On nearly $S\Phi$-normal subgroups of finite groups

M. T. Hussain and S. Ullah

Communicated by L. A. Kurdachenko

Abstract. Let G be a finite group, H a subgroup of G and H_{sG} the subgroup of H generated by all those subgroups of H which are s-permutable in G. Then we say that H is nearly $S\Phi$-normal in G if G has a normal subgroup T such that $HT \leq G$ and $H \cap T \leq \Phi(H)H_{sG}$. In this paper, we study the structure of group G under the condition that some given subgroups of G are nearly $S\Phi$-normal in G. Some known results are generalised.

Introduction

Throughout this paper, all groups are finite. G always denotes a group, p denotes a prime, π denotes a set of primes, and $\Phi(G)$ denotes the Frattini subgroup of G.

Recall that a subgroup H of a group G is said to be s-permutable (or s-quasinormal) [17] in G if $HP = PH$ for all Sylow subgroups P of G. A subgroup H of G is said to be c-normal in G [30] if there exists a normal subgroup T of G such that $HT = G$ and $H \cap T \leq H_G$, where H_G is the largest normal subgroup of G contained in H. A subgroup H of G is said to be Φ-S-supplemented in G [18, 19] if there exists a subnormal subgroup T of G such that $HT = G$ and $H \cap T \leq \Phi(H)$, where $\Phi(H)$ is Frattini subgroup of H. A subgroup H of G is said to be weakly Φ-supplemented in G [20] if there exists a subgroup T of G
such that $HT = G$ and $H \cap T \leq \Phi(H)$. A subgroup H of G is said to be nearly s-normal \cite{32} in G if there exists a normal subgroup T of G such that $HT \leq G$ and $H \cap T \leq H_{sG}$, where H_{sG} is the subgroup of H generated by all those subgroups of H which are s-permutable in G. A subgroup H of G is said to be weakly $S\Phi$-supplemented \cite{33} in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T \leq \Phi(H)H_{sG}$. By using these concepts, a large number of results have been obtained (see, for example, \cite{3, 17–22, 30, 32, 33}). As a continuation of the above research, we now introduce the following new notion.

Definition 1. Let H be a subgroup of G. We say that H is nearly $S\Phi$-normal in G when G has a normal subgroup T which satisfies $HT \leq G$ and $H \cap T \leq \Phi(H)H_{sG}$, where H_{sG} generated by all those subgroups of H which are all s-permutable in G. Obviously, all normal subgroups, all s-permutable subgroups, all c-normal subgroups and all nearly s-normal subgroups of G are all nearly $S\Phi$-normal in G. But the next example implies that the converse does not hold.

Example 1. Let $G = S_5$ be the symmetric group of order 120 and $H = \langle (1234) \rangle \leq G$. It is easily see that $H_{sG} = H_G = 1$. As H is not permutable with Sylow 3-subgroup of G, H is not s-permutable in G. Since $HA_5 = G$ and $H \cap A_5 = \Phi(H) = \langle (13)(24) \rangle$, clearly H is nearly $S\Phi$-normal in G, but neither nearly s-normal in G nor c-normal in G.

Recall that a class of groups \mathfrak{F} is said to be a formation if it is closed under taking homomorphic images and subdirect products. A formation \mathfrak{F} is saturated (respectively solubly saturated) if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$ (respectively $G/\Phi(N) \in \mathfrak{F}$ for a soluble normal subgroup N of G) (see for example, \cite[p. 3]{10}). Also, the \mathfrak{F}-residual of G, denoted by $G^\mathfrak{F}$, is the smallest normal subgroup of G with the quotient in \mathfrak{F}.

Following \cite{8, 29} or \cite{12}, for a formation \mathfrak{F}, a chief factor H/K of G is said to be \mathfrak{F}-central in G if $H/K \cong G/C_G(H/K) \in \mathfrak{F}$. A normal subgroup N of G is \mathfrak{F}-central, if either $N = 1$ or $N \neq 1$ and every chief factor of G below N is \mathfrak{F}-central in G. The \mathfrak{F}-hypercentral $Z_\mathfrak{F}(G)$ of G is the product of all normal \mathfrak{F}-central subgroups of G.

A subgroup H of G has a supersoluble supplement in G if there exists a supersoluble subgroup L of G such that $G = HL$.

We use U and \mathfrak{N}_p to denote the classes of all supersoluble groups and p-nilpotent groups respectively. In this paper, we obtain the following results.
Theorem 1. Assume that \mathcal{F} is a solubly saturated formation that contains the class of all supersoluble groups and E a normal soluble subgroup of G satisfies $G/E \in \mathcal{F}$. If every maximal subgroup of each noncyclic Sylow subgroup of $F(E)$ either has a supersoluble supplement in G or is nearly $S\Phi$-normal, then $G \in \mathcal{F}$.

Theorem 2. Assume that \mathcal{F} is a solubly saturated formation which containing the class of all supersoluble groups and $E \trianglelefteq G$ satisfies $G/E \in \mathcal{F}$. Suppose that $X = E$ or $X = F^*(E)$. If for every noncyclic Sylow subgroup Q of X and each cyclic subgroup of Q with order q or order 4 (when the Sylow 2-subgroup of X is non-abelian) either has a supersoluble supplement or is nearly $S\Phi$-normal in G, then $G \in \mathcal{F}$.

We shall prove Theorems 1 and 2 in section 3. In section 4, we give some applications of our results.

The notation and terminology in this paper are standard and the reader is referred to see [5,8,10,12,29].

1. Preliminaries

The following known results will be needed in this paper.

Lemma 1 ([33, Lemma 2.1]). Let N be a normal subgroup of G and H a subgroup of G with $(|H|,|N|) = 1$. Then $\Phi(H)N/N = \Phi(HN/N)$.

Lemma 2. Let G has a subgroup H and $N \trianglelefteq G$.

1. Assume that H is s-permutable in G. Then HN/N is s-permutable in G/N (see [10, Chapter 1, Lemma 5.34]).

2. Assume that H is a p-group. So $O^p(G) \leq N_G(H)$ if and only if H is s-permutable in G (see [25, Lemma A]).

Lemma 3 ([26, Lemma 2.8]). Let H, K be subgroups of G and $H \leq K$, then

1. H_{sG} is a s-permutable subgroup of G and $H_G \leq H_{sG}$;
2. $H_{sG} \leq H_{sK}$;
3. If $H \trianglelefteq G$, then $(K/H)_{s(G/H)} = K_{sG}/H$.

Lemma 4. Let $H \trianglelefteq K \leq G$ and $R \trianglelefteq G$, then

1. H is nearly $S\Phi$-normal in G if and only if $N \trianglelefteq G$ satisfies $HN \trianglelefteq G$, $H_G \leq N$, and $H \cap N \leq \Phi(H)H_{sG}$.
2. If H is nearly $S\Phi$-normal in G, then H is nearly $S\Phi$-normal in K.

(3) Assume that \(R \leq H \). If \(H \) is nearly \(S\Phi \)-normal in \(G \), then \(H/R \) is nearly \(S\Phi \)-normal in \(G/R \). Moreover, the converse holds when \(R \leq \Phi(H) \).

(4) If \(H \) is nearly \(S\Phi \)-normal in \(G \) with \((|H|, |R|) = 1\), then \(HR/R \) is nearly \(S\Phi \)-normal in \(G/R \).

Proof. Assume that \(H \) is nearly \(S\Phi \)-normal in \(G \). So we there exists \(N \leq G \) satisfies \(HN \leq G \) and \(H \cap N \leq \Phi(H)H_{sG} \).

(1) \(\Rightarrow \) Let \(N_0 = NH_G \). Then clearly, \(N_0 \leq G \) and \(HN_0 = HNH_G = HN \leq G \). It can easily see that \(H \cap N_0 = H \cap NH_G = (H \cap N)H_G \leq \Phi(H)H_{sG} \).

\(\Leftarrow \) Obviously.

(2) Let \(N_0 = N \cap K \). Then \(N_0 \leq K \) and \(HN_0 = H(N \cap K) = HN \leq K \). By Lemma 3(2), we have that \(H \cap N_0 = H \cap (N \cap K) \leq H \cap N \leq \Phi(H)H_{sG} \leq \Phi(H)H_{sK} \), which means that \(H \) is nearly \(S\Phi \)-normal in \(K \).

(3) Now assume that \(H \) is nearly \(S\Phi \)-normal in \(G \). Consider \(\overline{G} = G/R \). Then \(\overline{N} = NR/R \leq G/R = \overline{G} \) and \(\overline{H} \overline{N} = (H/R)(NR/R) = HNR/R \leq G/R = \overline{G} \). Moreover, by [8, A, 9.2(e)] and Lemma 3(3), we have that \(\overline{H} \overline{N} = (H/R) \cap (NR/R) = (H \cap N)R/R \leq \Phi(H)H_{sG}R/R \leq \Phi(H/R)(H/R)_{s(G/R)} = \Phi(\overline{H})(\overline{H})_{sG} \). So \(H/R \) is nearly \(S\Phi \)-normal in \(G/R \).

Now suppose that \(R \leq \Phi(H) \) and \(N/R \leq G/R \) satisfies \((H/R)(N/R) \leq G/R \) and

\[
(H/R) \cap (N/R) \leq \Phi(H/R)(H/R)_{s(G/R)}.
\]

Then \(HN \leq G \). Since \(R \leq \Phi(H) \), it implies that \(\Phi(H/R) = \Phi(H)/R \) by [8, A, 9.2(e)], and so \(H \cap N \leq \Phi(H)H_{sG} \) by Lemma 3(3). This shows that \(H \) is nearly \(S\Phi \)-normal in \(G \).

(4) Let \(\overline{G} = G/R \), \(\overline{H} = HR/R \) and \(\overline{N} = NR/R \). Then \(\overline{N} \leq \overline{G} \) and \(\overline{H} \overline{N} \leq \overline{G} \).

Since \((|H|, |R|) = 1\), we have

\[
(|HR \cap N : HR \cap N \cap R|, |HR \cap N : HR \cap N \cap H|) = 1.
\]

[12, Lemma 3.8.1] implies that

\[
(HR \cap N) = (HR \cap N \cap R)(HR \cap N \cap H) = (N \cap H)(N \cap R).
\]
It follows that from Lemmas 1 and 2(1) that

\[H \cap N = (HR/R) \cap (NR/R) \]
\[= (HR \cap NR)/R \]
\[= (HR \cap N)R/R \]
\[= (H \cap N)R/R \]
\[\leq \Phi(H)H_{sG}R/R \]
\[\leq \Phi(HR/R)(HR/R)_{s(G/R)}. \]

Hence \(HR/R \) is nearly \(S\Phi \)-normal in \(G/R \). \(\square\)

Let \(P \) be a \(p \)-group. If \(P \) is not a nonabelian 2-group, then we use \(\Omega(P) \) to denote the subgroup \(\Omega_1(P) \). Otherwise, \(\Omega(P) = \Omega_2(P) \).

Lemma 5 ([13, Lemma 4.3]). Let \(C \) be a Thompson critical subgroup (see [9, p.185]) of a nontrivial \(p \)-group of \(P \).

1. If \(p \) is odd, then the exponent of \(\Omega(C) \) is \(p \).
2. If \(p = 2 \), then the exponent of \(\Omega(C) \) is at most 4. Moreover, If \(P \) is an abelian 2-group, then the exponent of \(\Omega(C) \) is 2.

Lemma 6 ([28, Theorem B]). Assume that \(\mathfrak{F} \) is a formation and \(N \trianglelefteq G \). If \(F^*(N) \leq Z_{\mathfrak{F}}(G) \), then \(N \leq Z_{\mathfrak{F}}(G) \).

Lemma 7 ([11, Lemma 3.3]). Let \(\mathfrak{F} \) be a solubly saturated formation which containing \(\mathfrak{U} \) and also \(N \trianglelefteq G \) satisfies \(G/N \in \mathfrak{F} \). If \(N \leq Z_{\mathfrak{U}}(G) \), then \(G \in \mathfrak{F} \). In particular, if \(N \) is cyclic, then \(G \in \mathfrak{F} \).

Lemma 8 ([6, Lemma 2.12] and [6, Lemma 2.8]). Let \(\mathfrak{F} \) be a solubly saturated formation and \(P \) a normal \(p \)-subgroup of \(G \) and \(C \) is a Thompson critical subgroup of \(P \). If either \(\Omega(C) \leq Z_{\mathfrak{F}}(G) \) or \(P/\Phi(P) \leq Z_{\mathfrak{F}}(G/\Phi(P)) \), then \(P \leq Z_{\mathfrak{F}}(G) \).

Lemma 9 ([34, Lemma 2.8]). Let \(N \) be a maximal subgroup of \(G \) and \(P \) a normal \(p \)-subgroup of \(G \) such that \(G = NP \), here \(p \) is a prime. Then \(P \cap N \trianglelefteq G \).

Lemma 10 ([16] or [4, Theorem 12]). Let \(G \) be a minimal non-supersoluble group, then \(G \) is soluble.
2. Proofs of Theorems 1 and 2

We start the proof of Theorem 1 with the following lemma.

Proposition 1. Let G has a normal q-subgroup Q. If every maximal subgroup of Q does not have a supersoluble supplement in G is nearly $S\Phi$-normal, then $Q \leq Z_\mu(G)$.

Proof. Suppose that the proposition is false and we can consider a counterexample of (G, Q) for which $|G| + |Q|$ minimal. Clearly, $G \neq Z_\mu(G)$, which means that G is not supersoluble.

(1) There is a unique minimal normal subgroup L of G which contained in Q, $Q/L \leq Z_\mu(G/L)$ and $|L| > q$.

Assume that L is a minimal normal subgroup of G which contained in Q. Then $(G/L, Q/L)$ satisfies the hypothesis of the proposition by Lemma 4(3). This shows that $Q/L \leq Z_\mu(G/L)$. If $|L| = q$, then we have that $Q \leq Z_\mu(G)$, a contradiction. Hence $|L| > q$. Now consider that if R is another minimal normal subgroup of G in Q satisfies $L \neq R$. With a similar argument, we can get $Q/R \leq Z_\mu(G/R)$. It implies that $LR/R \leq Z_\mu(G/R)$, and thus $|L| = q$, a contradiction. Hence (1) holds.

(2) $\Phi(Q) \neq 1$.

Assume that $\Phi(Q) = 1$, then we get Q is an elementary abelian group. So L has a complement S in Q. Let L_1 be a maximal subgroup of L satisfies L_1 is normal in G_q, where G_q is some Sylow q-subgroup of G. Hence $Q_1 = L_1S$ is a maximal subgroup of Q and $Q_1 \cap L = L_1$. It follows from the hypothesis that either Q_1 has a supersoluble supplement in G or is nearly $S\Phi$-normal in G. If Q_1 is nearly $S\Phi$-normal in G, then we get G has a normal subgroup N satisfies $Q_1N \trianglelefteq G$ and $Q_1 \cap N \leq \Phi(Q_1)(Q_1)_sG = (Q_1)_sG$. Thus $Q \cap Q_1N = Q_1(Q \cap N) \trianglelefteq G$. If $Q \cap N = 1$, it follows that $Q_1 \trianglelefteq G$ and we obtain $Q_1 \cap L = L_1 \trianglelefteq G$. Therefore $|L| = q$, which contradicts with claim (1). Hence, $1 \neq Q \cap N \trianglelefteq G$. By claim (1), $L \leq Q \cap N$, and so $Q_1 \cap L \leq Q_1 \cap N \leq (Q_1)_sG$. It follows that $L_1 = Q_1 \cap L = (Q_1)_sG \cap L$ is s-permutable in G (see Lemma 3(1) and [17, Proposition 2]). Hence by Lemma 2(2), $O^q(G) \leq N_G(L_1)$ since L_1 is a q-group. But as $L_1 \leq GL_q$, we obtain $L_1 \leq GL$. This implies that $|L| = q$. So this contradiction means that Q_1 has a supersoluble supplement S in G. Thus $G = Q_1S = QS$. Since $(G/L)/(Q/L) \cong G/Q \cong S/S \cap Q$ is supersoluble and by (1) $Q/L \leq Z_\mu(G/L)$, we can obtain that G/L is supersoluble. But G is not supersoluble, and so $L \nleq \Phi(G)$, which means that G has a maximal subgroup M satisfies $L \nleq M$ and $G = LM$. Clearly, $Q \cap M \leq QM = G$. If $Q \cap M \neq 1$, then by (1), $L \leq Q \cap M$.

which is impossible. Hence \(Q \cap M = 1 \). Then \(Q = Q \cap LM = L \) and so \(G = L_1S = LS \). Clearly, \(L \cap S \leq G \). If \(L \cap S \neq 1 \), then \(L \leq S \) and so \(G = S \) is supersoluble. This contradiction shows that \(L \cap S = 1 \). Hence \(L = L \cap L_1S = L_1 \), a contradiction. Hence \(\Phi(Q) \neq 1 \).

(3) Final contradiction.

(1) and (2) show that \(L \leq \Phi(Q) \) and \(Q/L \leq Z_G(G/L) \). It follows that \(Q/\Phi(Q) \leq Z_G(G/\Phi(Q)) \). Then \(Q \leq Z_G(G) \) by Lemma 8. The final contradiction finishes the proof.

Proof of Theorem 1. Since \(E \) is soluble, we get \(F(E) \neq 1 \). Let \(Q \) be a Sylow \(q \)-subgroup of \(F(E) \), here \(q \) belongs in \(\pi(F(E)) \). It is easy to see that, \(Q \) is a normal \(q \)-subgroup of \(G \). Suppose that \(Q \) is noncyclic, then for every maximal subgroup of \(Q \) which either has a supersoluble supplement in \(G \) or is nearly \(S \Phi \)-normal in \(G \). Then \(Q \leq Z_G(G) \) by Proposition 1. So we need to consider \(Q \) is cyclic. Suppose that \(K/L \) be any \(G \)-chief factor below \(Q \). Thus \(|K/L| = q \), and therefore \(K/L \) is \(\Phi \)-central in \(G \). So, \(Q \leq Z_G(G) \). This implies that \(F(E) \leq Z_G(G) \). In particular, since \(E \) is soluble. Therefore by [10, Chap. 1, Proposition 5.4], we can get \(F^*(E) = F(E) \). Then we have that \(G \in \mathfrak{S} \) by Lemma 6 and Lemma 7.

The following two propositions are main steps to prove Theorem 2.

Proposition 2. Suppose that \(N \trianglelefteq G \) satisfies \(G/N \) is \(q \)-nilpotent, here \(q \) is the smallest prime belongs in \(\pi(G) \). If each cyclic subgroup of \(N \) of order \(q \) or 4 (when the Sylow 2-subgroup of \(N \) is not abelian) is nearly \(S \Phi \)-normal in \(G \), then \(G \) is \(q \)-nilpotent.

Proof. Suppose that the proposition is false and we can consider a counterexample of \(G \) for which \(|G| \) minimal. Then

(1) \(G \) is a minimal non-nilpotent group.

Assume that \(M \) is a proper subgroup of \(G \). Since \(M/M \cap N \cong MN/N \leq G/N \), we get \(M/M \cap N \) is \(q \)-nilpotent. Since every cyclic subgroup of \(M \cap N \) of order \(q \) or 4 (when the Sylow 2-subgroup of \(N \) is not abelian) is nearly \(S \Phi \)-normal in \(M \) by the hypothesis and Lemma 4(2). This means that \(M \) satisfies the hypothesis of the proposition. Thus \(M \) is \(q \)-nilpotent by the choice of \(G \). It means that \(G \) is a minimal non-\(q \)-nilpotent group.

By [8, Chap. VII, Theorem 6.18] and [15, Chap. IV, Proposition 5.4], \(G \) is a minimal non-nilpotent group, \(G = Q \times P \), where \(P \) is a Sylow \(p \)-subgroup of \(G \), \(Q = G^{31} \), \(Q/\Phi(Q) \) is a \(G \)-chief factor, \(\exp(Q) \) is \(q \) or 4 (when \(Q \) is a nonabelian 2-group) and \(\Phi(G) = Z_{31}(G) \).
(2) Assume that \(y \) is an element of order \(q \) of \(Q \). Then we have that \(\langle y \rangle \leq \Phi(Q) \).

First we prove that \(Q \leq N \). Since \(G/N \) is \(q \)-nilpotent, \(G = Q \wr P \) and \(G/N = (QN/N) \rtimes (PN/N) \). It shows that \(G/N \) is nilpotent, and so \(Q = G^{\text{nil}} \leq N \). Let \(A = \langle y \rangle \) and \(|\langle y \rangle| = q \). Then \(G \) has a normal subgroup \(T \) such that \(AT \leq G \) and \(A \cap T \leq \Phi(A)A_{sG} = A_{sG} \). It is clear that either \(A_{sG} = A \) or \(A_{sG} = 1 \). If \(A_{sG} = A \), then \(A \) is \(s \)-permutable in \(G \) by Lemma 3(1). It follows form Lemma 2 that \(O^q(G/\Phi(Q)) \leq N_{G/\Phi(Q)}(\Phi(Q)/\Phi(Q)) \). In addition, because \(A\Phi(Q)/\Phi(Q) \leq Q/\Phi(Q) \), we can get \(A\Phi(Q)/\Phi(Q) \leq G/\Phi(Q) \). But \(Q/\Phi(Q) \) is a \(G \)-chief factor, we have that either \(A\Phi(Q) = Q \) or \(A\Phi(Q) = \Phi(Q) \). For the former case, we can get \(A = Q \). Then by Lemma [23, (10.1.9)], \(G \) is \(q \)-nilpotent, a contradiction. So \(A\Phi(Q) = \Phi(Q) \), which means that \(A \leq \Phi(Q) \). If \(A_{sG} = 1 \), then \(AT \leq G \) and \(A \cap T = 1 \). Since \(Q/\Phi(Q) \) is a chief factor of \(G \) and \((Q \cap AT)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q) \), we have that either \((Q \cap AT)\Phi(Q) = \Phi(Q) \) or \((Q \cap AT)\Phi(Q) = Q \). In the former case, it is clear that \(A \leq \Phi(Q) \). Now we consider \((Q \cap AT)\Phi(Q) = Q \). It implies that \(A(Q \cap T) = Q \). If \(Q \cap T \leq \Phi(Q) \), then \(Q = A \), a contradiction as above. Hence \(Q \cap T \not\leq \Phi(Q) \). But as \((Q \cap T)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q) \) and \(Q/\Phi(Q) \) is a chief factor of \(G \), we obtain that \((Q \cap T)\Phi(Q) = Q \), and so \(Q \leq T \). It follows that \(A = A \cap T \leq A_{sG} = 1 \), a contradiction. This contradiction shows that, in any case, we have \(A \leq \Phi(Q) \). Hence (2) holds.

(3) \(Q \) is a nonabelian 2-group.

If either \(Q \) is abelian or \(Q \) is nonabelian and \(q > 2 \), then \(\exp(Q) = q \). (2) means that \(Q \leq \Phi(Q) \), a contradiction. Then \(Q \) is a nonabelian 2-group.

(4) Final contradiction.

Let \(y \) be an arbitrary element of \(Q \) with order 4 and \(H = \langle y \rangle \). Our claim is \(H \leq \Phi(Q) \). If \(H = H_{sG} \), then \(H \leq \Phi(Q) \) due to the same argument as in claim (2). If \(H \not= H_{sG} \), then \(H_{sG} \leq \Phi(H) \). There exists \(T \leq G \) satisfies \(HT \leq G \) and \(H \cap T \leq \Phi(H) \) by the hypothesis. Since \(Q/\Phi(Q) \) is a chief factor of \(G \) and \((Q \cap HT)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q) \). We have that either \((Q \cap HT)\Phi(Q) = \Phi(Q) \) or \((Q \cap HT)\Phi(Q) = Q \). In the former case it is clear that \(H \leq \Phi(Q) \). Now we consider \((Q \cap HT)\Phi(Q) = Q \). It follows that \(H(Q \cap T) = Q \). If \(Q \cap T \leq \Phi(Q) \), then \(Q = H \). Then by [23, (10.1.9)], \(G \) is \(q \)-nilpotent, a contradiction. Therefore \(Q \cap T \not\leq \Phi(Q) \). But as \((Q \cap T)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q) \) and \(Q/\Phi(Q) \) is a chief factor of \(G \), we obtain that \((Q \cap T)\Phi(Q) = Q \), and so \(Q \leq T \). It follows that
\[H = H \cap T \leq \Phi(H), \text{ which is impossible. From above, we get } H \leq \Phi(Q). \]

But by (3), \(\text{exp}(Q) = 4 \), (2) means that \(Q \leq \Phi(Q) \), a contradiction. This contradiction finishes the proof. \(\square \)

Proposition 3. Suppose that \(Q \) is a normal \(q \)-subgroup of \(G \). If each cyclic subgroup of \(Q \) of order \(q \) or order 4 (when \(Q \) is a nonabelian 2-group) either has a supersoluble supplement in \(G \) or is nearly \(S\Phi \)-normal, then \(Q \leq Z_u(G) \).

Proof. Let the proposition is false and we can consider a counterexample of \((G, Q)\) for which \(|G| + |Q| \) minimal.

(1) There exists a unique normal subgroup \(N \) of \(G \) satisfies \(Q/N \) is a \(G \)-chief factor, \(N \leq Z_u(G) \), and \(|Q/N| > q \).

Let \(Q/N \) be a \(G \)-chief factor. Then the hypothesis holds for \((G, N)\). So \(N \leq Z_u(G) \). Assume that \(|Q/N| = q \), then \(Q/N \leq Z_u(G/N) \). This contradiction shows that \(|Q/N| > q \). Suppose that \(Q/K \) is a chief factor of \(G \) with \(Q/N \not= Q/K \), then with a similar argument as above, we can get \(K \leq Z_u(G) \). Therefore by Lemma [10, Chap. 1, Theorem 2.6(d)]

\[Q/N = NK/N \leq NZ_u(G)/N \leq Z_u(G/N). \]

Since \(N \leq Z_u(G) \), we have \(Q \leq Z_u(G) \), a contradiction of supposition.

(2) \(\text{exp}(Q) \) is \(q \) or 4 (when \(Q \) is a nonabelian 2-group).

Assume that \(Q \) has a Thompson critical subgroup \(C \). If \(\Omega(C) < Q \), then \(\Omega(C) \leq N \leq Z_u(G) \) by claim (1). Thus by Lemma 8, \(Q \leq Z_u(G) \), a contradiction. Hence \(Q = \Omega(C) \), and therefore \(\text{exp}(Q) \) is \(q \) or 4 (when \(Q \) is a nonabelian 2-group) by Lemma 5.

(3) Final contradiction.

Since \((Q/N) \cap Z(G_q/N) > 1 \), here \(G_q \) is some Sylow \(q \)-subgroup of \(G \). Suppose that \(K/N \leq (Q/N) \cap Z(G_q/N) \) and \(|K/N| = q \). Let \(y \in K \setminus N \) and \(H = \langle y \rangle \). Then we get \(K = HN \) and \(|H| = q \) or 4 (when \(Q \) is a nonabelian 2-group) by (2). If \(H = H_{sG} \), then by Lemma 2(1) and Lemma 3(1), we have \(HN/N \) is \(s \)-permutable in \(G/N \). Hence by Lemma 2(2) that \(O^q(G/N) \leq N_{G/N}(HN/N) \). It is easy to see that \(HN/N \leq G_q/N \). So it shows that \(HN/N \leq G/N \). But \(Q/N \) is a \(G \)-chief factor and \(H \not\leq N \), we get \(Q = HN \). So \(|Q/N| = |K/N| = q \), which contradicts with \(|Q/N| > q \). Thus \(H \not= H_{sG} \) and therefore \(H_{sG} \leq \Phi(H) \). By the hypothesis, \(H \) is either nearly \(S\Phi \)-normal in \(G \) or has a supersoluble supplement in \(G \). First assume that \(H \) is nearly \(S\Phi \)-normal in \(G \). So there exists \(T \leq G \) satisfies \(HT \leq G \) and \(H \cap T \leq \Phi(H)H_{sG} = \Phi(H) \).
Since Q/N is a chief factor of G and $(Q \cap HT)N/N \trianglelefteq G/N$, we have that either $(Q \cap HT)N = N$ or $(Q \cap HT)N = Q$. For the former case, we see that $H \leq N$, a contradiction. Hence now we consider $(Q \cap HT)N = Q$. It follows that $H(Q \cap T)N = Q$. If $Q \cap T \leq N$, then $K = HN = Q$, and so $|Q/N| = |K/N| = q$, a contradiction of claim (1). Hence $Q \cap T \nsubseteq N$, and so $N \leq Q \cap T$ by claim (1). But as $(Q \cap T)N/N \trianglelefteq G/N$ and Q/N is a chief factor of G, we obtain that $(Q \cap T)N = Q$, and so $Q \leq T$. It follows that $H = H(Q \cap T) \leq \Phi(H)$. This contradiction shows that H has a supersoluble supplement S in G. Then $G = HS = QS$. If $Q \leq S$, then $G = S$ is supersoluble, a contradiction. Therefore G has a maximal subgroup M satisfies $S \leq M$ and $G = QM$. Then $Q \cap M$ is normal in G by Lemma 9. By (1), $Q \cap M \leq N$. So

$$Q = Q \cap HS = H(Q \cap S) \leq H(Q \cap M) \leq HN = K,$$

a contradiction. This finishes the proof. □

Proof of Theorem 2.

We first prove that the assertion holds for $X = E$. Let the theorem is false and we can consider a counterexample of (G, E) for which $|G| + |E|$ minimal. Then

(1) E is soluble.

If E is not soluble, then Feit-Thompson Theorem implies that $2 \in \pi(E)$. Assume that E has a cyclic Sylow 2-subgroup. By [23, (10.1.9)], we have that E is 2-nilpotent. So E is soluble, a contradiction. Therefore every Sylow 2-subgroup of E is noncyclic. Then every cyclic subgroup of E with order 2 or 4 either has a supersoluble supplement or is nearly $S\Phi$-normal in G. If every cyclic subgroup of E of order 2 or 4 is nearly $S\Phi$-normal in G, then by Proposition 2, E is 2-nilpotent, so E is soluble, a contradiction. Hence, E has a cyclic subgroup H with order 2 or 4 satisfies H has a supersoluble supplement S in G. Thus $G = HS = ES$ and so $G/E = ES/E \cong S/S \cap E \in \mathfrak{U}$. Now we need to show that G is a minimal non-supersoluble group. Assume that R is a proper subgroup of G. As $R/R \cap E \cong RE/E \leq G/E$, we obtain that $R/R \cap E \in \mathfrak{U}$. Assume that $\langle y \rangle$ is a cyclic subgroup of a non-cyclic Sylow subgroup of $R \cap E$ with order q or order 4 (when the Sylow 2-subgroup of $R \cap E$ is non-abelian). Then either $\langle y \rangle$ has a supersoluble supplement in G or is nearly $S\Phi$-normal in G. If $\langle y \rangle$ is nearly $S\Phi$-normal in G, then $\langle y \rangle$ is nearly $S\Phi$-normal in R by Lemma 4(2). If N is a supersoluble supplement of $\langle y \rangle$ in G, then $R = \langle y \rangle(N \cap R)$ and $N \cap R \in \mathfrak{U}$. It imply that $(R, R \cap E)$ satisfies the hypothesis. Then
R ∈ 𝔪 by the choice of (G, E). Therefore G is a minimal non-supersoluble group. Thus G is soluble by ([16] or [4, Theorem 12]), and so E is soluble. Hence by this contradiction (1) exists.

(2) G^δ = V is a q-group, V/Φ(V) is a G-chief factor, and exp(V) is q or 4 (when q = 2 and V is nonabelian).

Since G/E ∈ -gun, we have V ⊆ E. Thus by (1), V is soluble. If V ⊆ Φ(G), then V ⊆ S_G for every maximal subgroup S of G, and so G/S_G ∈ -gun. Therefore claim (2) holds by using Semenchuk Theorem (see [27] or [12, Theorem 3.4.2]). Now suppose that V ∉ Φ(G). Let G has a maximal subgroup S such that V ∉ S. Then G = VS = ES and S/S ∩ E ∼ SE/E = G/E ∈ -gun. For every non-cyclic Sylow subgroup P of S ∩ E, we can let ⟨y⟩ be a cyclic subgroup of P of prime order or order 4 (when the Sylow 2-subgroup of S ∩ E is non-abelian). As the same discussion as (1) of the proof, (S, S ∩ E) also satisfies the hypothesis. It means that S ∈ -gun. Then we have (2) by the Semenchuk Theorem ([27] or [12, Theorem 3.4.2]).

(3) Final contradiction.

If V is noncyclic, then by Proposition 3 and (2), we have that V ≤ Z_U(G). Assume that V is cyclic. So, obviously, V ≤ Z_U(G). It follows that V ∈ -gun. This contradiction prove that the theorem is holds for X = E.

Now we prove that the theorem is also true for X = F^*(E).

By Lemma 4(2), (F^*(E), F^*(E)) also satisfies the hypothesis. As above, we know that F^*(E) is supersoluble, and thus F(E) = F^*(E). Assume that H is a Sylow q-subgroup of F(E). Then H is normal in G. Assume that H is non-cyclic, then we have that the hypothesis of Proposition 3 holds for H. Hence H ≤ Z_U(G). Now let H is cyclic, then obviously, H ≤ Z_U(G). This induces that F^*(E) = F(E) ≤ Z_U(G).

Hence from Lemma 6, E ≤ Z_U(G). It implies by Lemma 7 that G ∈ -gun. This finishes the proof.

3. Some applications of our results

From Theorem 1, we obtain the following corollaries.

Corollary 1 ([1, Theorem 3.2]). Assume that N ⊆ G satisfies G/N ∈ 𝔪 and G is soluble. If each maximal subgroup of every Sylow subgroup of F(N), which are normal in G, then G ∈ 𝔪.

Corollary 2 ([21, Theorem 2]). Assume that N is a normal soluble
subgroup of G satisfies $G/N \in \mathcal{U}$. Assume that every maximal subgroup of the Sylow subgroups of $F(N)$ are c-normal in G, then $G \in \mathcal{U}$.

Corollary 3 ([31, Theorem 1]). Assume that \mathcal{F} is a saturated formation which contains the class of all supersoluble groups and N a normal soluble subgroup of G satisfies $G/N \in \mathcal{F}$. If every maximal subgroup of the Sylow subgroups of $F(N)$ are c-normal in G, then $G \in \mathcal{F}$.

Corollary 4 ([1, Theorem 4.2]). Let G be a group and E a soluble normal subgroup of G with supersoluble quotient G/E. Suppose that every maximal subgroups of every Sylow subgroup of $F(E)$ is s-permutable in G. Then G is supersoluble.

Theorem 2 covers a lot of results, in particular:

Corollary 5 ([32, Theorem 3.8]). Let \mathcal{F} be a saturated formation containing all supersoluble groups and G be a group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup E of G such that $G/E \in \mathcal{F}$ and every cyclic subgroup of every noncyclic Sylow subgroup of E with prime order or order 4 (if the Sylow 2-subgroup is not abelian) not having a supersoluble supplement in G is nearly s-normal in G.

Corollary 6 ([30, Theorem 4.2]). If every subgroup of order 4 or all minimal subgroups of G are c-normal in G, then $G \in \mathcal{U}$.

Corollary 7 ([22, Theorem 3.4]). Assume that $N \unlhd G$ with supersoluble quotient G/N. If every subgroup of order 4 (when the Sylow 2-subgroup of N is non-abelian) or all minimal subgroups of N are c-normal in G, then $G \in \mathcal{U}$.

Corollary 8 ([3, Theorem 3.4]). Assume that \mathcal{F} is a saturated formation which contains the class of all supersoluble groups. If every cyclic subgroup with order 4 and all minimal subgroups of $G^\mathcal{F}$ are c-normal in G, then $G \in \mathcal{F}$.

Corollary 9 ([2, Theorem 3.1]). If every subgroup of G of prime order and each cyclic subgroup of G with order 4 are s-permutable in G, then $G \in \mathcal{U}$.

Corollary 10 ([24, Theorem 3.9]). Assume that \mathcal{F} is a saturated formation which contains the class of all supersoluble groups. Then $N \unlhd G$ satisfies $G/N \in \mathcal{F}$ and if every subgroup of order 4 and every minimal subgroup of N are c-normal in G if and only if $G \in \mathcal{F}$.
References

164 ON nERILY $S\Phi$-NORMAL SUBGROUPS

[27] V.N. Semenchuk, Minimal non-Φ-groups, Algebra and Logic, 18 (3), 1979, pp. 349–382.

CONTACT INFORMATION

Muhammad Tanveer Hussain
Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
E-Mail: mthussain@mail.ustc.edu.cn
URL:

Shamsher Ullah
National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, P. R. China
E-Mail: shamsber@szu.edu.cn
URL:

Received by the editors: 18.07.2022
and in final form 23.11.2023.