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On the group of automorphisms

of the semigroup BF

Z with the family F

of inductive nonempty subsets of ω
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Abstract. We study automorphisms of the semigroup BF

Z

with the family F of inductive nonempty subsets of ω and prove
that the group Aut(BF

Z
) of automorphisms of the semigroup BF

Z

is isomorphic to the additive group of integers.

1. Introduction, motivation and main deőnitions

We shall follow the terminology of [1,2,11,12,15]. By ω we denote the
set of all non-negative integers and by Z the set of all integers.

Let P(ω) be the family of all subsets of ω. For any F ∈ P(ω) and
n,m ∈ ω we put n−m+F = {n−m+k : k ∈ F} if F ≠ ∅ and n−m+∅ =
∅. A subfamily F ⊆ P(ω) is called ω-closed if F1 ∩ (−n+F2) ∈ F for all
n ∈ ω and F1, F2 ∈ F. For any a ∈ ω we denote [a) = {x ∈ ω : x ⩾ a}.

A subset A of ω is said to be inductive, if i ∈ A implies i + 1 ∈ A.
Obvious, that ∅ is an inductive subset of ω.

Remark 1 ([8]). 1) By Lemma 6 from [7] nonempty subset F ⊆ ω is
inductive in ω if and only (−1 + F ) ∩ F = F .

2) Since the set ω with the usual order is well-ordered, for any nonempty
inductive subset F in ω there exists nonnegative integer nF ∈ ω
such that [nF ) = F .
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3) Statement (2)) implies that the intersection of an arbitrary őnite
family of nonempty inductive subsets in ω is a nonempty inductive
subset of ω.

A semigroup S is called inverse if for any element x ∈ S there exists
a unique x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element
x−1 is called the inverse of x ∈ S. If S is an inverse semigroup, then the
function inv : S → S which assigns to every element x of S its inverse
element x−1 is called the inversion.

A partially ordered set (or shortly a poset) (X,≦) is the set X with
the reŕexive, antisymmetric and transitive relation ≦. In this case relation
≦ is called a partial order on X. A partially ordered set (X,≦) is linearly
ordered or is a chain if x ≦ y or y ≦ x for any x, y ∈ X. A map f from
a poset (X,≦) onto a poset (Y,⪕) is said to be an order isomorphism if
f is bijective and x ≦ y if and only if f(x) ⪕ f(y).

If S is a semigroup, then we shall denote the subset of all idempotents
in S by E(S). If S is an inverse semigroup, then E(S) is closed under
multiplication and we shall refer to E(S) as a band (or the band of S).
Then the semigroup operation on S determines the following partial order
≼ on E(S): e ≼ f if and only if ef = fe = e. This order is called the
natural partial order on E(S). A semilattice is a commutative semigroup
of idempotents.

If S is an inverse semigroup then the semigroup operation on S
determines the following partial order ≼ on S: s ≼ t if and only if there
exists e ∈ E(S) such that s = te. This order is called the natural partial
order on S [16].

The bicyclic monoid C(p, q) is the semigroup with the identity 1
generated by two elements p and q subjected only to the condition pq = 1.
The semigroup operation on C(p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C(p, q) is a bisimple (and hence
simple) combinatorial E-unitary inverse semigroup and every non-trivial
congruence on C(p, q) is a group congruence [1].

On the set Bω = ω × ω we deőne the semigroup operation ł ·ž in the
following way

(i1, j1) · (i2, j2) =
{

(i1 − j1 + i2, j2) if j1 ⩽ i2;
(i1, j1 − i2 + j2) if j1 ⩾ i2.

(1)
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It is well known that the bicyclic monoid C(p, q) to the semigroup Bω

is isomorphic by the mapping h : C(p, q) → Bω, qkpl 7→ (k, l) (see: [1,
Section 1.12] or [14, Exercise IV.1.11(ii)]).

Next we shall describe the construction which is introduced in [7].
Let Bω be the bicyclic monoid and F be an ω-closed subfamily of

P(ω). On the set Bω × F we deőne the semigroup operation ł ·ž in the
following way

(i1, j1, F1)·(i2, j2, F2)=

{
(i1−j1+i2, j2, (j1−i2+F1)∩F2) if j1⩽i2;
(i1, j1−i2+j2, F1∩(i2−j1+F2)) if j1⩾i2.

(2)

In [7] is proved that if the family F ⊆ P(ω) is ω-closed then (Bω × F, ·)
is a semigroup. Moreover, if an ω-closed family F ⊆ P(ω) contains the
empty set ∅ then the set I = {(i, j,∅) : i, j ∈ ω} is an ideal of the
semigroup (Bω × F, ·). For any ω-closed family F ⊆ P(ω) the following
semigroup

B
F
ω =

{
(Bω × F, ·)/I if ∅ ∈ F;
(Bω × F, ·) if ∅ /∈ F

is deőned in [7]. The semigroup BF
ω generalizes the bicyclic monoid and

the countable semigroup of matrix units. It is proven in [7] that BF
ω

is a combinatorial inverse semigroup and Green’s relations, the natural
partial order on BF

ω and its set of idempotents are described. Here, the
criteria when the semigroup BF

ω is simple, 0-simple, bisimple, 0-bisimple,
or it has the identity, are given. In particular in [7] it is proved that the
semigroup BF

ω is isomorphic to the semigrpoup of ω×ω-matrix units if
and only if F consists of a singleton set and the empty set, and BF

ω is
isomorphic to the bicyclic monoid if and only if F consists of a non-empty
inductive subset of ω.

Group congruences on the semigroup BF
ω and its homomorphic retracts

in the case when an ω-closed family F consists of inductive non-empty
subsets of ω are studied in [8]. It is proven that a congruence C on BF

ω is
a group congruence if and only if its restriction on a subsemigroup of BF

ω ,
which is isomorphic to the bicyclic semigroup, is not the identity relation.
Also in [8], all non-trivial homomorphic retracts and isomorphisms of the
semigroup BF

ω are described.
In [5, 13] the algebraic structure of the semigroup BF

ω is established
in the case when ω-closed family F consists of atomic subsets of ω.

The set BZ = Z × Z with the semigroup operation deőned by for-
mula (1) is called the extended bicyclic semigroup [17]. On the set BZ×F,
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where F is an ω-closed subfamily of P(ω), we deőne the semigroup opera-
tion ł·ž by formula (2). In [9] it is proved that (BZ ×F, ·) is a semigroup.
Moreover, if an ω-closed family F ⊆ P(ω) contains the empty set ∅ then
the set I = {(i, j,∅) : i, j ∈ Z} is an ideal of the semigroup (BZ × F, ·).
For any ω-closed family F ⊆ P(ω) the following semigroup

B
F
Z =

{
(BZ × F, ·)/I if ∅ ∈ F;
(BZ × F, ·) if ∅ /∈ F

is deőned in [9] similarly as in [7]. In [9] it is proven that BF
Z is a com-

binatorial inverse semigroup. Green’s relations, the natural partial order
on the semigroup BF

Z and its set of idempotents are described. Here, the
criteria when the semigroup BF

Z is simple, 0-simple, bisimple, 0-bisimple, is
isomorphic to the extended bicyclic semigroup, are derived. In particularly
in [9] it is proved that the semigroup BF

Z is isomorphic to the semigrpoup
of ω×ω-matrix units if and only if F consists of a singleton set and the
empty set, and BF

Z is isomorphic to the extended bicyclic semigroup if
and only if F consists of a non-empty inductive subset of ω. Also, in [9]
it is proved that in the case when the family F consists of all singletons
of ω and the empty set, the semigroup BF

Z is isomorphic to the Brandt
λ-extension of the semilattice (ω,min), where (ω,min) is the set ω with
the semilattice operation x · y = min{x, y}.

It is well-known that every automorphism of the bicyclic monoid
Bω is the identity self-map of Bω [1], and hence the group Aut(Bω) of
automorphisms of Bω is trivial. The group Aut(BZ) of automorphisms
of the extended bicyclic semigroup BZ is established in [6] and there it is
proved that Aut(BZ) is isomorphic to the additive group of integers Z(+).
Also in [10] the semigroups of endomorphisms of the bicyclic semigroup
and the extended bicyclic semigroup are described.

Later we assume that an ω-closed family F consists of inductive
nonempty subsets of ω.

In this paper we study automorphisms of the semigroup BF
Z with the

family F of inductive nonempty subsets of ω and prove that the group
Aut(BF

Z ) of automorphisms of the semigroup BF
Z is isomorphic to the

additive group of integers.

2. Algebraic properties of the semigroup BF

Z

Proposition 1. Let F be an arbitrary nonempty ω-closed family of subsets
of ω and let n0 = min {

⋃
F}. Then the following statements hold:
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1) F0 = {−n0 + F : F ∈ F} is an ω-closed family of subsets of ω;

2) the semigroups BF
Z and B

F0
Z are isomorphic by the mapping

(i, j, F ) 7→ (i, j,−n0 + F ), i, j ∈ Z;

Proof. Statement 1) is proved in [8, Proposition 1(1)]. The proof of 2) is
similar to the one of Proposition 1(2) from [8].

Suppose that F is an ω-closed family of inductive subsets of ω. Fix
an arbitrary k ∈ Z. If [0) ∈ F and [p) ∈ F for some p ∈ ω then for any
i, j ∈ Z and we have that

(k, k, [0)) · (i, j, [p)) =





(k − k + i, j, (k − i+ [0)) ∩ [p)) if k < i;
(k, j, [0) ∩ [p)) if k = i;
(k, k − i+ j, [0) ∩ (i− k + [p))) if k > i

=





(i, j, [p)) if k < i;
(k, j, [p)) if k = i;
(k, k − i+ j, [0) ∩ [i− k + p)) if k > i

and

(i, j, [p)) · (k, k, [0)) =





(i− j + k, k, (j − k + [p)) ∩ [0)) if j < k;
(i, k, [p) ∩ [0)) if j = k;
(i, j − k + k, [p) ∩ (k − j + [0))) if j > k

=





(i− j + k, k, [j − k + p) ∩ [0)) if j < k;
(i, k, [p)) if j = k;
(i, j, [p) if j > k.

Therefore the above equalities imply that

(k, k, [0)) ·BF
Z · (k, k, [0)) = (k, k, [0)) ·BF

Z ∩B
F
Z · (k, k, [0))

= {(i, j, [p)) : i, j ⩾ k, [p) ∈ F}

for an arbitrary k ∈ Z. We deőne

B
F
Z [k, k, 0) = (k, k, [0)) ·BF

Z ∩B
F
Z · (k, k, [0)).

It is obvious that BF
Z [k, k, 0) is a subsemigroup of BF

Z .

Proposition 2. Let F be an arbitrary nonempty ω-closed family of
inductive nonempty subsets of ω such that [0) ∈ F. Then the subsemigroup
BF

Z [k, k, 0) of BF
Z is isomorphic to BF

ω .
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Proof. Since the family F does not contain the empty set, BF
Z = (BZ ×

F, ·). We deőne a map I : BF
ω → BF

Z [k, k, 0) in the following way
(i, j, [p)) 7→ (i+ k, j + k, [p)). It is obvious that I is a bijection. Then for
any i1, i2, j1, j2 ∈ Z and F1, F2 ∈ F we have that

I((i1, j1, F1) · (i2, j2, F2))

=





I(i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2) if j1 < i2;
I(i1, j2, F1 ∩ F2) if j1 = i2;
I(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)) if j1 > i2

=





(i1 − j1 + i2 + k, j2 + k, ((j1 − i2 + F1) ∩ F2)) if j1 < i2;
(i1 + k, j2 + k, F1 ∩ F2) if j1 = i2;
(i1 + k, j1 − i2 + j2 + k, (F1 ∩ (i2 − j1 + F2))) if j1 > i2

and

I(i1, j1, F1) · I(i2, j2, F2) = (i1 + k, j1 + k, F1) · (i2 + k, j2 + k, F2)

=





(i1 − j1 + i2 + k, j2 + k, (j1 − i2 + F1) ∩ F2) if j1 + k < i2 + k;
(i1 + k, j2 + k, F1 ∩ F2) if j1 + k = i2 + k;
(i1 + k, j1 − i2 + j2 + k, F1 ∩ (i2 − j1 + F2)) if j1 + k > i2 + k

=





(i1 − j1 + i2 + k, j2 + k, (j1 − i2 + F1) ∩ F2) if j1 < i2;
(i1 + k, j2 + k, F1 ∩ F2) if j1 = i2;
(i1 + k, j1 − i2 + j2 + k, F1 ∩ (i2 − j1 + F2)) if j1 > i2

and hence I is a homomorphism which implies the statement of the
proposition.

By Remarks 1(2)) and 1(3)) every nonempty subset F ∈ F contains
the least element, and hence later for every nonempty set F ∈ F we denote
nF = minF .

Below we need the following lemma from [8].

Lemma 1 ([8]). Let F be an ω-closed family of inductive subsets of ω. Let
F1 and F2 be elements of F such that nF1 < nF2. Then for any positive
integer k ∈ {nF1 + 1, . . . , nF2 − 1} there exists F ∈ F such that F = [k).

Proposition 1 implies that without loss of generality later we may
assume that [0) ∈ F for any ω-closed family F of inductive subsets of ω.
Hence these arguments and Lemma 5 of [7] imply the following proposition.

Proposition 3. Let F be an inőnite ω-closed family of inductive nonemp-
ty subsets of ω. Then the diagram in Fig. 1 describes the natural partial
order on the band of BF

Z .
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(−4,−4, [0))

(−3,−3, [0))

(−2,−2, [0))

(−1,−1, [0))

(0, 0, [0))

(1, 1, [0))

(2, 2, [0))

(3, 3, [0))

(4, 4, [0))

· · ·

· · ·

(−4,−4, [1))

(−3,−3, [1))

(−2,−2, [1))

(−1,−1, [1))

(0, 0, [1))

(1, 1, [1))

(2, 2, [1))

(3, 3, [1))

(4, 4, [1))

(−5,−5, [2))

(−4,−4, [2))

(−3,−3, [2))

(−2,−2, [2))

(−1,−1, [2))

(0, 0, [2))

(1, 1, [2))

(2, 2, [2))

(3, 3, [2))

· · ·

· · ·

(−5,−5, [3))

(−4,−4, [3))

(−3,−3, [3))

(−2,−2, [3))

(−1,−1, [3))

(0, 0, [3))

(1, 1, [3))

(2, 2, [3))

(3, 3, [3))

(−6,−6, [4))

(−5,−5, [4))

(−4,−4, [4))

(−3,−3, [4))

(−2,−2, [4))

(−1,−1, [4))

(0, 0, [4))

(1, 1, [4))

(2, 2, [4))

· · ·

· · ·

(−6,−6, [5))

(−5,−5, [5))

(−4,−4, [5))

(−3,−3, [5))

(−2,−2, [5))

(−1,−1, [5))

(0, 0, [5))

(1, 1, [5))

(2, 2, [5))

(−7,−7, [6))

(−6,−6, [6))

(−5,−5, [6))

(−4,−4, [6))

(−3,−3, [6))

(−2,−2, [6))

(−1,−1, [6))

(0, 0, [6))

(1, 1, [6))

· · ·

· · ·

(−7,−7, [7))

(−6,−6, [7))

(−5,−5, [7))

(−4,−4, [7))

(−3,−3, [7))

(−2,−2, [7))

(−1,−1, [7))

(0, 0, [7))

(1, 1, [7))

(−8,−8, [8))

(−7,−7, [8))

(−6,−6, [8))

(−5,−5, [8))

(−4,−4, [8))

(−3,−3, [8))

(−2,−2, [8))

(−1,−1, [8))

(0, 0, [8))

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 1. The natural partial order on the band E(BF

Z
)

By the similar way for a őnite ω-closed family of inductive nonempty
subsets of ω we obtain the following

Proposition 4. Let F = {[0), . . . , [k)}. Then the diagram on Fig. 1
without elements of the form (i, j, [p)) and their arrows, i, j ∈ Z, p > k,
describes the natural partial order on the band of BF

Z .

The deőnition of the semigroup operation in BF
Z implies that in the

case when F is an ω-closed family subsets of ω and F ∈ F is a nonempty
inductive subset in ω then the set

B
{F}
Z = {(i, j, F ) : i, j ∈ Z}
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with the induced semigroup operation from BF
Z is a subsemigroup of BF

Z
which by Proposition 5 from [9] is isomorphic to the extended bicyclic
semigroup BZ.

Proposition 5. Let F be an arbitrary ω-closed family of inductive subsets
of ω and S be a subsemigroup of BF

Z which is isomorphic to the extended
bicyclic semigroup BZ. Then there exists a subset F ∈ F such that S is

a subsemigroup in B
{F}
Z .

Proof. Suppose that I : BZ → S ⊆ BF
Z is an isomorphism. Proposi-

tion 21(2) of [12, Section 1.4] implies that the image I(0, 0) is an idem-
potent of BF

Z , and hence by Lemma 1(2) from [9], I(0, 0) = (i, i, F )
for some i ∈ Z and F ∈ F. By Proposition 2.1(viii) of [3] the subset
(0, 0)BZ(0, 0) of BZ is isomorphic to the bicyclic semigroup, and hence
the image I ((0, 0)BZ(0, 0)) is isomorphic to the bicyclic semigroup Bω.
Then the deőnition of the natural partial order on E(BF

Z ) and Corollary 1
from [9] imply that there exists an integer k such that (i, i, F ) ≼ (k, k, [0)).
By Proposition 2 the subsemigroup

B
F
Z [k, k, 0) = (k, k, [0)) ·BF

Z · (k, k, [0))

of BF
Z is isomorphic to BF

ω . Since (i, i, F ) ≼ (k, k, [0)) we have that

I ((0, 0)BZ(0, 0)) ⊆ BF
Z [k, k, 0), and hence I ((0, 0)BZ(0, 0)) ⊆ B

{F}
Z by

Proposition 4 of [8].
Next, őx any negative integer n. By Proposition 2.1(viii) of [3] the

subset (n, n)BZ(n, n) of BZ is isomorphic to the bicyclic semigroup. Since
(0, 0)BZ(0, 0) is an inverse subsemigroup of (n, n)BZ(n, n), the above

arguments imply that I ((n, n)BZ(n, n)) ⊆ B
{F}
Z for any negative integer

n. Since
BZ =

⋃
{(k, k)BZ(k, k) : − k ∈ ω} ,

we get that I (BZ) ⊆ B
{F}
Z .

3. On authomorphisms of the semigroup BF

Z

Recall [4] deőne relations L and R on an inverse semigroup S by

(s, t) ∈ L ⇔ s−1s = t−1t and (s, t) ∈ R ⇔ ss−1 = tt−1.

Both L and R are equivalence relations on S. The relation D is deőned
to be the smallest equivalence relation which contains both L and R,
which is equivalent that D = L ◦ R = R ◦ L [12].
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Remark 2. It is obvious that every semigroup isomorphism i : S → T
maps a D-class (resp. L-class, R-class) of S onto a D-class (resp. L-class,
R-class) of T .

In this section we assume that [0) ∈ F for any ω-closed family F of
inductive subsets of ω.

An automorphism a of the semigroup BF
Z is called a (0, 0, [0))-auto-

morphism if a(0, 0, [0)) = (0, 0, [0)).

Theorem 1. Let F be an ω-closed family of inductive nonempty subsets
of ω. Then every (0, 0, [0))-automorphism of the semigroup BF

Z is the
identity map.

Proof. Let a : BF
Z → BF

Z be an arbitrary (0, 0, [0))-automorphism.
By Theorem 4(iv) of [9] the elements (i1, j1, F1) and (i2, j2, F2) of

BF
Z are D-equivalent if and only if F1 = F2. Since every automorphism

preserves D-classes, the above argument implies that a(B{F1}
Z ) = B

{F2}
Z if

and only if F1 = F2 for F1, F2 ∈ F. Hence we have that a(B{[0)}
Z ) = B

{[0)}
Z .

By Proposition 21(6) of [12, Section 1.4] every automorphism preserves the
natural partial order on the semilattice E(BF

Z ) and since a is a (0, 0, [0))-
automorphism of BF

Z we get that a(i, i, [0)) = (i, i, [0)) for any integer i.
Fix arbitrary k, l ∈ Z. Suppose that a(k, l, [0)) = (p, q, [0)) for some

integers p and q. Since the semigroup BF
Z is inverse, Proposition 21(1) of

[12, Section 1.4] and Lemma 1(4) of [9] imply that

(
a(k, l, [0))

)−1
= (p, q, [0))−1 = (q, p, [0)).

Again by Proposition 21(1) of [12, Section 1.4] we have that

(k, k, [0)) = a(k, k, [0)) = a((k, l, [0)) · (l, k, [0)))
= a(k, l, [0)) · a(l, k, [0)) = a(k, l, [0)) · a

(
(k, l, [0))−1

)

= (p, q, [0)) · (q, p, [0)) = (p, p, [0)),

and hence p = k. By similar way we get that l = q. Therefore, a(k, l, [0)) =
(k, l, [0)) for any integers k and l.

If F ̸= {[0)} then by Lemma 1, [1) ∈ F. The deőnition of the natural
partial order on the semilattice E(BF

Z ) (also, see Proposition 3) and
Corollary 5 of [9] imply that (0, 0, [1)) is the unique idempotent ε of the
semigroup BF

Z with the property

(1, 1, [0)) ≼ ε ≼ (0, 0, [0)).
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Since by Proposition 21(6) of [12, Section 1.4] the automorphism a pre-
serves the natural partial order on the semilattice E(BF

Z ), we get that
a(0, 0, [1)) = (0, 0, [1)). Similar arguments as in the above paragraph imply
that a(k, l, [1)) = (k, l, [1)) for any integers k and l.

Next, by induction we obtain that a(k, l, [p)) = (k, l, [p)) for any
k, l ∈ Z and [p) ∈ F.

Proposition 6. Let F be an ω-closed family of inductive nonempty
subsets of ω. Then for every integer k the map hk : B

F
Z → BF

Z , (i, j, [p)) 7→
(i+ k, j + k, [p)) is an automorphism of the semigroup BF

Z .

The proof of Proposition 6 is similar to Proposition 2.

For a partially ordered set (P,≦), a subsetX of P is called order-convex,
if x ≦ z ≦ y and x, y ⊂ X implies that z ∈ X, for all x, y, z ∈ P [11].

Lemma 2. If F is an inőnite ω-closed family of inductive nonempty
subsets of ω then

{(0, 0, [k)) : k ∈ ω}

is an order-convex linearly ordered subset of (E(BF
Z ),≼).

Proof. Fix arbitrary (0, 0, [m)), (0, 0, [n)), (0, 0, [p)) ∈ E(BF
Z ). If

(0, 0, [m)) ≼ (0, 0, [n)) ≼ (0, 0, [p))

then Corollary 1 of [9] implies that [m) ⊆ [n) ⊆ [p). Hence we have that
m ⩾ n ⩾ p, which implies the statement of the lemma.

Proposition 7. Let F be an inőnite ω-closed family of inductive nonempty
subsets of ω. Then

a(0, 0, [0)) ∈ B
{[0)}
Z

for any automorphism a of the semigroup BF
Z .

Proof. Suppose to the contrary that there exists an automorphism a

of the semigroup BF
Z such that a(0, 0, [0)) /∈ B

{[0)}
Z . Then a(0, 0, [0)) is

an idempotent of the semigroup BF
Z . Lemma 1(2) of [9] implies that

a(0, 0, [0)) = (i, i, [p)) for some integer i and some positive integer p. Since
the automorphism a maps a D-class of the semigroup BF

Z onto its D-class
there exists an element (0, 0, [s)) of the chain

· · ·≼(0, 0, [k))≼(0, 0, [k − 1))≼ · · ·≼(0, 0, [2))≼(0, 0, [1))≼(0, 0, [0)) (3)
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such that a(0, 0, [s)) = (m,m, [0)) ∈ B
{[0)}
Z for some integer m. By Propo-

sition 21(6) of [12, Section 1.4] every automorphism preserves the nat-
ural partial order on the semilattice E(BF

Z ), and hence the inequality
(0, 0, [s)) ≼ (0, 0, [0)) implies that

a(0, 0, [s)) = (m,m, [0)) ≼ (i, i, [p)) = a(0, 0, [0)).

By Corollary 1 of [9] we have that m ⩾ i and [0) ⊆ i−m+ [p). The last
inclusion implies that m ⩾ i+ p. Since the chain (3) is inőnite and any its
two distinct elements belong to distinct two D-classes of the semigroup
BF

Z , Proposition 21(6) of [12, Section 1.4] and Remark 2 imply that there
exists a positive integer q > s such that a(0, 0, [q)) = (t, t, [x)) for some
positive integer x > p and some integer t. Then

a(0, 0, [q)) = (t, t, [x)) ≼ (m,m, [0)) = a(0, 0, [s))

and by Corollary 1 of [9] we have that t ⩾ m and [x) ⊆ t−m+ [0), and
hence x ⩾ t−m.

Next we consider the idempotent (i+1, i+1, [p)) of the semigroup BF
Z .

By Corollary 1 of [9] we get that (i+ 1, i+ 1, [p)) ≼ (i, i, [p)) in E(BF
Z ).

Since x > p we have that x ⩾ p + 1. The inequalities t ⩾ m ⩾ i + p
and p ⩾ 1 imply that t ⩾ i + 1. Also, the inequalities t ⩾ m ⩾ i
and x ⩾ p + 1 imply that t + x ⩾ i + 1 + p, and hence we obtain
the inclusion [x) ⊆ i + 1 − t + [p). By Corollary 1 of [9] we have that
(t, t, [x)) ≼ (i+ 1, i+ 1, [p)). Since a is an automorphism of the semigroup
BF

Z , its restriction a|E(BF

Z
) : E(B

F
Z ) → E(BF

Z ) onto the band E(BF
Z )

is an order automorphism of the partially ordered set (E(BF
Z ),≼), and

hence the map a|E(BF

Z
) preserves order-convex subsets of (E(BF

Z ),≼). By

Lemma 2 chain (3) is order-convex in the partially ordered set (E(BF
Z ),≼).

The inequalities (t, t, [x)) ≼ (i+ 1, i+ 1, [p)) ≼ (i, i, [p)) in E(BF
Z ) imply

that the image of order-convex chain (3) under the order automorphism
a|E(BF

Z
) is not an order-convex subset of (E(BF

Z ),≼), a contradiction. The
obtained contradiction implies the statement of the proposition.

Later for any integer k we assume that hk : B
F
Z → BF

Z is an automor-
phism of the semigroup BF

Z deőned in Proposition 6.

Theorem 2. Let F be an inőnite ω-closed family of inductive nonempty
subsets of ω. Then for any automorphism a of the semigroup BF

Z there
exists an integer p such that a = hp.
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Proof. By Proposition 7 there exists an integer p such that a(0, 0, [0)) =
(−p,−p, [0)). Then the composition hp ◦ a is a (0, 0, [0))-automorphism
of the semigroup BF

Z , i.e., (hp ◦ a)(0, 0, [0)) = (0, 0, [0)), and hence by
Theorem 1 the composition hp ◦ a is the identity map of BF

Z . Since hp
and a are bijections of BF

Z the above arguments imply that a = hp.

Since hk1 ◦ hk2 = hk1+k2 and h−1
k1

= h−k1 , k1, k2 ∈ Z, for any automor-

phisms hk1 and hk2 of the semigroup BF
Z , Theorem 2 implies the following.

Corollary 1. Let F be an inőnite ω-closed family of inductive nonempty
subsets of ω. Then the group of automorphisms Aut(BF

Z ) of the semigroup
BF

Z is isomorphic to the additive group of integers (Z,+).

The following example shows that for an arbitrary nonnegative integer
k and the őnite family F = {[0), [1), . . . , [k)} there exists an automorphism
ã : BF

Z → BF
Z which is distinct from the form hp.

Example 1. Fix an arbitrary nonnegative integer k. Put

ã(i, j, [s)) = (i+ s, j + s, [k − s))

for any s = 0, 1, . . . , k and all i, j ∈ Z.

Lemma 3. Let k be an arbitrary nonnegative integer and F =
{[0), [1), . . . , [k)}. Then ã : BF

Z → BF
Z is an automorphism.

Proof. Fix arbitrary i, j,m, n ∈ Z. Without loss of generality we may
assume that s, t ∈ {0, 1, . . . , k} with s < t. Then we have that

ã((i, j, [s)) · (m,n, [t))) =

=





ã(i− j +m,n, (j −m+ [s)) ∩ [t)) if j < m;
ã(i, n, [s) ∩ [t)) if j = m;
ã(i, j −m+ n, [s) ∩ (m− j + [t))) if j > m

=





ã(i− j +m,n, [t)) if j < m;
ã(i, n, [1)) if j = m;
ã(i, j −m+ n, [s)) if j > m and m+ t < j + s;
ã(i, j −m+ n, [s)) if j > m and m+ t = j + s;
ã(i, j −m+ n,m− j + [t)) if j > m and m+ t > j + s

=





(i− j +m+ s, n+ s, [k − t)) if j < m;
(i+ t, n+ t, [k − t)) if j = m;
(i+ s, j −m+ n+ s, [k − s)) if j > m and m+ t < j + s;
(i+ s, j −m+ n+ s, [k − s)) if j > m and m+ t = j + s;
(i−j+m+t, n+t, [k−m+j−t)) if j > m and m+ t > j + s,
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ã(i, j, [s)) · ã(m,n, [t)) = (i+ s, j + s, [k − s)) · (m+ t, n+ t, [k − t))

=





(i− j +m+ t, n+ t,
(j + s−m− t+ [k − s)) ∩ [k − t)) if j + s < m+ t;

(i+ s, n+ t, [k − s) ∩ [k − t)) if j + s = m+ t;
(i+ s, j + s−m+ n,
[k − s) ∩ (m+ t− s− j + [k − t))) if j + s > m+ t

=





(i−j+m+t, n+t,
[k−t+j−m)∩[k−t)) if j < m and j + s < m+ t;

(i+ t, n+ t,
[k − t) ∩ [k − t)) if j = m and j + s < m+ t;

(i−j+m+t, n+t,
[k−t+j−m)∩[k − t)) if j > m and j + s < m+ t;

vagueness if j < m and j + s = m+ t;
vagueness if j = m and j + s = m+ t;
(i+ s, n+ t, [k − t)) if j > m and j + s = m+ t;
vagueness if j < m and j + s > m+ t;
vagueness if j = m and j + s > m+ t;
(i+s, j−m+n+s,
[k−s)∩[k−s−j+m)) if j > m and j + s > m+ t

=





(i− j +m+ t, n+ t, [k − t)) if j < m and j + s < m+ t;
vagueness if j < m and j + s = m+ t;
vagueness if j < m and j + s > m+ t;
(i+ t, n+ t, [k − t)) if j = m and j + s < m+ t;
vagueness if j = m and j + s = m+ t;
vagueness if j = m and j + s > m+ t;
(i− j +m+ t, n+ t,
[k − t+ j −m)) if j > m and j + s < m+ t;

(i+ s, n+ t, [k − t)) if j > m and j + s = m+ t;
(i+ s, j −m+ n+ s, [k − s)) if j > m and j + s > m+ t,

ã((m,n, [t)) · (i, j, [s))

=





ã(m− n+ i, j, (n− i+ [t)) ∩ [s)) if n < i;
ã(m, j, [t) ∩ [s)) if n = i;
ã(m,n− i+ j, [t) ∩ (i− n+ [s))) if n > i

=





ã(m− n+ i, j, [s)) if n < i and n+ t < i+ s;
ã(m− n+ i, j, [s)) if n < i and n+ t = i+ s;
ã(m− n+ i, j, [n− i+ t)) if n < i and n+ t > i+ s;
ã(m, j, [t)) if n = i;
ã(m,n− i+ j, [t)) if n > i
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=





(m− n+ i+ s, j + s, [k − s)) if n < i and n+ t < i+ s;
(m− n+ i+ s, j + s, [k − s)) if n < i and n+ t = i+ s;
(m+t, j+n−i+t, [k−t+i−n)) if n < i and n+ t > i+ s;
(m+ t, j + t, [k − t)) if n = i;
(m+ t, n− i+ j + t, [k − t)) if n > i,

ã(m,n, [t)) · ã(i, j, [s)) = (m+ t, n+ t, [k − t)) · (i+ s, j + s, [k − s))

=





(m− n+ i+ s, j + s,
(n+ t− i− s+ [k − t)) ∩ [k − s)) if n+ t < i+ s;

(m+ t, j + s, [k − t) ∩ [k − s)) if n+ t = i+ s;
(m+ t, n− i+ j + t,
[k − t) ∩ (i+ s− n− t+ [k − s))) if n+ t > i+ s

=





(m− n+ i+ s, j + s,
[k − s+ n− i)) ∩ [k − s)) if n+ t < i+ s;

(m+ t, j + s, [k − s)) if n+ t = i+ s;
(m+ t, n− i+ j + t, [k − t+ i− n) ∩ [k − t)) if n+ t > i+ s

=





(m− n+ i+ s, j + s, [k − s)) if n < i and n+ t < i+ s;
vagueness if n = i and n+ t < i+ s;
vagueness if n > i and n+ t < i+ s;
(m+ t, j + s, [k − s)) if n < i and n+ t = i+ s;
vagueness if n = i and n+ t = i+ s;
vagueness if n > i and n+ t = i+ s;
(m+t, n−i+j+t, [k−t+i−n)) if n < i and n+ t > i+ s;
(m+ t, n− i+ j + t, [k − t)) if n = i and n+ t > i+ s;
(m+ t, n− i+ j + t, [k − t)) if n > i and n+ t > i+ s

=





(m− n+ i+ s, j + s, [k − s)) if n < i and n+ t < i+ s;
(m+ t, j + s, [k − s)) if n < i and n+ t = i+ s;
(m+t, n−i+j+t, [k−t+i−n)) if n < i and n+ t > i+ s;
vagueness if n = i and n+ t < i+ s;
vagueness if n = i and n+ t = i+ s;
(m+ t, n− i+ j + t, [k − t)) if n = i and n+ t > i+ s;
vagueness if n > i and n+ t < i+ s;
vagueness if n > i and n+ t = i+ s;
(m+ t, n− i+ j + t, [k − t)) if n > i and n+ t > i+ s,

ã((i, j, [s)) · (m,n, [s))

=





ã(i− j +m,n, (j −m+ [s)) ∩ [s)) if j < m;
ã(i, n, [s) ∩ [s)) if j = m;
ã(i, j −m+ n, [s) ∩ (m− j + [s))) if j > m
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=





ã(i− j +m,n, [s)) if j < m;
ã(i, n, [s)) if j = m;
ã(i, j −m+ n, [s)) if j > m

=





(i− j +m+ s, n+ s, [k − s)) if j < m;
(i+ s, n+ s, [k − s)) if j = m;
(i+ s, j −m+ n+ s, [k − s)) if j > m,

ã(i, j, [s)) · ã(m,n, [s)) = (i+ s, j + s, [k − s)) · (m+ s, n+ s, [k − s))

=





(i− j +m+ s, n+ s,
(j −m+ [k − s)) ∩ [k − s)) if j + s < m+ s;

(i+ s, n+ s, [k − s) ∩ [k − s)) if j + s = m+ s;
(i+ s, j −m+ n+ s,

[k − s) ∩ (m− j + [k − s))) if j + s > m+ s

=





(i− j +m+ s, n+ s, [k − s)) if j < m;
(i+ s, n+ s, [k − s)) if j = m;
(i+ s, j −m+ n+ s, [k − s) if j > m.

The above equalities imply that the map ã : BF
Z → BF

Z is an endo-
morphism, and since ã is bijective, it is an automorphism of the semi-
group BF

Z .

Proposition 8. Let k be any positive integer and F = {[0), . . . , [k)}. Then

either a(0, 0, [0)) ∈ B
{[0)}
Z or a(0, 0, [0)) ∈ B

{[k)}
Z for any automorphism a

of the semigroup BF
Z .

Proof. Suppose to the contrary that there exists a positive integer m < k

such that a(0, 0, [0)) ∈ B
{[m)}
Z . Since a(0, 0, [0)) is an idempotent of BF

Z ,
by Lemma 1(2) of [9] there exists an integer p such that a(0, 0, [0)) =
(p, p, [m)). Then by the order convexity of the subset

L1 = {(0, 0, [0)), (0, 0, [1))}

of E(BF
Z ) we obtain that the image a(L1) is an order convex chain in

E(BF
Z ) with the respect to the natural partial order. Then Remark 2 and

the description of the natural partial order on E(BF
Z ) (see: Proposition 4)

imply that either a(0, 0, [1)) = (p, p, [m+ 1)) or a(0, 0, [1)) = (p+ 1, p+
1, [m− 1)).

Suppose that the equality a(0, 0, [1)) = (p, p, [m+1)) holds. Ifm+1 = k
then the equalities 0 < m < k and Remark 2 imply that a(0, 0, [2)) ∈ BF

Z \
B

{[k−1),[k)}
Z . Since (0, 0, [2)) ≼ (0, 0, [1)) ≼ (0, 0, [0)), Proposition 21(6)

of [12, Section 1.4] implies that a(0, 0, [2)) ≼ a(0, 0, [1)) ≼ a(0, 0, [0)).
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Then {a(0, 0, [0)), a(0, 0, [1)), a(0, 0, [2))} is not an order convex subset of

(E(BF
Z ),≼), because a(0, 0, [2)) ∈ BF

Z \B{[k−1),[k)}
Z , a contradiction, and

hence we obtain that m+ 1 < k.
The above arguments and induction imply that there exists a positive

integer n0 < k such that a(0, 0, [n0)) = (p, p, [k)). Then a(0, 0, [n0 + 1)) ∈
BF

Z \B{[m),...,[k)}
Z and by the description of the natural partial order on

E(BF
Z ) (see Proposition 3) we get that

{a(0, 0, [0)), a(0, 0, [1)), . . . , a(0, 0, [n0)), a(0, 0, [n0 + 1))}

is not an order convex subset of (E(BF
Z ),≼), a contradiction. The obtained

contradiction implies that a(0, 0, [1)) ̸= (p, p, [m+ 1)).
In the case a(0, 0, [1)) = (p+ 1, p+ 1, [m− 1)) by similar way we get

a contradiction.

Later we assume that hp and ã are automorphisms of the semigroup
BF

Z deőned in Proposition 6 and Example 1, respectively.

Proposition 9. Let k be any positive integer and F = {[0), . . . , [k)}. Let

a : BF
Z → BF

Z be an automorphisms such that a(0, 0, [0)) ∈ B
{[k)}
Z . Then

there exists an integer p such that a = hp ◦ ã = ã ◦ hp.

Proof. First we remark that for any integer p the automorphisms hp and
ã commute, i.e., hp ◦ ã = ã ◦ hp.

Suppose that a(0, 0, [0)) = (p, p, [k)) for some integer p. Then b =
a ◦ h−p is an automorphism of the semigroup BF

Z such that b(0, 0, [0)) =
(0, 0, [k)). Then the order convexity of the linearly ordered set L1 =
{(0, 0, [0)), (0, 0, [1))} implies that the image a(L1) is an order convex chain
in E(BF

Z ) with the respect to the natural partial order. Remark 2 and
the description of the natural partial order on E(BF

Z ) (see: Proposition 4)
imply that b(0, 0, [1)) = (1, 1, [k−1)). This completes the proof of the base
of induction. Fix an arbitrary s = 2, . . . , k and suppose that b(0, 0, [j)) =
(j, j, [k − j)) for any j < s, which is the assumption of induction. Next,
since the linearly ordered set Ls = {(0, 0, [s−1)), (0, 0, [s))} is order convex
in E(BF

Z ), the image a(Ls) is an order convex chain in E(BF
Z ), as well.

Then the equality b(0, 0, [s− 1)) = (s− 1, s− 1, [k − s+ 1)), Remark 2
and the description of the natural partial order on E(BF

Z ) (Proposition 4)
imply that b(0, 0, [s)) = (s, s, [k − s)) for all s = 2, . . . , k.

Fix an arbitrary s ∈ {0, 1, . . . , k}. Since (1, 1, [s)) is the biggest element

of the set of idempotents of B{[s)}
Z which are less then (0, 0, [s)), Remark 2
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and the description of the natural partial order on E(BF
Z ) (see: Proposi-

tion 4) imply that b(1, 1, [s)) = (1+s, 1+s, [k−s)). Then by induction and
presented above arguments we get that b(i, i, [s)) = (i+s, i+s, [k−s)) for
any positive integer i. Also, since (−1,−1, [s)) is the smallest element of

the set of idempotents of B{[s)}
Z which are greater then (0, 0, [s)), Remark 2

and the description of the natural partial order on E(BF
Z ) imply that

b(−1,−1, [s)) = (−1 + s,−1 + s, [k − s)). Similar, by induction and pre-
sented above arguments we get that b(−i,−i, [s)) = (−i+s,−i+s, [k−s))
for any positive integer i. This implies that b(i, i, [s)) = (i+s, i+s, [k−s))
for any integer i.

Fix any i, j ∈ Z and an arbitrary s = 0, 1, . . . , k. Remark 2 implies
that b(i, j, [s)) = (m,n, [k − s)) for some m,n ∈ Z. By Proposition 21(1)
of [12, Section 1.4] and Lemma 1(4) of [9] we get that b(j, i, [s)) =
(n,m, [k − s)). This implies that

b(i, i, [s)) = b((i, j, [s)) · (j, i, [s))) = b(i, j, [s)) · b(j, i, [s))
= (m,n, [k − s)) · (n,m, [k − s)) = (m,m, [k − s))

and

b(j, j, [s)) = b((j, i, [s)) · (i, j, [s))) = b(j, i, [s)) · b(i, j, [s))
= (n,m, [k − s)) · (m,n, [k − s)) = (n, n, [k − s)),

and hence we have that m = i+ s and n = j + s.
Therefore we obtain b(i, j, [s)) = (i+ s, j + s, [k − s)) for any i, j ∈ Z

and an arbitrary s = 0, 1, . . . , k, which implies that b = ã. Then

a = a ◦ h−p ◦ hp = b ◦ hp = ã ◦ hp,

which completes the proof of the proposition.

The following lemma describes the relation between automorphisms ã

and h1 of the semigroup BF
Z in the case when F = {[0), . . . , [k)}.

Lemma 4. Let k be any positive integer and F = {[0), . . . , [k)}. Then

ã ◦ ã = h1 ◦ · · · ◦ h1︸ ︷︷ ︸
k-times

= hk and ã−1 = h−1
1 ◦ · · · ◦ h−1

1︸ ︷︷ ︸
k-times

◦ ã = h−k ◦ ã.

Proof. For any i, j ∈ Z and an arbitrary s = 0, 1, . . . , k we have that

(ã ◦ ã)(i, j, [s)) = ã(i+ s, j + s, [k − s)) =

= ã(i+ s+ k − s, j + s+ k − s, [k − (k − s)))

= (i+ k, j + k, [s)) = hk(i, j, [s)),
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Also, by the equality ã ◦ ã = hk we get that ã = hk1 ◦ ã−1, and hence

ã−1 =
(
hk1

)−1
◦ ã = h−1

1 ◦ · · · ◦ h−1
1︸ ︷︷ ︸

k-times

◦ ã = h−k ◦ ã,

which completes the proof.

For any positive integer k we denote the following group Gk =
〈
x, y |

xy = yx, y2 = xk
〉
.

Lemma 5. For any positive integer k the group Gk =
〈
x, y | xy =

yx, y2 = xk
〉
. is isomorphic to the additive groups of integers Z(+).

Proof. In the case when k = 2p for some positive integer p we have that
y2 = x2p, and hence x is a generator of Gk such that y = xp.

In the case when k = 2p+ 1 for some p ∈ ω we have that z = y · x−k
is a generator of Gk such that x = z2 and y = z2p+1.

Theorem 3. Let k be any positive integer and F = {[0), . . . , [k)}. Then
the group Aut(BF

Z ) of automorphisms of the semigroup BF
Z isomorphic

to the group Gk, and hence to the additive groups of integers Z(+).

Proof. By Proposition 8 for any automorphism a of BF
Z we have that

either a(0, 0, [0)) ∈ B
{[0)}
Z or a(0, 0, [0)) ∈ B

{[k)}
Z .

Suppose that a(0, 0, [0)) ∈ B
{[0)}
Z . Then a(0, 0, [0)) is an idempotent

and hence by Lemma 1(2) of [9], a(0, 0, [0)) = (−p,−p, [0)) for some
integer p. Similar arguments as in the proof of Theorem 2 imply that
a = hp = h1 ◦ · · · ◦ h1︸ ︷︷ ︸

p-times

.

Suppose that a(0, 0, [0)) ∈ B
{[k)}
Z . Then by Proposition 9 there exists

an integer p such that a = hp ◦ ã = ã ◦ hp.
Since ã and hp commute, the above arguments imply that any auto-

morphism a of BF
Z is a one of the following forms:

• a = hp = (h1)
p for some integer p; or

• a = hp ◦ ã = ã ◦ hp = ã ◦ (h1)p for some integer p.
This implies that the map A : Aut(BF

Z ) → Gk deőned by the formulae
A((h1)

p) = xp and A(ã ◦ (h1)
p) = yxp, p ∈ Z, is a group isomorphism.

Next we apply Lemma 4.
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