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Abstract. Tree languages which are sets of terms always play
a prominent role in the first-order languages and theoretical com-
puter science. In this paper, tree languages induced by terms with
fixed variables are considered. Under the applications of an opera-
tion on tree languages, we construct the algebra of such languages
having many properties of abstract clones. A strong connection
with theory of general functions is given through a representation
theorem. Additionally, the semigroup of mappings of which their
images are tree languages with fixed variables is given.

1. Introduction and basic properties

Following the paper [15], a memory to Professor V. A. Artamonov who
is one of the outstanding algebraists was mentioned. Faithful representa-
tions of Hopf algebras originally given by his papers in [1,2] motivate us
to consider some representations by functions of tree languages. Hence,
this paper is dedicated to his scientific works by providing the study of
tree languages in sense of algebra.
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Actually, the wide use of terms or trees as a natural structure in
computer science allows us to consider its theoretical basics [3]. In the
study of logic, terms can be regarded as one of important instruments in
both the first and the second-order languages. Basically, a term of type
τ is a formal expression which combined from the following two compo-
nents: variables and compositions of operation symbols in a sequence τ of
arities. Let Xn = {x1, . . . , xn}, for n in N+ := {1, 2, . . .}, be a set which
elements are called variables and X = {x1, . . . , xn, . . .}. To define terms,
we use a set {fi | i ∈ I} of operation symbols, indexed by the set I. The
type is the sequence τ = (ni)i∈I of the natural number arities of each
symbol fi. Formally, an n-ary term of type τ is inductively defined by
the following: (1) every variable xi ∈ Xn is an n-ary term of type τ and
(2) if t1, . . . , tni are n-ary terms of type τ and fi has the arity ni, then
the composition fi(t1, . . . , tni) is also an n-ary term of type τ . For the
set Xn, by Wτ (Xn) we mean the set of all n-ary terms of type τ . On the
other hand, Wτ (X) denotes the set of all terms of type τ . The set of all
variables that appear in t is denoted by var(t). More background and
current trends in the investigation of terms may be found in [5, 13,18].

We now illustrate some examples of terms. Let us consider the type
τ = (3, 2) with one ternary operation symbol g and one binary operation
symbol f . Then we have

x1, x2, f(x2, x1), g(x1, f(x2, x1), x1) ∈W(3,2)(X2),

x1, x2, x3, g(x3, x3, x2), g(f(x3, x2), x1, x3) ∈W(3,2)(X3).

There are many types of specific terms, for examples, linear terms [24],
k terms [7], full terms with restricted range [23], terms induced by order-
decreasing transformations [28]. In this paper, we are interested in a
special class of terms of type τ , called terms of a fixed variable, which
was introduced by K. Wattanatripop and T. Changphas in [27]. We now
recall the concept of n-ary terms of a fixed variable of type τ = (ni)i∈I
as follows:

(1) every xj ∈ Xn is an n-ary term of a fixed variable of type τ and
(2) if t1, . . . , tni are n-ary terms of a fixed variable of type τ with

var(tl) = var(tk) for every 1 ≤ l < k ≤ ni, then fi(t1, . . . , tni) is an
n-ary term of a fixed variable of type τ .

The symbol W fv
τ (Xn) stands for the set of all n-ary terms of a fixed

variable of type τ over alphabet Xn.
For examples, let us consider type τ = (2) with one binary operation

symbol f . Then
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x1, x2, f(x1, x1), f(f(x2, x2), f(x2, x2)) ∈W fv
(2)(X2),

f(x3, x3), f(f(x2, x2), x2), f(f(x3, x3), f(x3, x3)) ∈W fv
(2)(X3).

On the other hand,

f(x1, x2), f(x2, f(x1, x1)), f(f(x1, x2), x2) /∈W fv
(2)(X2),

f(x1, x3), f(f(x2, x1), x1), f(f(x3, x1), f(x2, x2)) /∈W fv
(2)(X3).

One of the outstanding structures that connect with terms and re-
lated concepts is a Menger algebra. In fact, it is a pair of a nonempty
set G and an (n+1)-ary operation o on G, where n is a natural number,
which satisfies the following equation, also called the superassociative law

o(o(a, b1, . . . , bn), c1, . . . , cn) =
= o(a, o(b1, c1, . . . , cn), . . . , o(bn, c1, . . . , cn)).

Theoretical and applicable results of Menger algebras can be found in
[9, 10,16].

Actually, the power set of all terms of type τ is naturally denoted by
P (Wτ (X)). Every element of P (Wτ (X)) is a set of terms, always called
tree languages. For example, we provide some subsets of W(3)(X):

∅, {x1}, {x3, x5}, {h(x1, x7, x2)}, {x4, h(x10, h(x3, x3, x6), x25)}.

These sets are examples of tree languages over the terms from W(3)(X).
In 2021, tree languages with fixed variables which can be considered as
one of particular classes of tree languages were presented in [17]. We
mentioned that tree languages generalize formal languages, i.e., sets of
words over a given alphabet. Normally, tree languages and tree auto-
mata were widely studied in various areas, for example, see [11, 12, 19].
In particular, the variety theorems of binary tree languages and finite
tree algebras were proved in the paper [25]. Another important deve-
lopment in tree languages is the state complexity problem of regular tree
languages for tree matching problem which is the problem of finding
subtree occurrences of a tree in L from a set of trees T . For more details,
see [14].

In views of the algebraic construction of operation for tree languages,
the superposition operation on P (Wτ (X)) was first presented in [6]. Let
n be a natural number, B,B1, . . . , Bn are arbitrary subsets of Wτ (X).
Then an (n+ 1)-ary generalized superposition operation

Ŝn : P (Wτ (X))n+1 → P (Wτ (X))

is defined inductively by
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(1) Ŝn(B,B1, . . . , Bn) := Bj if B = {xj} and 1 ≤ j ≤ n.

(2) Ŝn(B,B1, . . . , Bn) := {xj} if B = {xj} and n < j.

(3) If B = {fi(t1, . . . , tni)}, and suppose that Ŝn({tk}, B1, . . . , Bn) for
all k = 1, . . . , ni are already defined, then

Ŝn({fi(t1, . . . , tni)}, B1, . . . , Bn)

:= {fi(r1, . . . , rni) | rk ∈ Ŝn({tk}, B1, . . . , Bn), 1 ≤ k ≤ ni}.

(4) If |B| > 1, then Ŝn(B,B1, . . . , Bn) :=
⋃
b∈B

Ŝn({b}, B1, . . . , Bn).

(5) If B = ∅ or Bj = ∅ for some 1 ≤ j ≤ n, then

Ŝn(B,B1, . . . , Bn) := ∅.

Applying this operation, the algebra (P (Wτ (X)), Ŝn) of type (n+1)
forms a Menger algebra and called a power Menger algebra with infinitely
many nullary operations. Other development in tree languages were
appeared in [8, 22,26].

In this paper, we further develop the investigation of tree languages,
in particular, tree languages generated by terms of fixed variables and
their corresponding operations. The paper is organized as follows: the
first result of our study in Section 2 consists of proposing a novel con-
cept of tree languages which are induced by terms of a fixed variable
and presenting a generalized operation for them. Applying these two
preparations, some structures are constructed and their properties are
provided. We also prove a representation theorem of such structure by
giving a class of functions that generated by each element of our obtained
structures. We continue in Section 3 with giving an idea of mappings
which takes from the set of operation symbols to the set of tree languages
which are induced by terms of a fixed variable. Due to the importance
of the original idea of this mapping related in different areas, especially
hyperidentities, a binary composition of such mappings is defined.

2. The generalized power clone of tree languages with
fixed variables

On the set W fv
τ (X) of all terms of a fixed variable of type τ , the power

set P (W fv
τ (X)) can be described in a natural way. Each element of
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P (W fv
τ (X)) is called generalized tree languages of terms with fixed vari-

ables. To see some concrete examples of them, let us consider the type
(2) with one binary operation symbol g. Then the following sets are

subsets of W fv
(2)(X), i.e., some elements of P (W fv

(2)(X)):

∅, {x1}, {x5}, {x4, g(x3, x3)}, {x7, g(g(x1, x1), g(x1, x1))}.

The following theorem shows that the power set P(W fv
τ (X)) is closed

under the generalized superposition operation Ŝn for every n ≥ 1.

Theorem 1. For any natural number n ≥ 1 and A,B1, . . . , Bn ⊆W fv
τ (X),

we have

Ŝn(A,B1, . . . , Bn) ∈ P(W fv
τ (X)).

Proof. Let A,B1, . . . , Bn ⊆ W fv
τ (X). If one of sets A,B1, . . . , Bn that

contain in the domain of the generalized superposition operation Ŝn is
empty, then we have an empty set and thus the proof is finished. Suppose
now that all of sets A,B1, . . . , Bn are non-empty. We give a proof on the
characteristic of a set A. If A is a singleton set of the term of a fixed
variable s, then we consider in the following three cases: s is a variable
xi ∈ Xn, s is a variable xj ∈ X \Xn and s = fi(s1, . . . , sni) ∈ W fv

τ (X).

In the first case, we get Ŝn(A,B1, . . . , Bn) = Ŝn({xi}, B1, . . . , Bn) =

Bi ∈ P (W fv
τ (X)). In the second case, we have Ŝn(A,B1, . . . , Bn) =

Ŝn({xj}, B1, . . . , Bn) = {xj} ∈ P (W fv
τ (X)). In the third case, we prove

that the set Ŝn
m({fi(s1, . . . , sni)}, B1, . . . , Bn) belong to P (W

fv
τ (X)). Fol-

lowing the definition of Ŝn, Ŝn({fi(s1, . . . , sni)}, B1, . . . , Bn) equals to the
set {fi(r1, . . . , rni) | rk ∈ Ŝn({sk}, B1, . . . , Bn), 1 ≤ k ≤ ni}. Thus, for
every 1 ≤ k ≤ ni, we have to show that Ŝn({sk}, B1, . . . , Bn) are genera-
lized tree languages of terms of fixed variables. From the assumption,
we get {fi(s1, . . . , sni)} ⊆W fv

τ (X). This means var({fi(s1, . . . , sni)}) =
{xk} for some k ≥ 1, which implies var(Ŝn({ts}, B1, . . . , Bn)) = {xk} for
some k ≥ 1. That means, this language contains only one variable from
X. It follows directly that

|var(Ŝn
m({fi(s1, . . . , sni)}, B1, . . . , Bn))| = 1.

This case is completed. IfA is an arbitrary non-singleton set, i.e., |A| > 1,
we have Ŝn(A,B1, . . . , Bn) =

⋃
s∈A

Ŝn({s}, B1, . . . , Bn) . As we known

from the previous case, then the arbitrary union of them so is.
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Applying Theorem 1, we have an (n+ 1)-ary operation on the set of
tree languages of fixed variables

Ŝn : P (W fv
τ (X))n+1 → P (W fv

τ (X))

for n ≥ 1. Furthermore, the algebra

P − clonefvG (τ) = (P (W fv
τ (X)), Ŝn),

which is called the generalized power clone of tree languages with fixed
variables, is obtained.

The next theorem follows in a straightforward way from Theorem 1
and the fact that P (W fv

τ (X)) is a subset of P (Wτ (X)).

Theorem 2. The many-sort algebra P − clonefvG (τ) satisfies (C1)-(C4),
i.e., for every natural number n ≥ 1 :

(C1) Ŝn(Ŝn(A,B1, . . . , Bn), C1, . . . , Cn)
= Ŝn(A, Ŝn(B1, C1, . . . , Cn), . . . , Ŝ

n(Bn, C1, . . . , Cn))

whenever A,B1, . . . , Bn, C1, . . . , Cn ⊆W fv
τ (X).

(C2) Ŝn({xi}, B1, . . . , Bn) = Bi whenever B1, . . . , Bn ⊆ W fv
τ (X) and

1 ≤ i ≤ n.

(C3) Ŝn({xi}, B1, . . . , Bn) = {xi} whenever B1, . . . , Bn ⊆ W fv
τ (X) and

i > n.

(C4) Ŝn(A, {x1}, . . . , {xn}) = A.

Proof. Applying the result of Theorem 1, the proof of this theorem is
obtained.

We now illustrate the algebra P − clonefvG (τ) in a specific type.

Example 1. Consider type τ = (2) with one binary operation symbol f
and a subset

B = {{x1}, {x2, x7}, {f(x5, x5)}, {f(f(x4, x4), x4)}}

of P (W fv
(2)(X)) with respect to a binary operation Ŝ1 which is defined by

the following table.

Ŝ1 {x1} {x2, x7} {f(x5, x5)} {f(f(x4, x4), x4)}
{x1} {x1} {x2, x7} {f(x5, x5)} {f(f(x4, x4), x4)}

{x2, x7} {x2, x7} {x2, x7} {x2, x7} {x2, x7}
{f(x5, x5)} {f(x5, x5)} {f(x5, x5)} {f(x5, x5)} {f(x5, x5)}

{f(f(x4, x4), x4)} {f(f(x4, x4), x4)} {f(f(x4, x4), x4)} {f(f(x4, x4), x4)} {f(f(x4, x4), x4)}
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It is not difficult to show that the operation Ŝ1 defined on P (W fv
(2)(X))

is associative. Consequently, (B, Ŝ1) forms a semigroup. Furthermore,

it is also a subsemigroup of (P (W fv
(2)(X)), Ŝ1).

Our next aim is to propose a representation theorem of the genera-
lized power clone P − clonefvG (τ). Representation in other structures
can be found, for instance, in [29–32]. Let us start with recalling some
elementary tools which were collected from [9,18]. On the set An of n-th
Cartesian product of a nonempty set A, a full n-ary function or an n-ary
operation is a mapping from An to A. The symbol T (An, A) stands for
the set of all such mappings. On the set T (An, A), one can define the
Menger’s composition O : T (An, A)n+1 → T (An, A) by

O(f, g1, . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),

where f, g1, . . . , gn ∈ T (An, A), a1, . . . , an ∈ A. The set together with the
Menger’s composition is said to be an algebra of full functions or algebra
of operations. If the composition of (n + 1) functions from T (An, A)
is also in this set, then this pair is called algebra of full functions. In
general, the Menger’s composition generalizes the usual composition of
functions.

We construct a mapping generated by each element of P (W fv
τ (X)).

For each set A of the algebra (P (W fv
τ (X)), Ŝn), the full n-ary function

λA : P (W fv
τ (X))n → P (W fv

τ (X)) can be defined by

λA(B1, . . . , Bn) = Ŝn(A,B1, . . . , Bn)

for all B1, . . . , Bn ∈ P (W fv
τ (X)), where Ŝn is an (n+ 1)-ary generalized

superposition operation defined on P (W fv
τ (X)).

It is clear that the full n-ary function λA is an element of the set

TPfv := T (P (W fv
τ (X))n, P (W fv

τ (X)))

which is called an inner left translation of P (W fv
τ (X)) which corresponds

to a tree language A of P (W fv
τ (X)).

The following lemmas are essential tools for proving the main theo-
rem.

Lemma 1. On the algebra (P (W fv
τ (X)), Ŝn), the equation

λ
Ŝn(A,B1,...,Bn)

= O(λA, λB1 , . . . , λBn)
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is satisfied for every A,B1, . . . , Bn ∈ P (W fv
τ (X)) where Ŝn and O is a

generalized superposition operation of tree languages with fixed variables
and Menger’s composition, respectively.

Proof. Let A,B1, . . . , Bn, D1, . . . , Dn be arbitrary subsets of W fv
τ (X).

Then we have
λ
Ŝn(A,B1,...,Bn)

(D1, . . . , Dn)

= Ŝn(Ŝn(A,B1, . . . , Bn), D1, . . . , Dn)
= Ŝn(A, Ŝn(B1, D1, . . . , Dn), . . . , Ŝ

n(Bn, D1, . . . , Dn))
= λA(Ŝ

n(B1, D1, . . . , Dn), . . . , Ŝ
n(Bn, D1, . . . , Dn))

= λA(λB1(D1, . . . , Dn), . . . , λBn(D1, . . . , Dn))
= O(λA, λB1 , . . . , λBn)(D1, . . . , Dn).

The proof is finished.

By Λ′, we denote the set of all λA where A ∈ P (W fv
τ (X)), i.e.,

Λ′ = {λA | A ∈ P (W fv
τ (X))}.

Lemma 2. The set Λ′ forms a subalgebra of (TPfv,O) and thus (Λ′,O)
is a Menger algebra of full n-ary functions.

Proof. Obviously, ∅ ̸= Λ′ ⊆ TPfv. Let λA, λB1 , . . . , λBn be arbitrary full
n-ary functions in TPfv. It follows immediately from Lemma 1 that the
composition of such mappings again a full n-ary function.

We now state and prove a representation theorem for the generalized
power clone of tree languages with fixed variables as follows:

Theorem 3. Let (P (W fv
τ (X)), Ŝn) be an algebra of type (n+1). Define

a mapping ψ : P (W fv
τ (X)) → Λ′ by ψ(A) = λA for all A ∈ P (W fv

τ (X)).

Then ψ is an isomorphism and so P (W fv
τ (X)) ∼= Λ′.

Proof. Clearly, ψ is surjective. By Lemma 1, we have

ψ(Ŝn(A,B1, . . . , Bn)) = λ
Ŝn(A,B1,...,Bn)

= O(λA, λB1 , . . . , λBn) = O(ψ(A), ψ(B1), . . . , ψ(Bn))

and thus ψ is a homomorphism. Suppose that λA1 = λA2 . Then we ob-
tain λA1(B1, . . . , Bn) = λA2(B1, . . . , Bn). By the definition of a genera-
lized superposition Ŝn, we conclude that A1 and A2 coincide. Hence ψ
is injective. Therefore, ψ is an isomorphism from P (W fv

τ (X)) to Λ′.
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3. Non-deterministic generalized
hypersubstitutions with fixed variables

One of the concepts which are closely related to tree homomorphism is
a non-deterministic generalized hypersubstitution. It was mentioned in
[3,11] that for a tree homomorhosim h and a recognizable tree language L
the image of L under h is also recognizable. For this reason, we begin this
section with collecting some elementary concepts of non-deterministic
generalized hypersubstitutions of type τ which were extensively applied
in the theory of hyperidentity [4, 20,21,23]. A mapping

σnd : {fi | i ∈ I} → P (Wτ (X))

is called a non-deterministic generalized hypersubstitution of type τ . The
set of all such mappings is denoted by HypndG (τ). It is well-known that
every σnd generates a mapping σ̂nd : P (Wτ (X)) → P (Wτ (X)) which is
defined by the following inductive way:

(1) σ̂nd[∅] := ∅,

(2) σ̂nd[{xi}] := {xi} where xi is a variable from X,

(3) σ̂nd[{fi(s1, . . . , sni)}] := Ŝni(σnd(fi), σ̂nd[{s1}], . . . , σ̂nd[{sni}]) if
σ̂nd[{sk}], 1 ≤ k ≤ ni are already defined,

(4) σ̂nd[B] :=
⋃
b∈B

σ̂nd[{b}] if B is an arbitrary non-singleton subset of

Wτ (X).

Under a binary operation ◦ndG on HypndG (τ) given by σnd ◦ndG αnd :=
σ̂nd ◦ αnd where ◦ is a usual composition, it was proved that the triple
(HypndG (τ), ◦ndG , σid) forms a monoid where σid was defined to be an iden-
tity element where σid(fi) := {fi(x1, . . . , xni)} for all i ∈ I.

It is possible to study the situation when the images of σnd are sets of
terms with fixed variables and necessarily preserve the arity. This leads
us to introduce the following concept.

A non-deterministic generalized hypersubstitution σnd of type τ is
said to be non-deterministic generalized hypersubstitution with fixed vari-
ables of type τ if σnd(fi) ∈ P (W fv

τ (X)) where a mapping σnd does not

necessarily preserve the arity. By Hypfvnd−G(τ), we denote the set of all
non-deterministic generalized hypersubstitutions with fixed variables of
type τ

Now, more examples of non-deterministic hypersubstitutions with
fixed variables are provided.
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Example 2. Let τ = (4, 2) be a type with a quaternary operation sym-
bol h and a binary operation symbol g. Let σnd be a non-deterministic
hypersubstitution with fixed variables which maps a quaternary opera-
tion symbol h to a set {x3, h(x8, x8, x8, x8)} and g to a tree language

{x2, g(x4, x4), g(x1, g(x1, x1))}. Then σnd ∈ Hypfvnd−G(4, 2).

Example 3. Let τ = (3, 2, 1) be a type with a ternary operation symbol
f , a binary operation symbol g, and a unary operation symbol h. Define
the following: a mapping β takes f to {x1, f(g(x5, x5), x5, x5), h(x9)},
takes g to {f(x1, x1, x1), g(x6, x6)}, and takes h to {h(h(h(h(x2))))}.
Clearly, β ∈ Hypfvnd−G(3, 2, 1). Nevertheless, if a mapping γ is defined
by γ(f) = {x3, g(x3, x4)}, γ(g) = {f(x1, x4, x7)}, and γ(h) = {h(h(x5))},
then γ /∈ Hypfvnd−G(3, 2, 1).

To prove that a binary operation ◦ndG on HypndG (τ) can be applied to

Hypfvnd−G(τ), the following lemma is needed.

Lemma 3. The extended mapping σ̂nd of a non-deterministic hypersub-
stitution with fixed variables σnd is a mapping on P (W fv

τ (X)).

Proof. Our aim is to prove that σ̂nd is a mapping from the set P (W fv
τ (X))

to itself, i.e., σ̂nd : P (W fv
τ (X)) → P (W fv

τ (X)). To do this, let σnd be

a mapping in Hypfvnd−G(τ) and let A be an arbitrary subset of W fv
τ (X).

If A is empty, the lemma is clear. Suppose now that A is non-empty.
If A = {xi}, xi ∈ X, we have σ̂nd[{xi}] = {xi} ∈ P (W fv

τ (X)). Assume
that A = {fi(s1, . . . , sni)} where fi(s1, . . . , sni) is a term with fixed vari-

able. Furthermore, we inductively assume that σ̂nd[{sk}] ∈ P (W fv
τ (X))

for all 1 ≤ k ≤ ni. Because σnd(fi) belongs to the set P (W fv
τ (X)),

it follows immediately from Theorem 1 that σ̂nd[{fi(s1, . . . , sni)}] =
Ŝni(σnd(fi), σ̂nd[{s1}], . . . , σ̂nd[{sni}]) is a generalized tree language with

fixed variables. Finally, if A is a non-singleton subset of W fv
τ (X), i.e.,

|A| > 1, the proof is obtained from the property of the union of sets in
the natural way.

We now give the example that describes the fact of Lemma 3.

Example 4. Let τ = (3) with a ternary operation symbol g and σnd ∈
Hypfvnd−G(3) which is given by σnd(g) = {g(x3, x3, x3)}. If a generalized

tree language with fixed variables A = {x5, g(x2, x2, x2)} ∈ P (W fv
(3)(X)),

then we have

σ̂nd[A] = {x5} ∪ Ŝ3(σnd(g), σ̂nd[{x2}], σ̂nd[{x2}], σ̂nd[{x2}]).
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According to the definition of generalized superposition and the defining
of σnd(g), we have

Ŝ3(σnd(g), σ̂nd[{x2}], σ̂nd[{x2}], σ̂nd[{x2}]) = {g(x3, x3, x3)}.

As a result, σ̂nd[A] = {x5, g(x3, x3, x3)}.

Consequently, we prove

Theorem 4. (Hypfvnd−G(τ), ◦
nd
G ) is a subsemigroup of (HypndG (τ), ◦ndG ).

Proof. Let σnd, αnd ∈ Hypfvnd(τ). We have to show that σnd ◦ndG αnd ∈
Hypfvnd−G(τ). In fact, we have (σnd ◦ndG αnd)(fi) = σ̂nd[αnd(fi)]. Since

αnd(fi) ∈ P (W fv
τ (X)) and σ̂nd is an extension of a non-deterministic

hypersubstitution with fixed variables of type τ , then σ̂nd[αnd(fi)] is a
tree language with fixed variables by Lemma 3.

Finally, we provide the following property that gives a close connec-
tion between σ̂nd and the generalized power clone P − clonefvG (τ).

Theorem 5. For every non-deterministic hypersubstitution with fixed
variables σnd, its extension σ̂nd is an endomorphism of the generalized
power clone P − clonefvG (τ).

Proof. To prove that σ̂nd is an endomorphism of P −clonefvG (τ), we have
to show that the equation

σ̂nd[Ŝ
n(A,B1, . . . , Bn)] = Ŝn(σ̂nd[A], σ̂nd[B1], . . . , σ̂nd[Bn])

holds for all A,B1, . . . , Bn ∈ P (W fv
τ (X)). If A = ∅ or Bj = ∅ for some

j ∈ {1, . . . , n}, by the definitions of Ŝn and σ̂nd then both sides are empty
and the equation is satisfied. Now we give a proof on the characteristic
of a set A. If A = {t} where t is a term with fixed variable, then three
cases are considered. For t = xi, 1 ≤ i ≤ n, we have
σ̂nd[Ŝ

n(A,B1, . . . , Bn)]
= σ̂nd[Ŝ

n({xi}, B1, . . . , Bn)]
= σ̂nd[Bi]
= Ŝn({xi}, σ̂nd[B1], . . . , σ̂nd[Bn])
= Ŝn(σ̂nd[{xi}], σ̂nd[B1], . . . , σ̂nd[Bn]).

If t = xj , for j > n, then we have

σ̂nd[Ŝ
n(A,B1, . . . , Bn)]
= σ̂nd[Ŝ

n({xj}, B1, . . . , Bn)]
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= σ̂nd[{xj}]
= {xj}
= Ŝn({xj}, σ̂nd[B1], . . .n , σ̂nd[Bn])

= Ŝn(σ̂nd[{xj}], σ̂nd[B1], . . .n , σ̂nd[Bn]).
Assume now that t = fi(s1, . . . , sni) and

σ̂nd[Ŝ
n({sk}, B1, . . . , Bn)] = Ŝn(σ̂nd[{sk}], σ̂nd[B1], . . . , σ̂nd[Bn])

is satisfied for all 1 ≤ k ≤ ni. By Theorem 2, we obtain that
σ̂nd[Ŝ

n({fi(s1, . . . , sni)}, B1, . . . , Bn)]
= σ̂nd[{fi(r1, . . . , rni) | rk ∈ Ŝn({sk}, B1, . . . , Bn), 1 ≤ k,≤ ni}]
=

⋃
σ̂nd[{fi(r1 ∈ Ŝn({s1}, B1, . . . , Bn), . . . ,

rni ∈ Ŝn({sni}, B1, . . . , Bn)}]
=

⋃
Ŝni(σnd(fi), σ̂nd[{r1 ∈ Ŝn({s1}, B1, . . . , Bn)}], . . . ,

σ̂nd[{rni ∈ Ŝn({sni}, B1, . . . , Bn)}])
= Ŝni(σnd(fi), σ̂nd[Ŝ

n({s1}, B1, . . . , Bn)], . . . ,
σ̂nd[Ŝ

n({sni}, B1, . . . , Bn)])
= Ŝni(σnd(fi), Ŝ

n(σ̂nd[{s1}], σ̂nd[B1], . . . , σ̂nd[Bn]), . . . ,
Ŝn(σ̂nd[{sni}], σ̂nd[B1], . . . , σ̂nd[Bn]))

= Ŝn(Ŝni(σ̂ni(fi), σ̂nd[s1], . . . , σ̂nd[sni ]), σ̂nd[B1], . . . , σ̂nd[Bn])
= Ŝn(σ̂nd[{fi(s1, . . . , sni)}], σ̂nd[B1], . . . , σ̂nd[Bn]).

Let A be arbitrary non-singleton subset of W fv
τ (X). Then

σ̂nd[Ŝ
n(A,B1, . . . , Bn)]

= σ̂nd[
⋃
a∈A

Ŝn({a}, B1, . . . , Bn)]

=
⋃
a∈A

σ̂nd[Ŝ
n({a}, B1, . . . , Bn)]

=
⋃
a∈A

Ŝn(σ̂nd[{a}], σ̂nd[B1], . . . , σ̂nd[Bn])

=
⋃
a∈A

(
⋃

s∈σ̂nd[{a}]
Ŝn({s}, σ̂nd[B1], . . . , σ̂nd[Bn]))

=
⋃

s∈σ̂nd[A]

Ŝn({s}, σ̂nd[B1], . . . , σ̂nd[Bn])

= Ŝn(σ̂nd[A], σ̂nd[B1], . . . , σ̂nd[Bn]).
The proof is finished.

4. Conclusions

This paper is contributed to the investigation of the first and the second-
order languages, especially tree languages generated by terms of a fixed
variable. There are many real-word examples of such lauguages, for
example, the equation of idempotency. Applying the generalized su-
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perposition on tree languages, the generalized algebra consisting of the
set of obtained languages and the operation of type (n + 1) satisfying
the clone axioms were presented. Furthermore, if n = 1, then we re-
stricted our intention to a semigroup. In a connection with the theory
of functions, a representation theorem of this algebra was stated via a
construction of n-ary functions induced by tree languages with fixed vari-
ables. Finally, based on the theory of hypersubstitutions, the semigroup
of mappings which take any operation symbol to the sets of terms with
fixed variables was given under a binary associative operation for these
mappings. The work may be considered as tools for constructingM -solid
non-deterministic varieties with fixed variables. Characterization theo-
rems of bands and other other classes of algebras may be proved by our
results. However, it is possible to extend our study in the near future by
continuing in other kinds of tree languages and examine a lattice of all
languages.
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