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Automatic logarithm and associated measures

R. Grigorchuk, R. Kogan, and Y. Vorobets

Abstract. We introduce the notion of the automatic loga-

rithm LogA(B) of a őnite initial Mealy automaton B, with another
automaton A as the base. It allows one to őnd for any input word
w a power n such that B(w) = An(w). The purpose is to study the
expanding properties of graphs describing the action of the group
generated by A and B on input words of a őxed length interpreted
as levels of a regular d-ary rooted tree T . Formally, the automatic
logarithm is a single map LogA(B) : ∂T → Zd from the boundary
of the tree to the d-adic integers. Under the assumption that the
action of the automaton A on the tree T is level-transitive and
of bounded activity, we show that LogA(B) can be computed by
a Moore machine. The distribution of values of the automatic loga-
rithm yields a probabilistic measure µ on ∂T , which in some cases
can be computed by a Mealy-type machine (we then say that µ
is finite-state). We provide a criterion to determine whether µ is
őnite-state. A number of examples with A being the adding machine
are considered.

1. Introduction

The maps and the measures considered in this paper arise from the
study of properties of Schreier graphs associated with automaton semi-
groups and groups acting on words over a őnite alphabet and regular
rooted trees.

The problem of studying the distribution of lengths of chords (to be
deőned below) in the graph of action of two initial automata gives rise to
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the automatic logarithm, a map deőned by an automaton that outputs
these lengths. The distribution of the lengths of chords is then seen as the
image of the uniform Bernoulli measure by the action of the automatic
logarithm. When the automatic logarithm is invertible, the distribution
is uniform. Otherwise, the resulting distribution is an interesting object
of study. In certain cases, such distributions only have a őnite number
of restrictions to cylinders (we call them őnite-state or self-similar), and
we provide a sufficient condition for this to happen, as well as examples
when it does not.

Given a őnite initial Mealy (or Moore) type automaton Aq over a őnite
alphabet X, one can deőne a map Âq on the space of sequences (words)
over the alphabet X. Maps of this type usually have a very complicated
dynamical nature and may transform relatively simple measures on the
space XN, like for instance Bernoulli or Markov measure, into complicated
ones. The study of such measures were initiated in [12], [15] and [11].

Given a family of őnite automata Aq,Bs, . . . , Ct, using the opera-
tion of composition of automata one can generate a semigroup S =
⟨Aq,Bs, . . . , Ct⟩sem or even a group G = ⟨Aq,Bs, . . . , Ct⟩gr if the automata
are invertible. A particularly interesting case is when the group G is
generated by a family which comes from the one non-initial invertible
automaton A by using all its states for generating. Such groups are called
automaton groups (or self-similar groups) and play an important role in
group theory and areas of its applications [3], [14], [7], [8]. They naturally
act by automorphisms on a d-regular rooted tree T (d is the cardinality
of the alphabet X) and on its boundary ∂T . These actions are induced by
the corresponding actions on the set of őnite (and, respectively, inőnite)
words over the alphabet X. The operation of composition of automata
corresponds to the composition of the associated maps.

Another direction of development is study of the Schreier graphs (also
called orbital graphs) given by the action of a group on levels of the tree
or on its boundary (i.e. on őnite or inőnite words). These graphs have
self-similarity features and give a good approximation to many important
fractal sets including the Julia sets of the rational mappings of C. There
are examples of the automata given by a small number of states that
are believed to produce families of expander graphs (two of them are
considered in this article). No rigorous proof of this is known, but there
are results showing that at least these families are the so called asymptotic
expanders [6], and that the growth of their diameters is slow [13] (as
should be in the case of expanders).
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Among automorphisms of the rooted trees, the most famous is the
adding machine automorphism deőned by the automaton shown in Fig-
ure 2a, which we denote O. The portrait of this automorphism is shown
in Figure 4. It acts on őnite strings of symbols as the addition of 1 when
the strings are interpreted as the natural numbers in the d-adic expansion
(the diagram in Figure 2a is for the case of the binary alphabet). The
group G(O) is an inőnite cyclic group (one of the states of O corresponds
to the identity map). If o is the nontrivial state of O, and if another initial
automaton Aa is given, then one can consider the semigroup ⟨Aa, Oo⟩sem
(or a group ⟨Aa,Oo⟩gr if Aa is invertible), and study its properties as well
as the sequence {Γn}

∞
n=1 of graphs of the action on levels n = 1, 2, . . .

of the tree (Figure 3 gives an idea of how the graph Γn might look).
The questions about combinatorial and spectral properties of the graphs
{Γn} is the subject of many investigations [2, 9, 10], and in particular,
the question about the growth of the diameters of {Γn} and about the
expansion properties of the family {Γn}

∞
n=1 are among the central.

In this paper we focus on study of the dynamical and combinatorial
properties of the pair (Aa,Oo). This unexpectedly leads us to the notion
of the łlogarithmž of Aa with respect to the adding machine Oo, which
we denote L, and which is a specially deőned map on the set of őnite
and inőnite sequences with vales in d-adic numbers, or words over X that
represent them. Then we show that in the case of the binary alphabet, the
logarithm map can be deőned by a őnite-state automaton (Theorem 6.3)
and provide the construction for it. We then analyze the distribution
of the lengths of the łchordsž (again we appeal to Figure 3 which gives
an impression of what we mean by the chord). This leads us to the
considerations started in the [5, 11] about the nature of the image of the
Bernoulli (or, more generally, Markov) measure under the automaton
map, in the case the map is given by the łlogarithmž automaton L. The
distribution of the chords is given by the image µ = L∗(ν) of the uniform
Bernoulli measure ν on XN, which in some important cases (for instance,
given in Example 8.5 and Theorem 8.6) is a Markov measure, but in some
other interesting cases (like Example 8.7) is a more complicated type of
measure.

To study µ, we introduce the notion of the automaton associated
with a measure, the notion of a őnite state measure, of a self-similar
measure, and show that Markov measure is a őnite state measure, but not
every őnite state measure is Markov. Multiple examples illustrating the
deőnitions and results are provided (we mark the ends of examples with
△ instead of the traditional □).
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2. Preliminaries

2.1. Endomorphisms of rooted trees

By a őnite alphabet X of size d, we mean a őnite set of cardinality d.
We will usually use the following alphabets: the sets {0, 1, . . . , d− 1}, and
őnite subsets X ⊂ [0, 1] (in the latter case, the values of the real numbers
constituting X will be important in addition to its cardinality).

For a word w in X, |w| denotes its length, and wi denotes the ith
character for 0 ⩽ i ⩽ |w| − 1. The numbering of characters starts from 0,
so w = w0w1 . . . w|w|−1. If v is another word (or a character), wv is the
concatenation of the two.

X∗ denotes all őnite words over X:

X∗ := {a0 . . . an−1 : ai ∈ X,n ∈ N ∪ {0}}

Let T be a rooted graph with the vertex set V = X∗, edge set F =
{(w,wa) : w ∈ X∗, a ∈ X}, and the root being the empty word. This
graph is a d-regular rooted tree.

The nth level Xn of the tree T is the set of words of length n.

An endomorphism of the rooted tree T is a map g from X∗ to itself
that preserves the levels and maps adjacent vertices to adjacent vertices.
An automorphism is an invertible endomorphism.

The boundary of the tree T is the set XN of inőnite sequences in X:

∂T := {a0a1a2 . . . : ai ∈ X, i ∈ N}

∂T is supplied with the Tychonoff product topology that makes it homeo-
morphic to a Cantor set. Geometrically, the boundary can be viewed as
a set of geodesic paths starting at the root and going to inőnity.

Let σr denote the operation that deletes the last character of a word:
for w ∈ X∗ and a ∈ X, σr(wa) := w. Then ∂T can be obtained as
the inverse limit of the directed system of levels {Xn : n ∈ N} with the
projections ψm,n : Xn → Xm given by ψm,n := σn−mr (i.e., discarding the
last n−m characters).

2.2. Mealy and Moore machines

Deőnition 2.1. A Mealy machine, or a őnite initial automaton with
output, is a hextuple Aq = (S, q,X, Y, π, λ), where

• X is a (őnite) input alphabet;
• Y is a (őnite) output alphabet;
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• S is a (őnite) set of states;
• q ∈ S is the initial state;
• π : S ×X → S is the transition map
• λ : S ×X → Y is the output map
When the initial state of the automaton is understood from the context,

we drop the subscript and write A instead of Aq to denote it.
We write πs, λs for restrictions of these functions to the state s, deőning

πs(x) := π(s, x) and λs(x) := λ(s, x).
The functions π and λ also act on words in the alphabet X via the

following recursive relations (for x ∈ X, w ∈ X∗):

π(s, xw) := π(π(s, x), w) and λ(s, xw) := λ(s, x)λ(π(s, x), w).

In the same way, πs and λs, for s ∈ S, act on words w ∈ X∗. Additionally,
we may write π(w) for πq(w) (and similarly, λ(w) for λq(w)), when the
initial state q is understood from the context.

The diagram of an automaton Aq is a labeled graph with the vertex
set S, edge set E = {(s, π(s, x)) : s ∈ S, x ∈ X}, with label x : λ(s, x) on
the edge (s, π(s, x)). The initial state q is marked with a special arrow
(which doesn’t start at a state). An example of such diagram for the
Lamplighter automaton is shown in Figure 1b.

a

0

b

1

0

1

(a) Diagram with element of the sym-
metric group on vertices

a

0|1

b
1|0

0|0

1|1

(b) Diagram with output marked on
edges

Figure 1. Two ways to draw the Lamplighter automaton

An automaton A is invertible if λs is invertible for all s ∈ S (that is, if
λs ∈ S(X), where S(X) is the symmetric group on X). The endomorphism
g given by an invertible automaton A is invertible, and the automaton
for g−1 (which we denote as A−1) can be constructed from the diagram
of A by ŕipping the input and output on the edges.

In the case when an automaton is invertible, we can draw the diagram
of the automaton without specifying its output on the arrows. Instead,
the state s is marked by the element of the symmetric group λs ∈ S(X).
If λs is the trivial permutation, we call the state s passive, and call it
active otherwise.
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When X = {0, 1}, we write σ for the nontrivial permutation of X (i.e.
σ(0) = 1, σ(1) = 0). In the diagrams of automata over X = {0, 1} we
then mark active states with σ, leave the label of passive states blank.
Figure 1a shows how to draw the Lamplighter automaton of Figure 1b
in this way. A few more examples of such diagrams are in Figure 2, and
further throughout this paper.

(a) Adding machine, also featured in Figure 4 (b) automaton F

(c) automaton Z

Figure 2. Diagrams of invertible automata.

Unless otherwise speciőed, we assume X = Y everywhere in this text,
and write an automaton Aq = (S, q,X, π, λ).

An automaton state q acts on X∗, the d-ary tree T , and its boundary
∂T by the action of Aq. We shall use A and q interchangeably for this
action when the context is clear.

Deőnition 2.2. The graph of the action of an initial automaton Aq =
(S, q,X, π, λ) on an invariant subset S ⊂ V (T ) is the directed graph
with vertex set S and edges w → λq(w) for w ∈ S. The graph of action
of automata A1q1 ,A2q2 , . . . ,Akqk on S is similarly deőned as a directed
graph with vertex set S and edges w → λiqi(w), 1 ⩽ i ⩽ k and w ∈ S.

In this paper, we consider graphs of action on level n of two automata,
O and A, with O being the adding machine (Figure 2a). Figure 3 shows
examples of such graphs for A being automaton Z (Figure 2c) and A
being automaton F (Figure 2b).
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Figure 3. Examples of Schreier graphs.
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Deőnition 2.3. A Mealy automaton is said to be a Moore machine
when the output does not depend on the last character of the input. That
is, for all s ∈ S, λs is constant: for all x, y ∈ X, λ(s, x) = λ(s, y). In this
case, we simply write λ(s) for the value λs takes.

Remark 2.4. In this deőnition, the output only depends on the current
state s. Some authors use the deőnition of a Moore machine with a shift,
where the output is determined by the ending state π(s, x), and so does
depend on the input.

Mealy automata A and B are said to be equivalent if A(w) = B(w)
for all w ∈ X∗.

Deőnition 2.5. An initial Mealy automaton A is said to be minimal
if it has the smallest number of states among all the automata in its
equivalence class.

Minimality is a classical notion, as is the algorithm that produces the
minimal automaton in a given class; see [1] for a discussion of this algorithm
(refer to [7] for a discussion of this equivalence and a minimization
algorithm in the more general case of asynchronous Mealy machines).

Given automata A and B such that the output alphabet of A coincides
with the input alphabet of B, one can construct the product automaton,
denoted A · B, which computes the composition A ◦ B. We again refer
to [7] for the construction of the product automaton.

2.3. Sections of tree endomorphisms

Deőnition 2.6. Let g be an endomorphism of a d-regular rooted tree
T , and let w be a őnite word. A section of g by w, denoted g|w, is an
endomorphism h of T such that for any word or sequence v, g(wv) =
g(w)h(v).

Remark 2.7. a őnite automaton A has only őnitely many sections, which
correspond to states in the connected component of the starting state in
the diagram of the automaton A. More speciőcally, when g is given by
a Mealy machine Aq, g|w = Ag(w).

With an invertible tree endomorphism g we can associate a portrait
diagram that uniquely determines g. For a őnite word w, g|w acts on
X by a permutation when g is invertible. The portrait consists of the
inőnite tree T with markings on the nodes: node corresponding to word
w is marked with the permutation of X induced by g|w. When |X| = 2,
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......

Figure 4. The adding machine and its portrait.

we only mark nodes with the nontrivial permutation and leave others
unmarked.

Example 2.8. The portrait of the adding machine of Figure 2a is shown
in Figure 4. △

Every tree automorphism has a portrait, but not all tree automorphisms
are given by őnite automata. To any tree endomorphism g we can associate
a (possibly inőnite) automaton A = (S, g,X, π, λ) with the initial state
labeled by g, such that the action of A is identical to the action of g. We
take S = {g|w : w ∈ X

N} ∪ {g}, and deőne π(h, x) := h|x; λ(h, x) = h(x).
This automaton of restrictions, in general, need not be őnite. When it is
őnite, the tree automorphism g is said to be őnite-state.

Remark 2.9. An automorphism g of the tree T is őnite-state if and only
if its portrait contains a őnite number of distinct (up to isomorphism
of marked trees) subtrees. The subtrees in the portrait diagram deőne
sections of g.

We now prove several basic propositions related to sections of auto-
morphisms which we use in subsequent chapters. These statements are
well-known, but we include them for the reader’s convenience.
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Proposition 2.10. If an endomorphism g is invertible, then all of its
sections are invertible, and for w ∈ X∗, (g|w)

−1 = g−1|g(w).

Proof. Let w ∈ X∗ and v ∈ XN. Then by deőnitions,

wv = g−1(g(wv)) = g−1(g(w)g|w(v))

= g−1(g(w))g−1|g(w)(g|w(v))

= wg−1|g(w)(g|w(v)).

Therefore g−1|g(w)(g|w(v)) = v, and the proposition holds.

Proposition 2.11. Let g be a tree endomorphism. Then for all w, v őnite
words w, v over X g|wv = (g|w)|v.

Proof. For any word u,

g(wvu) = g(w)g|w(vu) = g(w)g|w(v)(g|w)|v(u) = g(wv)(g|w)|v(u).

The proposition holds by deőnition.

Proposition 2.12. Let g and h be tree endomorphisms. Then for all
őnite words w over X, (gh)|w = g|h(w)h|w.

Proof. Let v be a őnite word. By the deőnition of section,

gh(wv) = g(h(w)h|w(v)) = g(h(w))g|h(w)hw(v),

so (gh)|w = g|h(w)hw.

Corollary 2.13. Let g, h be tree endomorphisms. Then for any őnite
words w and v, (gh)|wv = g|h(wv)h|wv = g|h(w)h|w(v)(h|w)|v.

Proposition 2.14. gn|w = g|gn−1(w)g|gn−2(w) . . . g|g(w)g|w.

Proof. The result holds trivially when n = 1. By Proposition 2.12,

gn|w = (g ◦ gn−1)|w = g|gn−1(w)(g
n−1|w).

The result follows by induction.

Proposition 2.15. Assume g acts transitively on levels, |w| = n, and
a ∈ X. Then g2

n
|w(a) ̸= a.

Proof. If g2
n
|w(a) = a, then wa, a word of length n+ 1, is a őxed point

of g2
n
, contrary to the assumption that the length of the orbit of g on

words of length n+ 1 is 2n+1.
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2.4. Automata with bounded activity

Deőnition 2.16. An automaton A is said to have bounded activity if
the number of nontrivial sections on every level is bounded by a global
constant c:

∃c : ∀n ∈ N : |{A|w : A|w ̸= 1, w ∈ Xn}| < c.

Example 2.17. The adding machine in Figure 2a has bounded activity.

This automaton can also be deőned by the portrait in Figure 4, in
which case it is clear that there is only one nontrivial section on every
level. △

The following proposition shows that the set of sections of powers of
a bounded-activity automaton is őnite if the powers are bounded by the
number of words on the corresponding level. This fact is used to show
Theorem 6.3.

Proposition 2.18. If A is a tree endomorphism given by a őnite Mealy
automaton A which is of bounded activity and acts transitively on levels,
then the set

TA := {An|w : w ∈ X
∗, n ⩽ 2|w|}

is őnite.

Proof. by Proposition 2.14,

TA := {A|An−1(w)A|An−2(w) . . . A|A(w)A|w : w ∈ X
∗, n ⩽ 2|w|}.

For a given w, consider a sequence of words w,A(w), A2(w), . . . ,
An−1(w) with n ⩽ 2|w|. By level transitivity of the action of A, all elements
in it are distinct words of length |w|, and thus this sequence is a subset of
vertices on level |w|.

Since A is of bounded activity, there is a constant c such that at most
c sections on every level are nontrivial. Hence the product

A|An−1(w)A|An−2(w) . . . A|A(w)A|w

contains at most c nontrivial factor. Since A is őnite-state by assumption,
its nontrivial sections are enumerated by the őnite set of states SA of A.
Therefore, |TA| ⩽ |SA|

c.
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2.5. Measure-theoretic deőnitions

We now give a few deőnitions relevant to probability theory and ergodic
theory.

A cylinder set wXN is a clopen subset of XN given by

wXN := {wv : w ∈ X∗, v ∈ XN}.

A probability vector p is a a vector p : X → [0, 1] with Σi∈Xp(i) = 1.
A stochastic matrix on X is a matrix M : X ×X → [0, 1] whose rows are
probability vectors.

Deőnition 2.19. The Bernoulli measure on XN deőned by a probability
vector p is given on the cylinders wXN by

µ(wXN) :=

|w|−1
∏

i=0

p(wi),

and extended by the additivity properties on all Borel sets. The uniform

Bernoulli measure is given by p =
(

1
|X| , . . . ,

1
|X|

)

.

Informally, this measures probability of a sequence of independent
events (e.g. coin ŕips).

Deőnition 2.20. The Markov measure deőned by a probability vector
l = (lx) of length |X| and a stochastic matrix L = (Lx,y) of size |X| × |X|
is given on the cylinder sets wXN by

µ(wXN) := l(w0)

|w|−1
∏

i=1

Lwi−1,wi
.

Informally, this measures the probability of events where the probability
of an outcome may depend on what the preceding outcome was.

2.6. Sections of a measure

Deőnition 2.21. The null measure ν0 (or the trivial measure) ν0 is the
measure given by ν0(E) = 0 for all measurable sets E.

Deőnition 2.22. Suppose µ is a probability measure on XN. If µ(wXN) ̸=
0, then the section of µ by the word w ∈ X∗, denoted µ|w, is the probability
measure on XN uniquely deőned by

µ|w(vX
N) :=

µ(wvXN)

µ(wXN)

for all v ∈ X∗. In the case µ(wXN) = 0, we let µ|w be the null measure.
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The section µw can be seen as the conditional probability given w.

For convenience, we also deőne sections for null measures: if µ is null,
µ|w = 0 for all words w.

We say a word w is admissible (with respect to µ) if the section of µ
by w is nontrivial (i.e. µ(wXN) ̸= 0). We say a word w is forbidden if it
is not contained in any admissible word.

Now we describe how to compute sections of measures.

Proposition 2.23. µ|wv = (µ|w)|v for all words v, w ∈ X∗.

Proof. First, suppose wv is not admissible, i.e. µ(wvXN) = 0. Then either
w is also not admissible, or w is admissible relative to µ, but v is not
admissible relative to µ|w. Either way, (µ|w)|v is the null measure, and
the proposition holds.

Now assume µ(wvXN) ̸= 0; then µ(wvXN) ̸= 0. For any word u ∈ X∗

we obtain

(µ|w)|v(uX
N) =

µ|w(vuX
N)

µ|w(vXN)
=

µ(wvuXN)

µ(wXN)µ|w(vXN)

=
µ(wvuXN)

µ(wvXN)
= µ|wv(uX

N).

Corollary 2.24. Let µ =
∑k

i=1 aiµi, where ai ⩾ 0 and µi are probability
measures. The for any admissible word w,

µ|w =
1

µ (wXN)

k
∑

i=1

aiµi

(

wXN

)

µi|w.

Proof. For any word v ∈ X∗,

µ|w

(

vXN

)

=
1

µ (wXN)

k
∑

i=1

aiµi

(

wvXN

)

=
1

µ (wXN)

k
∑

i=1

aiµi

(

wXN

)

µi|w

(

vXN

)

.

3. Finite-state measures

Deőnition 3.1. A measure µ is őnite-state if admits only őnitely many
distinct sections.
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Finite-state measures can also be called self-similar (by analogy with
self-similar groups [14]).

Example 3.2. Bernoulli and Markov measures (Deőnitions 2.19 and 2.20,
respectively) are őnite-state:
• any Bernoulli measure µ has only one (nontrivial) section: µ|w = µ

whenever w is admissible. Indeed, let p be the deőning probability vector,

µ|w(vX
N) =

µ(wvXN)

µ(wXN)
=

∏|w|−1
i=0 p(wi)

∏|v|−1
j=0 p(vj)

∏|w|−1
i=0 p(wi)

=

|v|−1
∏

j=0

p(vj) = µ(vXN).

Note that if p(x) = 0 for some x ∈ X, then words w containing x are
not admissible. Conversely, if p is positive, then all words are admissible.
• a Markov measure µ has at most |X| + 1 nontrivial sections: µ

(section by the empty word) and µ|x for x ∈ X. This is because for all
admissible words w ∈ X∗ and all x ∈ X, µ|wx = µ|x. Indeed, assuming w
is not the empty word, we obtain

µ|wa(vX
N) =

µ(wavXN)

µ(waXN)

=

(

l(w0)
∏|w|−1
i=1 L(wi−1, wi)

)

L(w|w|−1, a)
(

L(a, v0)
∏|v|−1
j=1 L(vj−1, vj)

)

(

l(w0)
∏|w|−1
i=1 L(wi−1, wi)

)

L(w|w|−1, a)

= L(a, v0)

|v|−1
∏

j=1

L(vj−1, vj) =
l(a)L(a, v0)

∏|v|−1
j=1 L(vj−1, vj)

l(a)

=
µ(avXN)

µ(aXN)
= µ|a(vX

N). △

Deőnition 3.3. A k-step Markov measure is a measure µ such that for
all words v ∈ X∗ of length k and all words w ∈ X∗, µ|wv = µ|v whenever
wv is admissible.

Informally, this measures the probability of events where the probability
of an outcome may depend on what the preceding k outcomes was.

Remark 3.4. A Markov measure is a 1-step Markov measure. A k-step
Markov measure on XN with |X| = d is őnite-state with at most dk+1−1

d−1
sections.
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Indeed, a őnite d-tree of depth k+1 has 1+d+d2+ . . .+dk = dk+1−1
d−1

nodes, which encode all words of length not exceeding k. By deőnition,
every nontrivial section of a k-step Markov measure is a section by one
of these words.

Deőnition 3.5. To any őnite-state measure µ we associate an automaton
Aµ as follows.

Let µ1, . . . , µn be the distinct sections of µ. Consider an automaton
Aµ with input alphabet X, output alphabet Y ⊂ [0, 1], state set S =
{µ1, . . . , µn}, initial state s0 = µ ∈ S, and transition and output functions
deőned by

π(µi, a) := µi|a; (1)

λ(µi, a) := µi(aX
N).

We say that Aµ determines the measure µ.

Proposition 3.6. The automaton Aµ uniquely determines µ as follows:
for any input word w ∈ X∗, the output word Aµ(w) = p0p1 . . . p|w|−1 is

a sequence of real numbers whose product is µ(wXN):

µ(wXN) =

|w|−1
∏

i=0

(Aµ(w))i. (2)

Proof. The proposition holds for when |w| = 1 by construction; assume it
holds for all words of length k. Consider an arbitrary word w = w0w1 . . . wk
of length k. Then applying the inductive hypothesis, and then applying
Proposition 2.23 k times, we obtain:

k
∏

i=0

pi = µ(w0w1 . . . wk−1X
N) · ((. . . (µ|w0

)|w1
)|w2

) . . .)|wk−1
(wkX

N)

= µ(w0w1 . . . wk−1X
N)µ|w0w1...wk−1

(wkX
N)

= µ(w0w1 . . . wkX
N) = µ(wXN),

which completes the inductive step.

Note that if µi is a section of µ, then the automaton deőning µi can be
obtained from Aµ by changing the initial state to µi and possibly dropping
some states (as some sectinos of µ might not be sections of µi).
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Deőnition 3.7. Suppose µ is a őnite-state measure that admits a trivial
section. We call the corresponding state of the deőning automaton Aµ
trivial.

Refer to Example 3.14 for an automaton with a trivial state; for
example, the state µ|11 in Figure 8a is trivial.

Remark 3.8. Given a őnite-state measure µ, the automaton deőned
in (1) is minimal and contains at most one trivial state.

Example 3.9. The automaton computing a Bernoulli measure on {0, 1}N

deőned by a positive probability vector p = (p(0), p(1)) is depicted in
Figure 5a. △

Example 3.10. The automaton computing a Markov measure on {0, 1}N

deőned by a positive probability vector l = (l(0), l(1)) and a positive
probability matrix L = (Lij) is depicted in Figure 5b. △

Example 3.11. Figure 6 shows a general 2-step Markov measure on
{0, 1}N. Such a measure is determined by a probability vector p, a stochas-
tic matrix q and a probability tensor M (Mijk gives the probability of k
given ij). △

Similarly to tree automorphisms, we deőne the portrait of the measure
µ to be the diagram consisting of the marked tree T , where the node
corresponding to a word w is marked with the values µ|w takes on cylinders
xXN, x ∈ X. A portrait deőnes a measure uniquely.

When dealing with probability measures, it is often convenient to con-
sider the vector pw :=

(

µ|w(x0X
N), . . . , µ|w(xd−1X

N
)

up to scaling. Since
∑d−1

i=0 µ(xiX
N) = 1, the proportion pw0

: pw1
: . . . : pwn−1

∈ RP d−1 deter-
mines the values of µ on X unambiguously. We then use the proportion
as the corresponding label in the portrait.

Example 3.12. The uniform Bernoulli measure on a binary alphabet has
one section whose proportion is 1 : 1. Its portrait is shown in Figure 7. △

Remark 3.13. As with automorphisms, one can draw the portrait of any
probability measure on the space XN, but not all probability measures
are őnite-state.

Again, as with automorphisms, even small automata deőne interesting
őnite-state measures.
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(a) Diagram of the automaton com-
puting a Bernoulli measure

(b) Diagram of the automaton computing
a Markov measure

Figure 5. Automata determining a Bernoulli and a Markov measure
on {0, 1}N.

Figure 6. Automaton deőning a general 2-step Markov measure on {0, 1}N.
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Figure 7. Portrait of the uniform Bernoulli measure up to level 5.
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It should be noted that even small automata deőne interesting őnite-
state measures.

Example 3.14. The measure µ deőned by the automaton in Figure 8a
is a 2-step Markov measure on Ω = {0, 1}N that is not a 1-step Markov
measure on Ω. It is supported on the Fibonacci subshift, which is the
(shift-invariant) subset of Ω consisting of all sequences that do not contain
consecutive 1’s. The number of nontrivial sections of µ by words of length
n−1 is the nth Fibonacci number as can be seen in the portrait of µ shown
in Figure 8b (to simplify the őgure, we omitted the subtrees corresponding
to the null measure). △

(a) 2-step Markov measure µ on {0, 1}N

1:1

1:1

0 1

1:1

0 1

1:1

0

1:1

0 1 1

1:1

0

1:1

0

1:1

0 1

1:1

01

1:1

0

1:1

0

1:1

0 1

1:0

1:0

1:0

1:0

1:0 1:0 1:0

(b) Portrait of µ up to level 5

Figure 8. A őnite-state measure supported on the Fibonacci subshift.
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4. Images of őnite-state measures under tree

automorphisms

Given a őnite-state measure µ and a tree automorphism g, we consider
the pushforward measure g∗µ deőned by g∗µ(E) = µ(g−1(E)) for all
measurable sets E. We say that g∗µ is the image of µ under (the map) g.

The following proposition is useful for constructing the automata of
őnite-state measures which are images under automaton automorphisms.

Proposition 4.1. Let A = (X,S, s0, π, λ) be a Mealy automaton with
initial state s0 = g acting on T , and let ν be a probability measure on ∂T .
Then for x ∈ X,

(g∗ν)(xX
N) =

∑

y∈λ−1
g (x)

ν(yXN),

(g∗ν)|x =

∑

y∈λ−1
g (x) ν(yX

N)πg(y)∗(ν|y)
∑

y∈λ−1
g (x) ν(yX

N)
.

where πg(x) := π(g, x) and λg(x) := λ(g, x).

Proof. Note that for a word w ∈ X∗,

g−1(xwXN) =
⊔

y∈λ−1
g (x)

yπg(y)
−1(wXN).

By deőnition,

(g∗ν)|x(wX
N) =

(g∗ν)(xwX
N

(g∗ν)(xXN)
=
ν(g−1(xwXN)

ν(g−1(xXN))

=

∑

y∈λ−1
g (x) ν(yX

N)ν|y
(

πg(y)
−1(wXN)

)

∑

y∈λ−1
g (x) ν(yX

N)ν|y (πg(y)−1(XN))

=

∑

y∈λ−1
g (x) ν(yX

N)πg(y)∗(ν|y)(wX
N)

∑

y∈λ−1
g (x) ν(yX

N)
.

Corollary 4.2. When g is as in Proposition 4.1, and ν is a Bernoulli
measure given by probability vector p, then its image under g satisőes

(g∗ν)|x =

∑

y∈λ−1
g (x) p(y)πg(y)∗(ν)
∑

y∈λ−1
g (x) p(y)

.
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In particular, when ν is uniform Bernoulli, (g∗ν)(xX
N) = |λ−1

g (x)|/|X|,
and

(g∗ν)|x =
1

|λ−1
g (x)|

∑

y∈λ−1
g (x)

πg(y)∗(ν).

When ν is uniform Bernoulli, its pushforwards by invertible endomor-
phisms are also uniform Bernoulli:

Proposition 4.3. When ν is uniform Bernoulli and g is invertible,
g∗ν = ν.

Proof. For w ∈ X∗,

g∗ν(wX
N) = ν(g−1(wXN) = ν(g−1(w)XN) = |X|−|w| = ν(wXN).

5. Log map

Let A be an automorphism of the d-regular rooted tree T that acts
transitively on each level. Recall that level n of the tree consists of dn

words of length n. Hence for any pair of words w1, w2 of length n, there is
a unique integer k, 0 ⩽ k ⩽ dn − 1 such that Ak(w1) = w2. Furthermore,
if Ak(w1) = Ak

′
(w1) for some integers k and k′, then k ≡ k′ mod dn.

Deőnition 5.1. For any n ⩾ 1, the displacement function dA,n : Xn ×
Xn → Z/dnZ is deőned on pairs of words w1, w2 of length n by

dA,n(w1, w2) := [k]dn ,

where Ak(w1) = w2 and [k]dn ∈ Z/dnZ is the equivalence class mod dn.
We write [k] when n is understood from the context.

Deőnition 5.2. For any integers m and n, 1 ⩽ m ⩽ n, the natural
projection ϕm,n : Z/dnZ → Z/dmZ is deőned by ϕm,n([k]dn) := [k]dm .
These functions are homomorphisms of rings.

The functions dA,n for different values of n are compatible with each
other with respect to the natural projections.

Proposition 5.3. Suppose |w1| = |w2| = n and a, b ∈ X. Then

ϕn,n+1(dA,n+1(w1a, w2b)) = dA,n(w1, w2).
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Proof. Let dA,n(w1, w2) = [k] so that Ak(w1) = w2, with 0 ⩽ k ⩽ dn − 1.
Let a′ = Ak|w1

(a). Then Ak(w1a) = w2a
′. Note that

Ad
n+k

(w1a) = Ad
n

(w2a
′) = Ad

n

(w2)A
dn |w(a

′).

By Proposition 2.15,

Ad
n

|w(a
′), A2dn |w(a

′), . . . , A(k−1)dn |w(a
′),

are all distinct. Since |X| = d, this implies Atd
n
|w(a

′) = b for some t, 0 ⩽

t ⩽ d− 1. Thus Atd
n+k(w1a) = w2b, whence dA,n+1(w1a, w2b) = [k+ tdn].

Since ϕn,n+1([k + tdn]) = [k], the proposition holds.

In addition to the tree endomorphism A, let us consider a tree endo-
morphism B.

Deőnition 5.4. For any n ⩾ 1, LogA,n(B) : Xn → Z/dnZ is a function
which calculates the displacement of a word w of length n along the orbit
of A under the action of B:

LogA,n(B)(w) := dA,n(w,B(w)).

Note that for any word w of length n, ALogA,n(B)(w) = B(w), which
motivates the name łlogarithmž for this function.

Corollary 5.5. For any word w of length n and character x ∈ X,

ϕn,n+1(LogA,n+1(B)(wa)) = LogA,n(B)(w).

In other words, the displacement of wa by B along the orbit of A is
either the same as displacement of w or differs from it by a multiple of dn.

Corollary 5.6. For any integers m and n, 1 ⩽ m < n, the following
diagram commutes:

Xn σn−mr > Xm

Z/dnZ

LogA,n(B)
∨ ϕm,n

> Z/dmZ

LogA,m(B)
∨

Here, σr is the operator that trims the word, deleting the least letter:
σ(wa) = w for any word w and a character a ∈ X.
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Proof. This follows from Corollary 5.5 by induction on n−m.

Let Zd be the inverse limit of the directed system

Z/dnZ
ϕm,n

> Z/dmZ

(for m,n ∈ N). Zd comes with a natural structure of a ring, and is known
as the ring of the d-adic integers (note that d need not be prime).

Since the boundary of the tree ∂T can also be seen as the inverse limit
of the directed system

Xn σn−mr > Xm,

Corollary 5.6 implies that there exists a unique function LogA(B) : ∂T →
Zd, which restricts to LogA,n(B) on level n for all n.

Deőnition 5.7. The logarithm LogA(B) is the inverse limit

LogA(B) = lim
←−
n

LogA,n(B).

That is, it is the unique function LogA(B) : ∂T → Zd that makes the
following diagram commute:

∂T
πn

> Xn

Zd

LogA(B)
∨ πn

> Z/dnZ

LogA,n(B)
∨

(πn are the natural projections of the corresponding inverse limits).

Any positive integer N admits a unique d-ary expansion

N =
k
∑

i=0

aid
i,

where each 0 ⩽ ai ⩽ d− 1. This way, the set Z/dnZ can be identiőed with
the set of words of length n over the alphabet X. Consequently, the set
Zd can be identiőed with inőnite words in alphabet X, which, in term, are
identiőed with the boundary of the tree ∂T . Therefore, LogA,n(B) can be
seen as a transformation of the nth level, and LogA(B) can be regarded
as a transformation of ∂T .
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Proposition 5.8. There exists an endomorphism of the tree T such that
LogA,n(B) is the restriction of the endomorphism to level n, and LogA(B)
is the action of the endomorphism on the boundary ∂T .

Proof. Let L : X∗ → X∗ be the transformation that coincides with
LogA,n(B) on level n for all n. By construction, L preserves the levels.
Corollary 5.5 implies that L maps adjacent vertices of T to adjacent
vertices. Therefore, L is an endomorphism. By Deőnition 5.7, the action
of L on the boundary ∂T is exactly LogA(B).

In the rest of the paper, we deal with d = 2, and so identify (and
use interchangeably) the dyadic numbers and inőnite binary sequences
(elements of ∂T ).

Remark 5.9. The construction of the logarithm map LogA(B) (includ-
ing Proposition 5.8) can be extended from d-regular trees to spherically
homogeneous trees (deőned in, e.g., [4]).

6. The automaton computing the Log map

Here and onwards we assume that X = {0, 1}, that is, T is the binary
rooted tree.

Let A be an automorphism of the tree that acts transitively on each
level, and let B be an endomorphism. In light of Proposition 5.8, the Log
map LogA(B) can be regarded as an endomorphism of T .

To simplify notation, we will denote by Log both LogA(B) and
LogA,n(B). In this section we construct an automaton which computes
this endomorphism.

We further assume that the automorphism A is of bounded activity
(in the sense of Deőnition 2.16). An example of such endomorphism is the
adding machine, whose automaton is shown in Figure 2a.

Remark 6.1. Any tree automorphism that acts transitively on levels is
conjugate to the adding machine.

The assumption that A is of bounded activity allows us to prove the fol-
lowing lemma, which is useful in the construction of the automaton for Log.

Lemma 6.2. If A, B are tree endomorphisms given by őnite automata,
A is of bounded activity and acts transitively on all levels, then the set
SA,B consisting of triples of sections:

SA,B := {(B|w, A
d(w)|w, A

2|w|
|w) : w ∈ X

∗}

is őnite.
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Proof. By Proposition 2.18, the set

TA := {An|w : w ∈ X
∗, n ⩽ 2|w|}

is őnite. Note that Ad(w)|w, A
2|w|
|w ∈ TA for all w ∈ X∗. Let SB be the

set of states of the automaton of B. Then

|SA,B| ⩽ |SB| · |TA|
2.

The set SA,B is going to be the set of states of our automaton. See
Example 6.5 for an explicit computation of SA,B.

Theorem 6.3. Let A, B be as above. Consider the automaton L = LA,B
with set of states SA,B, initial state (B,1, A) (where 1 is the identity
automorphism), transition function π deőned by

π((β, γ, δ), a) := (β′, γ′, δ′),

where

β′ = β|a, γ′ =

{

γ|a if β(a) = γ(a),

(γδ)|a otherwise,
δ′ = δ2|a

and the output function λ given as follows:

λ((β, γ, δ), a) :=

{

0 if β(a) = γ(a),

1 otherwise.

Then the transition function is well-deőned, and the automaton L outputs
LogA,n(B) as a dyadic integer:

LogA,n(B)(w) =

|w|−1
∑

i=0

L(w)i2
i, (3)

where n = |w|, LogA,n(B) is the displacement function in Deőnition 5.4,
and L(w)i is the ith character of the word L(w).

Proof. We őrst show that upon reading a word w, the automaton L ends
up in the state

(

B|w, A
d(w)|w, A

2|w|
|w

)

∈ SA,B.

This hypothesis holds for the empty word. We proceed by induction
on |w|.
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Assume the hypothesis holds for all |w| ⩽ n.

To prove the inductive hypothesis for words of length n+1, let |w| = n
and a ∈ X, and assume that L is in the state (β, γ, δ) after reading w.
We show that

(β′, γ′, δ′) := π((β, γ, δ), a) =
(

B|wa, A
d(wa)|wa, A

2|wa|
|wa

)

.

Indeed:

1) β′ = βa by deőnition, and

B|wa = (B|w)|a (by Proposition 2.11)

= βa = β′.

2) Note that A2|w|
(w) = w by transitivity of A. By deőnition, δ′ =

δ2|a = δ|δ(a)δ|a. Now

A2|wa|
|wa = A2|w|+1

|wa = (A2|w|
)2|wa

= A2|w|
|
A2|w|

(wa)
A2|w|

|wa (by Proposition 2.12)

= A2|w|
|
A2|w|

(w)A2|w|
|w(a)

(A2|w|
|w)|a

= A2|w|
|wδ(a)δ|a

(by Proposition 2.11, inductive assumption, and A2|w|
= w)

= (A2|w|
|w)|δ(a)δ|a = δ|δ(a)δ|a = δ′.

3) Let d(w) := LogA,n(B)(w). By deőnition of LogA,n(B), B(w) =

Ad(w)(w). Note that

B(wa) = B(w)B|w(a) = Ad(w)(w)β(a)

and

Ad(w)(wa) = Ad(w)(w)Ad(w)|w(a) = Ad(w)(w)γ(a).

If β(a) = γ(a), then B(wa) = Ad(w)(wa), and thus d(wa) = d(wa) = d(w)
by deőnition of d = LogA,n(B). Otherwise, d(wa) = d(w) + 2|w| since this
is the only other possibility. Therefore,

Ad(wa) =

{

Ad(w) if β(a) = γ(a);

Ad(w)A2|w|
otherwise.
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Now we compute:

Ad(w)|wa = (Ad(w)|w)|a = δ|a,

Ad(w)A2|w|
|wa = Ad(w)|

A2|w|
(wa)

(A2|w|
|w)|a = Ad(w)|

A2|w|
(w)A2|w|

|w(a)
δ|a

= Ad(w)|wδ(a)δ|a = (Ad(w)|w)|δ(a)δ|a = γ|δ(a)δ|a = (γδ)|a

Therefore

Ad(wa)|wa =

{

γ|a if β(a) = γ(a);

(γδ)|a otherwise.

This matches the deőnition of γ′, and thus γ′ = Ad(wa)|wa.
In particular, we have veriőed that the transition function π is well-

deőned, since its values are always in the set SA,B.
This completes the proof of the hypothesis that the automaton is in

state
(

B|w, A
d(w)|w, A

2|w|
|w

)

after reading w.

Furthermore, we observed that

d(wa) =

{

d(w), if β(a) = γ(a);

d(w) + 2|w| otherwise.

From this observation and the deőnition of λ, equation 3 follows by
induction.

This completes the proof of the theorem.

Proposition 6.4. When A and B are as in Theorem 6.3 and, additionally,
B is invertible, the automaton LA,B is a Moore machine (as in Deőni-
tion 2.3). Recall that the value of the output function λ(s, x) of a Moore
machine only depends on the state s.

Proof. By assumption, A is invertible, and so is Ad(w) for any w ∈ X∗.
B is invertible by assumption. By Proposition 2.10, their sections β = B|w
and γ = Ad(w)|w are invertible, and so is βγ−1.

Now the set of permutations Perm({0, 1})={1, σ}, so either βγ−1(x) =
(x), or βγ−1(x) = σ(x).

In the őrst case, λ(β, γ, δ)(x) = 0 for x ∈ {0, 1}.
Otherwise, since permutation σ has no őxed points, β(x) ̸= γ(x) and

λ(β, γ, δ)(x) = 1 for x ∈ {0, 1}.

Example 6.5. Let A be the adding machine (see Figure 2a) with states
A and 1 (trivial state). Let automaton F be given by Figure 2b and have
states {a, b, c}, with initial state a. We consider LogA F .
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Note that

A2|a = A|A(a)A|a = A,

since A|0A|1 = A|1A|0 = A. Therefore, A2|w|
|w = A for all w ∈ X∗

(intuitively, adding 2n to a dyadic number is the same as adding 1 to
(n+ 1)st digit).

We thus have SA,B ⊂ {a, b, c}×{A, 1}×{A}. Consequently, |SA,B| ⩽ 6.

Let us compute the transition and the output function for LA,B. By
Proposition 6.4, LA,B is a Moore machine, so we let * stand for either 0
or 1 in what follows:

λ((a, 1, A), ∗) = 1 λ((b, 1, A), ∗) = 1 λ((c, 1, A), ∗) = 0

λ((a,A,A), ∗) = 0 λ((b, A,A), ∗) = 0 λ((c, A,A), ∗) = 1

We can use this to compute the transition function:

π((a, 1, A), 0) = (c, 1, A) π((b, 1, A), 0) = (b, 1, A)

π((a, 1, A), 1) = (b, A,A) π((b, 1, A), 1) = (c, A,A)

π((a,A,A), 0) = (c, 1, A) π((b, A,A), 0) = (b, 1, A)

π((a,A,A), 1) = (b, A,A) π((b, A,A), 1) = (c, A,A)

π((c, 1, A), 0) = (a, 1, A)

π((c, 1, A), 1) = (a, 1, A)

π((c, A,A), 0) = (a,A,A)

π((c, A,A), 1) = (a,A,A)

Since δ = A for all (β, γ, δ) ∈ SA,B, we omit it and write (β, γ) for
(β, γ,A) in LA,B. The automaton LA,B we have computed here is shown
in Figure 9. △

Figure 9. Automaton LA,B when A is the adding machine and B is automa-
ton F . The output from a state is the big number next to it.
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Example 6.5 calls for a more efficient notation in the case when A is
the adding machine and B is invertible.

Corollary 6.6. Let A be the adding machine given by automaton of
Figure 2a, and assume B is invertible. Then δ = A for all (β, γ, δ) in the
connected component of (B,1, A) in LA,B, and so can be omitted. After

relabeling (β, γ, δ)→ (β, γ) in LA,B , we obtain the Moore machine L̂A,B
with initial state (B,1), and transition and output functions π and λ as
speciőed in Table 1.

Note. L̂ and L are equivalent automata: L(w) = L̂(w) for all words w.

Table 1. Transition and output functions of the automaton computing
LogA(B) when A is the adding machine and B is invertible

β and γ are both active Exactly one of β and γ
or both passive is active

π((β, γ), a) (β|a, γ|a) (β|a, (γA)|a)
λ((β, γ)) 0 1

Proof. Observe that

A2|a = A|A(a)A|a = A,

since A|0A|1 = A|1A|0 = A. Since the initial state is (B,1, A), it follows
that the rest of the states in the connected component of LA,B containing
the initial state are of the form (β, γ,A). Similarly, γ ∈ {1, A}.

The rest follows from the construction in Theorem 6.3 and Proposi-
tion 6.4. Note that β(x) = γ(x) for x ∈ X = {0, 1} if and only if β and γ
are both active or both passive.

When A, B are as in the Corollary above, it is easy to construct LA,B ,
since once can see β, γ are active or passive by examining the diagram of
the automatons B and A.

Remark 6.7. When B is invertible, and β ∈ S(B) is a state of B, the
transition function λ of B at β, λβ, takes values in Perm(X) = {1, σ}.
Table 1 of Proposition 6.6 can be rewritten out explicitly as Table 2.
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Table 2. Table 1 with explicit values of π, γ

λβ γ x π((β, γ), x) λ((β, γ), x)

1 1 0 (π(β, 0),1) 0
1 1 1 (π(β, 1),1) 0
σ A 0 (π(β, 0),1) 0
σ A 1 (π(β, 1), A) 0
1 A 0 (π(β, 0), A) 1
1 A 1 (π(β, 1), A) 1
σ 1 0 (π(β, 0),1) 1
σ 1 1 (π(β, 1), A) 1

Example 6.8. We compute the distance automaton when A is the adding
machine, and B is the Bellaterra automaton (Figure 10). This automaton
is so called because it was studied during the summer school on Automata
Groups at the Autonomous University of Barcelona in Bellaterra. An
interesting property of it is that the group generated by its states is a free
product of 3 copies of Z/2Z [16].

Figure 10. Bellaterra automaton

Using the new notation:

λ((a, 1)) = 0 λ((b, 1)) = 0 λ((c, 1)) = 1

λ((a,A)) = 1 λ((b, A)) = 1 λ((c, A)) = 0

π((a, 1), 0) = (c, 1) π((b, 1), 0) = (b, 1) π((c, 1), 0) = (a, 1)

π((a, 1), 1) = (b, 1) π((b, 1), 1) = (c, 1) π((c, 1), 1) = (a,A)

π((a,A), 0) = (c, A) π((b, A), 0) = (b, A) π((c, A), 0) = (a, 1)

π((a,A), 1) = (b, A) π((b, A), 1) = (c, A) π((c, A), 1) = (a,A)
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In the above example, we have constructed the automaton L̃ in Fig-
ure 11a. The automaton appearing in Figure 11b will be explained later. △

(a) LA,B

(b) The delayed automaton σLA,B is invertible

Figure 11. Construction of LA,B where A is the adding machine and B is
Bellaterra.
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7. Automatic Exp and Logarithm of products

It is worthwhile to consider the operation opposite to constructing
LogA(B).

Let |X| = 2, and let ψ : XN → Z2 be the function that naturally
identiőes words in X with dyadic integers:

ψ(w) =

|w|−1
∑

i=0

wi2
i.

Proposition 7.1. Let A, B be tree endomorphisms. Deőne a function
ExpA(B)n on words w of length n by

ExpA(B)n(w) = Aψ(B(w))(w).

Then for all n, ExpA(B)n are endomorphisms of őnite trees.
The endomorphisms ExpA(B)m, ExpA(B)k agree on the levels 1, 2, . . . ,

min(m, k) on which they are both deőned.

Proof. We need to show that if w ∈ X∗ and x, y ∈ X, then ExpA(B)(wx)
and ExpA(B)(wy) only differ in their last symbol. Let n = |w|. Observe
that ψ(B(wx)) differs from ψ(B(w)) by a multiple of 2n. Now

ExpA(B)n+1(wx) = Aa·2
n

Aψ(B(w))(wx), (4)

where a ∈ {0, 1} is given by a = B|w(x). Note that A2n(v) = v for any
word v of length n because the length of any orbit of A on the level n
is a factor of 2n. Therefore the preőx of length n of ExpA(B)n+1(wx) is
given by Aψ(B(w))(w), i.e., it does not depend on x. Thus ExpA(B) is an
endomorphism.

The above argument also shows that ExpA(B)n+1 and ExpA(B)n agree
on levels 1, 2, . . . , n. This completes the proof.

Deőnition 7.2. Let ExpA(B) denote the extension of the maps ExpA(B)n
to the boundary of the tree ∂T . We shall use the same notation for action
on őnite words.

Proposition 7.3. Let A be a tree endomorphism, and B be a Moore
machine. Then ExpA(B) is an automorphism of the tree T .

Proof. It suffices to show that ExpA(B)n is invertible for all n. Consider
an arbitrary word w ∈ X∗ of length n and a letter x ∈ X. Recall that
B being a Moore machine means that B|w is constant on X. Therefore
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the value of ExpA(B)n+1(wx) (see equation (4)) is given by a power of A
that does not depend on x. By assumption, A is invertible, so its sections
are invertible as well. Hence ExpA(B)n+1|w acts as a permutation of X.

The proposition follows by induction on n.

Remark: We have constructed the Log automaton LogAB for any
invertible Mealy machine B and any level-transitive automaton A of
bounded activity. By construction, the Log automaton of an invertible
automaton is a Moore machine.

Therefore every invertible automaton B can be written in the form
B = ExpAM , where A is the adding machine (or any bounded-activity,
level-transitive automaton), and M is a Moore machine. Note that, in
general, one cannot construct a Moore machine (synchronously) equivalent
to a given Mealy machine. This construction provides an alternative.

7.1. Logarithm of product

Proposition 7.4. Let A and B be őnite state automata. Then

ExpA(LogA(B)) = B

as endomorphisms of the tree T . In particular, the Automatic Logarithm,
as an inverse of Exp, is unique. That is, if ExpAB1 = ExpAB2, then
B1 = B2 as endomorphisms of trees.

Proof. ExpA(LogA(B)) = B by construction. If ExpAB1 = ExpAB2,
then for any word w we have ψ(B1(w)) = ψ(B2(w)) mod 2|w|. This
implies B1(w) = B2(w).

We can now argue about Log using Exp. To proceed, we deőne:

Deőnition 7.5. Let A = (SA, πA, λA, SA0
) and B = (SB, πB, λB, SB0

)
be őnite automata. The sum automaton A⊕B is the automaton with the
set of states S = SA× SB ×{0, 1}, and transition map π and output map
λ given by

π((s, t, c), x) = (πA(s, x), πB(t, x), d),

where d =

{

1 if λ(s, x) + λ(t, x) + c ⩾ 2,

0 otherwise,

λ((s, t, c), x) = λ(s, x) + λ(t, x) + c mod 2.
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For a őnite word w, the sum automaton A ⊕ B outputs ψ(A(w)) +
ψ(B(w)) as a dyadic integer. The third component of a state can be
understood as the carry bit.

This deőnition allows us to compute the Log automaton of a product.

Proposition 7.6. Let B and C be invertible őnite automata and A be
a bounded-activity, level-transitive automaton. Then

LogA(BC) = ((LogAB)C)⊕ LogAC.

Proof. Let LogAB = a and LogAC = c. Then

C(w) = Aψc(w)(w)

BC(w) = AψbC(w)(C(w)) = AψbC(w)(Aψc(w)(w)) = AψbC(w)+ψc(w)(w)

= Aψ((bC)⊕c)(w)(w) = ExpA((bC)⊕ c)(w).

Therefore, by Proposition 7.4,

LogA(BC) = (bC)⊕ c,

which completes the proof.

8. Distribution of lengths of chords

We now approach the main goal of our investigation. The measure
we are interested in is µ = µA,B := LogA(B)∗ν, where ν is the uniform
Bernoulli measure on T .

This measure gives the distribution of the displacement function: d –
a őnite integer written in binary as w = w0 . . . wn−1 (and thus interpreted
as an element of Z/2nZ),

µ(wXN) = |{v ∈ Xn : LogA,n(B)(v) = w}|.

We introduce this measure with the goal of studying the properties
of the graphs of action, such as their diameter. For example, Pak and
Malyshev prove in [13] that the diameter of the graph of action of the
states of automaton F on level n grows at a rate of O(n2). However
computer experiments give hope that this bound can be improved to O(n).
Finding the connections between the measure µ and the properties of the
graphs nevertheless remains an open problem.

Figure 3 illustrates the graphs of action with the cycle generated by
the adding machine A put on a circle, and the edges corresponding to the
action of another automaton being chords in that circle, motivating the
title of this section. The graph on the right has a smaller diameter.
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We now proceed to examine interesting properties of µ, and answer
questions about it: what kind of measure is µ? Is it Markov, for example?

In fact, there is an easy sufficient condition for µ to be not only Markov,
but uniform Bernoulli on a cylinder. To state it, we need to make several
deőnitions:

Deőnition 8.1. σ : XN → XN is the (left) shift, deőned by σ(aw) = w
for a ∈ X and w ∈ XN. We deőne the left shift σ : X∗ → X∗ for őnite
words w in the same way.

Deőnition 8.2. When L is a Moore machine, the delayed automaton
σL is the automaton that computes the composition σ ◦ L. It has the
same states, initial state and the transition function as L, but the output
function σλ is given by

σλ(s, x) = λ(π(s, x)),

which is well-deőned when L is a Moore machine.

When L is Moore, for any őnite word w ∈ X∗ and x ∈ X,

L(wx) = L(0)σL(w) = L(1)σL(w).

Proposition 8.3. Let X be a őnite alphabet. Let L be a Moore machine
with initial state s0, and let a = λ(s0). Let ν be the uniform Bernoulli
measure on XN.

Then µ = L∗ν is supported on the cylinder aXN, and µ|a = (σL)∗ν.
If σL is invertible, µ|a is uniform Bernoulli (i.e. µ|a = ν).

Proof. First, note that

µ(aXN) = L∗ν(aX
N) = ν(L−1(aXN)) = ν(λ−1

s0
(a)XN) = ν(XN) = 1.

Now µa = (L∗ν)|a = (σL)∗ν, since for all v ∈ X∗,

(σL)∗ν(vX
N) = ν

(

(σL)−1(vXN)
)

= ν
(

L−1(σ−1
(

(vXN)
))

= ν

(

L−1

(

⊔

x∈X

xvXN

))

= ν
(

L−1(avXN)
)

= L∗v
(

avXN

)

= (L∗v)|a(vX
N) (since, as noted, L∗ν(aX

N) = 1).

Thus (σL)∗ν = (L∗ν)|a.
If σL is invertible, then (σL)∗ν = ν by Proposition 4.3. This completes

the proof.
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Corollary 8.4. Let X, A, B and L = LA,B be as in Prop 6.3 (so B
is invertible, and L = LA,B is Moore). Let ν be the uniform Bernoulli
measure on X∗.

Then µ = LogA(B)∗ν is supported on L(0)XN, and µ|L(0 = ν.

Example 8.5. Let L = LA,B with A being the adding machine, and B
being the Bellaterra automaton deőned in Figure 10. Then L(0) = L(1) =
0. The delayed automaton σL is shown in Figure 11b, and it is invertible
(but not minimal: can be reduced to an automaton with 5 states).

Therefore, µ = LogA(B)∗ν is the uniform Bernoulli measure supported
on 0XN, i.e. µ|0 = ν and µ|1 = 0. △

Proposition 8.3 demonstrates that when B is invertible, the delayed
automaton σLA,B can be useful for examining µA,B. We make use of it
again for what follows:

Theorem 8.6. Let ν be the uniform Bernoulli measure. In the case
A is the adding machine and B is automaton F (see Figure 2b), the
measure µA,B = LogA(B)∗ν is őnite-state. Furthermore, µA,B|0 = 0, and
automaton in Figure 13 computes µA,B|1 (in the sense of Deőnition 3.5).

Proof. Write µ = µA,B. By Proposition 8.3 and the already computed
L = LA,B in Figure 9, µ|0 = 0, and the measure is supported on the
cylinder 1XN, with µ|1 = (σL)∗ν. We thus point our attention to σL,
shown in Figure 12a.

First, observe that the automaton σL is not minimal. After identifying
states (a, 1) and (a,A) into state a, and identifying states (b, 1) and (b, A)
into state b, we obtain a minimal automaton L (Figure 12b).

(a) σLA,B (b) σLA,B minimized.

Figure 12. Automatons σLA,B and its minimization
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Recall that the states a, b, (c, 1) and (c, A) of the automaton σLA,B
are sections of LA,B , and can be seen as endomorphisms whose automata
coincide with LA,B except for the initial state (see Remark 2.7), i.e.,
LA,B = a, LA,B|1 = b, etc.

If g is an action on the tree T , we write µg for g∗ν. Thus we are
interested in µa = µ = a∗ν = (σL)∗ν, and we compute it by writing down
its sections in terms of µa, µb, µc,1 and µc,A.

We apply Corollary 4.2 to LA,B to obtain the sections of µ by x ∈ X =
{0, 1}. On the right, we evaluate these measures on the cylindrical sets of
the form xXN, so that we could continue the computation by applying
Proposition 2.24.

µa|0 =
µb + µc,1

2
µa(0X

N) = 1

µa|1 = 0 µa(1X
N) = 0

µb|0 = 0 µb(0X
N) = 0

µb|1 =
µb + µc,A

2
µb(1X

N) = 1

µc,1|0 = 0 µc,1(0X
N) = 0

µc,1|1 = µa µc,1(1X
N) = 1

µc,A|0 = µa µc,A(0X
N) = 1

µc,A|1 = 0 µc,A(1X
N) = 0.

Having expressed the sections by one character in terms of each other,
we have obtained a set of recursive relations which allows us to compute
sections by arbitrary words. To őnd the set of all sections, we proceed by
repeatedly computing sections using Proposition 2.24. We őnd:

µb + µc,1
2

|0 = 0
µb + µc,1

2
(0XN) = 0

µb + µc,1
2

|1 =
µb + µc,A + 2µa

4

µb + µc,1
2

(1XN) = 1

µb + µc,A
2

|0 = µa
µb + µc,A

2
(0XN) =

1

2
µb + µc,A

2
|1 =

µb + µc,A
2

µb + µc,A
2

(1XN) =
1

2
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And again:

µb + µc,A + 2µa
4

|0 =
µa + µb + µc,1

3

µb + µc,A + 2µa
4

(0XN) =
3

4
µb + µc,A + 2µa

4
|1 =

µb + µc,A
2

µb + µc,A + 2µa
4

(1XN) =
1

4

Finally:

µa + µb + µc,1
3

|0 =
µb + µc,1

2

µa + µb + µc,1
3

(0XN) =
2

3
µa + µb + µc,1

3
|1 =

µb + µc,A + 2µa
4

µa + µb + µc,1
3

(1XN) =
1

3

Since we have obtained no new sections at this step, the sections so far
are all the sections of µ. We have all the data now to build the automaton
in Figure 13 that computes µ|1.

Figure 13. Automaton that computes µA,B |1 for A the adding machine and
B – automaton F , deőned in Figure 2b

The preceding example shows that µA,B is őnite-state (in the sense
of Deőnition 3.5) in the case when A is the adding machine and B is
automaton F . It should be noted that for some choices of automaton B
the measure µA,B is not őnite-state.
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Example 8.7. Let A be the adding machine and B be the Lamplighter
automaton; see Figure 14. Then the measure µA,B is not őnite-state as
shown below. △

Figure 14. The lamplighter automaton

We compute the automaton LA,B using Theorem 6.3:

λ((a, 1)) = 1 λ((b, 1)) = 0

λ((a,A)) = 0 λ((b, A)) = 1

π((a, 1), 0) = (a, 1) π((b, 1), 0) = (a, 1)

π((a, 1), 1) = (b, A) π((b, 1), 1) = (b, 1)

π((a,A), 0) = (a, 1) π((b, A), 0) = (a,A)

π((a,A), 1) = (b, A) π((b, A), 1) = (b, A)

The diagrams of the automata LA,B and σLA,B are shown in Fig-
ures 15a and 15b, respectively. Since (b, 1) is not reachable from the initial
state (a, 1), it is omitted in Figure 15b. The automaton in that őgure is
not minimal; states (a, 1) and (a,A) can be identiőed. The minimized
automaton is shown in Figure 15c; the relabeling is a = (a, 1) = (a,A),
b = (b, A), and (b, 1) is discarded as unreachable from the initial state a.

Noting that µA,B is supported on 1XN (by Proposition 8.3), we now
point our attention to the measure µ̃ = µA,B|1. Using Corollary 4.2 for
the minimized σL in Figure 15c and the notation of Example 8.6, we get:

µa|0 = 0

µa|1 =
1

2
(µa + µb)

µb|0 = µa

µb|1 = µb

µa(0X
N) = 0

µa(1X
N) = 1

µb(0X
N) =

1

2

µb(1X
N) =

1

2
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(a) LA,B

(b) σL; states unreachable from the ini-
tial state (a, 1) not shown

(c) σL minimized

Figure 15. L = LA,B and σL for A the adding machine, B the Lamplighter.

Now let µ0 := µa and µn := µn−1|1. Again we use Corollary 2.24:

µ1 =
(µa + µb)

2

µ2 = µ1|1 =
1

2

(

µa|1 +
µb|1
2

)

/µ1

(

1XN

)

=
(µa + 2µb)

4
·
4

3

=
(µa + 2µb)

3

µ3 = µ2|1 =
(µa + 3µb)

4
. . .

µn = µn−1|1 = . . .

All this leads to the following.

Proposition 8.8. Let µ0 = µa, and µn = µn−1|1, for n ∈ N. Then

µn =
µa + nµb
n+ 1

, µn(0X
N) =

n

2(n+ 1)
, µn(1X

N) =
n+ 2

2(n+ 1)
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Proof. By induction on n. The proposition holds for n = 0. Assuming it
holds for n = k, by Corollary 2.24:

µk+1 = µk|1 =
1

k + 1

(

µa + µb
2

+
1

2
kµb

)

/

(

k + 2

2(k + 1)

)

=
µa + (k + 1)µb

k + 2
.

Note that measures µn are all distinct.

Corollary 8.9. µA,B is not őnite-state when A is the adding machine
and B is Lamplighter.

Corollary 8.10. µn for n = 0, 1, 2, . . . are all the nontrivial sections of µ̃.

Proof. This immediately follows from observing that µn|0 = µ0 for n > 0:

µn|0 =
µa + nµb
n+ 1

|0 =
1

n+ 1

nµa
2

2(n+ 1)

n
= µa = µ0.

The (inőnite) automaton that computes µ̃ is shown in Figure 16.

Figure 16. The inőnite automaton computing µ̃A,B where A is the adding
machine, and B is the Lamplighter automaton.

Observe that the computations in these examples are almost linear.
The following proposition makes this notion precise.

Proposition 8.11. Let X = {x0, . . . , xk−1} be a őnite alphabet, L be
a Mealy machine with states S = {g0, . . . , gn−1}, and ν be a Bernoulli
measure given by a vector p = (p(x0), . . . , p(xk−1)). For any vector v =
(a0, a1, . . . , an−1) ∈ R let

µv =
n−1
∑

i=0

aigi∗ν.
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Then for any x ∈ X there exists an n×n matrix Mx and an n-dimensional
vector px such that

µv|x = µw with w =
Mxv

px · v
.

The entries of Mx and coordinates of px are given by

Mx(i, j) =
∑

y : π(gi,y)=gj ,
λ(gi,y)=x

p(y) and px(j) =
n−1
∑

i=0

Mx(i, j).

Proof. From Proposition 4.2 and Corollary 2.24:

(

n
∑

i=0

aigi∗ν

)∣

∣

∣

∣

∣

x

=

∑n
i=0 aigi∗ν(xX

N)(gi∗ν)|x
∑n

i=0 aigi∗ν(xX
N)

=

∑n
i=0 ai

∑

y∈λ−1
gi

(x) p(y)π(gi, y)∗ν
∑n

i=0 ai
∑

y∈λ−1
gi

(x) p(y)
.

The proposition follows.

Corollary 8.12. Let

ϕx(v) :=
Mxv

px · v
.

Then µv is őnite-state if and only if the orbit of v under the action of the
semigroup generated by ϕx, x ∈ X is őnite. The graph of the action is the
transition diagram of the automaton that computes µ[v].

The above corollary can be made simpler once we consider v as an
element of RP

n. For v = (a0, a1, . . . , an−1), write [v] = [a0 : a1 : . . . :
an−1] ∈ RP

n and let

µ[v] :=
µv

µv (XN)
.

This is well deőned and

[ϕx(v)] = [Mxv].

Corollary 8.13. µ[v] is őnite-state if and only if the orbit of [v] under
the action of the semigroup generated by ⟨Mx : x ∈ X⟩ is őnite.
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In the special case when ν is the uniform Bernoulli measure, it is
convenient to use matrices M̃x with entries

M̃x(i, j) =
∑

y : π(gi,y)=gj ,
λ(gi,y)=x

1.

Similarly, set p̃x = |X|px. By deőnition, M̃x = |X|Mx, [M̃xv] = [Mxv],
and ϕx(v) = M̃xv/p̃x · v. However M̃x has integer entries: Mx(i, j) ∈
{0, 1, . . . , |X|}.

Corollary 8.14. In the case ν is uniform Bernoulli, the measure µ[v] is
őnite-state if and only if the orbit of [v] under the action of the multiplica-
tive semigroup generated by integer matrices M̃x, x ∈ X is őnite.

Example 8.15. When L = LA,B , where A is the adding machine and B
is automaton F given by Figure 2b, we have

M̃0 =









0 0 0 2
1 0 0 0
1 0 0 0
0 0 0 0









, p̃0 = (2, 0, 0, 2), ϕ0(v) = M̃0v/p̃0 · v,

M̃1 =









0 0 2 0
0 1 0 0
0 0 0 0
0 1 0 0









, p1 = (0, 2, 2, 0), ϕ1(v) =M1v/p1 · v.

The orbit of (1, 0, 0, 0) under the action of ⟨ϕ0, ϕ1⟩ is
(

(0, 0, 0, 0), (0, 1/2, 0, 1/2), (0, 1/2, 1/2, 0), (1/3, 1/3, 1/3, 0),

(1/2, 1/4, 0, 1/4), (1, 0, 0, 0)
)

.

These correspond to the states in Figure 13.
Equivalently, the orbit of [1 : 0 : 0 : 0] under the action of ⟨M̃0, M̃1⟩ is

(

[0 : 0 : 0 : 0], [0 : 1 : 0 : 1], [0 : 1 : 1 : 0], [1 : 1 : 1 : 0],

[2 : 1 : 0 : 1], [1 : 0 : 0 : 0]
)

. △

Example 8.16. When L = LA,B with A the adding machine and B the
Lamplighter, we have

M̃0 =

(

0 1
0 0

)

, M̃1 =

(

1 0
1 1

)

The orbit of [1 : 0] under the action of M̃1 is {[1 : n] : n ∈ N}, and is not
őnite. △
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9. When the measure is Markov

Having obtained the automaton that computes a measure, we can
ask the question of what kind of measure it is. Recall from Deőnition 3.3
that a k-step Markov measure is a measure whose sections are uniquely
determined by suffixes of length k, regardless of what comes before. The
following theorem provides necessary and sufficient conditions for a őnite-
state measure to be k-step Markov.

Theorem 9.1. Let µ be a őnite-state measure with n nontrivial sections
µ1, . . . , µn. Then µ is k-step Markov (for some k ∈ N) if and only if for
any nonempty word w ∈ X∗, there is at most one i, 1 ⩽ i ⩽ n such that
µi|w = µi. When µ is k-step Markov, we can choose k ⩽ n(n− 1).

Proof. ⇒ Proof by contradiction. Let µ be k-step Markov. Assume that
the hypothesis of the theorem does not hold, that is, µ has two distinct
nontrivial sections µ|u and µ|v (where u, v ∈ X∗) such that (µ|u)|w = µ|u
and (µ|v)|w = µ|v for some nonempty word w ∈ X∗. Let W = www . . . w
be the word w repeated several times so that |W | > k. Then

µ|uW = (µ|u)|W = (µ|u)|ww...w = µ|u,

µ|vW = (µ|v)|W = (µ|v)|ww...w = µ|v.

So the nontrivial sections µ|uW and µ|vW are different, but |W | > k. That
is, a suffix of length k does not uniquely determine a nontrivial section
of µ. This contradicts the assumption that µ is k-Markov.
⇐ Assume now that the hypothesis holds. For µ to be k-step Markov,

it suffices to show that for any two nontrivial sections µ|u and µ|v, and
any word w with |w| = k, we have µ|uw = µ|vw whenever both uw and
vw are admissible words.

Let k = n(n − 1) and őx w = w1w2 . . . wk, wi ∈ X with |w| = k.
Consider Table 3. The columns of this table are the paths from µ|u and
µ|v obtained by taking sections by the word w character by character.

Table 3. Paths of length k starting from µ|u and µ|v

µ|u µ|v
µ|uw1

µ|vw1

µ|uw1w2
µ|vw1w2

. . . . . .
µ|uw µ|vw
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By assumption, uw and vw are admissible, so Table 3 contains only
nontrivial sections. We claim that one row of the table contains two
identical measures: µ|uw1..wi

= µ|vw1..wi
for some i, 0 ⩽ i ⩽ k. Then

each subsequent row also contains two identical measures. In particular,
µ|uw = µ|vw. To prove the claim (and complete the proof), assume the
contrary. Since µ has only n nontrivial sections, there are only n(n− 1)
pairs of distinct nontrivial sections. Table 3 has k + 1 > n(n− 1) rows,
hence a row in the table must repeat, i.e.,

(µ|uw1..wi
, µ|vw1..wi

) = (µ|uw1..wj
, µ|vw1..wj

)

for some 1 ⩽ i < j ⩽ k. But that means that the word W := wi+1 . . . wj
őxes two sections µU := µ|uw0..wi

and µV := µ|vw0..wi
; that is, (µ|U )|W =

µ|U and (µ|V )W = µ|V . By our hypothesis, the nontrivial section őxed by
W is unique, so µ|U = µV . Since UW = uw and VW = vw, this implies
µ|uw = µ|vw. This completes the proof.

Remark. The free semigroup FS(X) generated by X acts on the sections
of µ: for w ∈ FS(X), w · µi := µi|w. The condition of Theorem 9.1 can
be re-stated as follows: the action of any nonempty word w ∈ X∗ on the
sections of µ has at most one nontrivial őxed point.

Theorem 9.1 is illustrated by the following example.

Example 9.2. When A is the adding machine and B is automaton F , the
measure µA,B is deőned by the automaton M in Figure 13. The measure
satisőes the hypothesis of Theorem 9.1. By the theorem, µA,B is k-step
Markov for some k ⩽ 20. Direct examination of the automaton M reveals
that the admissible words for µA,B are all words not containing 000 or
1101, and the measure is, in fact, 3-step Markov (see Table 4). △

Table 4. µA,B as a Markov measure when B is automaton F

w ends in µ|w

00
µ|b+µ|c,1

2

11
µ|b+µ|c,A

2

01
µ|b+µ|c,A+2µa

4
110 µa

010
µa+µ|b+µ|c,1

3

Minimal forbidden words: 000, 1101.
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The condition of Theorem 9.1 is not satisőed trivially.

Example 9.3. A őnite-state measure µ deőned by the automaton in
Figure 17 is not a Markov measure. The initial state µ (on the top left)
is őxed by the action of the word 01, but so is the top right state, µ|001:
µ|01 = µ and (µ|001)|01 = µ|001. Note that µ ̸= µ|001 since µ(0XN) = 3

7
while µ|001(0X

N) = 2
5 . By Theorem 9.1, µ cannot be a k-step Markov

measure for any k. △

Figure 17. A diagram of the automaton of a őnite-state measure that is not
Markov.
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