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ABSTRACT. Letu € (0,1) be a given parameter, v = 1—pu. We
consider A¥-representation of numbers x = A%, belonging
to (0, 1] based on their expansion in alternating series or finite sum
in the form:

r = Z(Bn - B:z) = Aglag...an...v
n
where Bn _ Va1-&-ae,+.--+azn71—1Maz-&-a4+..-—&-aznfz7
B’:l _ Z,a1+a3+...+a2n_1—1‘ua2+a4+.--+a2n’ a; eN.
This representation has an infinite alphabet {1,2,...}, zero redun-
dancy and N-self-similar geometry.

In the paper, classes of continuous strictly increasing functions
preserving “tails” of A*-representation of numbers are constructed.
Using these functions we construct also continuous transformations
of (0,1]. We prove that the set of all such transformations is infinite
and forms non-commutative group together with an composition
operation.

Introduction

We consider representation of real numbers belonging to half-interval
(0, 1]. It depends on real parameter p € (0,1) and has an infinite alphabet
N ={1,2,3,...}. This representation is based on the following theorem.

2010 MSC: 11H71, 26A46, 93B17.
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Theorem 1 ([19]). Let (0,1)> u be a fized real number, v=1—u. For any
€ (0,1], there exists a finite tuple of positive integers (ay,ag, ..., am)
or a sequence of positive integers (a,) such that

T = Valfl o Val 1/11(12 + Va1+a3f].lula2 o I/a1+a3711ua2+a4 =

= >°(B. -~ B)), M)

n

where B,, = Va1+a3+...+a2n—171Ma2+a4+...+a2n—27 B;z =B, #aQ

We call expansion of the number z in the form of alternating series (1)
the A¥-expansion and its symbolic notation AZ for finite expan-
1a2.,.am(®)

sion of number z or Af .., for infinite sum the A¥-representation.
Remark that expansion of a , number in the form of alternating series (1)
first appeared in papers [23,24] in an expression of strictly increasing
singular function ¢, being an unique continuous solution of a system of

functional equations:

on (1) = (1= weula),

1+
ou(l—2)=1— 14 ().

This function generalizes the well-known singular Minkowski function [1—
8,10-16,25] and coincides with it for g = 1/2. In this case the AH-repre-
sentation is the Af-representation studied in papers [20,21].

There exists a countable everywhere dense in [0, 1] set of numbers hav-
ing two A*-representation. These numbers have a form: AZ o fam+1](2) =
= Agl...aml(z)' We call these numbers A -finite. Other numbers belonging
to (0, 1] have a unique AH-representation, their expansions are infinite, so
we call them A*-infinite numbers. That is, A¥-representation has a zero
redundancy. We denote the set of all A#-infinite numbers by H and the
set of AF-finite numbers by 5.

The AF-representation of number is called the rational A*-representa-
tion if p € (0,1) is rational. In this case irrational numbers belonging to
(0, 1] have infinite non-periodic A¥-representation and rational numbers
have either finite or infinite periodic or infinite non-periodic A¥-represen-
tation [19]. So the set H contains all irrational numbers and everywhere
dense in [0, 1] subset of rational numbers.

Remark that A*-representation has much in common with encod-
ing of real numbers by regular continued fraction [9,17], namely, they
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have the same topology, rules for comparing numbers etc. However, A#-
representation generates other metric relations, that is, it has own original
metric theory [19].

In the paper, we construct an infinite non-commutative group of
continuous strictly increasing piecewise linear transformations of (0, 1]
preserving tails of A¥-representation of numbers. Analogous objects for
FE-representation based on expansions of numbers in the form of positive
Engel series are discussed in paper [18]. This representation has funda-
mental distinctions from F-representation in topological as well as metric
aspects.

1. Geometry of A¥-representation of numbers

Geometric meaning of digits of A*-representation of numbers and
essence of related positional and metric problems are disclosed by the
following important notion.

Definition 1. Let (¢1,co,...,¢y) be a tuple of positive integers.
Cylinder of rank m with base cica...cp is a set AE . of numbers

x € (0, 1] having A¥-representation such that a;(z) = ¢;, i = 1, m.

Cylinders have the following properties.
[e.9]
1. U U s U Aglag...am :(07 1]; 2. A/élcg..‘cm = ‘!1 Aglcg...cmi;

a1 €N aseN am€eN

3. Cylinder A% . . is a closed interval, moreover,
if m is odd, then A% ., .~ = [a—d,a], where

§ = VC1+03+...+62;C7171 catcat...tcop_o+1.
)

L
a= Vclfl o VC171MCQ + o + VC1+C3+...+62]C,171M02+C4+...+02k,2,

if m is even, then A¥ ., . = [a,a+ d], where

5 — Vcl+03+...+02k,1 co+tcqg+...+cop

p
opestye ¢ 4

catcat..Fcop_o VC1+03+---+02k_1—1

a=v""

c1t+c3+...4cop—1—1 cotcqa+...+c
4perres 2k—1 2+c4 Qk’

I [t

4. The length of cylinder of rank m is calculated by the formulae:

AB B peitestoteop1—-1 . MC2+C4+~--+02k72+1 if m=2k—1,
| 1...cm‘ V01+03+...+02k_1 .MCQ+C4+...+CQ}C 1f m:2k
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5. If A# is a fixed cylinder, then the following equality (basic

C1C2...Cm,
metric relation) holds:

A e emil _ [ wp ™t i m =2k —1,
‘Aglcg...cm| /U/’Lil if m = 2k.

: I _ 2 . W i Iz .
6. mlnACl...CQkfli - maXAcl.‘.Cgkfl (Z'-‘rl) ’ maXAcl'"CQk - mlnACl‘-~c2k(i+1),

7. Cylinders of the same rank do not intersect or coincide. Moreover,

Al = A/

C1C2...Cm cch...ch,

— A S .
= c=c¢ 1=1m;

8. For any sequence (¢,), ¢y € N, intersection

oo
I — =AM
ﬂ ACICQ---Cm =r=A

C1C2...Cmy ..
m=1
is a point belonging to half-interval (0, 1].

In paper [19], it is proved that geometry of AM-representation of
numbers is N-self-similar and foundations of metric theory are laid. In
paper [22], functions with fractal properties defined in terms of A¥-repre-
sentation are considered. Geometry plays an essential role in studies of
such functions.

2. Tail sets and functions preserving tails
of At-representation of numbers

Let Z%; be the set of all A¥-representations of numbers belonging to
set H. We introduce binary relation “has the same tail” (symbolically: ~)
on the set Z%;.

Two AF-representations Af . and Aglbz...bn... are said to have
the same tail (or they are ~-related) if there exist positive integers k and
m such that ayy; = by,4; for any j € N.

It is evident that binary relation ~ is an equivalence relation (i.e., it is
reflexive, symmetric and transitive) and provides a partition of the set Zf;
into equivalence classes. Any equivalence class is said to be a tail set. Any
tail set is uniquely determined by its arbitrary element (representative).

We say that two numbers x and y belonging to set H have the same tail
of AF-representation (or they are ~-related) if their A¥-representations
are ~-related. We denote this symbolically as x ~ y.

Theorem 2. Any tail set is countable and dense in (0,1]; quotient set
F = (0,1]/ ~ is a continuum set.
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Proof. Suppose K is an arbitrary equivalence class, o = Ak . . isits
representative. Then it is evident that, for any m € Zg, there exists set
K, = {x P =AY apempromisn @ €N, E=0,1,2,.. } of numbers

x such that for some k € Zg

ap4j(r) = cpyj foranyjeN and K = U K, .
meZg

The set K is countable because it is a countable union of countable sets.

Now we prove that K is a dense in (0, 1] set. Since number = belongs
or does not belong to the set K irrespective of any finite amount of first
digits of its AF-representation, we have that any cylinder of arbitrary
rank m contains point belonging to K. Thus K is an everywhere dense
in half-interval (0, 1] set.

To prove that quotient set F' = (0, 1]/ ~ is continuum set, we assume
the converse. Suppose that F' is a countable set. Then half-interval (0, 1]
is a countable set as a countable union of countable sets (equivalence
classes of quotient set F'). This contradiction proves the theorem. O

Remark that it is easy to introduce a distance function (metric) in
the quotient set F'.

Definition 2. Suppose function f is defined on the set H and takes values
from this set. We say that function f preserves tails of A*-representations
of numbers if for any = € (0, 1] there exist positive integers k = k(z) and
m = m(x) such that

in(T) = @pmyn (f(x))  for alln € N.

It is clear that functions preserving tails of AF-representations of
numbers form an infinite set. However, only continuous functions are
interested for us. Identity transformation y = e(x) is a simplest example
of such function.

By X we denote the set of all functions satisfying Definition 2. In the
sequel, we consider some representatives of this class.

3. Function o4 ()

We consider function defined on the set H by equality

y=o01 (1’) =01 (Agl(az)ag(x)ag(x)a4(:1:)...an(x)...) - Al[fn—&-ag—i—ag]a;;...an... ’
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This function is well-defined due to uniqueness of A*-representation
of numbers belonging to the set H. It is evident that it preserves tails of
AH-representation of numbers.

Lemma 1. Analytic expression for function y = o1(x) is given by formula

as(z)
o1(x) = <:> cx 4 pu@)Fa(@)—1 (1 - 'u@l(m)> ) (2)

this function is linear on every cylinder of rank 2 and has the following
properties:

1) it is continuous strictly increasing function;

2) sup oy(x) = v, inAfu o1(z) =0;

LUEAZ z€ (%)
3) [ ov@)ds = v¥iu; 4 [oy@)de= . 2
g1\ xr = —U ; g1\ xr = —
i 1 9 ) J 1 2 11,3
ij

Proof. 1. Indeed, if x = A¥

a1a2a3a405...an,,..

, then

_ Va1—1'ua2 + Va1+a3—1ua2 _ Z/a1+a3—1Ha2+a4 W —

_ Ual_l a2 LQQ
u? 4 o co1(x).

— Val_l

Whence it follows that

az(z) 1
o1(z) = <Z> -z 4 pu@)Fax(z)-1 (1 - M@(x)) .

It is evident that function o1 () is linear. Therefore it is continuous strictly
increasing on the set H N A# Extending by continuity in A*-finite

ajaz”

points we obtain continuous function on the whole cylinder Af . .
2. Boundary values of function o () on cylinder Aj; can be calculated

by formulae:

Y m AN i+
seAl 1) = fim o (851m) = Mgy =
ij

inf o1(x) = klggo o1 (A?j(k)) = lim A* = 0.

zeAL, koo  [HiTk](K)
ij
3. Calculate integral on cylinder Af:
A1) Vi (1-p ) )
/ o1(x)dr = / o1(x)dx = / o1(z)dr = =¥

2
A Ali@) vt (1)
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4. Calculate integral on the unit interval:

/1 S S
g1\ T = — 1% Y% = — . . — . .
0o 24" SV T 2 2 1407

1—v

4. Function d,(x)

Let s be a fixed positive integer. We consider function depending on
parameter s, well-defined on half-interval (0, 1] by equality

_ _ I _AHM
y= ds(x) = ds (Aal(x)ag(a:)ag(x)...) - A[s+a1]agag... ’
Since s is an arbitrary positive integer, we have a countable class of
functions y = dg(x).
Theorem 3. Function ds is analytically expressed by formula:

ds(z) =v°x

and has the following properties:
1) it is linear strictly increasing, 2) inf dgs(x)=0, sup ds(z)=r".
(0,1 z€(0,1]
Moreover, equation o1(xz) = ds(x) does not have solutions if ay > s,
and has a countable set of solutions:
FE= {aj cx = A"
1

a1 (az[5—as])’ where a; € N, ag € {1,2,...,5 — 1}}
if ag < s.
Proof. By definition of function dg, we have

_AM _ . star1—1 s+a1—1,,a2 _ .8
ds(z) = A[s+a1]a2a3... =v —v u? +.o=v'-x,

Thus ds(x) = v*-z. It is evident that function dj is linear strictly increasing
on half-interval (0, 1]. Moreover,

inf ds(z) = lim ds(z)= lim dj (A‘(‘k)) = lim Al =0;

koyoo  [sHKRI(K)

B . ERT I _AM — 5
Sop dal@) = Ui de(z) = Jim d () = My ="

We can write equation o;(x) = ds(z) in the form

p AW
Alar (@) az@)+as@laa(@).. = Dlstor@)az(@)as(@)as(@)...
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From uniqueness of A¥-representation of numbers belonging to set H
it follows that following equalities hold simultaneously:

ai(z) + az(x) + az(z) = s+ ai(z), as(x) = az(x),
as(z) = as(x) = s —az(x), ... ag(x)=a(x),
asgk+1(x) = s —az(x), keN.

It is evident that this system is inconsistent if as > s. However, for as < s,
equation has a countable set of solutions x = AZ (az[s—az])’ where a1, as

are independent positive integer parameters. ]

5. Left shift operator on digits
of A¥-representation of number

Let Z%; be the set of all A¥-representations of numbers belonging to
set H. We consider shift operator wo on digits defined by equality
w9 (A‘u ) = A“

a1a2a30a4...an,... aza4...anp..."

This operator generates function y = wo(z) = Agg(x)a4(z)...an(x)... on the
set H. It is evident that operator wo is surjective but not injective.

i—1

integers, is an invariant point of the mapping ws.

, where (i,7) is any pair of positive

Lemma 2. Function y = wo(x) is analytically expressed by formula

x 1 — p2(@)
Val(r)'uag(x) - Vluag(x)

(3)

LUQ(J}) =

and is continuous monotonically increasing on any cylinder of rank 2.

Proof. Let x € Afj Then z = A%a3a4-.- and
r =1 Viflluj + ViJras*llul]' _ Vi+a3*11uj+a4 +...=
x 1—
Whence, wp(r) = —— — =
vl 7%

Since function wy is linear, we have that this function is continuous
strictly increasing on the set H N A# Extending by continuity in the

aijag-*
points of the set S we obtain continuous function on the whole cylinder

Al O

ajaz”
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Lemma 3. Fquation ds(x) = wa(x) has a countable set of solutions
}.Lam'ng the form x = AZl(a2[5+a1]), where ay, as are arbitrary positive
tegers.

Proof. We can write equation ds(z) = wa(x) in the form

In _AH
A[s+a1 (z)]az(z)asz(x)as(z)... — Aag(ac)m;(a:)... ’

From uniqueness of A*-representation of numbers belonging to set H
it follows that the following equalities hold simultaneously:

s+ai(z) =as(x), a(x)=as(x), az(x)=as(x)=s+a(z),
as(z) = ag(x) = az(x), ..., agr1(x) =s+ai(x),
ask(x) = az(x), keN.

Then solutions of equation are numbers having the form z=A* )
a1(az[s+a1])
where aq, as € N.

6. Right shift operator on digits
of AF-representation of number

Let 4, j be fixed positive integers. We consider operator depending on
parameters i, j, well-defined on half-interval (0, 1] by equality

:A'u

ijaias...”

.. — 5. K
61] (1‘) - 52] (Aal(x)ag(m)...)
This operator defines a countable set of functions y = d;;(z), i € N, j € N,

Lemma 4. Function y = 0;;(x) is analytically expressed by formula
y=6ij(x) =v'y ozt (1 - ,uj)
and is linear strictly increasing on half-interval (0, 1], moreover,

; . — AM _ i1 _J
2y ) =8y =07 (1),

. — AM — 1 _ o, J+1
2, 04(a) = Bl =~ (1),

Proof. In fact, by definition of function d;;, we have:

y=0i(A;

alag‘..) — AM _ Z/Z_I—IJZ_I/LJ‘FVH_M_I/L]—Vl+a1_lpj+a2—}—. e

ijaiaz...
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=y iy (u“1_1 —ymlyee g ) =t

xX
Therefore, y = 6;j(x) = v'p? -z + v~ (1 — p).
From linearity of function ¢;; it follows that it is a continuous strictly
increasing function on (0, 1] for any pair of positive integers (7, j). More-
over,

inf (SU(.%') = lim 51](x) - khm 5ij (AM
—00

ERRT -
] L (k)) = lim A,

k—o00 ij(k) —

= Aljioy = (1= )

() — T ) = lim 8 (AP ) =
S By(a) = lim 8(e) = Jim 6, (a%)

= A

e =V (1 B ’“‘Hl) : =

For functions wy and ¢;;, the following equalities are obvious:

w2 (57,j) =, 6a1(x)a2(x) (WQ(IE>) =T

Theorem 4. For function d;;, the following propositions are true.
1. Equation o1(x) = 6;5(x) does not have any solution if a1 + az =i and
has a countable set of solutions

E:{:E: x=Al

(arazli—a1—az]j

a1 €N, as €N, a1—|—a2€{1,2,...,i—1}}

if ap + as < 1.
2. Equation d¢(x) = 6;j(x) does not have any solution if s > i and
has a countable set of solutions

E:{:c: x = Al

iy SEN s €{1,2,..i— 1}}

if s <.
3. Equation wy(x) = 0;5(x) has infinitely many solutions having a

general form

x=A"

= Alg1asif)’ where (a1,a2) is an arbitrary pair of positive integers.
Proof. 1. We can write equation o1(x) = d;;(x) in the form

[ AW
A[al(x)+a2(m)+a3(a:)]a4(ar)a5(x)... - Aijm(a:)az(:c)ag(z)a4(x)... ’
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From uniqueness of A¥-representation of numbers belonging to H it
follows that following equalities holds simultaneously:

a1(z) + az(z) + az(z) =i, as(z) =j, a5(x) = a1(x), ae(x) = az(x),
(33): az=1i— (a1 + az), ag(x)=as=7, ..., agp—1(x)=1— (a1 + az),
asp(x) = j, aaps1(x) = a1, agpq2(x) =az, k€N

Then this system does not have any solution if a; 4+ a2 > i and have a

countable set of solutions F = {x r = A‘(‘ , where a1, as

araz(i—a1—azlj)
are independent positive integer parameters, if a1 + as < 1.

Similarly, we can prove statements 2 and 3 of the theorem. O

7. Transformations preserving tails
of AF-representation of numbers

Recall that transformation of non-empty set F is any bijective (i.e.,
both injective and surjective) mapping of this set onto itself.

It is clear that continuous transformations of [0, 1] are strictly mono-
tonic (increasing or decreasing) functions such that f(0)=0 and f(1)=
or f(0)=1and f(1) =

If f is a transformation of [0, 1], then p(z) =1 — f(z) is also trans-
formation of this set. Therefore, to study continuous transformations of
[0, 1], we can consider only strictly increasing functions, i.e., continuous
probability distribution functions.

Simple examples of continuous strictly increasing transformations pre-
serving tails of A#-representation of numbers are the following functions:

di(x) if O<z<zx

NG
- al(ag[i+a1])’
or(z) =< wo(x) if 1< "

(ara2)’

where 7 = (i, a1, a2) is an arbitrary triplet of positive integers;

di(z) if 0<z<a=AF

1(12)
() = walz) if xp <z <a9= Al(l1112)7
dia(z) if zao<ax<a3= A’(‘m),

e(r) if zg<z<1;
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ds(x) if 0<z<a= Af(m)v
) if xp<zx<ar= A’élll),
y(x) =% d31(z) if za<ax<az= AI(L1231)7
wo(x) if xz3<z<ay= A?ulz)?

e(r) if zy<ax<1.

Theorem 5. The set G of all continuous strictly increasing transfor-
mations of half-interval (0,1] preserving tails of AH-representation of
numbers together with an operation o (function composition) form an
infinite non-commutative group.

Proof. The set of continuous transformations of (0, 1] is a subset of all
transformations of (0, 1] forming a group. Thus we use a subgroup test.
It is evident that set G is closed under the composition operation. For
continuous strictly increasing function, inverse function is continuous and
strictly increasing too. If transformation f preserves “tails” of A#-rep-
resentations, then inverse transformation preserves them too. Therefore,
for transformation f € G, inverse transformation belongs to G too.
Since set of transformations ¢, 7 € N x N x N, is countable, we see
that set G is infinite.
To prove that group (G, o) is non-commutative, we provide an example
of two transformations f; and fy such that they are not commute, i.e.,
fao fi # fi o fa. Consider two transformations ¢, (z) and ¢, (x), where
mn=(1,2,3), »=(1,1,2), ie.,
di(z) if O<z<z= Ag(33),
9 ( if a1 <$<$QEA;{23),
e(r) if zo<ax <1

£
=

7 (l’) -

di(z) if O<zx<z3= A’f@z),
o) =1¢ wo(z) if zg<z<aoy= A?u)?
e(r) if zy<az<l
Then, for z¢ = Af2(3)
but @, (z9) <wz= Alf(m) and xg<z3= Alf(m) but @, (z) <z1= Ag(33),

we obtain
Py (907'1 (ATQ(S))) = ¥m (ATQ(?’)) - AgQ(S);

on (o (D)) = on (Do) = Dlags) # Mgy

Therefore ¢, 0@r, # pr, 07, and (G, o) is a non-commutative group. [

, tacking into account inequalities xg > xo = A’é?))
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