On the group of automorphisms of the semigroup $B_{\mathbb{Z}}^{\mathscr{Z}}$ with the family \mathscr{F} of inductive nonempty subsets of ω

O. Gutik and I. Pozdniakova

Communicated by V. Mazorchuk

Abstract. We study automorphisms of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}}$ with the family \mathscr{F} of inductive nonempty subsets of ω and prove that the group $\operatorname{Aut}\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ of automorphisms of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is isomorphic to the additive group of integers.

1. Introduction, motivation and main definitions

We shall follow the terminology of $[1,2,11,12,15]$. By ω we denote the set of all non-negative integers and by \mathbb{Z} the set of all integers.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω. For any $F \in \mathscr{P}(\omega)$ and $n, m \in \omega$ we put $n-m+F=\{n-m+k: k \in F\}$ if $F \neq \varnothing$ and $n-m+\varnothing=$ \varnothing. A subfamily $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is called ω-closed if $F_{1} \cap\left(-n+F_{2}\right) \in \mathscr{F}$ for all $n \in \omega$ and $F_{1}, F_{2} \in \mathscr{F}$. For any $a \in \omega$ we denote $[a)=\{x \in \omega: x \geqslant a\}$.

A subset A of ω is said to be inductive, if $i \in A$ implies $i+1 \in A$. Obvious, that \varnothing is an inductive subset of ω.

Remark 1 ([8]). 1) By Lemma 6 from [7] nonempty subset $F \subseteq \omega$ is inductive in ω if and only $(-1+F) \cap F=F$.
2) Since the set ω with the usual order is well-ordered, for any nonempty inductive subset F in ω there exists nonnegative integer $n_{F} \in \omega$ such that $\left[n_{F}\right)=F$.

2020 MSC: Primary 20M18; Secondary 20F29, 20M10.
Key words and phrases: bicyclic monoid, inverse semigroup, bicyclic extension, automorphism, group of automorphism, order-convex set, order isomorphism.
3) Statement (2)) implies that the intersection of an arbitrary finite family of nonempty inductive subsets in ω is a nonempty inductive subset of ω.

A semigroup S is called inverse if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. The element x^{-1} is called the inverse of $x \in S$. If S is an inverse semigroup, then the function inv: $S \rightarrow S$ which assigns to every element x of S its inverse element x^{-1} is called the inversion.

A partially ordered set (or shortly a poset) (X, \leqq) is the set X with the reflexive, antisymmetric and transitive relation \leqq. In this case relation \leqq is called a partial order on X. A partially ordered set (X, \leqq) is linearly ordered or is a chain if $x \leqq y$ or $y \leqq x$ for any $x, y \in X$. A map f from a poset (X, \leqq) onto a poset (Y, \gtrless) is said to be an order isomorphism if f is bijective and $x \leqq y$ if and only if $f(x)<f(y)$.

If S is a semigroup, then we shall denote the subset of all idempotents in S by $E(S)$. If S is an inverse semigroup, then $E(S)$ is closed under multiplication and we shall refer to $E(S)$ as a band (or the band of S). Then the semigroup operation on S determines the following partial order \preccurlyeq on $E(S): e \preccurlyeq f$ if and only if $e f=f e=e$. This order is called the natural partial order on $E(S)$. A semilattice is a commutative semigroup of idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \preccurlyeq on $S: s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that $s=t e$. This order is called the natural partial order on S [16].

The bicyclic monoid $\mathscr{C}(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition $p q=1$. The semigroup operation on $\mathscr{C}(p, q)$ is determined as follows:

$$
q^{k} p^{l} \cdot q^{m} p^{n}=q^{k+m-\min \{l, m\}} p^{l+n-\min \{l, m\}} .
$$

It is well known that the bicyclic monoid $\mathscr{C}(p, q)$ is a bisimple (and hence simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p, q)$ is a group congruence [1].

On the set $\boldsymbol{B}_{\omega}=\omega \times \omega$ we define the semigroup operation "." in the following way

$$
\left(i_{1}, j_{1}\right) \cdot\left(i_{2}, j_{2}\right)= \begin{cases}\left(i_{1}-j_{1}+i_{2}, j_{2}\right) & \text { if } j_{1} \leqslant i_{2} \tag{1}\\ \left(i_{1}, j_{1}-i_{2}+j_{2}\right) & \text { if } j_{1} \geqslant i_{2}\end{cases}
$$

It is well known that the bicyclic monoid $\mathscr{C}(p, q)$ to the semigroup \boldsymbol{B}_{ω} is isomorphic by the mapping $\mathfrak{h}: \mathscr{C}(p, q) \rightarrow \boldsymbol{B}_{\omega}, q^{k} p^{l} \mapsto(k, l)$ (see: [1, Section 1.12] or [14, Exercise IV.1.11(ii)]).

Next we shall describe the construction which is introduced in [7].
Let \boldsymbol{B}_{ω} be the bicyclic monoid and \mathscr{F} be an ω-closed subfamily of $\mathscr{P}(\omega)$. On the set $\boldsymbol{B}_{\omega} \times \mathscr{F}$ we define the semigroup operation "." in the following way

$$
\left(i_{1}, j_{1}, F_{1}\right) \cdot\left(i_{2}, j_{2}, F_{2}\right)= \begin{cases}\left(i_{1}-j_{1}+i_{2}, j_{2},\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right) & \text { if } j_{1} \leqslant i_{2} \tag{2}\\ \left(i_{1}, j_{1}-i_{2}+j_{2}, F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right) & \text { if } j_{1} \geqslant i_{2}\end{cases}
$$

In [7] is proved that if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω-closed then $\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right)$ is a semigroup. Moreover, if an ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\boldsymbol{I}=\{(i, j, \varnothing): i, j \in \omega\}$ is an ideal of the semigroup $\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right)$. For any ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$
\boldsymbol{B}_{\omega}^{\mathscr{F}}= \begin{cases}\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right) / \boldsymbol{I} & \text { if } \varnothing \in \mathscr{F} ; \\ \left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right) & \text { if } \varnothing \notin \mathscr{F}\end{cases}
$$

is defined in [7]. The semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [7] that $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a combinatorial inverse semigroup and Green's relations, the natural partial order on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. Here, the criteria when the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is simple, 0 -simple, bisimple, 0 -bisimple, or it has the identity, are given. In particular in [7] it is proved that the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigrpoup of $\omega \times \omega$-matrix units if and only if \mathscr{F} consists of a singleton set and the empty set, and $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic monoid if and only if \mathscr{F} consists of a non-empty inductive subset of ω.

Group congruences on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its homomorphic retracts in the case when an ω-closed family \mathscr{F} consists of inductive non-empty subsets of ω are studied in [8]. It is proven that a congruence \mathfrak{C} on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a group congruence if and only if its restriction on a subsemigroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, which is isomorphic to the bicyclic semigroup, is not the identity relation. Also in [8], all non-trivial homomorphic retracts and isomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are described.

In $[5,13]$ the algebraic structure of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is established in the case when ω-closed family \mathscr{F} consists of atomic subsets of ω.

The set $\boldsymbol{B}_{\mathbb{Z}}=\mathbb{Z} \times \mathbb{Z}$ with the semigroup operation defined by formula (1) is called the extended bicyclic semigroup [17]. On the set $\boldsymbol{B}_{\mathbb{Z}} \times \mathscr{F}$,
where \mathscr{F} is an ω-closed subfamily of $\mathscr{P}(\omega)$, we define the semigroup operation "." by formula (2). In [9] it is proved that $\left(\boldsymbol{B}_{\mathbb{Z}} \times \mathscr{F}, \cdot\right)$ is a semigroup. Moreover, if an ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\boldsymbol{I}=\{(i, j, \varnothing): i, j \in \mathbb{Z}\}$ is an ideal of the semigroup $\left(\boldsymbol{B}_{\mathbb{Z}} \times \mathscr{F}, \cdot\right)$. For any ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$
\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}= \begin{cases}\left(\boldsymbol{B}_{\mathbb{Z}} \times \mathscr{F}, \cdot\right) / \boldsymbol{I} & \text { if } \varnothing \in \mathscr{F} ; \\ \left(\boldsymbol{B}_{\mathbb{Z}} \times \mathscr{F}, \cdot\right) & \text { if } \varnothing \notin \mathscr{F}\end{cases}
$$

is defined in [9] similarly as in [7]. In [9] it is proven that $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is a combinatorial inverse semigroup. Green's relations, the natural partial order on the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ and its set of idempotents are described. Here, the criteria when the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is simple, 0 -simple, bisimple, 0 -bisimple, is isomorphic to the extended bicyclic semigroup, are derived. In particularly in [9] it is proved that the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is isomorphic to the semigrpoup of $\omega \times \omega$-matrix units if and only if \mathscr{F} consists of a singleton set and the empty set, and $\boldsymbol{B}_{Z}^{\mathscr{F}}$ is isomorphic to the extended bicyclic semigroup if and only if \mathscr{F} consists of a non-empty inductive subset of ω. Also, in [9] it is proved that in the case when the family \mathscr{F} consists of all singletons of ω and the empty set, the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is isomorphic to the Brandt λ-extension of the semilattice (ω, \min), where (ω, \min) is the set ω with the semilattice operation $x \cdot y=\min \{x, y\}$.

It is well-known that every automorphism of the bicyclic monoid \boldsymbol{B}_{ω} is the identity self-map of $\boldsymbol{B}_{\omega}[1]$, and hence the group $\boldsymbol{A u t}\left(\boldsymbol{B}_{\omega}\right)$ of automorphisms of \boldsymbol{B}_{ω} is trivial. The group $\operatorname{Aut}\left(\boldsymbol{B}_{\mathbb{Z}}\right)$ of automorphisms of the extended bicyclic semigroup $\boldsymbol{B}_{\mathbb{Z}}$ is established in [6] and there it is proved that $\operatorname{Aut}\left(\boldsymbol{B}_{\mathbb{Z}}\right)$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$. Also in [10] the semigroups of endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup are described.

Later we assume that an ω-closed family \mathscr{F} consists of inductive nonempty subsets of ω.

In this paper we study automorphisms of the semigroup $\boldsymbol{B}_{Z}^{\mathscr{F}}$ with the family \mathscr{F} of inductive nonempty subsets of ω and prove that the group $\operatorname{Aut}\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ of automorphisms of the semigroup $\boldsymbol{B}_{Z}^{\mathscr{F}}$ is isomorphic to the additive group of integers.

2. Algebraic properties of the semigroup $B_{\mathbb{Z}}^{\mathscr{F}}$

Proposition 1. Let \mathscr{F} be an arbitrary nonempty ω-closed family of subsets of ω and let $n_{0}=\min \{\bigcup \mathscr{F}\}$. Then the following statements hold:

1) $\mathscr{F}_{0}=\left\{-n_{0}+F: F \in \mathscr{F}\right\}$ is an ω-closed family of subsets of ω;
2) the semigroups $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ and $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}_{0}}$ are isomorphic by the mapping

$$
(i, j, F) \mapsto\left(i, j,-n_{0}+F\right), \quad i, j \in \mathbb{Z}
$$

Proof. Statement 1) is proved in [8, Proposition 1(1)]. The proof of 2) is similar to the one of Proposition 1(2) from [8].

Suppose that \mathscr{F} is an ω-closed family of inductive subsets of ω. Fix an arbitrary $k \in \mathbb{Z}$. If $[0) \in \mathscr{F}$ and $[p) \in \mathscr{F}$ for some $p \in \omega$ then for any $i, j \in \mathbb{Z}$ and we have that

$$
\begin{aligned}
(k, k,[0)) \cdot(i, j,[p)) & = \begin{cases}(k-k+i, j,(k-i+[0)) \cap[p)) & \text { if } k<i \\
(k, j,[0) \cap[p)) & \text { if } k=i \\
(k, k-i+j,[0) \cap(i-k+[p))) & \text { if } k>i\end{cases} \\
& = \begin{cases}(i, j,[p)) & \text { if } k<i \\
(k, j,[p)) & \text { if } k=i \\
(k, k-i+j,[0) \cap[i-k+p)) & \text { if } k>i\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
(i, j,[p)) \cdot(k, k,[0)) & = \begin{cases}(i-j+k, k,(j-k+[p)) \cap[0)) & \text { if } j<k ; \\
(i, k,[p) \cap[0)) & \text { if } j=k ; \\
(i, j-k+k,[p) \cap(k-j+[0))) & \text { if } j>k\end{cases} \\
& = \begin{cases}(i-j+k, k,[j-k+p) \cap[0)) & \text { if } j<k ; \\
(i, k,[p)) & \text { if } j=k ; \\
(i, j,[p) & \text { if } j>k .\end{cases}
\end{aligned}
$$

Therefore the above equalities imply that

$$
\begin{aligned}
(k, k,[0)) \cdot \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \cdot(k, k,[0)) & =(k, k,[0)) \cdot \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \cap \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \cdot(k, k,[0)) \\
& =\{(i, j,[p)): i, j \geqslant k,[p) \in \mathscr{F}\}
\end{aligned}
$$

for an arbitrary $k \in \mathbb{Z}$. We define

$$
\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}[k, k, 0)=(k, k,[0)) \cdot \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \cap \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \cdot(k, k,[0)) .
$$

It is obvious that $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}[k, k, 0)$ is a subsemigroup of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.
Proposition 2. Let \mathscr{F} be an arbitrary nonempty ω-closed family of inductive nonempty subsets of ω such that $[0) \in \mathscr{F}$. Then the subsemigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}[k, k, 0)$ of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is isomorphic to $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.

Proof. Since the family \mathscr{F} does not contain the empty set, $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}=\left(\boldsymbol{B}_{\mathbb{Z}} \times\right.$ $\mathscr{F}, \cdot)$. We define a map $\mathfrak{I}: \boldsymbol{B}_{\omega}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}[k, k, 0)$ in the following way $(i, j,[p)) \mapsto(i+k, j+k,[p))$. It is obvious that \mathfrak{I} is a bijection. Then for any $i_{1}, i_{2}, j_{1}, j_{2} \in \mathbb{Z}$ and $F_{1}, F_{2} \in \mathscr{F}$ we have that

$$
\begin{aligned}
& \mathfrak{I}\left(\left(i_{1}, j_{1}, F_{1}\right) \cdot\left(i_{2}, j_{2}, F_{2}\right)\right) \\
& \quad= \begin{cases}\Im\left(i_{1}-j_{1}+i_{2}, j_{2},\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right) & \text { if } j_{1}<i_{2} ; \\
\mathfrak{I}\left(i_{1}, j_{2}, F_{1} \cap F_{2}\right) & \text { if } j_{1}=i_{2} ; \\
\mathfrak{I}\left(i_{1}, j_{1}-i_{2}+j_{2}, F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right) & \text { if } j_{1}>i_{2}\end{cases} \\
& \quad= \begin{cases}\left(i_{1}-j_{1}+i_{2}+k, j_{2}+k,\left(\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right)\right) & \text { if } j_{1}<i_{2} ; \\
\left(i_{1}+k, j_{2}+k, F_{1} \cap F_{2}\right) & \text { if } j_{1}=i_{2} ; \\
\left(i_{1}+k, j_{1}-i_{2}+j_{2}+k,\left(F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right)\right) & \text { if } j_{1}>i_{2}\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathfrak{I}\left(i_{1}, j_{1}, F_{1}\right) \cdot \Im\left(i_{2}, j_{2}, F_{2}\right)=\left(i_{1}+k, j_{1}+k, F_{1}\right) \cdot\left(i_{2}+k, j_{2}+k, F_{2}\right) \\
& = \begin{cases}\left(i_{1}-j_{1}+i_{2}+k, j_{2}+k,\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right) & \text { if } j_{1}+k<i_{2}+k ; \\
\left(i_{1}+k, j_{2}+k, F_{1} \cap F_{2}\right) & \text { if } j_{1}+k=i_{2}+k ; \\
\left(i_{1}+k, j_{1}-i_{2}+j_{2}+k, F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right) & \text { if } j_{1}+k>i_{2}+k\end{cases} \\
& = \begin{cases}\left(i_{1}-j_{1}+i_{2}+k, j_{2}+k,\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right) & \text { if } j_{1}<i_{2} ; \\
\left(i_{1}+k, j_{2}+k, F_{1} \cap F_{2}\right) & \text { if } j_{1}=i_{2} ; \\
\left(i_{1}+k, j_{1}-i_{2}+j_{2}+k, F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right) & \text { if } j_{1}>i_{2}\end{cases}
\end{aligned}
$$

and hence \mathfrak{I} is a homomorphism which implies the statement of the proposition.

By Remarks 1(2)) and 1(3)) every nonempty subset $F \in \mathscr{F}$ contains the least element, and hence later for every nonempty set $F \in \mathscr{F}$ we denote $n_{F}=\min F$.

Below we need the following lemma from [8].
Lemma 1 ([8]). Let \mathscr{F} be an ω-closed family of inductive subsets of ω. Let F_{1} and F_{2} be elements of \mathcal{F} such that $n_{F_{1}}<n_{F_{2}}$. Then for any positive integer $k \in\left\{n_{F_{1}}+1, \ldots, n_{F_{2}}-1\right\}$ there exists $F \in \mathscr{F}$ such that $F=[k)$.

Proposition 1 implies that without loss of generality later we may assume that $[0) \in \mathscr{F}$ for any ω-closed family \mathscr{F} of inductive subsets of ω. Hence these arguments and Lemma 5 of [7] imply the following proposition.

Proposition 3. Let \mathscr{F} be an infinite ω-closed family of inductive nonempty subsets of ω. Then the diagram in Fig. 1 describes the natural partial order on the band of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.

Figure 1. The natural partial order on the band $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$

By the similar way for a finite ω-closed family of inductive nonempty subsets of ω we obtain the following

Proposition 4. Let $\mathscr{F}=\{[0), \ldots,[k)\}$. Then the diagram on Fig. 1 without elements of the form $(i, j,[p))$ and their arrows, $i, j \in \mathbb{Z}, p>k$, describes the natural partial order on the band of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.

The definition of the semigroup operation in $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ implies that in the case when \mathscr{F} is an ω-closed family subsets of ω and $F \in \mathscr{F}$ is a nonempty inductive subset in ω then the set

$$
\boldsymbol{B}_{\mathbb{Z}}^{\{F\}}=\{(i, j, F): i, j \in \mathbb{Z}\}
$$

with the induced semigroup operation from $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is a subsemigroup of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ which by Proposition 5 from [9] is isomorphic to the extended bicyclic semigroup $\boldsymbol{B}_{\mathbb{Z}}$.

Proposition 5. Let \mathscr{F} be an arbitrary ω-closed family of inductive subsets of ω and S be a subsemigroup of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ which is isomorphic to the extended bicyclic semigroup $\boldsymbol{B}_{\mathbb{Z}}$. Then there exists a subset $F \in \mathscr{F}$ such that S is a subsemigroup in $\boldsymbol{B}_{\mathbb{Z}}^{\{F\}}$.
Proof. Suppose that $\mathfrak{I}: \boldsymbol{B}_{\mathbb{Z}} \rightarrow S \subseteq \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is an isomorphism. Proposition $21(2)$ of $[12$, Section 1.4] implies that the image $\mathfrak{I}(0,0)$ is an idempotent of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$, and hence by Lemma $1(2)$ from $[9], \mathfrak{I}(0,0)=(i, i, F)$ for some $i \in \mathbb{Z}$ and $F \in \mathscr{F}$. By Proposition 2.1(viii) of [3] the subset $(0,0) \boldsymbol{B}_{\mathbb{Z}}(0,0)$ of $\boldsymbol{B}_{\mathbb{Z}}$ is isomorphic to the bicyclic semigroup, and hence the image $\mathfrak{I}\left((0,0) \boldsymbol{B}_{\mathbb{Z}}(0,0)\right)$ is isomorphic to the bicyclic semigroup \boldsymbol{B}_{ω}. Then the definition of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ and Corollary 1 from [9] imply that there exists an integer k such that $(i, i, F) \preccurlyeq(k, k,[0))$. By Proposition 2 the subsemigroup

$$
\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}[k, k, 0)=(k, k,[0)) \cdot \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \cdot(k, k,[0))
$$

of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is isomorphic to $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Since $(i, i, F) \preccurlyeq(k, k,[0))$ we have that $\mathfrak{I}\left((0,0) \boldsymbol{B}_{\mathbb{Z}}(0,0)\right) \subseteq \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}[k, k, 0)$, and hence $\mathfrak{I}\left((0,0) \boldsymbol{B}_{\mathbb{Z}}(0,0)\right) \subseteq \boldsymbol{B}_{\mathbb{Z}}^{\{F\}}$ by Proposition 4 of [8].

Next, fix any negative integer n. By Proposition 2.1(viii) of [3] the subset $(n, n) \boldsymbol{B}_{\mathbb{Z}}(n, n)$ of $\boldsymbol{B}_{\mathbb{Z}}$ is isomorphic to the bicyclic semigroup. Since $(0,0) \boldsymbol{B}_{\mathbb{Z}}(0,0)$ is an inverse subsemigroup of $(n, n) \boldsymbol{B}_{\mathbb{Z}}(n, n)$, the above arguments imply that $\mathfrak{I}\left((n, n) \boldsymbol{B}_{\mathbb{Z}}(n, n)\right) \subseteq \boldsymbol{B}_{\mathbb{Z}}^{\{F\}}$ for any negative integer n. Since

$$
\boldsymbol{B}_{\mathbb{Z}}=\bigcup\left\{(k, k) \boldsymbol{B}_{\mathbb{Z}}(k, k):-k \in \omega\right\}
$$

we get that $\mathfrak{I}\left(\boldsymbol{B}_{\mathbb{Z}}\right) \subseteq \boldsymbol{B}_{\mathbb{Z}}^{\{F\}}$.

3. On authomorphisms of the semigroup $B_{\mathbb{Z}}^{\mathscr{F}}$

Recall [4] define relations \mathscr{L} and \mathscr{R} on an inverse semigroup S by

$$
(s, t) \in \mathscr{L} \Leftrightarrow s^{-1} s=t^{-1} t \quad \text { and } \quad(s, t) \in \mathscr{R} \quad \Leftrightarrow \quad s s^{-1}=t t^{-1}
$$

Both \mathscr{L} and \mathscr{R} are equivalence relations on S. The relation \mathscr{D} is defined to be the smallest equivalence relation which contains both \mathscr{L} and \mathscr{R}, which is equivalent that $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$ [12].

Remark 2. It is obvious that every semigroup isomorphism $\mathfrak{i}: S \rightarrow T$ maps a \mathscr{D}-class (resp. \mathscr{L}-class, \mathscr{R}-class) of S onto a \mathscr{D}-class (resp. \mathscr{L}-class, \mathscr{R}-class) of T.

In this section we assume that $[0) \in \mathscr{F}$ for any ω-closed family \mathscr{F} of inductive subsets of ω.

An automorphism \mathfrak{a} of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is called a $(0,0,[0))$-automorphism if $\mathfrak{a}(0,0,[0))=(0,0,[0))$.

Theorem 1. Let \mathscr{F} be an ω-closed family of inductive nonempty subsets of ω. Then every $\left(0,0,[0)\right.$-automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is the identity map.

Proof. Let $\mathfrak{a}: \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ be an arbitrary $(0,0,[0))$-automorphism.
By Theorem $4(i v)$ of [9] the elements $\left(i_{1}, j_{1}, F_{1}\right)$ and $\left(i_{2}, j_{2}, F_{2}\right)$ of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ are \mathscr{D}-equivalent if and only if $F_{1}=F_{2}$. Since every automorphism preserves \mathscr{D}-classes, the above argument implies that $\mathfrak{a}\left(\boldsymbol{B}_{\mathbb{Z}}^{\left\{F_{1}\right\}}\right)=\boldsymbol{B}_{\mathbb{Z}}^{\left\{F_{2}\right\}}$ if and only if $F_{1}=F_{2}$ for $F_{1}, F_{2} \in \mathscr{F}$. Hence we have that $\mathfrak{a}\left(\boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}\right)=\boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}$. By Proposition 21(6) of [12, Section 1.4] every automorphism preserves the natural partial order on the semilattice $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ and since \mathfrak{a} is a $(0,0,[0))$ automorphism of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ we get that $\mathfrak{a}(i, i,[0))=(i, i,[0))$ for any integer i.

Fix arbitrary $k, l \in \mathbb{Z}$. Suppose that $\mathfrak{a}(k, l,[0))=(p, q,[0))$ for some integers p and q. Since the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is inverse, Proposition 21(1) of [12, Section 1.4] and Lemma 1(4) of [9] imply that

$$
(\mathfrak{a}(k, l,[0)))^{-1}=(p, q,[0))^{-1}=(q, p,[0))
$$

Again by Proposition 21(1) of [12, Section 1.4] we have that

$$
\begin{aligned}
(k, k,[0)) & =\mathfrak{a}(k, k,[0))=\mathfrak{a}((k, l,[0)) \cdot(l, k,[0))) \\
& =\mathfrak{a}(k, l,[0)) \cdot \mathfrak{a}(l, k,[0))=\mathfrak{a}(k, l,[0)) \cdot \mathfrak{a}\left((k, l,[0))^{-1}\right) \\
& =(p, q,[0)) \cdot(q, p,[0))=(p, p,[0))
\end{aligned}
$$

and hence $p=k$. By similar way we get that $l=q$. Therefore, $\mathfrak{a}(k, l,[0))=$ $(k, l,[0))$ for any integers k and l.

If $\mathscr{F} \neq\{[0)\}$ then by Lemma $1,[1) \in \mathscr{F}$. The definition of the natural partial order on the semilattice $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ (also, see Proposition 3) and Corollary 5 of $[9]$ imply that $(0,0,[1))$ is the unique idempotent ε of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ with the property

$$
(1,1,[0)) \preccurlyeq \varepsilon \preccurlyeq(0,0,[0)) .
$$

Since by Proposition 21(6) of [12, Section 1.4] the automorphism \mathfrak{a} preserves the natural partial order on the semilattice $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$, we get that $\mathfrak{a}(0,0,[1))=(0,0,[1))$. Similar arguments as in the above paragraph imply that $\mathfrak{a}(k, l,[1))=(k, l,[1))$ for any integers k and l.

Next, by induction we obtain that $\mathfrak{a}(k, l,[p))=(k, l,[p))$ for any $k, l \in \mathbb{Z}$ and $[p) \in \mathscr{F}$.

Proposition 6. Let \mathscr{F} be an ω-closed family of inductive nonempty subsets of ω. Then for every integer k the $\operatorname{map}_{\mathfrak{h}}^{k}: \quad \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}},(i, j,[p)) \mapsto$ $(i+k, j+k,[p))$ is an automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.

The proof of Proposition 6 is similar to Proposition 2.
For a partially ordered set (P, \leqq), a subset X of P is called order-convex, if $x \leqq z \leqq y$ and $x, y \subset X$ implies that $z \in X$, for all $x, y, z \in P$ [11].

Lemma 2. If \mathscr{F} is an infinite ω-closed family of inductive nonempty subsets of ω then

$$
\{(0,0,[k)): k \in \omega\}
$$

is an order-convex linearly ordered subset of $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right), \preccurlyeq\right)$.
Proof. Fix arbitrary $(0,0,[m)),(0,0,[n)),(0,0,[p)) \in E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$. If

$$
(0,0,[m)) \preccurlyeq(0,0,[n)) \preccurlyeq(0,0,[p))
$$

then Corollary 1 of [9] implies that $[m) \subseteq[n) \subseteq[p)$. Hence we have that $m \geqslant n \geqslant p$, which implies the statement of the lemma.

Proposition 7. Let \mathscr{F} be an infinite ω-closed family of inductive nonempty subsets of ω. Then

$$
\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}
$$

for any automorphism \mathfrak{a} of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.
Proof. Suppose to the contrary that there exists an automorphism \mathfrak{a} of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ such that $\mathfrak{a}(0,0,[0)) \notin \boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}$. Then $\mathfrak{a}(0,0,[0))$ is an idempotent of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$. Lemma $1(2)$ of [9] implies that $\mathfrak{a}(0,0,[0))=(i, i,[p))$ for some integer i and some positive integer p. Since the automorphism \mathfrak{a} maps a \mathscr{D}-class of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ onto its \mathscr{D}-class there exists an element $(0,0,[s))$ of the chain

$$
\begin{equation*}
\cdots \preccurlyeq(0,0,[k)) \preccurlyeq(0,0,[k-1)) \preccurlyeq \cdots \preccurlyeq(0,0,[2)) \preccurlyeq(0,0,[1)) \preccurlyeq(0,0,[0)) \tag{3}
\end{equation*}
$$

such that $\mathfrak{a}(0,0,[s))=(m, m,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}$ for some integer m. By Proposition 21(6) of [12, Section 1.4] every automorphism preserves the natural partial order on the semilattice $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{Y}}\right)$, and hence the inequality $(0,0,[s)) \preccurlyeq(0,0,[0))$ implies that

$$
\mathfrak{a}(0,0,[s))=(m, m,[0)) \preccurlyeq(i, i,[p))=\mathfrak{a}(0,0,[0)) .
$$

By Corollary 1 of [9] we have that $m \geqslant i$ and $[0) \subseteq i-m+[p)$. The last inclusion implies that $m \geqslant i+p$. Since the chain (3) is infinite and any its two distinct elements belong to distinct two \mathscr{D}-classes of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}}$, Proposition 21(6) of [12, Section 1.4] and Remark 2 imply that there exists a positive integer $q>s$ such that $\mathfrak{a}(0,0,[q))=(t, t,[x))$ for some positive integer $x>p$ and some integer t. Then

$$
\mathfrak{a}(0,0,[q))=(t, t,[x)) \preccurlyeq(m, m,[0))=\mathfrak{a}(0,0,[s))
$$

and by Corollary 1 of [9] we have that $t \geqslant m$ and $[x) \subseteq t-m+[0)$, and hence $x \geqslant t-m$.

Next we consider the idempotent $(i+1, i+1,[p))$ of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Z}}$. By Corollary 1 of [9] we get that $(i+1, i+1,[p)) \preccurlyeq(i, i,[p))$ in $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Z}}\right)$. Since $x>p$ we have that $x \geqslant p+1$. The inequalities $t \geqslant m \geqslant i+p$ and $p \geqslant 1$ imply that $t \geqslant i+1$. Also, the inequalities $t \geqslant m \geqslant i$ and $x \geqslant p+1$ imply that $t+x \geqslant i+1+p$, and hence we obtain the inclusion $[x) \subseteq i+1-t+[p)$. By Corollary 1 of [9] we have that $(t, t,[x)) \preccurlyeq(i+1, i+1,[p))$. Since \mathfrak{a} is an automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{F}}$, its restriction $\left.\mathfrak{a}\right|_{E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathcal{T}}\right)}: E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{Y}}\right) \rightarrow E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{P}}\right)$ onto the band $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{F}}\right)$ is an order automorphism of the partially ordered set $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{Y}}\right), \preccurlyeq\right)$, and hence the map $\left.\right|_{E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Z}}\right)}$ preserves order-convex subsets of $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}}\right), \preccurlyeq\right)$. By Lemma 2 chain (3) is order-convex in the partially ordered set $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{Y}}\right), \preccurlyeq\right)$. The inequalities $(t, t,[x)) \preccurlyeq(i+1, i+1,[p)) \preccurlyeq(i, i,[p))$ in $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ imply that the image of order-convex chain (3) under the order automorphism $\left.\mathfrak{a}\right|_{E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)}$ is not an order-convex subset of $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}}\right), \preccurlyeq\right)$, a contradiction. The obtained contradiction implies the statement of the proposition.

Later for any integer k we assume that $\mathfrak{h}_{k}: \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{P}}$ is an automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}}$ defined in Proposition 6 .

Theorem 2. Let \mathscr{F} be an infinite ω-closed family of inductive nonempty subsets of ω. Then for any automorphism \mathfrak{a} of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathcal{T}}$ there exists an integer p such that $\mathfrak{a}=\mathfrak{h}_{p}$.

Proof. By Proposition 7 there exists an integer p such that $\mathfrak{a}(0,0,[0))=$ $(-p,-p,[0))$. Then the composition $\mathfrak{h}_{p} \circ \mathfrak{a}$ is a $(0,0,[0))$-automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$, i.e., $\left(\mathfrak{h}_{p} \circ \mathfrak{a}\right)(0,0,[0))=(0,0,[0))$, and hence by Theorem 1 the composition $\mathfrak{h}_{p} \circ \mathfrak{a}$ is the identity map of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$. Since \mathfrak{h}_{p} and \mathfrak{a} are bijections of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ the above arguments imply that $\mathfrak{a}=\mathfrak{h}_{p}$.

Since $\mathfrak{h}_{k_{1}} \circ \mathfrak{h}_{k_{2}}=\mathfrak{h}_{k_{1}+k_{2}}$ and $\mathfrak{h}_{k_{1}}^{-1}=\mathfrak{h}_{-k_{1}}, k_{1}, k_{2} \in \mathbb{Z}$, for any automorphisms $\mathfrak{h}_{k_{1}}$ and $\mathfrak{h}_{k_{2}}$ of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$, Theorem 2 implies the following.
Corollary 1. Let \mathscr{F} be an infinite ω-closed family of inductive nonempty subsets of ω. Then the group of automorphisms $\boldsymbol{\operatorname { A u t }}\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is isomorphic to the additive group of integers $(\mathbb{Z},+)$.

The following example shows that for an arbitrary nonnegative integer k and the finite family $\mathscr{F}=\{[0),[1), \ldots,[k)\}$ there exists an automorphism $\widetilde{\mathfrak{a}}: \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ which is distinct from the form \mathfrak{h}_{p}.
Example 1. Fix an arbitrary nonnegative integer k. Put

$$
\widetilde{\mathfrak{a}}(i, j,[s))=(i+s, j+s,[k-s))
$$

for any $s=0,1, \ldots, k$ and all $i, j \in \mathbb{Z}$.
Lemma 3. Let k be an arbitrary nonnegative integer and $\mathscr{F}=$ $\{[0),[1), \ldots,[k)\}$. Then $\tilde{\mathfrak{a}}: \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is an automorphism.
Proof. Fix arbitrary $i, j, m, n \in \mathbb{Z}$. Without loss of generality we may assume that $s, t \in\{0,1, \ldots, k\}$ with $s<t$. Then we have that

$$
\begin{aligned}
& \widetilde{\mathfrak{a}}((i, j,[s)) \cdot(m, n,[t)))= \\
& \quad= \begin{cases}\widetilde{\mathfrak{a}}(i-j+m, n,(j-m+[s)) \cap[t)) & \text { if } j<m ; \\
\widetilde{\mathfrak{a}}(i, n,[s) \cap[t)) & \text { if } j=m ; \\
\tilde{\mathfrak{a}}(i, j-m+n,[s) \cap(m-j+[t))) & \text { if } j>m\end{cases} \\
& \quad= \begin{cases}\widetilde{\mathfrak{a}}(i-j+m, n,[t)) & \text { if } j<m ; \\
\widetilde{\mathfrak{a}}(i, n,[1)) & \text { if } j=m ; \\
\widetilde{\mathfrak{a}}(i, j-m+n,[s)) & \text { if } j>m \text { and } m+t<j+s ; \\
\widetilde{\mathfrak{a}}(i, j-m+n,[s)) & \text { if } j>m \text { and } m+t=j+s ; \\
\widetilde{\mathfrak{a}}(i, j-m+n, m-j+[t)) & \text { if } j>m \text { and } m+t>j+s\end{cases} \\
& \quad= \begin{cases}(i-j+m+s, n+s,[k-t)) & \text { if } j<m ; \\
(i+t, n+t,[k-t)) & \text { if } j=m ; \\
(i+s, j-m+n+s,[k-s)) & \text { if } j>m \text { and } m+t<j+s ; \\
(i+s, j-m+n+s,[k-s)) & \text { if } j>m \text { and } m+t=j+s ; \\
(i-j+m+t, n+t,[k-m+j-t)) & \text { if } j>m \text { and } m+t>j+s,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\mathfrak{a}}(i, j,[s)) \cdot \widetilde{\mathfrak{a}}(m, n,[t))=(i+s, j+s,[k-s)) \cdot(m+t, n+t,[k-t)) \\
& = \begin{cases}(i-j+m+t, n+t, & \\
(j+s-m-t+[k-s)) \cap[k-t)) & \text { if } j+s<m+t ; \\
(i+s, n+t,[k-s) \cap[k-t)) & \text { if } j+s=m+t ; \\
(i+s, j+s-m+n, & \\
[k-s) \cap(m+t-s-j+[k-t))) & \text { if } j+s>m+t\end{cases} \\
& \left\{\begin{array}{l}
(i-j+m+t, n+t, \\
[k-t+j-m) \cap[k-t)) \quad \text { if } j<m \text { and } j+s<m+t ;
\end{array}\right. \\
& (i+t, n+t, \\
& [k-t) \cap[k-t)) \quad \text { if } j=m \text { and } j+s<m+t ; \\
& (i-j+m+t, n+t \text {, } \\
& [k-t+j-m) \cap[k-t)) \quad \text { if } j>m \text { and } j+s<m+t ; \\
& \text { if } j<m \text { and } j+s=m+t \text {; } \\
& \text { if } j=m \text { and } j+s=m+t \text {; } \\
& \text { if } j>m \text { and } j+s=m+t \text {; } \\
& \text { if } j<m \text { and } j+s>m+t \text {; } \\
& \text { if } j=m \text { and } j+s>m+t \text {; } \\
& (i+s, j-m+n+s \text {, } \\
& [k-s) \cap[k-s-j+m)) \quad \text { if } j>m \text { and } j+s>m+t \\
& \begin{cases}(i-j+m+t, n+t,[k-t)) & \text { if } j<m \text { and } j+s<m+t ; \\
\text { vagueness } & \text { if } j<m \text { and } j+s=m+t ;\end{cases} \\
& \text { vagueness } \quad \text { if } j<m \text { and } j+s>m+t \text {; } \\
& (i+t, n+t,[k-t)) \quad \text { if } j=m \text { and } j+s<m+t ; \\
& \text { if } j=m \text { and } j+s=m+t \text {; } \\
& \text { if } j=m \text { and } j+s>m+t \text {; } \\
& (i-j+m+t, n+t, \\
& {[k-t+j-m) \text { if } j>m \text { and } j+s<m+t \text {; }} \\
& (i+s, n+t,[k-t)) \quad \text { if } j>m \text { and } j+s=m+t ; \\
& (i+s, j-m+n+s,[k-s)) \quad \text { if } j>m \text { and } j+s>m+t, \\
& \widetilde{\mathfrak{a}}((m, n,[t)) \cdot(i, j,[s)) \\
& = \begin{cases}\widetilde{\mathfrak{a}}(m-n+i, j,(n-i+[t)) \cap[s)) & \text { if } n<i ; \\
\tilde{\mathfrak{a}}(m, j,[t) \cap[s)) & \text { if } n=i ; \\
\widetilde{\mathfrak{a}}(m, n-i+j,[t) \cap(i-n+[s))) & \text { if } n>i\end{cases} \\
& = \begin{cases}\widetilde{\mathfrak{a}}(m-n+i, j,[s)) & \text { if } n<i \text { and } n+t<i+s ; \\
\widetilde{\mathfrak{a}}(m-n+i, j,[s)) & \text { if } n<i \text { and } n+t=i+s ; \\
\tilde{\mathfrak{a}}(m-n+i, j,[n-i+t)) & \text { if } n<i \text { and } n+t>i+s ; \\
\widetilde{\mathfrak{a}}(m, j,[t)) & \text { if } n=i ; \\
\tilde{\mathfrak{a}}(m, n-i+j,[t)) & \text { if } n>i\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}(m-n+i+s, j+s,[k-s)) & \text { if } n<i \text { and } n+t<i+s ; \\
(m-n+i+s, j+s,[k-s)) & \text { if } n<i \text { and } \quad n+t=i+s ; \\
(m+t, j+n-i+t,[k-t+i-n)) & \text { if } n<i \text { and } n+t>i+s ; \\
(m+t, j+t,[k-t)) & \text { if } n=i ; \\
(m+t, n-i+j+t,[k-t)) & \text { if } n>i,\end{cases} \\
& \widetilde{\mathfrak{a}}(m, n,[t)) \cdot \widetilde{\mathfrak{a}}(i, j,[s))=(m+t, n+t,[k-t)) \cdot(i+s, j+s,[k-s)) \\
& = \begin{cases}(m-n+i+s, j+s, & \\
(n+t-i-s+[k-t)) \cap[k-s)) & \text { if } n+t<i+s ; \\
(m+t, j+s,[k-t) \cap[k-s)) & \text { if } n+t=i+s ; \\
(m+t, n-i+j+t, & \\
[k-t) \cap(i+s-n-t+[k-s))) & \text { if } n+t>i+s\end{cases} \\
& = \begin{cases}(m-n+i+s, j+s, & \text { if } n+t<i+s ; \\
[k-s+n-i)) \cap[k-s)) & \text { if } n+t=i+s ; \\
(m+t, j+s,[k-s)) & \text { if } n+t>i+s\end{cases} \\
& \begin{cases}(m-n+i+s, j+s,[k-s)) & \text { if } n<i \text { and } n+t<i+s ; \\
\text { vagueness } & \text { if } n=i \text { and } n+t<i+s ;\end{cases} \\
& \text { vagueness if } n>i \text { and } n+t<i+s \text {; } \\
& = \begin{cases}(m+t, j+s,[k-s)) & \text { if } n<i \text { and } n+t=i+s ; \\
\text { vagueness } & \text { if } n=i \text { and } n+t=i+s ;\end{cases} \\
& \text { vagueness } \quad \text { if } n>i \text { and } n+t=i+s \text {; } \\
& (m+t, n-i+j+t,[k-t+i-n)) \quad \text { if } n<i \text { and } n+t>i+s \text {; } \\
& (m+t, n-i+j+t,[k-t)) \quad \text { if } n=i \text { and } n+t>i+s \text {; } \\
& (m+t, n-i+j+t,[k-t)) \quad \text { if } n>i \text { and } n+t>i+s \\
& \begin{cases}(m-n+i+s, j+s,[k-s)) & \text { if } n<i \text { and } n+t<i+s ; \\
(m+t, j+s,[k-s)) & \text { if } n<i \text { and } n+t=i+s ;\end{cases} \\
& (m+t, n-i+j+t,[k-t+i-n)) \quad \text { if } n<i \text { and } n+t>i+s \text {; } \\
& \text { vagueness } \quad \text { if } n=i \text { and } n+t<i+s \text {; } \\
& \text { if } n=i \text { and } n+t=i+s \text {; } \\
& \text { if } n=i \text { and } n+t>i+s \text {; } \\
& \text { if } n>i \text { and } n+t<i+s \text {; } \\
& \text { if } n>i \text { and } n+t=i+s \text {; } \\
& \text { if } n>i \text { and } n+t>i+s \text {, } \\
& \widetilde{\mathfrak{a}}((i, j,[s)) \cdot(m, n,[s)) \\
& = \begin{cases}\widetilde{\mathfrak{a}}(i-j+m, n,(j-m+[s)) \cap[s)) & \text { if } j<m ; \\
\widetilde{\mathfrak{a}}(i, n,[s) \cap[s)) & \text { if } j=m ; \\
\widetilde{\mathfrak{a}}(i, j-m+n,[s) \cap(m-j+[s))) & \text { if } j>m\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\widetilde{\mathfrak{a}}(i-j+m, n,[s)) & \text { if } j<m ; \\
\widetilde{\mathfrak{a}}(i, n,[s)) & \text { if } j=m ; \\
\widetilde{\mathfrak{a}}(i, j-m+n,[s)) & \text { if } j>m\end{cases} \\
& = \begin{cases}(i-j+m+s, n+s,[k-s)) & \text { if } j<m ; \\
(i+s, n+s,[k-s)) & \text { if } j=m ; \\
(i+s, j-m+n+s,[k-s)) & \text { if } j>m,\end{cases} \\
& \widetilde{\mathfrak{a}}(i, j,[s)) \cdot \widetilde{\mathfrak{a}}(m, n,[s))=(i+s, j+s,[k-s)) \cdot(m+s, n+s,[k-s)) \\
& =\left\{\begin{array}{cl}
(i-j+m+s, n+s, & \\
(j-m+[k-s)) \cap[k-s)) & \text { if } j+s<m+s ; \\
(i+s, n+s,[k-s) \cap[k-s)) & \text { if } j+s=m+s ; \\
(i+s, j-m+n+s, & \\
[k-s) \cap(m-j+[k-s))) & \text { if } j+s>m+s
\end{array}\right. \\
& = \begin{cases}(i-j+m+s, n+s,[k-s)) & \text { if } j<m ; \\
(i+s, n+s,[k-s)) & \text { if } j=m ; \\
(i+s, j-m+n+s,[k-s) & \text { if } j>m .\end{cases}
\end{aligned}
$$

The above equalities imply that the map $\tilde{\mathfrak{a}}: \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ is an endomorphism, and since $\tilde{\mathfrak{a}}$ is bijective, it is an automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.

Proposition 8. Let k be any positive integer and $\mathscr{F}=\{[0), \ldots,[k)\}$. Then either $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}$ or $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[k)\}}$ for any automorphism \mathfrak{a} of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$.

Proof. Suppose to the contrary that there exists a positive integer $m<k$ such that $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[m)\}}$. Since $\mathfrak{a}(0,0,[0))$ is an idempotent of $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$, by Lemma $1(2)$ of [9] there exists an integer p such that $\mathfrak{a}(0,0,[0))=$ $(p, p,[m))$. Then by the order convexity of the subset

$$
L_{1}=\{(0,0,[0)),(0,0,[1))\}
$$

of $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ we obtain that the image $\mathfrak{a}\left(L_{1}\right)$ is an order convex chain in $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ with the respect to the natural partial order. Then Remark 2 and the description of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ (see: Proposition 4) imply that either $\mathfrak{a}(0,0,[1))=(p, p,[m+1))$ or $\mathfrak{a}(0,0,[1))=(p+1, p+$ $1,(m-1))$.

Suppose that the equality $\mathfrak{a}(0,0,[1))=(p, p,[m+1))$ holds. If $m+1=k$ then the equalities $0<m<k$ and Remark 2 imply that $\mathfrak{a}(0,0,[2)) \in \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \backslash$ $\boldsymbol{B}_{\mathbb{Z}}^{\{[k-1),[k)\}}$. Since $(0,0,[2)) \preccurlyeq(0,0,[1)) \preccurlyeq(0,0,[0))$, Proposition $21(6)$ of $[12$, Section 1.4] implies that $\mathfrak{a}(0,0,[2)) \preccurlyeq \mathfrak{a}(0,0,[1)) \preccurlyeq \mathfrak{a}(0,0,[0))$.

Then $\{\mathfrak{a}(0,0,[0)), \mathfrak{a}(0,0,[1)), \mathfrak{a}(0,0,[2))\}$ is not an order convex subset of $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right), \preccurlyeq\right)$, because $\mathfrak{a}(0,0,[2)) \in \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \backslash \boldsymbol{B}_{\mathbb{Z}}^{\{[k-1),[k)\}}$, a contradiction, and hence we obtain that $m+1<k$.

The above arguments and induction imply that there exists a positive integer $n_{0}<k$ such that $\mathfrak{a}\left(0,0,\left[n_{0}\right)\right)=(p, p,[k))$. Then $\mathfrak{a}\left(0,0,\left[n_{0}+1\right)\right) \in$ $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \backslash \boldsymbol{B}_{\mathbb{Z}}^{\{[m), \ldots,[k)\}}$ and by the description of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ (see Proposition 3) we get that

$$
\left\{\mathfrak{a}(0,0,[0)), \mathfrak{a}(0,0,[1)), \ldots, \mathfrak{a}\left(0,0,\left[n_{0}\right)\right), \mathfrak{a}\left(0,0,\left[n_{0}+1\right)\right)\right\}
$$

is not an order convex subset of $\left(E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right), \preccurlyeq\right)$, a contradiction. The obtained contradiction implies that $\mathfrak{a}(0,0,[1)) \neq(p, p,[m+1))$.

In the case $\mathfrak{a}(0,0,[1))=(p+1, p+1,[m-1))$ by similar way we get a contradiction.

Later we assume that \mathfrak{h}_{p} and $\tilde{\mathfrak{a}}$ are automorphisms of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ defined in Proposition 6 and Example 1, respectively.

Proposition 9. Let k be any positive integer and $\mathscr{F}=\{[0), \ldots,[k)\}$. Let $\mathfrak{a}: \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ be an automorphisms such that $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[k)\}}$. Then there exists an integer p such that $\mathfrak{a}=\mathfrak{h}_{p} \circ \tilde{\mathfrak{a}}=\tilde{\mathfrak{a}} \circ \mathfrak{h}_{p}$.

Proof. First we remark that for any integer p the automorphisms \mathfrak{h}_{p} and $\widetilde{\mathfrak{a}}$ commute, i.e., $\mathfrak{h}_{p} \circ \widetilde{\mathfrak{a}}=\widetilde{\mathfrak{a}} \circ \mathfrak{h}_{p}$.

Suppose that $\mathfrak{a}(0,0,[0))=(p, p,[k))$ for some integer p. Then $\mathfrak{b}=$ $\mathfrak{a} \circ \mathfrak{h}_{-p}$ is an automorphism of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ such that $\mathfrak{b}(0,0,[0))=$ $(0,0,[k))$. Then the order convexity of the linearly ordered set $L_{1}=$ $\{(0,0,[0)),(0,0,[1))\}$ implies that the image $\mathfrak{a}\left(L_{1}\right)$ is an order convex chain in $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ with the respect to the natural partial order. Remark 2 and the description of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ (see: Proposition 4) imply that $\mathfrak{b}(0,0,[1))=(1,1,[k-1))$. This completes the proof of the base of induction. Fix an arbitrary $s=2, \ldots, k$ and suppose that $\mathfrak{b}(0,0,[j))=$ $(j, j,[k-j))$ for any $j<s$, which is the assumption of induction. Next, since the linearly ordered set $L_{s}=\{(0,0,[s-1)),(0,0,[s))\}$ is order convex in $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$, the image $\mathfrak{a}\left(L_{s}\right)$ is an order convex chain in $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$, as well. Then the equality $\mathfrak{b}(0,0,[s-1))=(s-1, s-1,[k-s+1))$, Remark 2 and the description of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ (Proposition 4) imply that $\mathfrak{b}(0,0,[s))=(s, s,[k-s))$ for all $s=2, \ldots, k$.

Fix an arbitrary $s \in\{0,1, \ldots, k\}$. Since $(1,1,[s))$ is the biggest element of the set of idempotents of $\boldsymbol{B}_{\mathbb{Z}}^{\{[s)\}}$ which are less then $(0,0,[s)$), Remark 2
and the description of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{Y}}\right)$ (see: Proposition 4) imply that $\mathfrak{b}(1,1,[s))=(1+s, 1+s,[k-s))$. Then by induction and presented above arguments we get that $\mathfrak{b}(i, i,[s))=(i+s, i+s,[k-s))$ for any positive integer i. Also, since $(-1,-1,[s))$ is the smallest element of the set of idempotents of $\boldsymbol{B}_{\mathbb{Z}}^{\{[s)\}}$ which are greater then $(0,0,[s))$, Remark 2 and the description of the natural partial order on $E\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathfrak{F}}\right)$ imply that $\mathfrak{b}(-1,-1,[s))=(-1+s,-1+s,[k-s))$. Similar, by induction and presented above arguments we get that $\mathfrak{b}(-i,-i,[s))=(-i+s,-i+s,[k-s))$ for any positive integer i. This implies that $\mathfrak{b}(i, i,[s))=(i+s, i+s,[k-s))$ for any integer i.

Fix any $i, j \in \mathbb{Z}$ and an arbitrary $s=0,1, \ldots, k$. Remark 2 implies that $\mathfrak{b}(i, j,[s))=(m, n,[k-s))$ for some $m, n \in \mathbb{Z}$. By Proposition 21(1) of [12, Section 1.4] and Lemma 1(4) of [9] we get that $\mathfrak{b}(j, i,[s))=$ $(n, m,[k-s))$. This implies that

$$
\begin{aligned}
\mathfrak{b}(i, i,[s)) & =\mathfrak{b}((i, j,[s)) \cdot(j, i,[s)))=\mathfrak{b}(i, j,[s)) \cdot \mathfrak{b}(j, i,[s)) \\
& =(m, n,[k-s)) \cdot(n, m,[k-s))=(m, m,[k-s))
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{b}(j, j,[s)) & =\mathfrak{b}((j, i,[s)) \cdot(i, j,[s)))=\mathfrak{b}(j, i,[s)) \cdot \mathfrak{b}(i, j,[s)) \\
& =(n, m,[k-s)) \cdot(m, n,[k-s))=(n, n,[k-s)),
\end{aligned}
$$

and hence we have that $m=i+s$ and $n=j+s$.
Therefore we obtain $\mathfrak{b}(i, j,[s))=(i+s, j+s,[k-s))$ for any $i, j \in \mathbb{Z}$ and an arbitrary $s=0,1, \ldots, k$, which implies that $\mathfrak{b}=\tilde{\mathfrak{a}}$. Then

$$
\mathfrak{a}=\mathfrak{a} \circ \mathfrak{h}_{-p} \circ \mathfrak{h}_{p}=\mathfrak{b} \circ \mathfrak{h}_{p}=\tilde{\mathfrak{a}} \circ \mathfrak{h}_{p},
$$

which completes the proof of the proposition.
The following lemma describes the relation between automorphisms $\widetilde{\mathfrak{a}}$ and \mathfrak{h}_{1} of the semigroup $\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}$ in the case when $\mathscr{F}=\{[0), \ldots,[k)\}$.
Lemma 4. Let k be any positive integer and $\mathscr{F}=\{[0), \ldots,[k)\}$. Then

$$
\tilde{\mathfrak{a}} \circ \tilde{\mathfrak{a}}=\underbrace{\mathfrak{h}_{1} \circ \cdots \circ \mathfrak{h}_{1}}_{k \text {-times }}=\mathfrak{h}_{k} \text { and } \tilde{\mathfrak{a}}^{-1}=\underbrace{\mathfrak{h}_{1}^{-1} \circ \cdots \circ \mathfrak{h}_{1}^{-1}}_{k \text {-times }} \circ \tilde{\mathfrak{a}}=\mathfrak{h}-k \circ \tilde{\mathfrak{a}} \text {. }
$$

Proof. For any $i, j \in \mathbb{Z}$ and an arbitrary $s=0,1, \ldots, k$ we have that

$$
\begin{aligned}
(\widetilde{\mathfrak{a}} \circ \widetilde{\mathfrak{a}})(i, j,[s)) & =\widetilde{\mathfrak{a}}(i+s, j+s,[k-s))= \\
& =\widetilde{\mathfrak{a}}(i+s+k-s, j+s+k-s,[k-(k-s))) \\
& =(i+k, j+k,[s))=\mathfrak{h}_{k}(i, j,[s))
\end{aligned}
$$

Also, by the equality $\widetilde{\mathfrak{a}} \circ \widetilde{\mathfrak{a}}=\mathfrak{h}_{k}$ we get that $\widetilde{\mathfrak{a}}=\mathfrak{h}_{1}^{k} \circ \widetilde{\mathfrak{a}}^{-1}$, and hence

$$
\tilde{\mathfrak{a}}^{-1}=\left(\mathfrak{h}_{1}^{k}\right)^{-1} \circ \tilde{\mathfrak{a}}=\underbrace{\mathfrak{h}_{1}^{-1} \circ \cdots \circ \mathfrak{h}_{1}^{-1}}_{k \text {-times }} \circ \tilde{\mathfrak{a}}=\mathfrak{h}_{-k} \circ \tilde{\mathfrak{a}},
$$

which completes the proof.
For any positive integer k we denote the following group $G_{k}=\langle x, y|$ $\left.x y=y x, y^{2}=x^{k}\right\rangle$.
Lemma 5. For any positive integer k the group $G_{k}=\langle x, y| x y=$ $\left.y x, y^{2}=x^{k}\right\rangle$. is isomorphic to the additive groups of integers $\mathbb{Z}(+)$.
Proof. In the case when $k=2 p$ for some positive integer p we have that $y^{2}=x^{2 p}$, and hence x is a generator of G_{k} such that $y=x^{p}$.

In the case when $k=2 p+1$ for some $p \in \omega$ we have that $z=y \cdot x^{-k}$ is a generator of G_{k} such that $x=z^{2}$ and $y=z^{2 p+1}$.

Theorem 3. Let k be any positive integer and $\mathscr{F}=\{[0), \ldots,[k)\}$. Then the group $\boldsymbol{\operatorname { A u t }}\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right)$ of automorphisms of the semigroup $\boldsymbol{B}_{Z}^{\mathscr{F}}$ isomorphic to the group G_{k}, and hence to the additive groups of integers $\mathbb{Z}(+)$.
Proof. By Proposition 8 for any automorphism \mathfrak{a} of $\boldsymbol{B}_{Z}^{\mathscr{F}}$ we have that either $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}$ or $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[k)\}}$.

Suppose that $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[0)\}}$. Then $\mathfrak{a}(0,0,[0))$ is an idempotent and hence by Lemma $1(2)$ of $[9], \mathfrak{a}(0,0,[0))=(-p,-p,[0))$ for some integer p. Similar arguments as in the proof of Theorem 2 imply that $\mathfrak{a}=\mathfrak{h}_{p}=\underbrace{\mathfrak{h}_{1} \circ \cdots \circ \mathfrak{h}_{1}}_{p \text {-times }}$.

Suppose that $\mathfrak{a}(0,0,[0)) \in \boldsymbol{B}_{\mathbb{Z}}^{\{[k)\}}$. Then by Proposition 9 there exists an integer p such that $\mathfrak{a}=\mathfrak{h}_{p} \circ \widetilde{\mathfrak{a}}=\widetilde{\mathfrak{a}} \circ \mathfrak{h}_{p}$.

Since $\widetilde{\mathfrak{a}}$ and \mathfrak{h}_{p} commute, the above arguments imply that any automorphism \mathfrak{a} of $\boldsymbol{B}_{Z}^{\mathscr{F}}$ is a one of the following forms:

- $\mathfrak{a}=\mathfrak{h}_{p}=\left(\mathfrak{h}_{1}\right)^{p}$ for some integer $p ; \quad$ or
- $\mathfrak{a}=\mathfrak{h}_{p} \circ \widetilde{\mathfrak{a}}=\widetilde{\mathfrak{a}} \circ \mathfrak{h}_{p}=\widetilde{\mathfrak{a}} \circ\left(\mathfrak{h}_{1}\right)^{p}$ for some integer p.

This implies that the map $\mathfrak{A}: \boldsymbol{A u t}\left(\boldsymbol{B}_{\mathbb{Z}}^{\mathscr{F}}\right) \rightarrow G_{k}$ defined by the formulae $\mathfrak{A}\left(\left(\mathfrak{h}_{1}\right)^{p}\right)=x^{p}$ and $\mathfrak{A}\left(\widetilde{\mathfrak{a}} \circ\left(\mathfrak{h}_{1}\right)^{p}\right)=y x^{p}, p \in \mathbb{Z}$, is a group isomorphism. Next we apply Lemma 4.

Acknowledgements

The authors acknowledge Alex Ravsky, Taras Banakh and Oleksandr Ganyushkin for their comments and suggestions.

References

[1] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
[2] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
[3] I. R. Fihel, O. V. Gutik, On the closure of the extended bicyclic semigroup, Carpathian Math. Publ. 3 (2011), no. 2, 131-157.
[4] J. A. Green, On the structure of semigroups, Ann. Math. (2) 54 (1951), no. 1, 163-172.
[5] O. Gutik, O. Lysetska, On the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ which is generated by the family \mathscr{F} of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 34-50.
[6] O. Gutik, K. Maksymyk, On variants of the bicyclic extended semigroup, Visnyk Lviv. Univ. Ser. Mech.-Mat. 84 (2017), 22-37.
[7] O. Gutik, M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian).
[8] O. Gutik, M. Mykhalenych, On group congruences on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its homomorphic retracts in the case when the family \mathscr{F} consists of inductive non-empty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 91 (2021), 5-27 (in Ukrainian).
[9] O. V. Gutik, I. V. Pozdniakova, On the semigroup generating by extended bicyclic semigroup and an ω-closed family, Mat. Metody Fiz.-Mekh. Polya 64 (2021), no. 1, 21-34 (in Ukrainian).
[10] O. Gutik, O. Prokhorenkova, D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 5-16 (in Ukrainian).
[11] E. Harzheim, Ordered sets, Springer, Nre-York, Advances in Math. 7, 2005.
[12] M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
[13] O. Lysetska, On feebly compact topologies on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}^{1}}$, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 48-56.
[14] M. Petrich, Inverse semigroups, John Wiley \& Sons, New York, 1984.
[15] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Dover Publ., 1976.
[16] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).
[17] R. J. Warne, I-bisimple semigroups, Trans. Amer. Math. Soc. 130 (1968), no. 3, 367-386.

Contact information

Oleg Gutik, Inna Pozdniakova
Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine E-Mail(s): oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com Web-page(s): https://new.mmf.lnu.edu.ua/
\employee/gutik-o-v, https://ami.lnu.edu.ua/
\employee/pozdniakova-i-v

Received by the editors: 02.08.2022 and in final form 13.03.2023.

