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Abstract. Let µ ∈ (0, 1) be a given parameter, ν ≡ 1−µ. We
consider ∆µ-representation of numbers x = ∆µ

a1a2...an... belonging
to (0, 1] based on their expansion in alternating series or finite sum
in the form:

x =
∑

n

(Bn −B′

n) ≡ ∆µ
a1a2...an...,

where Bn = νa1+a3+...+a2n−1−1µa2+a4+...+a2n−2 ,
B′

n = νa1+a3+...+a2n−1−1µa2+a4+...+a2n , ai ∈N.
This representation has an infinite alphabet {1, 2, . . .}, zero redun-
dancy and N -self-similar geometry.

In the paper, classes of continuous strictly increasing functions
preserving “tails” of ∆µ-representation of numbers are constructed.
Using these functions we construct also continuous transformations
of (0, 1]. We prove that the set of all such transformations is infinite
and forms non-commutative group together with an composition
operation.

Introduction

We consider representation of real numbers belonging to half-interval
(0, 1]. It depends on real parameter µ ∈ (0, 1) and has an infinite alphabet
N = {1, 2, 3, . . .}. This representation is based on the following theorem.
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Theorem 1 ([19]). Let (0, 1)∋µ be a fixed real number, ν≡1−µ. For any
x ∈ (0, 1], there exists a finite tuple of positive integers (a1, a2, . . . , am)
or a sequence of positive integers (an) such that

x = νa1−1 − νa1−1µa2 + νa1+a3−1µa2 − νa1+a3−1µa2+a4 + . . . =

=
∑

n

(Bn −B′

n), (1)

where Bn = νa1+a3+...+a2n−1−1µa2+a4+...+a2n−2 , B′

n = Bn · µa2n .

We call expansion of the number x in the form of alternating series (1)
the ∆µ-expansion and its symbolic notation ∆µ

a1a2...am(∅) for finite expan-

sion of number x or ∆µ
a1a2...an... for infinite sum the ∆µ-representation.

Remark that expansion of a number in the form of alternating series (1)
first appeared in papers [23, 24] in an expression of strictly increasing
singular function ϕµ being an unique continuous solution of a system of
functional equations:







ϕµ

(
x

1 + x

)

= (1 − µ)ϕµ(x),

ϕµ(1 − x) = 1 − ϕ1−µ (x) .

This function generalizes the well-known singular Minkowski function [1–
8,10–16,25] and coincides with it for µ = 1/2. In this case the ∆µ-repre-
sentation is the ∆♯-representation studied in papers [20,21].

There exists a countable everywhere dense in [0, 1] set of numbers hav-
ing two ∆µ-representation. These numbers have a form: ∆µ

a1...[am+1](∅) =

= ∆µ
a1...am1(∅). We call these numbers ∆µ-finite. Other numbers belonging

to (0, 1] have a unique ∆µ-representation, their expansions are infinite, so
we call them ∆µ-infinite numbers. That is, ∆µ-representation has a zero
redundancy. We denote the set of all ∆µ-infinite numbers by H and the
set of ∆µ-finite numbers by S.

The ∆µ-representation of number is called the rational ∆µ-representa-
tion if µ ∈ (0, 1) is rational. In this case irrational numbers belonging to
(0, 1] have infinite non-periodic ∆µ-representation and rational numbers
have either finite or infinite periodic or infinite non-periodic ∆µ-represen-
tation [19]. So the set H contains all irrational numbers and everywhere
dense in [0, 1] subset of rational numbers.

Remark that ∆µ-representation has much in common with encod-
ing of real numbers by regular continued fraction [9, 17], namely, they
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have the same topology, rules for comparing numbers etc. However, ∆µ-
representation generates other metric relations, that is, it has own original
metric theory [19].

In the paper, we construct an infinite non-commutative group of
continuous strictly increasing piecewise linear transformations of (0, 1]
preserving tails of ∆µ-representation of numbers. Analogous objects for
E-representation based on expansions of numbers in the form of positive
Engel series are discussed in paper [18]. This representation has funda-
mental distinctions from E-representation in topological as well as metric
aspects.

1. Geometry of ∆µ-representation of numbers

Geometric meaning of digits of ∆µ-representation of numbers and
essence of related positional and metric problems are disclosed by the
following important notion.

Definition 1. Let (c1, c2, . . . , cm) be a tuple of positive integers.
Cylinder of rank m with base c1c2 . . . cm is a set ∆µ

c1c2...cm
of numbers

x ∈ (0, 1] having ∆µ-representation such that ai(x) = ci, i = 1,m.

Cylinders have the following properties.

1.
⋃

a1∈N

⋃

a2∈N

. . .
⋃

am∈N

∆µ
a1a2...am

=(0, 1]; 2. ∆µ
c1c2...cm

=
∞⋃

i=1
∆µ

c1c2...cmi;

3. Cylinder ∆µ
c1c2...cm

is a closed interval, moreover,
if m is odd, then ∆µ

c1c2...c2k−1
= [a− δ, a], where

δ = νc1+c3+...+c2k−1−1 · µc2+c4+...+c2k−2+1;

a = νc1−1 − νc1−1µc2 + . . .+ νc1+c3+...+c2k−1−1µc2+c4+...+c2k−2 ,

if m is even, then ∆µ
c1c2...c2k

= [a, a+ δ], where

δ = νc1+c3+...+c2k−1 · µc2+c4+...+c2k .

a = νc1−1 − νc1−1µc2 + . . .+

+νc1+c3+...+c2k−1−1µc2+c4+...+c2k−2 −νc1+c3+...+c2k−1−1µc2+c4+...+c2k ,

4. The length of cylinder of rank m is calculated by the formulae:

|∆µ
c1...cm

|=

{

νc1+c3+...+c2k−1−1 · µc2+c4+...+c2k−2+1 if m=2k−1,
νc1+c3+...+c2k−1 · µc2+c4+...+c2k if m=2k.
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5. If ∆µ
c1c2...cm

is a fixed cylinder, then the following equality (basic
metric relation) holds:

|∆µ
c1c2...cmi|

|∆µ
c1c2...cm |

=

{

νµi−1 if m = 2k − 1,
µνi−1 if m = 2k.

6. min∆µ
c1...c2k−1i =max∆µ

c1...c2k−1(i+1); max∆µ
c1...c2k

=min∆µ
c1...c2k(i+1);

7. Cylinders of the same rank do not intersect or coincide. Moreover,

∆µ
c1c2...cm

= ∆µ
c′

1c′

2...c′

m
⇐⇒ ci = c′

i i = 1,m;

8. For any sequence (cm), cm ∈ N, intersection

∞⋂

m=1

∆µ
c1c2...cm

= x ≡ ∆µ
c1c2...cm...

is a point belonging to half-interval (0, 1].

In paper [19], it is proved that geometry of ∆µ-representation of
numbers is N -self-similar and foundations of metric theory are laid. In
paper [22], functions with fractal properties defined in terms of ∆µ-repre-
sentation are considered. Geometry plays an essential role in studies of
such functions.

2. Tail sets and functions preserving tails
of ∆µ-representation of numbers

Let Zµ
H be the set of all ∆µ-representations of numbers belonging to

set H. We introduce binary relation “has the same tail” (symbolically: ∼)
on the set Zµ

H .
Two ∆µ-representations ∆µ

a1a2...an... and ∆µ
b1b2...bn... are said to have

the same tail (or they are ∼-related) if there exist positive integers k and
m such that ak+j = bm+j for any j ∈ N.

It is evident that binary relation ∼ is an equivalence relation (i.e., it is
reflexive, symmetric and transitive) and provides a partition of the set Zµ

H

into equivalence classes. Any equivalence class is said to be a tail set. Any
tail set is uniquely determined by its arbitrary element (representative).

We say that two numbers x and y belonging to setH have the same tail
of ∆µ-representation (or they are ∼-related) if their ∆µ-representations
are ∼-related. We denote this symbolically as x ∼ y.

Theorem 2. Any tail set is countable and dense in (0, 1]; quotient set
F ≡ (0, 1]/ ∼ is a continuum set.
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Proof. Suppose K is an arbitrary equivalence class, x0 = ∆µ
c1c2...cn... is its

representative. Then it is evident that, for any m ∈ Z0, there exists set

Km =
{

x : x = ∆µ
a1...akcm+1cm+2..., ai ∈ N, k = 0, 1, 2, . . .

}

of numbers

x such that for some k ∈ Z0

ak+j(x) = cm+j for any j ∈ N and K =
⋃

m∈Z0

Km .

The set K is countable because it is a countable union of countable sets.

Now we prove that K is a dense in (0, 1] set. Since number x belongs
or does not belong to the set K irrespective of any finite amount of first
digits of its ∆µ-representation, we have that any cylinder of arbitrary
rank m contains point belonging to K. Thus K is an everywhere dense
in half-interval (0, 1] set.

To prove that quotient set F ≡ (0, 1]/ ∼ is continuum set, we assume
the converse. Suppose that F is a countable set. Then half-interval (0, 1]
is a countable set as a countable union of countable sets (equivalence
classes of quotient set F ). This contradiction proves the theorem.

Remark that it is easy to introduce a distance function (metric) in
the quotient set F .

Definition 2. Suppose function f is defined on the setH and takes values
from this set. We say that function f preserves tails of ∆µ-representations
of numbers if for any x ∈ (0, 1] there exist positive integers k = k(x) and
m = m(x) such that

ak+n(x) = am+n (f(x)) for all n ∈ N.

It is clear that functions preserving tails of ∆µ-representations of
numbers form an infinite set. However, only continuous functions are
interested for us. Identity transformation y = e(x) is a simplest example
of such function.

By X we denote the set of all functions satisfying Definition 2. In the
sequel, we consider some representatives of this class.

3. Function σ1(x)

We consider function defined on the set H by equality

y = σ1(x) = σ1

(

∆µ
a1(x)a2(x)a3(x)a4(x)...an(x)...

)

= ∆µ
[a1+a2+a3]a4...an...

.
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This function is well-defined due to uniqueness of ∆µ-representation
of numbers belonging to the set H. It is evident that it preserves tails of
∆µ-representation of numbers.

Lemma 1. Analytic expression for function y = σ1(x) is given by formula

σ1(x) =

(
ν

µ

)a2(x)

· x+ νa1(x)+a2(x)−1
(

1 −
1

µa2(x)

)

, (2)

this function is linear on every cylinder of rank 2 and has the following
properties:

1) it is continuous strictly increasing function;
2) sup

x∈∆µ
ij

σ1(x) = νi+j, inf
x∈∆µ

ij

σ1(x) = 0;

3)
∫

∆µ
ij

σ1(x)dx =
1

2
ν2i+jµj; 4)

1∫

0
σ1(x)dx =

1

2
·

ν3

1 + ν3
.

Proof. 1. Indeed, if x = ∆µ
a1a2a3a4a5...an..., then

x = νa1−1 − νa1−1µa2 + νa1+a3−1µa2 − νa1+a3−1µa2+a4 + . . . =

= νa1−1 − νa1−1µa2 +
µa2

νa2
· σ1(x).

Whence it follows that

σ1(x) =

(
ν

µ

)a2(x)

· x+ νa1(x)+a2(x)−1
(

1 −
1

µa2(x)

)

.

It is evident that function σ1(x) is linear. Therefore it is continuous strictly
increasing on the set H ∩ ∆µ

a1a2
. Extending by continuity in ∆µ-finite

points we obtain continuous function on the whole cylinder ∆µ
a1a2

.
2. Boundary values of function σ1(x) on cylinder ∆µ

ij can be calculated
by formulae:

sup
x∈∆µ

ij

σ1(x) = lim
k→∞

σ1

(

∆µ
ij1(k)

)

= ∆µ
[i+j+1](∅) = νi+j .

inf
x∈∆µ

ij

σ1(x) = lim
k→∞

σ1

(

∆µ
ij(k)

)

= lim
k→∞

∆µ
[i+j+k](k) = 0.

3. Calculate integral on cylinder ∆µ
ij :

∫

∆µ
ij

σ1(x)dx =

∆µ

i[j+1](∅)∫

∆µ

ij(∅)

σ1(x)dx =

νi−1(1−µj+1)
∫

νi−1(1−µj)

σ1(x)dx =
1

2
ν2i+jµj .
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4. Calculate integral on the unit interval:

∫ 1

0
σ1(x)dx =

1

2

∞∑

i=1

ν2i
∞∑

j=1

νjµj =
1

2
·

ν2

1 − ν2
·

νµ

1 − νµ
=

1

2
·

ν3

1 + ν3
.

4. Function ds(x)

Let s be a fixed positive integer. We consider function depending on
parameter s, well-defined on half-interval (0, 1] by equality

y = ds(x) = ds

(

∆µ
a1(x)a2(x)a3(x)...

)

= ∆µ
[s+a1]a2a3...

.

Since s is an arbitrary positive integer, we have a countable class of
functions y = ds(x).

Theorem 3. Function ds is analytically expressed by formula:

ds(x) = νs · x

and has the following properties:
1) it is linear strictly increasing, 2) inf

x∈(0,1]
ds(x)=0, sup

x∈(0,1]
ds(x)=νs.

Moreover, equation σ1(x) = ds(x) does not have solutions if a2 > s,
and has a countable set of solutions:

E =
{

x : x = ∆µ
a1(a2[s−a2]), where a1 ∈ N, a2 ∈ {1, 2, . . . , s− 1}

}

if a2 < s.

Proof. By definition of function ds, we have

ds(x) = ∆µ
[s+a1]a2a3...

= νs+a1−1 − νs+a1−1µa2 + . . . = νs · x,

Thus ds(x) = νs·x. It is evident that function ds is linear strictly increasing
on half-interval (0, 1]. Moreover,

inf
x∈(0,1]

ds(x) = lim
x→0+0

ds(x) = lim
k→∞

ds

(

∆µ
(k)

)

= lim
k→∞

∆µ
[s+k](k) = 0;

sup
x∈(0,1]

ds(x) = lim
x→1−0

ds(x) = lim
k→∞

ds

(

∆µ
1(k)

)

= ∆µ
[s+1](∅) = νs.

We can write equation σ1(x) = ds(x) in the form

∆µ
[a1(x)+a2(x)+a3(x)]a4(x)... = ∆µ

[s+a1(x)]a2(x)a3(x)a4(x)... .
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From uniqueness of ∆µ-representation of numbers belonging to set H
it follows that following equalities hold simultaneously:

a1(x) + a2(x) + a3(x) = s+ a1(x), a4(x) = a2(x),
a5(x) = a3(x) = s− a2(x), . . . a2k(x) = a2(x),
a2k+1(x) = s− a2(x), k ∈ N.

It is evident that this system is inconsistent if a2 > s. However, for a2 < s,
equation has a countable set of solutions x = ∆µ

a1(a2[s−a2]), where a1, a2

are independent positive integer parameters.

5. Left shift operator on digits
of ∆µ-representation of number

Let Zµ
H be the set of all ∆µ-representations of numbers belonging to

set H. We consider shift operator ω2 on digits defined by equality

ω2
(
∆µ

a1a2a3a4...an...

)
= ∆µ

a3a4...an....

This operator generates function y = ω2(x) = ∆µ
a3(x)a4(x)...an(x)... on the

set H. It is evident that operator ω2 is surjective but not injective.

Any point ∆µ
(ij) =

νi−1(1 − µj)

1 − νiµj
, where (i, j) is any pair of positive

integers, is an invariant point of the mapping ω2.

Lemma 2. Function y = ω2(x) is analytically expressed by formula

ω2(x) =
x

νa1(x)µa2(x)
−

1 − µa2(x)

νµa2(x)
(3)

and is continuous monotonically increasing on any cylinder of rank 2.

Proof. Let x ∈ ∆µ
ij . Then x = ∆µ

ija3a4... and

x = νi−1 − νi−1µj + νi+a3−1µj − νi+a3−1µj+a4 + . . . =

= νi−1 − νi−1µj + νiµj · ω2(x).

Whence, ω2(x) =
x

νiµj
−

1 − µj

νµj
.

Since function ω2 is linear, we have that this function is continuous
strictly increasing on the set H ∩ ∆µ

a1a2
. Extending by continuity in the

points of the set S we obtain continuous function on the whole cylinder
∆µ

a1a2
.
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Lemma 3. Equation ds(x) = ω2(x) has a countable set of solutions
having the form x = ∆µ

a1(a2[s+a1]), where a1, a2 are arbitrary positive
integers.

Proof. We can write equation ds(x) = ω2(x) in the form

∆µ
[s+a1(x)]a2(x)a3(x)a4(x)... = ∆µ

a3(x)a4(x)... .

From uniqueness of ∆µ-representation of numbers belonging to set H
it follows that the following equalities hold simultaneously:

s+ a1(x) = a3(x), a2(x) = a4(x), a3(x) = a5(x) = s+ a1(x),
a4(x) = a6(x) = a2(x), . . . , a2k+1(x) = s+ a1(x),
a2k(x) = a2(x), k ∈ N.

Then solutions of equation are numbers having the form x=∆µ
a1(a2[s+a1]),

where a1, a2 ∈ N.

6. Right shift operator on digits
of ∆µ-representation of number

Let i, j be fixed positive integers. We consider operator depending on
parameters i, j, well-defined on half-interval (0, 1] by equality

δij(x) = δij

(

∆µ
a1(x)a2(x)...

)

= ∆µ
ija1a2....

This operator defines a countable set of functions y = δij(x), i ∈ N, j ∈ N.

Lemma 4. Function y = δij(x) is analytically expressed by formula

y = δij(x) = νiµj · x+ νi−1
(

1 − µj
)

and is linear strictly increasing on half-interval (0, 1], moreover,

inf
x∈(0,1]

δij(x) = ∆µ
ij(∅) = νi−1

(

1 − µj
)

,

sup
x∈(0,1]

δij(x) = ∆µ
ij1(∅) = νi−1

(

1 − µj+1
)

.

Proof. In fact, by definition of function δij , we have:

y=δij(∆µ
a1a2...)=∆µ

ija1a2... =νi−1−νi−1µj+νi+a1−1µj−νi+a1−1µj+a2+. . .=
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= νi−1−νi−1µj +νiµj
(

νa1−1 − νa1−1µa2 + . . .
)

︸ ︷︷ ︸

x

= νi−1−νi−1µj +νiµj ·x.

Therefore, y = δij(x) = νiµj · x+ νi−1
(
1 − µj

)
.

From linearity of function δij it follows that it is a continuous strictly
increasing function on (0, 1] for any pair of positive integers (i, j). More-
over,

inf
x∈(0,1]

δij(x) = lim
x→0+0

δij(x) = lim
k→∞

δij

(

∆µ
(k)

)

= lim
k→∞

∆µ
ij(k) =

= ∆µ
ij(∅) = νi−1

(

1 − µj
)

;

sup
x∈(0,1]

δij(x) = lim
x→1−0

δij(x) = lim
k→∞

δij

(

∆µ
1(k)

)

=

= ∆µ
ij1(∅) = νi−1

(

1 − µj+1
)

.

For functions ω2 and δij , the following equalities are obvious:

ω2 (δij) = x, δa1(x)a2(x) (ω2(x)) = x.

Theorem 4. For function δij, the following propositions are true.
1. Equation σ1(x) = δij(x) does not have any solution if a1 + a2 > i and
has a countable set of solutions

E=
{

x : x = ∆µ
(a1a2[i−a1−a2]j), a1 ∈ N, a2 ∈ N, a1+a2 ∈{1, 2, . . . , i−1}

}

if a1 + a2 < i.
2. Equation ds(x) = δij(x) does not have any solution if s > i and

has a countable set of solutions

E =
{

x : x = ∆µ
([i−s]j), s ∈ N, s ∈ {1, 2, . . . , i− 1}

}

if s < i.
3. Equation ω2(x) = δij(x) has infinitely many solutions having a

general form

x = ∆µ
(a1a2ij), where (a1, a2) is an arbitrary pair of positive integers.

Proof. 1. We can write equation σ1(x) = δij(x) in the form

∆µ
[a1(x)+a2(x)+a3(x)]a4(x)a5(x)... = ∆µ

ija1(x)a2(x)a3(x)a4(x)... .
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From uniqueness of ∆µ-representation of numbers belonging to H it
follows that following equalities holds simultaneously:

a1(x) + a2(x) + a3(x) = i, a4(x) = j, a5(x) = a1(x), a6(x) = a2(x),
a7(x)=a3 = i− (a1 + a2), a8(x)=a4 =j, . . . , a4k−1(x)= i− (a1 + a2),
a4k(x) = j, a4k+1(x) = a1, a4k+2(x) = a2, k ∈ N.

Then this system does not have any solution if a1 + a2 > i and have a

countable set of solutions E =
{

x : x = ∆µ
(a1a2[i−a1−a2]j)

}

, where a1, a2

are independent positive integer parameters, if a1 + a2 < i.

Similarly, we can prove statements 2 and 3 of the theorem.

7. Transformations preserving tails
of ∆µ-representation of numbers

Recall that transformation of non-empty set E is any bijective (i.e.,
both injective and surjective) mapping of this set onto itself.

It is clear that continuous transformations of [0, 1] are strictly mono-
tonic (increasing or decreasing) functions such that f(0)=0 and f(1)=1
or f(0) = 1 and f(1) = 0.

If f is a transformation of [0, 1], then ϕ(x) = 1 − f(x) is also trans-
formation of this set. Therefore, to study continuous transformations of
[0, 1], we can consider only strictly increasing functions, i.e., continuous
probability distribution functions.

Simple examples of continuous strictly increasing transformations pre-
serving tails of ∆µ-representation of numbers are the following functions:

ϕτ (x) =







di(x) if 0 < x 6 x1 ≡ ∆µ
a1(a2[i+a1]),

ω2(x) if x1 < x 6 x2 ≡ ∆µ
(a1a2),

e(x) if x2 < x 6 1,

where τ = (i, a1, a2) is an arbitrary triplet of positive integers;

ψ(x) =







d1(x) if 0 < x 6 x1 ≡ ∆µ
1(12),

ω2(x) if x1 < x 6 x2 ≡ ∆µ
(1112),

δ12(x) if x2 < x 6 x3 ≡ ∆µ
(12),

e(x) if x3 < x 6 1;
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γ(x) =







d3(x) if 0 < x 6 x1 ≡ ∆µ
1(12),

σ1(x) if x1 < x 6 x2 ≡ ∆µ
(1111),

δ31(x) if x2 < x 6 x3 ≡ ∆µ
(1231),

ω2(x) if x3 < x 6 x4 ≡ ∆µ
(1212),

e(x) if x4 < x 6 1.

Theorem 5. The set G of all continuous strictly increasing transfor-
mations of half-interval (0, 1] preserving tails of ∆µ-representation of
numbers together with an operation ◦ (function composition) form an
infinite non-commutative group.

Proof. The set of continuous transformations of (0, 1] is a subset of all
transformations of (0, 1] forming a group. Thus we use a subgroup test.
It is evident that set G is closed under the composition operation. For
continuous strictly increasing function, inverse function is continuous and
strictly increasing too. If transformation f preserves “tails” of ∆µ-rep-
resentations, then inverse transformation preserves them too. Therefore,
for transformation f ∈ G, inverse transformation belongs to G too.

Since set of transformations ϕτ , τ ∈ N × N × N, is countable, we see
that set G is infinite.

To prove that group (G, ◦) is non-commutative, we provide an example
of two transformations f1 and f2 such that they are not commute, i.e.,
f2 ◦ f1 6= f1 ◦ f2. Consider two transformations ϕτ1(x) and ϕτ2(x), where
τ1 = (1, 2, 3), τ2 = (1, 1, 2), i.e.,

ϕτ1(x) =







d1(x) if 0 < x 6 x1 ≡ ∆µ
2(33),

ω2(x) if x1 < x 6 x2 ≡ ∆µ
(23),

e(x) if x2 < x 6 1;

ϕτ2(x) =







d1(x) if 0 < x 6 x3 ≡ ∆µ
1(22),

ω2(x) if x3 < x 6 x4 ≡ ∆µ
(12),

e(x) if x4 < x 6 1.

Then, for x0 = ∆µ
12(3), tacking into account inequalities x0 > x2 = ∆µ

(23)

but ϕτ1(x0)<x3 =∆µ
1(22) and x0<x3 =∆µ

1(22) but ϕτ2(x0)<x1 =∆µ
2(33),

we obtain
ϕτ2

(

ϕτ1

(

∆µ
12(3)

))

= ϕτ2

(

∆µ
12(3)

)

= ∆µ
22(3);

ϕτ1

(

ϕτ2

(

∆µ
12(3)

))

= ϕτ1

(

∆µ
22(3)

)

= ∆µ
32(3) 6= ∆µ

22(3).

Therefore ϕτ2 ◦ϕτ1 6= ϕτ1 ◦ϕτ2 and (G, ◦) is a non-commutative group.
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