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On nearly SP-normal subgroups of finite groups
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ABSTRACT. Let G be a finite group, H a subgroup of G
and H,g the subgroup of H generated by all those subgroups of
H which are s-permutable in G. Then we say that H is nearly
S®-normal in G if G has a normal subgroup 1" such that HT < G
and HNT < ®(H)H,e. In this paper, we study the structure of
group G under the condition that some given subgroups of G are
nearly S®-normal in G. Some known results are generalised.

Introduction

Throughout this paper, all groups are finite. G always denotes a group, p
denotes a prime, 7 denotes a set of primes, and ®(G) denotes the Frattini
subgroup of G.

Recall that a subgroup H of a group G is said to be s-permutable
(or s-quasinormal) [17] in G if HP = PH for all Sylow subgroups P of
G. A subgroup H of G is said to be c-normal in G [30] if there exists
a normal subgroup T of G such that HT = G and H NT < Hg, where
H¢ is the largest normal subgroup of G contained in H. A subgroup
H of G is said to be ®-S-supplemented in G [18,19] if there exists a
subnormal subgroup T of G such that HT = G and HNT < ®(H),
where ®(H) is Frattini subgroup of H. A subgroup H of G is said to
be weakly ®-supplemented in G [20] if there exists a subgroup T of G
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such that HT = G and H NT < ®(H). A subgroup H of G is said to
be nearly s-normal [32] in G if there exists a normal subgroup T of G
such that HT' < G and H NT < Hyg, where Hyg is the subgroup of H
generated by all those subgroups of H which are s-permutable in G. A
subgroup H of G is said to be weakly S®-supplemented [33] in G if there
exists a subgroup T' of G such that G = HT and HNT < ®(H)Hg.
By using these concepts, a large number of results have been obtained
(see, for example, [3,17-22,30,32,33]). As a continuation of the above
research, we now introduce the following new notion.

Definition 1. Let H be a subgroup of G. We say that H is nearly
S®-normal in G when G has a normal subgroup T which satisfies HT < G
and HNT < ®(H)Hgq, here Hy generated by all those subgroups of H
which are all s-permutable in G.

Obviously, all normal subgroups, all s-permutable subgroups, all
c-normal subgroups and all nearly s-normal subgroups of G are all nearly
S®P-normal in G. But the next example implies that the converse does
not hold.

Example 1. Let G = S5 be the symmetric group of order 120 and
H = ((1234)) < G. 1t is easily see that Hys = Hg = 1. As H is not
permutable with Sylow 3-subgroup of GG, H is not s-permutable in G.
Since HAs = G and HN As = ®(H) = ((13)(24)), clearly H is nearly
S®-normal in G, but neither nearly s-normal in G nor ¢-normal in G.

Recall that a class of groups § is said to be a formation if it is closed
under taking homomorphic images and subdirect products. A forma-
tion § is saturated (respectively solubly saturated) if G € § whenever
G/®(G) € § (respectively G/®(N) € § for a soluble normal subgroup
N of G) (see for example, [10, p. 3]). Also, the §-residual of G, denoted
by GY, is the smallest normal subgroup of G with the quotient in §.

Following [8,29] or [12], for a formation §, a chief factor H/K of G
is said to be F-central in G if H/K x G/Cg(H/K) € §. A normal
subgroup N of G is §-central, if either N =1 or N # 1 and every chief
factor of G below N is F-central in G. The §-hypercentral Zz(G) of G is
the product of all normal §-central subgroups of G.

A subgroup H of G has a supersoluble supplement in G if there exists
a supersoluble subgroup L of G such that G = HL.

We use U and I, to denote the classes of all supersoluble groups and
p-nilpotent groups respectively. In this paper, we obtain the following
results.
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Theorem 1. Assume that § is a solubly saturated formation that con-
tains the class of all supersoluble groups and E a normal soluble subgroup
of G satisfies G/E € §. If every mazimal subgroup of each noncyclic Sy-
low subgroup of F(E) either has a supersoluble supplement in G or is
nearly S®-normal, then G € §.

Theorem 2. Assume that § is a solubly saturated formation which con-
taining the class of all supersoluble groups and E <G satisfies G/E € §.
Suppose that X = E or X = F*(E). If for every noncyclic Sylow sub-
group @ of X and each cyclic subgroup of Q) with order q or order 4
(when the Sylow 2-subgroup of X is non-abelian) either has a supersolu-
ble supplement or is nearly S®-normal in G, then G € §.

We shall prove Theorems 1 and 2 in section 3. In section 4, we give
some applications of our results.

The notation and terminology in this paper are standard and the
reader is referred to see [5,8,10,12,29].

1. Preliminaries

The following known results will be needed in this paper.

Lemma 1 ([33, Lemma 2.1]). Let N be a normal subgroup of G and H
a subgroup of G with (|H|,|N|) =1. Then ®(H)N/N = ®(HN/N).

Lemma 2. Let G has a subgroup H and N < @G.

(1) Assume that H is s-permutable in G. Then HN/N is s-permutable
in G/N (see [10, Chapter 1, Lemma 5.34]).

(2) Assume that H is a p-group. So OP(G) < Ng(H) if and only if
H is s-permutable in G (see [25, Lemma A]).

Lemma 3 ([26, Lemma 2.8]). Let H, K be subgroups of G and H < K,
then

(1) Hsg is a s-permutable subgroup of G and Hg < Hyq;

(2) Hyq < Hy;

(3) IfH < G, then (K/H)S(G/H) = ng/H.

Lemma 4. Let H < K <G and R G, then

(1) H is nearly S®-normal in G if and only if N <G satisfies HN <G,
Hg < N, and HNN < &(H)Hye.

(2) If H is nearly S®-normal in G, then H is nearly S®-normal in
K.
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(3) Assume that R < H. If H is nearly S®-normal in G, then
H/R is nearly S®-normal in G/R. Moreover, the converse holds when
R<®(H).

(4) If H is nearly S®-normal in G with (|H|,|R|) = 1, then HR/R
is nearly S®-normal in G/R.

Proof. Assume that H is nearly S®-normal in G. So we there exists
N <G satisfies HN <G and HNN < ®(H)Hyg.

(1) = Let No = NH¢. Then clearly, Ngo<G and HNy = HNHg =
HN < G. Tt can easily see that HN Ny = HNNHg = (HNN)Hg <
O(H)Hyq.

<= Obviously.

(2) Let Ny = NN K. Then Ng 9 K and HNy = H(N N K) =
HNNK < K. By Lemma 3(2), we have that HNNo=HN(NNK) <
HNN < ®(H)Hs;qg < ®(H)H;sk, which means that H is nearly S&-
normal in K.

(3) Now assume that H is nearly S®-normal in G. Consider G =
G/R. Then N = NR/R<G/R = G and H N = (H/R)(NR/R) =
HNR/R< G/R = G. Moreover, by [8, A, 9.2(e)] and Lemma 3(3), we
have that HNN = (H/R)N(NR/R) = (HNN)R/R < ®(H)H;cR/R <
®(H/R)(H/R)yc/r) = ®(H)H ;. So H/R is nearly S®-normal in G/R.

Now suppose that R < ®(H) and N/R<IG/R satisfies (H/R)(N/R)<
G/R and

(H/R)N(N/R) < ®(H/R)(H/R)s(G/R)-
Then HN < G. Since R < ®(H), it implies that ®(H/R) = ®(H)/R
by[8, A, 9.2(e)], and so H NN < ®(H)Hy; by Lemma 3(3). This shows
that H is nearly S®-normal in G.
(4) Let G =G/R,H=HR/Rand N = NR/R. Then N <G and
H N JG.
Since (|H|, |R|) = 1, we have

(JHRNN:HRNNNR|,JHRNN: HRNNNH|) =1.

[12, Lemma 3.8.1] implies that

(HRNN)=(HRNNNR)(HRNNNH)=(NNH)(NNR).
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It follows that from Lemmas 1 and 2(1) that
HNN = (HR/R)N(NR/R)
HRNNR)/R
HRNN)R/R
HNN)R/R
®(H)H;cR/R
S(HR/R)(HE/R) o).

~—~~ N —~

VANV

Hence HR/R is nearly S®-normal in G/R. O

Let P be a p-group. If P is not a nonabelian 2-group, then we use
Q(P) to denote the subgroup Q;(P). Otherwise, Q(P) = Qa(P).

Lemma 5 ([13, Lemma 4.3]). Let C be a Thompson critical subgroup
(see [9, p.185]) of a nontrivial p-group of P.

(1) If p is odd, then the exponent of Q(C) is p.

(2) If p = 2, then the exponent of Q(C) is at most 4. Moreover, If P
is an abelian 2-group, then the exponent of Q(C') is 2.

Lemma 6 ([28, Theorem B]). Assume that § is a formation and N <G.
If F*(N) < Z3(G), then N < Z3(G).

Lemma 7 ([11, Lemma 3.3]). Let § be a solubly saturated formation
which containing 4 and also N < G satisfies G/N € §. If N < Zy(G),
then G € §. In particular, if N is cyclic, then G € §.

Lemma 8 ([6, Lemma 2.12] and [6, Lemma 2.8]). Let § be a solubly
saturated formation and P a normal p-subgroup of G and C' is a Thomp-
son critical subgroup of P. If either Q(C) < Zz(G) or P/®(P) <
Zz(G/®(P)), then P < Zz(G).

Lemma 9 ([34, Lemma 2.8]). Let N be a mazimal subgroup of G and P
a normal p-subgroup of G such that G = NP, here p is a prime. Then
PNN<G.

Lemma 10 ([16] or [4, Theorem 12]). Let G be a minimal non-supersoluble
group, then G is soluble.
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2. Proofs of Theorems 1 and 2

We start the proof of Theorem 1 with the following lemma.

Proposition 1. Let G has a normal q-subgroup Q. If every mazimal
subgroup of QQ does not have a supersoluble supplement in G is nearly
S®-normal, then Q < Zy(G).

Proof. Suppose that the proposition is false and we can consider a coun-
terexample of (G, Q) for which |G|+ |@| minimal. Clearly, G # Zy(G),
which means that G is not supersoluble.

(1) There is a unique minimal normal subgroup L of G which con-
tained in @Q, Q/L < Zy(G/L) and |L| > q.

Assume that L is a minimal normal subgroup of G which contained
in Q. Then (G/L,Q/L) satisfies the hypothesis of the proposition by
Lemma 4(3). This shows that Q/L < Zy(G/L). If |L| = q , then we
have that @ < Zy(G), a contradiction. Hence |L| > g. Now consider
that if R is another minimal normal subgroup of GG in @) satisfies L # R.
With a similar argument, we can get Q/R < Zy(G/R). It implies that
LR/R < Zy(G/R), and thus |L| = ¢, a contradiction. Hence (1) holds.

(2) B(Q) # 1.

Assume that ®(Q) = 1, then we get @ is an elementary abelian
group. So L has a complement S in (). Let L; be a maximal subgroup
of L satisfies L; is normal in G, where G, is some Sylow g-subgroup of
G. Hence Q1 = L15 is a maximal subgroup of @ and @1 N L = Ly. It
follows from the hypothesis that either ()1 has a supersoluble supplement
in G or is nearly S®-normal in G. If @)1 is nearly S®-normal in G, then
we get G has a normal subgroup N satisfies Q1N <G and Q1 NN <
P(Q1)(Q1)se = (Q1)sg- Thus QNQ1N = Q1(QNN)LG. FQNN =1, it
follows that @1 < G and we obtain Q1 N L = L1 < G. Therefore |L| = q,
which contradicts with claim (1). Hence, 1 # @ N N 9 G. By claim
(1), L<QNN,and so Q1 NL < Q1NN < (Q1)sg. It follows that
Li=0Q1NL = (Q1)sgNLis s-permutable in G (see Lemma 3(1) and
[17, Proposition 2]). Hence by Lemma 2(2), O%(G) < Ng(L1) since Ly is
a g-group. But as L <Gy, we obtain L1 I G. This implies that |L| = q.
So this contradiction means that ()1 has a supersoluble supplement S
in G. Thus G = @15 = @S. Since (G/L)/(Q/L) = G/Q = S/SNQ
is supersoluble and by (1) Q/L < Zy(G/L), we can obtain that G/L
is supersoluble. But G is not supersoluble, and so L ¢ ®(G), which
means that G has a maximal subgroup M satisfies L £ M and G = LM.
Clearly, QN M I QM =G. f QN M # 1, then by (1), L < QN M,
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which is impossible. Hence Q "M = 1. Then Q@ = Q@ N LM = L and so
G=1L15=LS. Clearly, LNS<dG. f LNS # 1, then L < S and so
G = S is supersoluble. This contradiction shows that L NS = 1. Hence
L=LnNLS = Ly, a contradiction. Hence ®(Q) # 1.

(3) Final contradiction.

(1) and (2) show that L < ®(Q) and Q/L < Zy(G/L). It follows
that Q/®(Q) < Zy(G/®(Q)). Then Q < Zy(G) by Lemma 8. The final
contradiction finishes the proof. O

Proof of Theorem 1. Since E is soluble, we get F'(E) # 1. Let Q
be a Sylow g-subgroup of F'(E), here ¢ belongs in 7(F(FE)). It is easy to
see that, @) is a normal g-subgroup of G. Suppose that () is noncyclic,
then for every maximal subgroup of ) which either has a supersoluble
supplement in G or is nearly S®-normal in G. Then Q < Zy(G) by
Proposition 1. So we need to consider @ is cyclic. Suppose that K/L
be any G-chief factor below Q. Thus |K/L| = ¢, and therefore K/L is
Y-central in G. So, @ < Zy(G). This implies that F(F) < Zy(G). In
particular, since F is soluble. Therefore by [10, Chap. 1, Proposition 5.4],
we can get F*(FE) = F(E). Then we have that G € § by Lemma 6 and
Lemma 7.

The following two propositions are main steps to prove Theorem 2.

Proposition 2. Suppose that N < G satisfies G/N is q-nilpotent, here
q is the smallest prime belongs in w(G). If each cyclic subgroup of N of
order q or 4 (when the Sylow 2-subgroup of N is non-abelian) is nearly
S®-normal in G, then G is q-nilpotent.

Proof. Suppose that the proposition is false and we can consider a coun-
terexample of G for which |G| minimal. Then

(1) G is a minimal non-nilpotent group.

Assume that M is a proper subgroup of G. Since M/MNN = MN/N
< G/N, we get M/M N N is g-nilpotent. Since every cyclic subgroup of
MANN of order q or 4 (when the Sylow 2-subgroup of N is not abelian) is
nearly S®-normal in M by the hypothesis and Lemma 4(2). This means
that M satisfies the hypothesis of the proposition. Thus M is ¢g-nilpotent
by the choice of G. It means that G is a minimal non-¢-nilpotent group.

By [8, Chap. VII, Theorem 6.18] and [15, Chap. IV, Proposition 5.4],
G is a minimal non-nilpotent group, G = @ x P, where P is a Sylow
p-subgroup of G, Q@ = G™, Q/®(Q) is a G-chief factor, exp(Q) is ¢ or 4
(when @ is a nonabelian 2-group) and ®(G) = Zn(G).
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(2) Assume that y is an element of order g of Q). Then we have that

(y) < 2(Q).

First we prove that ) < N. Since G/N is g-nilpotent, G = Q x P
and G/N = (QN/N) x (PN/N). It shows that G/N is nilpotent, and
s0Q =G" < N. Let A= (y) and |(y)| = ¢. Then G has a normal
subgroup 7" such that AT <G and ANT < ®(A)A;qg = Asg- It is clear
that either A;q = A or A;g = 1. If A;¢ = A, then A is s-permutable
in G by Lemma 3(1). It follows form Lemma 2 that O¢(G/®(Q)) <
Ng/a@)(A®(Q)/2(Q)). In addition, because A®(Q)/P(Q) <D Q/P(Q),
we can get A®(Q)/P(Q) <1 G/P(Q). But Q/P(Q) is a G-chief factor,
we have that either A®(Q) = Q or A®(Q) = P(Q). For the former case,
we can get A = (). Then by Lemma [23, (10.1.9)], G is g-nilpotent,
a contradiction. So A®(Q) = ®(Q), which means that A < &(Q).
If Asqg = 1, then AT <G and ANT = 1. Since Q/P(Q) is a chief
factor of G and (Q N AT)®(Q)/P(Q) < G/P(Q). We have that either
(QNAT)P(Q) = 2(Q) or (QNAT)P(Q) = Q. In the former case, it is
clear that A < ®(Q). Now we consider (Q N AT)®(Q) = Q. It implies
that AQNT)=Q. HQNT < &(Q), then Q = A, a contradiction as
above. Hence QNT £ ®(Q). But as (QNT)P(Q)/P(Q) IG/P(Q) and
Q/®(Q) is a chief factor of G, we obtain that (Q NT)®(Q) = @, and so
Q < T. It follows that A = ANT < Asg = 1, a contradiction. This
contradiction shows that, in any case, we have A < ®(Q). Hence (2)
holds.

(3) @ is a nonabelian 2-group.

If either @ is abelian or @ is nonabelian and ¢ > 2, then exp(Q) is
q. (2) means that Q < ®(Q), a contradiction. Then @ is a nonabelian
2-group.

(4) Final contradiction.

Let y be an arbitrary element of @ with order 4 and H = (y). Our
claim is H < ®(Q). If H = Hyg, then H < ®(Q) due to the same
argument as in claim (2). If H # Hyq, then Hyg < ®(H). There exists
T 4G satisfies HI' I G and HNT < ®(H) by the hypothesis. Since
Q/®(Q) is a chief factor of G and (Q N HT)®(Q)/®(Q) I G/P(Q). We
have that either (Q N HT)®(Q) = ®(Q) or (Q N HT)P(Q) = Q. In the
former case it is clear that H < ®(Q). Now we consider (QNHT)®(Q) =
Q. Tt follows that H(QNT) = Q. f QNT < ®(Q), then Q = H. Then by
23, (10.1.9)], G is g-nilpotent, a contradiction. Therefore QNT £ ®(Q).
But as (QNT)®(Q)/P(Q) < G/P(Q) and Q/P(Q) is a chief factor of
G, we obtain that (Q NT)®(Q) = @, and so Q < T. It follows that
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H = HNT < ®(H), which is impossible. From above, we get H < ®(Q).
But by (3), exp(Q) is 4, (2) means that @ < ®(Q), a contradiction. This
contradiction finishes the proof. O

Proposition 3. Suppose that Q is a normal g-subgroup of G. If each cyc-
lic subgroup of Q of order q or order 4 (when @ is a nonabelian 2-group)
either has a supersoluble supplement in G or is nearly S®-normal, then

Q < Zy(G).

Proof. Let the proposition is false and we can consider a counterexample
of (G, Q) for which |G| + |@Q| minimal.

(1) There exists a unique normal subgroup N of G satisfies Q/N is
a G-chief factor, N < Zy(G), and |Q/N| > q.

Let Q/N be a G-chief factor. Then the hypothesis holds for
(G,N). So N < Zy(G). Assume that |Q/N| = ¢, then Q/N < Zy(G/N),
and so @) < Zy(G). This contradiction shows that |QQ/N| > ¢. Suppose
that /K is a chief factor of G with Q/N # Q/K, then with a similar
argument as above, we can get K < Zy(G). Therefore by Lemma
[10, Chap. 1, Theorem 2.6(d)]

Q/N = NK/N < NZy(G)/N < Zy(G/N).

Since N < Zy(G), we have Q < Zy(G), a contradiction of supposition.

(2) exp(Q) is q or 4 (when @ is a nonabelian 2-group).

Assume that @ has a Thompson critical subgroup C. If Q(C) < Q,
then Q(C) < N < Zy(G) by claim (1). Thus by Lemma 8, Q < Zy(G),
a contradiction. Hence @ = Q(C), and therefore exp(Q) is ¢ or 4 (when
@ is a nonabelian 2-group) by Lemma 5.

(3) Final contradiction.

Since (Q/N) N Z(Gy/N) > 1, here Gy is some Sylow g-subgroup
of G. Suppose that K/N < (Q/N)N Z(G4/N) and |K/N| = q. Let
y € K\N and H = (y). Then we get K = HN and |H| = q or 4 (when
@ is a nonabelian 2-group) by (2). If H = Hq, then by Lemma 2(1) and
Lemma 3(1), we have HN/N is s-permutable in G/N . Hence by Lemma
2(2) that OY(G/N) < Ng/N(HN/N). It is easy to see that HN/N <
Gg¢/N. So it shows that HN/N <G/N. But Q/N is a G-chief factor and
H £ N, we get @Q = HN. So |Q/N| = |K/N| = q, which contradicts
with |Q/N| > q. Thus H # H,g and therefore Hyg < ®(H). By the
hypothesis, H is either nearly S®-normal in G or has a supersoluble
supplement in . First assume that H is nearly S®-normal in G. So
there exists T'< G satisfies HI' I G and HNT < ®(H)Hsq = ¢(H).
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Since /N is a chief factor of G and (QNHT)N/N <G/N, we have that
either (QNHT)N = N or (QNHT)N = Q. For the former case, we see
that H < N, a contradiction. Hence now we consider (Q N HT)N = Q.
It follows that H(QNT)N = Q. H QNT < N, then K = HN = @Q, and
so |Q/N|=|K/N| = g, a contradiction of claim (1). Hence @ NT £« N,
and so N < @QNT by claim (1). But as (QNT)N/N <G/N and Q/N
is a chief factor of G, we obtain that (QNT)N =@, and so Q@ < T. It
follows that H = HNT < ®(H). This contradiction shows that H has
a supersoluble supplement S in G. Then G = HS = Q5. If Q < S,
then G = S is supersoluble, a contradiction. Therefore G has a maximal
subgroup M satisfies S < M and G = QM. Then Q@ N M is normal in G
by Lemma 9. By (1), QN M < N. So

Q=QNHS=H(QNS)<HQNM)<HN =K,

a contradiction. This finishes the proof. O

Proof of Theorem 2.

We first prove that the assertion holds for X = E. Let the theorem is
false and we can consider a counterexample of (G, F) for which |G|+ |E]
minimal. Then

(1) E is soluble.

If E is not soluble, then Feit-Thompson Theorem implies that 2 €
7m(E). Assume that F has a cyclic Sylow 2-subgroup. By [23, (10.1.9)],
we have that F is 2-nilpotent. So FE is soluble, a contradiction. There-
fore every Sylow 2-subgroup of E is noncyclic. Then every cyclic sub-
group of E with order 2 or 4 either has a supersoluble supplement or
is nearly S®-normal in G. If every cyclic subgroup of E of order 2 or
4 is nearly S®-normal in GG, then by Proposition 2, E is 2-nilpotent, so
FE is soluble, a contradiction. Hence, F has a cyclic subgroup H with
order 2 or 4 satisfies H has a supersoluble supplement S in G. Thus
G =HS =FESandso G/E =FES/E=S5/SNE € 4. Now we need
to show that G is a minimal non-supersoluble group. Assume that R
is a proper subgroup of G. As R/RNE = RE/E < G/E, we ob-
tain that R/R N E € 4. Assume that (y) is a cyclic subgroup of a
non-cyclic Sylow subgroup of RN E with order ¢ or order 4 (when the
Sylow 2-subgroup of RN E is non-abelian). Then either (y) has a super-
soluble supplement in G or is nearly S®-normal in G. If (y) is nearly
S®-normal in G, then (y) is nearly S®-normal in R by Lemma 4(2).
If N is a supersoluble supplement of (y) in G, then R = (y)(N N R)
and N N R € 4. It imply that (R, RN E) satisfies the hypothesis. Then
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R € U by the choice of (G, E'). Therefore G is a minimal non-supersoluble
group. Thus G is soluble by ([16] or [4, Theorem 12]), and so E is so-
luble. Hence by this contradiction (1) exists.

(2) GS =V is a g-group, V/®(V) is a G-chief factor, and exp(V) is
g or 4 (when ¢ =2 and V is nonabelian).

Since G/E € §, we have V. C E. Thus by (1), V is soluble. If
V C ®(Q), then V C S for every maximal subgroup S of G, and so
G/Sq € §. Therefore claim (2) holds by using Semenchuk Theorem (see
[27] or [12, Theorem 3.4.2]). Now suppose that V' Z ®(G). Let G has
a maximal subgroup S such that V' ¢ S. Then G = VS = ES and
S/SNE=SE/E =G/E € §. For every non-cyclic Sylow subgroup P
of SNE, we can let (y) be a cyclic subgroup of P of prime order or order
4 (when the Sylow 2-subgroup of S N E is non-abelian). As the same
discussion as (1) of the proof, (S, S N E) also satisfies the hypothesis. It
means that S € §. Then we have (2) by the Semenchuk Theorem ([27]
or [12, Theorem 3.4.2]).

(3) Final contradiction.

If V' is noncyclic, then by Proposition 3 and (2), we have that V' <
Zy(G). Assume that V is cyclic. So, obviously, V < Zy(G). It follows
that V' € §. This contradiction prove that the theorem is holds for
X =F.

Now we prove that the theorem is also true for X = F*(FE).

By Lemma 4(2), (F*(E),F*(F)) also satisfies the hypothesis. As
above, we know that F™*(E) is supersoluble, and thus F(E) = F*(E).
Assume that H is a Sylow g-subgroup of F(E). Then H is normal in
(. Assume that H is non-cyclic, then we have that the hypothesis of
Proposition 3 holds for H. Hence H < Zy(G). Now let H is cyclic,
then obviously, H < Zy(G). This induces that F*(E) = F(F) < Zy(G).
Hence from Lemma 6, E < Zy(G). It implies by Lemma 7 that G € §.
This finishes the proof.

3. Some applications of our results

From Theorem 1, we obtain the following corollaries.

Corollary 1 ([, Theorem 3.2]). Assume that N QG satisfies G/N €
and G is soluble. If each maximal subgroup of every Sylow subgroup of
F(N), which are normal in G, then G € .

Corollary 2 ([21, Theorem 2]). Assume that N is a normal soluble
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subgroup of G satisfies G/N € . Assume that every mazimal subgroup
of the Sylow subgroups of F(N) are c-normal in G, then G € L.

Corollary 3 ([31, Theorem 1]). Assume that § is a saturated formation
which contains the class of all supersoluble groups and N a normal soluble
subgroup of G satisfies G/N € §. If every mazimal subgroup of the Sylow
subgroups of F(N) are c-normal in G, then G € §.

Corollary 4 ([1, Theorem 4.2]). Let G be a group and E a soluble nor-
mal subgroup of G with supersoluble quotient G/E. Suppose that every
mazimal subgroups of every Sylow subgroup of F(E) is s-permutable in
G. Then G is supersoluble.

Theorem 2 covers a lot of results, in particular:

Corollary 5 ([32, Theorem 3.8]). Let § be a saturated formation con-
taining all supersoluble groups and G be a group. Then G € § if and
only if there exists a normal subgroup E of G such that G/E € § and
every cyclic subgroup of every noncyclic Sylow subgroup of E with prime
order or order 4 (if the Sylow 2-subgroup is not abelian) not having a
supersoluble supplement in G is nearly s-normal in G.

Corollary 6 ([30, Theorem 4.2]). If every subgroup of order 4 or all
minimal subgroups of G are c-normal in G, then G € 4l.

Corollary 7 ([22, Theorem 3.4]). Assume that N <G with supersoluble
quotient G/N. If every subgroup of order 4 (when the Sylow 2-subgroup
of N is non-abelian) or all minimal subgroups of N are c-normal in G,

then G € .

Corollary 8 ([3, Theorem 3.4]). Assume that § is a saturated forma-
tion which contains the class of all supersoluble groups. If every cyclic
subgroup with order 4 and all minimal subgroups of G are c-normal in

G, then G € §.

Corollary 9 ([2, Theorem 3.1]). If every subgroup of G of prime order
and each cyclic subgroup of G with order 4 are s-permutable in G, then
G el

Corollary 10 ([24, Theorem 3.9]). Assume that § is a saturated for-
mation which contains the class of all supersoluble groups. Then N 1 G
satisfies G/N € § and if every subgroup of order 4 and every minimal
subgroup of N are c-normal in G if and only if G € §.
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