, P becomes

a (two sided) supermodule over A.

5. Derivations of Z-graded superalgebras

Deőnition 5.1. Let A =
⊕

(α,β)∈Z×Z2
Aαβ be a Z-graded superalgebra.

A K-linear map D : A→ A is called left derivation of degree (α, β) of A
if D is homogeneous of degree (α, β) and

D(ab) = (Da)b+ (−1)αα1+ββ1a(Db), (7)

for all a ∈ Aα1

β1
and b ∈ Aα2

β2
. A K-linear map D : A→ A is called a right

derivation of degree (α, β) of A if D is homogeneous of degree (α, β) and

D(ab) = (−1)αα2+ββ2(Da)b+ a(Db), (8)

for all a ∈ Aα1

β1
and b ∈ Aα2

β2
. Let D =

⊕

(α,β)∈Z×Z2
Dα
β be the vector space

obtained by taking direct sum of the vector spaces Dα
β of right derivations
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of A of degree (α, β), (α, β) ∈ Z × Z2. For D1 ∈ Dα1

β1
, D2 ∈ Dα2

β2
, if we

deőne
[D1, D2] = D1D2 − (−1)α1α2+β1β2D2D1,

then it can be easily veriőed that [D1, D2] is a right derivation of A of
degree (α1 +α2, β1 + β2) and with this multiplication D is a Z-graded Lie
superalgebra. Similar statement can be given if D =

⊕

(α,β)∈Z×Z2
Dα
β is the

vector space obtained by taking direct sum of the vector spaces Dα
β of left

derivations of A of degree (α, β), (α, β) ∈ Z×Z2. If A =
⊕

(α,β)∈Z×Z2
Aαβ

is a Z-graded associative superalgebra and a ∈ Aαβ , then if we deőne two
K-linear maps Da

1 , D
a
2 : A→ A by

Da
1b = ab− (−1)αα

′+ββ′

ba (9)

Da
2b = ba− (−1)αα

′+ββ′

ab, (10)

for all b ∈ Aα
′

β′ , then Da
1 and Da

2 are left and right derivations of A,
respectively of degree (α, β). Similarly if A =

⊕

(α,β)∈Z×Z2
Aαβ is a Z-

graded Lie superalgebra and a ∈ Aαβ , then if we deőne

Da
1b = [a, b] (11)

Da
2b = [b, a], (12)

for all b ∈ Aα
′

β′ , then Da
1 and Da

2 are left and right derivations of A,
respectively of degree (α, β). Da

1 and Da
2 are called inner derivations of A

induced by a.

Let A be a Z-graded superalgebra and P be a (two sided) module over
A. A K-linear map D : A → P is called a left derivation, respectively
a right derivation, of degree α of A into P if 7, respectively 8 holds, for all
a ∈ Aα1

β1
and b ∈ Aα2

β2
. If A is Z-graded associative or Lie superalgebra, then

we can deőne left and right inner derivations using relations 9, 10,11, 12.
In this case, we choose a ∈ Pαβ .

Deőnition 5.2. We call a Z-graded superalgebra A as a differential
graded superalgebra if it is equipped with a (right or left) derivation
D : A→ A of degree (1, 0) such that D2 = 0.

6. Cohomology of associative superalgebras

Let V = V0 ⊕ V1, W = W0 ⊕ W1 be Z2-graded K-vector spaces.
An n-linear map f : V× · · · ×

︸ ︷︷ ︸

n times

V → W is said to be homogeneous of
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degree α if for all homogeneous xi ∈ V , 1 ⩽ i ⩽ n, f(x1, · · · , xn) is
a homogeneous element in W and deg(f(x1, · · · , xn))−

∑n
i=1 deg(xi)) = α.

We denote the degree of a homogeneous f by deg(f). We use a notation
in which we replace degree deg(f) by ‘f ′ whenever deg(f) appears in an
exponent; thus, for example (−1)deg(f) = (−1)f . For each n ⩾ 0, we deőne
a K-vector space Cn(V ;W ) as follows: For n ⩾ 1, Cn(V ;W ) consists
of n-linear maps f : V× · · · ×

︸ ︷︷ ︸

n times

V → W , and C0(V ;W ) = W . Clearly,

Cn(V ;W ) = Cn0 (V ;W ) ⊕ Cn1 (V ;W ), where Cni (V ;W ) is the K-vector
subspace of Cn(A;P ) consisting of elements of degree i with i = 0, 1.

Let A = A0 ⊕A1 be an associative superalgebra and P = P0 ⊕ P1 be
a (two sided) supermodule over A. We deőne two K-bilinear maps

A× C1(A;P ) → C1(A;P ) and C1(A;P )×A→ C1(A;P )

(we use same symbol ∗ for both the maps and differentiate them from
context) by

(a ∗ f)(a1) = af(a1), (13)

(f ∗ a)(a1) = f(aa1)− f(a)a1, (14)

for all a, a1 ∈ A, f ∈ C1(A;P ). We have following proposition:

Proposition 6.1. C1(A;P ) is a (two sided) supermodule over A.

Proof. Proof is a direct consequence of the two actions of A on C1(A;P )
given by relations 13, 14 and the deőnition of supermodule.

We deőne a K-linear map δn : Cn(A;P ) → Cn+1(A;P ) by

δnf(x1, · · · , xn+1) = (−1)x1fx1.f(x2, · · · , xn+1)

+

n∑

i=1

(−1)if(x1, · · · , xi.xi+1, · · · , xn+1)

+ (−1)n+1f(x1, · · · , · · · , xn).xn+1, (15)

for all f in Cn(A;P ), n ⩾ 1, and δ0f(x1) = (−1)x1fx1.f−f.x1, for all f in
C0(A;P ) = P . Clearly, for each f ∈ Cn(A;P ), n ⩾ 0, deg(δf) = deg(f).

Lemma 6.1. For n > 0, Cn(A;P ) ∼= Cn−1(A;C1(A;P )).

Proof. Deőne ϕ : Cn(A;P ) → Cn−1(A;C1(A;P )) by ϕ(f) = fn−1, where

fn−1(a1, · · · , an−1)(an) = f(a1, · · · , an),

for each f ∈ Cn(A;P ), n > 0. Clearly, ϕ is linear and bijection.
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Theorem 6.1. δδ = 0, that is, (C∗(A;P ), δ) is a cochain complex.

Proof. For f ∈ C0(A;P ), we have

δδf(x1, x2) = (−1)x1fx1δf(x2)− δf(x1.x2) + δf(x1).x2

= (−1)x1fx1.((−1)x2fx2.f − f.x2)− (−1)x2f+x1f (x1.x2).f

+ f.(x1.x2) + (−1)x1f (x1.f).x2 − (f.x1).x2

= 0.

For f ∈ Cn(A;P ), n ⩾ 1, we have

(δf)n(x1, · · · , xn)(xn+1) = δf(x1, · · · , xn+1)

= (−1)x1fx1.f(x2, · · · , xn+1)

+

n∑

i=1

(−1)if(x1, · · · , xi.xi+1, · · · , xn+1)

+ (−1)n+1f(x1, · · · , xn).xn+1

= (−1)x1f (x1 ∗ fn−1(x2, · · · , xn)(xn+1)

+

n−1∑

i=1

(−1)ifn−1(x1, · · · , xi.xi+1, · · · , xn)(xn+1)

+ (−1)n(fn−1(x1, · · · , xn−1) ∗ xn)xn+1

= δfn−1(x1, · · · , xn)(xn+1) (16)

Thus (δf)n = δ(fn−1). This implies that for all f ∈ Cn(A;P ), n ⩾ 1,

(δδf)n+1 = δ((δf)n) = δδ(fn−1) (17)

Assume that δδf = 0 holds, for all f ∈ Cq(A;P ), where P is an arbitrary
supermodule over A, 0 ⩽ q ⩽ n. Using Equation 17, for f ∈ Cn+1(A;P )
we have δδ(fn) = (δδf)n+2. By induction hypothesis δδ(fn) = 0. This
implies that (δδf)n+2 = 0. Since f = 0 if and only if fn−1 = 0, for all
f ∈ Cn(A;P ), n ⩾ 1, we conclude that δδf = 0. So, by using mathematical
induction we conclude that δδ = 0.

We denote ker(δn) by Zn(A;P ) and image of δn−1 by Bn(A;P ). We
call the n-th cohomology Zn(A;P )/Bn(A;P ) of the cochain complex
(C∗(A;P ), δ) as the n-th cohomology of A with coefficients in P and
denote it by Hn(A;P ). Since A is a supermodule over itself. So we can
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consider cohomology groups Hn(A;A). We call Hn(A;A) as the n-th
cohomology group of A. We have

Zn(A;P ) = Zn0 (A;P )⊕ Zn1 (A;P ), B
n(A;P ) = Bn

0 (A;P )⊕Bn
1 (A;P ),

Zni (A;P ) = {f ∈ Zn(A;P ) : deg(f) = i}, Bn
i (A;P ) = {f ∈ Bn(A;P ) :

deg(f) = i} are vector subspaces of Zn(A;P ) and Bn(A;P ),respectively,
i = 0, 1. Since boundary map δn : Cn(A;P ) → Cn+1(A;P ) is homoge-
neous of degree 0, we conclude that Hn(A;P ) is Z2-graded and

Hn(A;P ) ∼= Hn
0 (A;P )⊕Hn

1 (A;P ),

where Hn
i (A;P ) = Zni (A;P )/B

n
i (A;P ), i = 0, 1.

Theorem 6.2. For n ⩾ 2, Hn
i (A;P )

∼= Hn−1
i (A;C1(A;P )), i = 0, 1.

Proof. Clearly, for i = 0, 1, the mapping f 7→ fn−1 is an isomorphism from
Cni (A;P ) onto Cn−1

i (A;C1(A;P )). Since (δf)n = δ(fn−1), Z
n
i (A;P ) and

Bn
i (A;P ) are mapped by the mapping f 7→ fn−1 onto Zn−1

i (A;C1(A;P ))
and Bn−1

i (A;C1(A;P )), respectively. Hence, for i = 0, 1, the mapping f 7→
fn−1 induces an isomorphism from Hn

i (A;P ) onto Hn−1
i (A;C1(A;P )).

7. Cohomology of associative superalgebras in low

dimensions

Let A = A0 ⊕A1 be an associative superalgebra and P = P0 ⊕ P1 be
a supermodule over A. For any m ∈ C0

i (A;P ) = Pi, f ∈ C1
i (A;P ) and

g ∈ C2
i (A;P ), i = 0, 1

δ0m(x) = (−1)mxx.m−m.x, (18)

δ1f(x1, x2) = −f(x1.x2) + (−1)x1fx1.f(x2) + f(x1).x2, (19)

δ2g(x1, x2, x3) = −g(x1.x2, x3) + g(x1, x2.x3)

+ (−1)x1gx1.g(x2, x3)− g(x1, x2).x3. (20)

We denote the set {m ∈ Pi|m.x = (−1)mxx.m, for all homogeneous x ∈
A} by ComPi

A. We have

H0
i (A;P ) = {m ∈ Pi|(−1)mxx.m−m.x = 0 for all homogeneous x ∈ A}

= ComPi
A.
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For every m ∈ Pi the map x 7→ (−1)ixx.m−m.x is a left inner derivation
of A into P of degree i and induced by −m. We denote the vector spaces
of left derivations and left inner derivations of degree i of A into P by
Deri(A;P ) and DerInni (A;P ) respectively. By using 18, 19 we have

H1
i (A;P ) = Deri(A;P )/Der

Inn
i (A;P ).

Let A be an associative superalgebra and P be a supermodule over A. We
regard P as an associative superalgebra with trivial product xy = 0, for
all x, y ∈ P . We deőne an exact sequence of superalgebras as a sequence
of superalgebra morphisms

· · · // An−1
fn−1

// An
fn

// An+1
fn+1

// · · ·

such that Imfn = ker fn+1, for every n. We deőne extension of A by P of
degree 0 to be an exact sequence

0 // P
i

// E
π

// A // 0 (∗)

of associative superalgebras such that deg(i) = 0 = deg(π) and

x.i(m) = π(x).m, i(m).x = m.π(x), (21)

for all homogeneous x ∈ E , m ∈ P. The exact sequence (∗) regarded
as a sequence of K-vector spaces splits. Therefore without any loss of
generality we may assume that E as a K-vector space coincides with the
direct sum A⊕P and that i(m) = (0,m), π(x,m) = x. Hence relation 21 is
meaningful. Thus we have E = E0⊕E1, where E0 = A0⊕P0, E1 = A1⊕P1.
The multiplication in E = A⊕ P has then necessarily the form

(0,m1).(0,m2) = (0, 0), (x1, 0).(0,m1) = (0, x1.m1),

(0,m2).(x2, 0) = (0,m2.x2), (x1, 0).(x2, 0) = (x1.x2, h(x1, x2)),

for some h ∈ C2
0 (A;P ), for all homogeneous x1, x2 ∈ A, m1,m2 ∈ P. Thus,

in general, we have

(x,m).(y, n) = (x.y, x.n+m.y + h(x, y)), (22)

for all homogeneous (x,m), (y, n) in E = A⊕ P.
Conversely, let h : A×A→ P be a bilinear homogeneous map of degree 0.



R. B. Yadav 97

For homogeneous (x,m), (y, n) in E = A⊕ P we deőne multiplication by
Equation 22. For homogeneous (x,m), (y, n) and (z, p) in E we have

((x,m).(y, n)).(z, p) = ((x.y).z, (x.y).p+ (x.n).z + (m.y).z

+ h(x, y).z + h(x.y, z) (23)

(x,m).((y, n).(z, p)) = (x.(y.z), x.(y.p) + x.(n.z) +m.(y.z)

+ x.h(y, z) + h(x, y.z) (24)

From Equations 23, 24, we conclude that E = A ⊕ P is an associative
superalgebra with product given by Equation 22 if and only if δ2h = 0. We
denote the associative superalgebra given by Equation 22 using notation
Eh. Thus for every cocycle h in C2

0 (A;P ) there exists an extension

Eh : 0 // P
i

// Eh
π

// A // 0

of A by P of degree 0, where i and π are inclusion and projection maps,
that is, i(m) = (0,m), π(x,m) = x. We say that two extensions

0 // P // E i // A // 0 (i = 1, 2)

of A by P of degree 0 are equivalent if there is an associative superalge-
bra isomorphism ψ : E1 → E2 of degree 0 such that following diagram
commutes:

0 // P

IdP
��

// E1

ψ

��

// A

IdA

��

// 0

0 // P // E2 // A // 0

(**)

We use F (A,P ) to denote the set of all equivalence classes of extensions
of A by P of degree 0. Equation 22 deőnes a mapping of Z2

0(A;P ) onto
F (A,P ). If for h, h′ ∈ Z2

0(A;P ) Eh is equivalent to Eh′ , then commuta-
tivity of diagram (∗∗) is equivalent to

ψ(x,m) = (x,m+ f(x)),

for some f ∈ C1
0 (A;P ). We have

ψ((x1,m1).(x2,m2)) = ψ(x1.x2, x1.m2 +m1.x2 + h(x1, x2))

= (x1.x2, x1.m2 +m1.x2 + h(x1, x2) + f(x1.x2)),

ψ(x1,m1).ψ(x2,m2) = (x1,m1 + f(x1)).(x2,m2 + f(x2))

= (x1.x2, x1.(m2 + f(x2)) + (m1 + f(x1)).x2 + h′(x1, x2)).
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Since ψ((x1,m1).(x2,m2)) = ψ(x1,m1).ψ(x2,m2), we have

h(x1, x2)− h′(x1, x2) = −f(x1.x2) + x1.f(x2) + f(x1).x2

= δ1(f)(x1, x2) (25)

Thus two extensions Eh and Eh′ of degree 0 are equivalent if and only
if there exists some f ∈ C1

0(A;P ) such that δ1f = h− h′. We thus have
following theorem:

Theorem 7.1. The set F (A,P ) of all equivalence classes of extensions
of A by P of degree 0 is in one to one correspondence with the cohomol-
ogy group H2

0 (A;P ). This correspondence ω : H2
0 (A;P ) → F (A,P ) is

obtained by assigning to each cocycle h ∈ Z2
0(A;P ), the extension given

by multiplication 22.

8. Cup product for H
∗(A;A)

Deőnition 8.1. Let P be a (two sided) supermodule over an associative
superalgebra A. Also, assume that P has an structure associative super-
algebra, in particular we may take P = A. We deőne a multiplication
∪ on C∗(A;P ) =

⊕
Cn(A;P ) by deőning ∪ : Cm(A;P ) × Cn(A;P ) →

Cm+n(A;P ) by

f ∪ g(a1, · · · , am, b1, · · · , bn)

= (−1)g̃(a1+···+am)f(a1, · · · , am)g(b1, · · · , bn), (26)

for all f ∈ Cm
f̃
(A;P ), g ∈ Cng̃ (A;P ), for allm,n ⩾ 0. If we put Cn(A;P ) =

0 for n < 0, then C∗(A;P ) is a Z-graded associative superalgebra with
respect to the multiplication ∪.

As a direct consequence of deőnitions of coboundary map δ 15 and ∪
we have following proposition:

Proposition 8.1. For f ∈ Cm
f̃
(A;P ), g ∈ Cng̃ (A;P ),

δ(f ∪ g) = δf ∪ g + (−1)mf ∪ δg. (27)

From Proposition 8.1, we conclude that δ is a derivation of
{C∗(A;P ),∪} of degree (1, 0). Hence the cochain complex C∗(A;A) of an
associative super algebra is a differential graded associative superalgebra
with respect to the multiplication ∪. Next, we have some observations as
following theorem.
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Theorem 8.1. (i) {Z∗(A;P ),∪} is a subsuperalgebra of {C∗(A;P ),∪},
where Z∗(A;P ) =

⊕
Zn(A;P );

(ii) If one of f or g is in Bm(A;P ) and other in Zn(A;P ), then f ∪ g ∈
Bm+n(A;P ), that is, B∗(A;P ) =

⊕
Bn(A;P ) is a (two sided) ideal

of Z∗(A;P );
(iii) H∗(A;P ) =

⊕
Hn(A;P ) is a Z-graded associative superalgebra with

respect to multiplication ∪ (called as cup product) deőned by

(f +Bm(A;P )) ∪ (g +Bn(A;P )) = (f ∪ g) +Bm+n(A;P ),

for all f ∈ Zm(A;P ), g ∈ Zn(A;P ).

Remark 8.1. If Ae is the enveloping algebra of A, then Hn(A,P ) =
ExtAe(A,P ), and that using this equality, the cup product is the Yoneda
product [14], [15], [16].

Let A be an associative superalgebra and P be a (two sided) super-
module over A. If we deőne two actions of C∗(A;A) = ⊕Cn(A;A) on
C∗(A;P ) = ⊕Cn(A;P ) (we use same symbol ∪ for both the actions and
differentiate them from context) by

f ∪ g(a1, · · · , am, b1, · · · , bn)

= (−1)g̃(a1+···+am)f(a1, · · · , am)g(b1, · · · , bn),

for all f ∈ Cm
f̃
(A;A), g ∈ Cng̃ (A;P ) or f ∈ Cm

f̃
(A;P ), g ∈ Cng̃ (A;A). With

these two actions C∗(A;P ) is a (two sided) supermodule over C∗(A;A)
It is clear that Equation 27 holds also when either f ∈ Cm(A;P ),

g ∈ Cn(A;A) or f ∈ Cm(A;A), g ∈ Cn(A;P ). This implies that
Zm(A;A) ∪ Zn(A;P ) and Zm(A;P ) ∪ Zn(A;A) are contained in
Zm+n(A;P ), and Zm(A;A) ∪ Bn(A;P ) and Bm(A;A) ∪ Zn(A;P ) are
contained in Bm+n(A;P ). Hence we conclude that H∗(A;P ) is a (two
sided) supermodule over {H∗(A;A),∪}.

9. Bracket product for H
∗(A;A)

Deőnition 9.1. A right pre-Lie super system {Vm, ◦i} is deőned as
a sequence

· · · , V−1, V0, V1, V2 · · · , Vn, · · ·

of Z2-graded K-vector spaces Vm = V m
0 ⊕V m

1 together with an assignment
for every triple of integers m,n, i ⩾ 0 with i ⩽ m, of a homogeneous K-
bilinear map ◦i = ◦i(m,n) of Vm × Vn into Vm+n of degree 0 such that
following conditions are satisőed:
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(f ◦i g) ◦j h =

{

(−1)g̃h̃(f ◦j h) ◦i+p g, if 0 ⩽ j ⩽ i− 1

f ◦i (g ◦j−i h), if i ⩽ j ⩽ n+ i
(28)

for all f ∈ V m
f̃
, g ∈ V n

g̃ and h ∈ V p

h̃
. Here ◦i(f, g) = f ◦i g. From the őrst

case of Equation 28, we have

(f ◦j h) ◦i+p g = (−1)g̃h̃(f ◦i+p g) ◦j+n h, if 0 ⩽ i+ p ⩽ j − 1 (29)

In Equation 29, replacing i+ p by i and j + n by j we have

(f ◦i g) ◦j h = (−1)g̃h̃(f ◦j−n h) ◦i g, ifn+ i+ 1 ⩽ j ⩽ m+ n, (30)

Example 9.1. Let A = A0 ⊕ A1 be an associative superalgebra. Put
V0 = A, and Vm = 0, for all m ∈ Z with m ̸= 0. We deőne ◦i = ◦i(m,n) :
Vm × Vn → Vm+n by

a ◦i b =

{

ab, if i = m = n = 0

0, otherwise.

Clearly, {Vm, ◦i} is a right pre-Lie supersystem.

Example 9.2. Let U = U0 ⊕ V1, W = W0 ⊕W1 Z2-graded K-vector
spaces. Let ϕ :W → U be a homogeneous K-linear map of degree 0. Put

Vm =

{

Cm+1(U ;W ), if m ∈ Z,m ⩾ −1

0, otherwise.

For integers m,n, i ⩾ 0, i ⩽ m we deőne ◦i : Vm × Vn → Vm+n by

f ◦i g(x1, · · · , xi, y1, · · · , yn+1, xi+2, · · · , xm+1)

= (−1)g̃(x1+···+xi)f(x1, · · · , xi, ϕg(y1, · · · , yn+1), xi+2, · · · , xm+1),
(31)

for all f ∈ V m
f̃

= Cm+1

f̃
(A;P ), g ∈ V n

g̃ = Cn+1
g̃ (A;P ). The deőnition of

◦i can be extended to the case when n = −1 as follows

f ◦i g(x1, · · · , xi, xi+2, · · · , xm+1)

= (−1)g̃(x1+···+xi)f(x1, · · · , xi, ϕg, xi+2, · · · , xm+1) (32)

One can readily verify that the condition 28 holds and {Vm, ◦i} is a right
pre-Lie supersystem.
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Deőnition 9.2. Let (Vm, ◦i) be a pre-Lie supersystem. For every m and
n we deőne a homogeneous K-bilinear map ◦ : Vm×Vn → Vm+n of degree
(0, 0) by

f ◦ g =

{∑m
i=0(−1)nif ◦i g, if m ⩾ 0

0, if m < 0,
(33)

for all f ∈ Vm, g ∈ Vn.

Theorem 9.1. Let (Vm, ◦i) be a right pre-Lie supersystem. Then for
f ∈ V m

f̃
, g ∈ V n

g̃ , h ∈ V p

h̃

(a)

(f ◦ g) ◦ h− f ◦ (g ◦ h) =
∑

0⩽j⩽i−1
n+i+1⩽j⩽m+n

(−1)ni+pj(f ◦i g) ◦j h

(b) (f ◦ g) ◦ h− f ◦ (g ◦ h) = (−1)np+g̃h̃((f ◦ h) ◦ g − f ◦ (h ◦ g)).

Proof. By using Deőnitions 33, 28

(f ◦ g) ◦ h− f ◦ (g ◦ h)

=
∑

0⩽j⩽m+n
0⩽i⩽m

(−1)pj+ni(f ◦i g) ◦j h−
∑

0⩽λ⩽m
0⩽µ⩽n

(−1)λ(n+p)+µpf ◦λ (g ◦µ h)

=
∑

0⩽i⩽m
0⩽j⩽i−1

n+i+1⩽j⩽m+n

(−1)pj+ni(f ◦i g) ◦j h+
∑

0⩽i⩽m
i⩽j⩽n+i

(−1)pj+ni(f ◦i g) ◦j h

−
∑

0⩽λ⩽m
0⩽µ⩽n

(−1)λ(n+p)+µpf ◦λ (g ◦µ h)

=
∑

0⩽i⩽m
0⩽j⩽i−1

n+i+1⩽j⩽m+n

(−1)pj+ni(f ◦i g) ◦j h+
∑

0⩽i⩽m
i⩽j⩽n+i

(−1)pj+nif ◦i (g ◦j−i h)

−
∑

0⩽λ⩽m
0⩽µ⩽n

(−1)λ(n+p)+µpf ◦λ (g ◦µ h)

=
∑

0⩽i⩽m
0⩽j⩽i−1

n+i+1⩽j⩽m+n

(−1)pj+ni(f ◦i g) ◦j h (34)
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From Equation 34,

(f ◦ g) ◦ h− f ◦ (g ◦ h)

=
∑

0⩽i⩽m
0⩽j⩽i−1

n+i+1⩽j⩽m+n

(−1)pj+ni(f ◦i g) ◦j h

= (−1)pj+ni+g̃h̃

{
∑

0⩽i⩽m
0⩽j⩽i−1

(f ◦j h) ◦i+p g +
∑

0⩽i⩽m
n+i+1⩽j⩽m+n

(f ◦j−n h) ◦i g

}

(35)

Putting j = λ, i + p = µ in the őrst sum and j − n = λ, i = µ in the
second sum of Equation 35, we get

(f ◦ g) ◦ h− f ◦ (g ◦ h)

=
∑

0⩽λ⩽m
λ+p+1⩽µ⩽m+p

(−1)pλ+nµ+np+g̃h̃(f ◦λ h) ◦µ g

+
∑

0⩽λ⩽m
0⩽µ⩽λ−1

(−1)pλ+pn+nµ+g̃h̃(f ◦λ h) ◦µ g

= (−1)np+gh((f ◦ h) ◦ g − f ◦ (h ◦ g))

Corollary 9.1. Let {Vm, ◦i} be a right pre-Lie supersystem and let V =
⊕
Vm be the direct sum of the Z2-graded K-vector spaces Vm = V m

0 ⊕V m
1 .

Then with respect to multiplication given by ◦ in Deőnition 9.2 V is
a Z-graded right pre-Lie superalgebra.

Deőnition 9.3. Let {Vm, ◦i} be a right pre-Lie supersystem and W =
⊕

(m,n)W
m
n be a Z×Z2-gradedK-vector space. We writeWm =Wm

0 ⊕Wm
1

for all m ∈ Z. We say that W has the structure of a right supermodule
over the right pre-Lie supersystem {Vm, ◦i} if there exist homogeneous
linear maps (for which we use the same notation ◦i) from Wm × Vn to
Wm+n such that Equation 28 holds for all f ∈ Wm, g ∈ Vn and h ∈ Vp.
Now deőne ◦ :W × V →W by

f ◦ g =

{∑m
i=0(−1)nif ◦i g, if m ⩾ 0

0, if m < 0,
(36)

for all f ∈ Wm, g ∈ Vn. Let V =
⊕
Vn be the Z-graded right pre-

Lie superalgebra given by the right pre-Lie supersystem {Vm, ◦i}. Using
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similar arguments as in the proof of Theorem 9.1 we conclude that W is
a right supermodule over the Z-graded right pre-Lie superalgebra V with
respect to the action ◦ of V on W given by Equation 36. Consider the
Z-graded Lie superalgebra structure given by the Z-graded right pre-Lie
superalgebra using Theorem 3.1. If we deőne a right action of the Z-graded
Lie superalgebra V on W by [X, f ] = X ◦ f , X ∈ W , f ∈ V , then W is
a right supermodule over the Z-graded Lie superalgebra V.

As in Example 9.2, if we consider only Z2-graded K-vector space
structure of A and put U = W = A, ϕ = IdA, then {Cm(A;A), ◦i}
is a right pre-Lie supersystem where elements of Cm(A;A) has degree
m − 1 and dimension m. For f ∈ Cm(A;P ), g ∈ Cn(A;A) we deőne
f ◦i g ∈ Cm+n−1(A;P ) by

f ◦i g(x1, · · · , xi, y1, · · · , yn+1, xi+2, · · · , xm+1)

= (−1)g̃(x1+···+xi)f(x1, · · · , xi, g(y1, · · · , yn+1), xi+2, · · · , xm+1),
(37)

The deőnition of ◦i can be extended to the case when n = −1 as follows

f ◦i g(x1, · · · , xi, xi+2, · · · , xm+1)

= (−1)g̃(x1+···+xi)f(x1, · · · , xi, g, xi+2, · · · , xm+1) (38)

We can easily verify that C∗(A;P ) is a right supermodule over the right pre-
Lie supersystem {Cm(A;A), ◦i}. From Corollary 9.1, {C∗(A;A), ◦} is right
pre-Lie superalgebra. By Theorem 3.1, {C∗(A;A), [−,−]} is a Z-graded
Lie superalgebra. Also, from Deőnition 9.3, we can see that C∗(A;P ) is
a right supermodule over the right pre-Lie superalgebra {C∗(A;A), ◦}.
For f ∈ Cm

f̃
(A;P ), g ∈ Cng̃ (A;A), if we deőne [f, g] = f ◦ g, and [g, f ] =

−(−1)mn+f̃ g̃[f, g], then C∗(A;P ) is (two-sided) supermodule over the
Z-graded Lie superalgebra {C∗(A;A), [−,−]}.

We deőne π ∈ C2
0 (A;A) by π(a, b) = ab. We observe that δπ = 0 and

δIdA = π, that is, π ∈ B2
0(A;A). By using direct deőnitions we have

f ∪ g = (π ◦0 f) ◦m g, (39)

for all f ∈ Cm(A;A) and g ∈ Cn(A;A). Also, one can easily verify using
deőnitions of π, δ and ◦ that

δf = −f ◦ π + (−1)m−1π ◦ f

= (−1)m−1(π ◦ f − (−1)m−1f ◦ π), (40)
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for all f ∈ Cm
f̃
(A;A). By using Equation 3, we have

δf = [f,−π] = (−1)m−1[π, f ]. (41)

From Equation 40 it is clear that δ is a right inner derivation of degree
(1, 0) of the Z-graded Lie superalgebra {C∗(A;A), [−,−]} induced by −π.
Hence {C∗(A;A), [−,−]} is a differential Z-graded Lie superalgebra. Next,
we have following result:

Theorem 9.2. Let A be a associative superalgebra. Then

f ◦ δg − δ(f ◦ g) + (−1)n−1δf ◦ g

= (−1)n−1{(−1)f̃ g̃g ∪ f − (−1)mnf ∪ g}, (42)

for all f ∈ Cm
f̃
(A;A) and g ∈ Cng̃ (A;A).

Proof. Using the Equation 40 and Deőnition 3.2, we have

f ◦ δg − δ(f ◦ g) + (−1)n−1δf ◦ g

= (−1)n−1f ◦ (π ◦ g)− f ◦ (g ◦ π)− (−1)m+n−2π ◦ (f ◦ g)

+ (f ◦ g) ◦ π + (−1)n−1+m−1(π ◦ f) ◦ g − (−1)n−1(f ◦ π) ◦ g

= (−1)m+n{(π ◦ f) ◦ g − π ◦ (f ◦ g)} (43)

Using Theorem 9.1 (a) and Equations 39, 30 we have

(π ◦ f) ◦ g − π ◦ (f ◦ g) =
∑

0⩽j⩽i−1
m+i⩽j⩽m

(−1)(m−1)i+(n−1)j(π ◦i f) ◦j g

= (−1)(n−1)m(π ◦0 f) ◦m g + (−1)m−1(π ◦1 f) ◦0 g

= (−1)(n−1)m(π ◦0 f) ◦m g + (−1)m−1+f̃ g̃(π ◦0 g) ◦n f

= (−1)(n−1)mf ∪ g + (−1)m−1+f̃ g̃g ∪ f

= (−1)m−1{(−1)f̃ g̃g ∪ f − (−1)mnf ∪ g}. (44)

Using Equations 43,44 we conclude Equation 42. This completes proof of
the theorem.

Corollary 9.2. If A is an associative superalgebra, then the Z-graded
associative superalgebra {H∗(A;A),∪} is commutative, that is, if u ∈
Hm
ũ (A;A), v ∈ Hn

ṽ (A;A), then

u ∪ v = (−1)mn+ũṽv ∪ u.
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Proof. By using Theorem 9.2, for f ∈ Zm
f̃
(A;A), g ∈ Zng̃ (A;A) we have

{(−1)f̃ g̃g ∪ f − (−1)mnf ∪ g = (−1)nδ(f ◦ g).

Hence we conclude that u ∪ v = (−1)mn+ũṽv ∪ u, for all u ∈ Hm
ũ (A;A),

v ∈ Hn
ṽ (A;A).

If A is an associative superalgebra and P is a (two sided ) supermodule
over A, then A⊕ P has the structure of an associative superalgebra with
respect to the multiplication given by

(a, x).(b, y) = (a.b, a.y + x.b),

for all a, b ∈ A, x, y ∈ P. Consider the natural inclusions

Cn(A;A), Cn(A;P ) ⊂ Cn(A⊕ P ;A⊕ P )

deőned by f(a1, · · · , an) = 0, if some ai is in P ,for all f in Cn(A;A)
or Cn(A;P ). Now, Theorem 9.2 holds for the associative superalgebra
A ⊕ P . Observe that if f ∈ Cm(A;A), g ∈ Cn(A;P ) are cocyles, then
g ∈ Cn(A⊕P ;A⊕P ) is a cocycle but f ∈ Cn(A⊕P ;A⊕P ) need not be
a cocycle. Also, observe that if f ∈ Zm(A;A), g ∈ Zn(A;P ), then in the
Equation 42 in the Theorem 9.2 for the associative superalgebra A⊕ P ,
(δf)◦g = 0, f ◦(δg) = 0. This implies that if f ∈ Zm(A;A), g ∈ Zn(A;P ),
then

δ(f ◦ g) = −(−1)n−1{(−1)f̃ g̃g ∪ f − (−1)mnf ∪ g}.

Hence we have following result:

Corollary 9.3. Let A be a Z-graded associative superalgebra and P be
a supermodule over A. Then

u ∪ v = (−1)mn+ũṽv ∪ u,

if u ∈ Hm
ũ (A;A), v ∈ Hn

ṽ (A;P ).

Theorem 9.3. Let A be a associative superalgebra and P be a (two sided)
supermodule over A. Then C∗(A;P ) is a (two sided) supermodule over
the Z-graded Lie superalgebra {C∗(A;A), [−,−]}. Also, we have

[Zm1

n1
(A;P ), Zm2

n2
(A;A)] ⊂ Zm1+m2

n1+n2
(A;P );

[Bm1

n1
(A;P ), Zm2

n2
(A;A)], [Zm1

n1
(A;P ), Zm2

n2
(A;A)] ⊂ Bm1+m2

n1+n2
(A;P ),

{H∗(A;A), [−,−]} is a Z-graded Lie superalgebra and H∗(A;P ) is a (two
sided) supermodule over {H∗(A;A), [−,−]}.
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Proof. From our previous discussion we already know that C∗(A;P ) is
a supermodule over the Z-graded Lie superalgebra {C∗(A;A), [−,−]}.
Consider the associative superalgebra A⊕P and Z-graded Lie superalgebra
{C∗(A ⊕ P ;A ⊕ P ), [−,−]}. Since coboundary map δ is an inner right
derivation of {C∗(A⊕ P ;A⊕ P ), [−,−]} induced by −π, we have

δ[f, g] = [f, δg] + (−1)n−1[δf, g] (45)

for all f ∈ Cm(A ⊕ P ;A ⊕ P ), g ∈ Cn(A ⊕ P ;A ⊕ P ). In particular,
Equation 45 holds for f in Cm(A;A) or Cm(A;P ), g in Cn(A;P ) or
Cn(A;A); and for δ as a coboundary map on C∗(A;A) or C∗(A;P ). From
this we conclude the theorem.

10. Formal Deformation of Associative Superalgebras

Given an associative superalgebra A = A0 ⊕A1, we denote the ring
of all formal power series with coefficients in A by A[[t]]. Thus A[[t]] =
A0[[t]] ⊕ A1[[t]]. If at ∈ A[[t]], then at = at0 ⊕ at1 , where at0 ∈ A0[[t]]
and at1 ∈ A1[[t]]. K[[t]] denotes the ring of all formal power series with
coefficients in K.

Deőnition 10.1. A formal one-parameter deformation of an associative
superalgebra A = A0 ⊕A1 is a K[[t]]-bilinear map

µt : A[[t]]×A[[t]] → A[[t]]

satisfying the following properties:
(a) µt(a, b) =

∑
∞

i=0 µi(a, b)t
i, for all a, b ∈ A, where µi : A × A →

A, i ⩾ 0 are bilinear homogeneous mappings of degree zero and
µ0(a, b) = µ(a, b) is the original product on A.

(b)
µt(µt(a, b), c) = µt(a, µt(b, c)), (46)

for all homogeneous a, b, c ∈ A.
The Equation 46 is equivalent to following equation:

∑

i+j=r

µi(µj(a, b), c) =
∑

i+j=r

{µi(a, µj(b, c)), (47)

for all homogeneous a, b, c ∈ A.

Next we give deőnition of a formal deformation of őnite order of an
associative superalgebra A.



R. B. Yadav 107

Deőnition 10.2. A formal one-parameter deformation of order n of an
associative superalgebra A = A0 ⊕A1 is a K[[t]]-bilinear map

µt : A[[t]]×A[[t]] → A[[t]]

satisfying the following properties:
(a) µt(a, b) =

∑n
i=0 µi(a, b)t

i, ∀a, b, c ∈ A, where µi : A × A → A,
0 ⩽ i ⩽ n, are K-bilinear homogeneous maps of degree 0, and µ0 is
the original product on A.

(b)
µt(µt(a, b), c) = µt(a, µt(b, c)), (48)

for all homogeneous a, b, c ∈ A.

Remark 10.1. 1) For r = 0, conditions 47 is equivalent to the fact
that A is an associative superalgebra.

2) For r = 1, conditions 47 is equivalent to

0 = −µ1(µ0(a, b), c)− µ0(µ1(a, b), c) (49)

+ µ1(a, µ0(b, c)) + µ0(a, µ1(b, c)) (50)

= δ2µ1(a, b, c); for all homogeneous a, b, c ∈ A. (51)

Thus for r = 1, 47 is equivalent to saying that µ1 ∈ C2
0(A;A) is

a cocycle. In general, for r ⩾ 0, µr is just a 2-cochain, that is,
µr ∈ C2

0 (A;A).

Deőnition 10.3. We call the cochain µ1 ∈ C2
0 (A;A) inőnitesimal of the

deformation µt. In general, if µi = 0, for 1 ⩽ i ⩽ n−1, and µn is a nonzero
cochain in C2

0(A;A), then we call µn n-inőnitesimal of the deformation
µt.

Proposition 10.1. The inőnitesimal µ1 ∈ C2
0 (A;A) of the deformation

µt is a cocycle. In general, n-inőnitesimal µn is a cocycle in C2
0 (A;A).

Proof. For n=1, proof is obvious from the Remark 10.1. For n > 1, proof
is similar.

From Equation 47, we have
∑

i+j=r
i,j>0

µi(µj(a, b), c)−
∑

i+j=r
i,j>0

{µi(a, µj(b, c))

= µr(a, µ0(b, c)) + µ0(a, µr(b, c))− µ0(µr(a, b), c)− µr(µ0(a, b), c)

= δ2µr(a, b, c) (52)
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Deőnition 10.4. Given a formal deformation µt of order n of an as-
sociative superalgebra A = A0 ⊕ A1, we deőne a 3-cochain Obn+1(A)
by

Obn+1(A) =
∑

i+j=r
i,j>0

µi(µj(a, b), c)−
∑

i+j=r
i,j>0

{µi(a, µj(b, c)).

We call Obn+1(A) (n + 1)th obstruction cochain for extending µt to
a deformation of A of order n+ 1.

As an application of Theorem 9.1 we conclude following Lemma:

Lemma 10.1. For all µα, µβ , µγ ∈ Cn0 (A;A) with β, γ an even integer,
we have

(a) µα ◦ (µβ ◦ µβ) = (µα ◦ µβ) ◦ µβ ,
(b) (µα ◦ µβ) ◦ µγ − µα ◦ (µβ ◦ µγ) = −(µα ◦ µγ) ◦ µβ + µα ◦ (µγ ◦ µβ).

Theorem 10.1. The (n+ 1)th obstruction cochain is a 3-cocycle.

Proof. Consider the right pre-Lie superalgebra {c∗(A,A), ◦}. By deőnition
of ◦, we have

Obn+1(A)(a, b, c) =
∑

i+j=n+1
i,j>0

µi ◦ µj(a, b, c). (53)

By using Theorem 9.2 we have

µi ◦ δµj − δ(µi ◦ µj)− δµi ◦ µj = −µj ∪ µi + µi ∪ µj , (54)

for all µi, µj ∈ C2
0 (A;A). From relations 53 and 54 we have

δObn+1(A) =
∑

i+j=n+1
i,j>0

δ(µi ◦ µj)

=
∑

i+j=n+1
i,j>0

{µi ◦ δµj − δµi ◦ µj + µj ∪ µi − µi ∪ µj}

=
∑

i+j=n+1
i,j>0

{µi ◦ δµj − δµi ◦ µj} (55)

Observe that if µt =
∑n

i=0 µit
i is a deformation of A of order n, then

δµγ(a, b, c) =
∑

α+β=γ
α,β>0

µα ◦ µβ(a, b, c), (56)
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∀γ ⩽ n. Using Equations 55 and 56 we have

δObn+1(A) =
∑

i+j+k=n+1
i,j,k>0

{µi ◦ (µj ◦ µk)− (µi ◦muj) ◦ µk}

=
∑

i+j+k=n+1
i,j,k>0,j<k

{µi ◦ (µj ◦ µk + µk ◦ µj)− (µi ◦ µj) ◦ µk + (µi ◦ µk) ◦ µj}

(Using Lemma 10.1 Part (a))

= 0 (Using Lemma 10.1 Part (b))

As a consequence of above theorem we conclude following corollary

Corollary 10.1. If H3(A;A) = 0, then every 2-cocycle in C2
0 (A;A) is an

inőnitesimal of some deformation of A.

Deőnition 10.5. Let µt and µ̃t be two formal deformations of an as-
sociative superalgebra A = A0 ⊕ A1. A formal isomorphism from the
deformation µt to µ̃t is a K[[t]]-linear automorphism Ψt : A[[t]] → A[[t]]
given by

Ψt =
∞∑

i=0

ψit
i,

where each ψi is a homogeneous K-linear map A→ A of degree 0, ψ0(a) =
a, for all a ∈ A and

µ̃t(Ψt(a),Ψt(b)) = Ψt ◦ µt(a, b),

for all a, b ∈ A.
We call two deformations µt and µ̃t of an associative superalgebra

A to be equivalent if there exists a formal isomorphism Ψt from µt to
µ̃t. Observe that Formal isomorphism on the collection of all formal
deformations of an associative superalgebra A is an equivalence relation.
We call a formal deformation of A that is equivalent to the deformation
µ0 a trivial deformation.

Theorem 10.2. The cohomology class of the inőnitesimal of a deformation
µt of an associative superalgebra A is same for each member of equivalence
class of µt.

Proof. If Ψt is a formal isomorphism from µt to µ̃t, the we have, for all
a, b ∈ A, µ̃t(Ψta,Ψtb) = Ψt ◦ µt(a, b). In particular, we have

(µ1 − µ̃1)(a, b) = µ0(ψ1a, b) + µ0(a, ψ1b)− ψ1(µ0(a, b)) = δ1ψ1(a, b).

Thus we have µ1 − µ̃1 = δ1ψ1. This completes the proof.
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