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On nearly SΦ-normal subgroups of finite groups
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Abstract. Let G be a finite group, H a subgroup of G
and HsG the subgroup of H generated by all those subgroups of
H which are s-permutable in G. Then we say that H is nearly
SΦ-normal in G if G has a normal subgroup T such that HT �G
and H ∩ T ≤ Φ(H)HsG. In this paper, we study the structure of
group G under the condition that some given subgroups of G are
nearly SΦ-normal in G. Some known results are generalised.

Introduction

Throughout this paper, all groups are finite. G always denotes a group, p
denotes a prime, π denotes a set of primes, and Φ(G) denotes the Frattini
subgroup of G.

Recall that a subgroup H of a group G is said to be s-permutable
(or s-quasinormal) [17] in G if HP = PH for all Sylow subgroups P of
G. A subgroup H of G is said to be c-normal in G [30] if there exists
a normal subgroup T of G such that HT = G and H ∩ T ≤ HG, where
HG is the largest normal subgroup of G contained in H. A subgroup
H of G is said to be Φ-S-supplemented in G [18, 19] if there exists a
subnormal subgroup T of G such that HT = G and H ∩ T ≤ Φ(H),
where Φ(H) is Frattini subgroup of H. A subgroup H of G is said to
be weakly Φ-supplemented in G [20] if there exists a subgroup T of G
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such that HT = G and H ∩ T ≤ Φ(H). A subgroup H of G is said to
be nearly s-normal [32] in G if there exists a normal subgroup T of G
such that HT � G and H ∩ T ≤ HsG, where HsG is the subgroup of H
generated by all those subgroups of H which are s-permutable in G. A
subgroup H of G is said to be weakly SΦ-supplemented [33] in G if there
exists a subgroup T of G such that G = HT and H ∩ T ≤ Φ(H)HsG.
By using these concepts, a large number of results have been obtained
(see, for example, [3, 17–22, 30, 32, 33]). As a continuation of the above
research, we now introduce the following new notion.

Definition 1. Let H be a subgroup of G. We say that H is nearly
SΦ-normal in G when G has a normal subgroup T which satisfies HT� G
and H ∩ T ≤ Φ(H)HsG, here HsG generated by all those subgroups of H
which are all s-permutable in G.

Obviously, all normal subgroups, all s-permutable subgroups, all
c-normal subgroups and all nearly s-normal subgroups of G are all nearly
SΦ-normal in G. But the next example implies that the converse does
not hold.

Example 1. Let G = S5 be the symmetric group of order 120 and
H = ⟨(1234)⟩ ≤ G. It is easily see that HsG = HG = 1. As H is not
permutable with Sylow 3-subgroup of G, H is not s-permutable in G.
Since HA5 = G and H ∩ A5 = Φ(H) = ⟨(13)(24)⟩, clearly H is nearly
SΦ-normal in G, but neither nearly s-normal in G nor c-normal in G.

Recall that a class of groups F is said to be a formation if it is closed
under taking homomorphic images and subdirect products. A forma-
tion F is saturated (respectively solubly saturated) if G ∈ F whenever
G/Φ(G) ∈ F (respectively G/Φ(N) ∈ F for a soluble normal subgroup
N of G) (see for example, [10, p. 3]). Also, the F-residual of G, denoted
by GF, is the smallest normal subgroup of G with the quotient in F.

Following [8, 29] or [12], for a formation F, a chief factor H/K of G
is said to be F-central in G if H/K ⋊ G/CG(H/K) ∈ F. A normal
subgroup N of G is F-central, if either N = 1 or N ̸= 1 and every chief
factor of G below N is F-central in G. The F-hypercentral ZF(G) of G is
the product of all normal F-central subgroups of G.

A subgroup H of G has a supersoluble supplement in G if there exists
a supersoluble subgroup L of G such that G = HL.

We use U and Np to denote the classes of all supersoluble groups and
p-nilpotent groups respectively. In this paper, we obtain the following
results.



M. T. Hussain, S. Ullah 153

Theorem 1. Assume that F is a solubly saturated formation that con-
tains the class of all supersoluble groups and E a normal soluble subgroup
of G satisfies G/E ∈ F. If every maximal subgroup of each noncyclic Sy-
low subgroup of F (E) either has a supersoluble supplement in G or is
nearly SΦ-normal, then G ∈ F.

Theorem 2. Assume that F is a solubly saturated formation which con-
taining the class of all supersoluble groups and E�G satisfies G/E ∈ F.
Suppose that X = E or X = F ∗(E). If for every noncyclic Sylow sub-
group Q of X and each cyclic subgroup of Q with order q or order 4
(when the Sylow 2-subgroup of X is non-abelian) either has a supersolu-
ble supplement or is nearly SΦ-normal in G, then G ∈ F.

We shall prove Theorems 1 and 2 in section 3. In section 4, we give
some applications of our results.

The notation and terminology in this paper are standard and the
reader is referred to see [5, 8, 10,12,29].

1. Preliminaries

The following known results will be needed in this paper.

Lemma 1 ([33, Lemma 2.1]). Let N be a normal subgroup of G and H
a subgroup of G with (|H|, |N |) = 1. Then Φ(H)N/N = Φ(HN/N).

Lemma 2. Let G has a subgroup H and N �G.
(1) Assume that H is s-permutable in G. Then HN/N is s-permutable

in G/N (see [10, Chapter 1, Lemma 5.34]).
(2) Assume that H is a p-group. So Op(G) ≤ NG(H) if and only if

H is s-permutable in G (see [25, Lemma A]).

Lemma 3 ([26, Lemma 2.8]). Let H, K be subgroups of G and H ≤ K,
then

(1) HsG is a s-permutable subgroup of G and HG ≤ HsG;
(2) HsG ≤ HsK ;
(3) If H �G, then (K/H)s(G/H) = KsG/H.

Lemma 4. Let H ≤ K ≤ G and R�G, then
(1) H is nearly SΦ-normal in G if and only if N�G satisfies HN�G,

HG ≤ N , and H ∩N ≤ Φ(H)HsG.
(2) If H is nearly SΦ-normal in G, then H is nearly SΦ-normal in

K.
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(3) Assume that R ≤ H. If H is nearly SΦ-normal in G, then
H/R is nearly SΦ-normal in G/R. Moreover, the converse holds when
R ≤ Φ(H).

(4) If H is nearly SΦ-normal in G with (|H|, |R|) = 1, then HR/R
is nearly SΦ-normal in G/R.

Proof. Assume that H is nearly SΦ-normal in G. So we there exists
N �G satisfies HN �G and H ∩N ≤ Φ(H)HsG.

(1) =⇒ Let N0 = NHG. Then clearly, N0�G and HN0 = HNHG =
HN � G. It can easily see that H ∩ N0 = H ∩ NHG = (H ∩ N)HG ≤
Φ(H)HsG.

⇐= Obviously.

(2) Let N0 = N ∩ K. Then N0 � K and HN0 = H(N ∩ K) =
HN ∩K � K. By Lemma 3(2), we have that H ∩N0 = H ∩ (N ∩K) ≤
H ∩ N ≤ Φ(H)HsG ≤ Φ(H)HsK , which means that H is nearly SΦ-
normal in K.

(3) Now assume that H is nearly SΦ-normal in G. Consider G =
G/R. Then N = NR/R � G/R = G and H N = (H/R)(NR/R) =
HNR/R � G/R = G. Moreover, by [8, A, 9.2(e)] and Lemma 3(3), we
have that H∩N = (H/R)∩(NR/R) = (H∩N)R/R ≤ Φ(H)HsGR/R ≤
Φ(H/R)(H/R)s(G/R) = Φ(H)HsG. SoH/R is nearly SΦ-normal in G/R.

Now suppose that R ≤ Φ(H) andN/R�G/R satisfies (H/R)(N/R)�
G/R and

(H/R) ∩ (N/R) ≤ Φ(H/R)(H/R)s(G/R).

Then HN � G. Since R ≤ Φ(H), it implies that Φ(H/R) = Φ(H)/R
by[8, A, 9.2(e)], and so H ∩N ≤ Φ(H)HsG by Lemma 3(3). This shows
that H is nearly SΦ-normal in G.

(4) Let G = G/R , H = HR/R and N = NR/R. Then N � G and
H N �G.

Since (|H|, |R|) = 1, we have

(|HR ∩N : HR ∩N ∩R|, |HR ∩N : HR ∩N ∩H|) = 1.

[12, Lemma 3.8.1] implies that

(HR ∩N) = (HR ∩N ∩R)(HR ∩N ∩H) = (N ∩H)(N ∩R).
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It follows that from Lemmas 1 and 2(1) that

H ∩N = (HR/R) ∩ (NR/R)

= (HR ∩NR)/R

= (HR ∩N)R/R

= (H ∩N)R/R

≤ Φ(H)HsGR/R

≤ Φ(HR/R)(HR/R)s(G/R).

Hence HR/R is nearly SΦ-normal in G/R.

Let P be a p-group. If P is not a nonabelian 2-group, then we use
Ω(P ) to denote the subgroup Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

Lemma 5 ([13, Lemma 4.3]). Let C be a Thompson critical subgroup
(see [9, p.185]) of a nontrivial p-group of P .

(1) If p is odd, then the exponent of Ω(C) is p.

(2) If p = 2, then the exponent of Ω(C) is at most 4. Moreover, If P
is an abelian 2-group, then the exponent of Ω(C) is 2.

Lemma 6 ([28, Theorem B]). Assume that F is a formation and N �G.
If F ∗(N) ≤ ZF(G), then N ≤ ZF(G).

Lemma 7 ([11, Lemma 3.3]). Let F be a solubly saturated formation
which containing U and also N � G satisfies G/N ∈ F. If N ≤ ZU(G),
then G ∈ F. In particular, if N is cyclic, then G ∈ F.

Lemma 8 ([6, Lemma 2.12] and [6, Lemma 2.8]). Let F be a solubly
saturated formation and P a normal p-subgroup of G and C is a Thomp-
son critical subgroup of P . If either Ω(C) ≤ ZF(G) or P/Φ(P ) ≤
ZF(G/Φ(P )), then P ≤ ZF(G).

Lemma 9 ([34, Lemma 2.8]). Let N be a maximal subgroup of G and P
a normal p-subgroup of G such that G = NP , here p is a prime. Then
P ∩N �G.

Lemma 10 ([16] or [4, Theorem 12]). Let G be a minimal non-supersoluble
group, then G is soluble.
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2. Proofs of Theorems 1 and 2

We start the proof of Theorem 1 with the following lemma.

Proposition 1. Let G has a normal q-subgroup Q. If every maximal
subgroup of Q does not have a supersoluble supplement in G is nearly
SΦ-normal, then Q ≤ ZU(G).

Proof. Suppose that the proposition is false and we can consider a coun-
terexample of (G,Q) for which |G| + |Q| minimal. Clearly, G ̸= ZU(G),
which means that G is not supersoluble.

(1) There is a unique minimal normal subgroup L of G which con-
tained in Q, Q/L ≤ ZU(G/L) and |L| > q.

Assume that L is a minimal normal subgroup of G which contained
in Q. Then (G/L,Q/L) satisfies the hypothesis of the proposition by
Lemma 4(3). This shows that Q/L ≤ ZU(G/L). If |L| = q , then we
have that Q ≤ ZU(G), a contradiction. Hence |L| > q. Now consider
that if R is another minimal normal subgroup of G in Q satisfies L ̸= R.
With a similar argument, we can get Q/R ≤ ZU(G/R). It implies that
LR/R ≤ ZU(G/R), and thus |L| = q, a contradiction. Hence (1) holds.

(2) Φ(Q) ̸= 1.
Assume that Φ(Q) = 1, then we get Q is an elementary abelian

group. So L has a complement S in Q. Let L1 be a maximal subgroup
of L satisfies L1 is normal in Gq, where Gq is some Sylow q-subgroup of
G. Hence Q1 = L1S is a maximal subgroup of Q and Q1 ∩ L = L1. It
follows from the hypothesis that either Q1 has a supersoluble supplement
in G or is nearly SΦ-normal in G. If Q1 is nearly SΦ-normal in G, then
we get G has a normal subgroup N satisfies Q1N � G and Q1 ∩ N ≤
Φ(Q1)(Q1)sG = (Q1)sG. Thus Q∩Q1N = Q1(Q∩N)�G. If Q∩N = 1, it
follows that Q1 �G and we obtain Q1 ∩ L = L1 �G. Therefore |L| = q,
which contradicts with claim (1). Hence, 1 ̸= Q ∩ N � G. By claim
(1), L ≤ Q ∩ N , and so Q1 ∩ L ≤ Q1 ∩ N ≤ (Q1)sG. It follows that
L1 = Q1 ∩ L = (Q1)sG ∩ L is s-permutable in G (see Lemma 3(1) and
[17, Proposition 2]). Hence by Lemma 2(2), Oq(G) ≤ NG(L1) since L1 is
a q-group. But as L1 �Gq, we obtain L1 �G. This implies that |L| = q.
So this contradiction means that Q1 has a supersoluble supplement S
in G. Thus G = Q1S = QS. Since (G/L)/(Q/L) ∼= G/Q ∼= S/S ∩ Q
is supersoluble and by (1) Q/L ≤ ZU(G/L), we can obtain that G/L
is supersoluble. But G is not supersoluble, and so L ≰ Φ(G), which
means that G has a maximal subgroup M satisfies L ̸≤ M and G = LM .
Clearly, Q ∩ M � QM = G. If Q ∩ M ̸= 1, then by (1), L ≤ Q ∩ M ,
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which is impossible. Hence Q ∩M = 1. Then Q = Q ∩ LM = L and so
G = L1S = LS. Clearly, L ∩ S � G. If L ∩ S ̸= 1, then L ≤ S and so
G = S is supersoluble. This contradiction shows that L ∩ S = 1. Hence
L = L ∩ L1S = L1, a contradiction. Hence Φ(Q) ̸= 1.

(3) Final contradiction.

(1) and (2) show that L ≤ Φ(Q) and Q/L ≤ ZU(G/L). It follows
that Q/Φ(Q) ≤ ZU(G/Φ(Q)). Then Q ≤ ZU(G) by Lemma 8. The final
contradiction finishes the proof.

Proof of Theorem 1. Since E is soluble, we get F (E) ̸= 1. Let Q
be a Sylow q-subgroup of F (E), here q belongs in π(F (E)). It is easy to
see that, Q is a normal q-subgroup of G. Suppose that Q is noncyclic,
then for every maximal subgroup of Q which either has a supersoluble
supplement in G or is nearly SΦ-normal in G. Then Q ≤ ZU(G) by
Proposition 1. So we need to consider Q is cyclic. Suppose that K/L
be any G-chief factor below Q. Thus |K/L| = q, and therefore K/L is
U-central in G. So, Q ≤ ZU(G). This implies that F (E) ≤ ZU(G). In
particular, since E is soluble. Therefore by [10, Chap. 1, Proposition 5.4],
we can get F ∗(E) = F (E). Then we have that G ∈ F by Lemma 6 and
Lemma 7.

The following two propositions are main steps to prove Theorem 2.

Proposition 2. Suppose that N � G satisfies G/N is q-nilpotent, here
q is the smallest prime belongs in π(G). If each cyclic subgroup of N of
order q or 4 (when the Sylow 2-subgroup of N is non-abelian) is nearly
SΦ-normal in G, then G is q-nilpotent.

Proof. Suppose that the proposition is false and we can consider a coun-
terexample of G for which |G| minimal. Then

(1) G is a minimal non-nilpotent group.

Assume thatM is a proper subgroup of G. SinceM/M∩N ∼=MN/N
≤ G/N , we get M/M ∩N is q-nilpotent. Since every cyclic subgroup of
M ∩N of order q or 4 (when the Sylow 2-subgroup of N is not abelian) is
nearly SΦ-normal in M by the hypothesis and Lemma 4(2). This means
that M satisfies the hypothesis of the proposition. Thus M is q-nilpotent
by the choice of G. It means that G is a minimal non-q-nilpotent group.

By [8, Chap. VII, Theorem 6.18] and [15, Chap. IV, Proposition 5.4],
G is a minimal non-nilpotent group, G = Q ⋊ P , where P is a Sylow
p-subgroup of G, Q = GN, Q/Φ(Q) is a G-chief factor, exp(Q) is q or 4
(when Q is a nonabelian 2-group) and Φ(G) = ZN(G).



158 On nearly SΦ-normal subgroups

(2) Assume that y is an element of order q of Q. Then we have that
⟨y⟩ ≤ Φ(Q).

First we prove that Q ≤ N . Since G/N is q-nilpotent, G = Q ⋊ P
and G/N = (QN/N) ⋊ (PN/N). It shows that G/N is nilpotent, and
so Q = GN ≤ N . Let A = ⟨y⟩ and |⟨y⟩| = q. Then G has a normal
subgroup T such that AT �G and A ∩ T ≤ Φ(A)AsG = AsG. It is clear
that either AsG = A or AsG = 1. If AsG = A, then A is s-permutable
in G by Lemma 3(1). It follows form Lemma 2 that Oq(G/Φ(Q)) ≤
NG/Φ(Q)(AΦ(Q)/Φ(Q)). In addition, because AΦ(Q)/Φ(Q)� Q/Φ(Q),
we can get AΦ(Q)/Φ(Q)� G/Φ(Q). But Q/Φ(Q) is a G-chief factor,
we have that either AΦ(Q) = Q or AΦ(Q) = Φ(Q). For the former case,
we can get A = Q. Then by Lemma [23, (10.1.9)], G is q-nilpotent,
a contradiction. So AΦ(Q) = Φ(Q), which means that A ≤ Φ(Q).
If AsG = 1, then AT � G and A ∩ T = 1. Since Q/Φ(Q) is a chief
factor of G and (Q ∩AT )Φ(Q)/Φ(Q)� G/Φ(Q). We have that either
(Q ∩ AT )Φ(Q) = Φ(Q) or (Q ∩ AT )Φ(Q) = Q. In the former case, it is
clear that A ≤ Φ(Q). Now we consider (Q ∩ AT )Φ(Q) = Q. It implies
that A(Q ∩ T ) = Q. If Q ∩ T ≤ Φ(Q), then Q = A, a contradiction as
above. Hence Q ∩ T ≰ Φ(Q). But as (Q ∩ T )Φ(Q)/Φ(Q)�G/Φ(Q) and
Q/Φ(Q) is a chief factor of G, we obtain that (Q ∩ T )Φ(Q) = Q, and so
Q ≤ T . It follows that A = A ∩ T ≤ AsG = 1, a contradiction. This
contradiction shows that, in any case, we have A ≤ Φ(Q). Hence (2)
holds.

(3) Q is a nonabelian 2-group.

If either Q is abelian or Q is nonabelian and q > 2, then exp(Q) is
q. (2) means that Q ≤ Φ(Q), a contradiction. Then Q is a nonabelian
2-group.

(4) Final contradiction.

Let y be an arbitrary element of Q with order 4 and H = ⟨y⟩. Our
claim is H ≤ Φ(Q). If H = HsG, then H ≤ Φ(Q) due to the same
argument as in claim (2). If H ̸= HsG, then HsG ≤ Φ(H). There exists
T � G satisfies HT � G and H ∩ T ≤ Φ(H) by the hypothesis. Since
Q/Φ(Q) is a chief factor of G and (Q∩HT )Φ(Q)/Φ(Q)� G/Φ(Q). We
have that either (Q ∩HT )Φ(Q) = Φ(Q) or (Q ∩HT )Φ(Q) = Q. In the
former case it is clear that H ≤ Φ(Q). Now we consider (Q∩HT )Φ(Q) =
Q. It follows thatH(Q∩T ) = Q. If Q∩T ≤ Φ(Q), then Q = H. Then by
[23, (10.1.9)], G is q-nilpotent, a contradiction. Therefore Q∩T ≰ Φ(Q).
But as (Q ∩ T )Φ(Q)/Φ(Q) � G/Φ(Q) and Q/Φ(Q) is a chief factor of
G, we obtain that (Q ∩ T )Φ(Q) = Q, and so Q ≤ T . It follows that
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H = H∩T ≤ Φ(H), which is impossible. From above, we get H ≤ Φ(Q).
But by (3), exp(Q) is 4, (2) means that Q ≤ Φ(Q), a contradiction. This
contradiction finishes the proof.

Proposition 3. Suppose that Q is a normal q-subgroup of G. If each cyc-
lic subgroup of Q of order q or order 4 (when Q is a nonabelian 2-group)
either has a supersoluble supplement in G or is nearly SΦ-normal, then
Q ≤ ZU(G).

Proof. Let the proposition is false and we can consider a counterexample
of (G,Q) for which |G|+ |Q| minimal.

(1) There exists a unique normal subgroup N of G satisfies Q/N is
a G-chief factor, N ≤ ZU(G), and |Q/N | > q.

Let Q/N be a G-chief factor. Then the hypothesis holds for
(G,N). So N ≤ ZU(G). Assume that |Q/N | = q, then Q/N ≤ ZU(G/N),
and so Q ≤ ZU(G). This contradiction shows that |Q/N | > q. Suppose
that Q/K is a chief factor of G with Q/N ̸= Q/K, then with a similar
argument as above, we can get K ≤ ZU(G). Therefore by Lemma
[10, Chap. 1, Theorem 2.6(d)]

Q/N = NK/N ≤ NZU(G)/N ≤ ZU(G/N).

Since N ≤ ZU(G), we have Q ≤ ZU(G), a contradiction of supposition.

(2) exp(Q) is q or 4 (when Q is a nonabelian 2-group).

Assume that Q has a Thompson critical subgroup C. If Ω(C) < Q,
then Ω(C) ≤ N ≤ ZU(G) by claim (1). Thus by Lemma 8, Q ≤ ZU(G),
a contradiction. Hence Q = Ω(C), and therefore exp(Q) is q or 4 (when
Q is a nonabelian 2-group) by Lemma 5.

(3) Final contradiction.

Since (Q/N) ∩ Z(Gq/N) > 1, here Gq is some Sylow q-subgroup
of G. Suppose that K/N ≤ (Q/N) ∩ Z(Gq/N) and |K/N | = q. Let
y ∈ K\N and H = ⟨y⟩. Then we get K = HN and |H| = q or 4 (when
Q is a nonabelian 2-group) by (2). If H = HsG, then by Lemma 2(1) and
Lemma 3(1), we have HN/N is s-permutable in G/N . Hence by Lemma
2(2) that Oq(G/N) ≤ NG/N (HN/N). It is easy to see that HN/N �

Gq/N . So it shows that HN/N �G/N . But Q/N is a G-chief factor and
H ̸≤ N , we get Q = HN . So |Q/N | = |K/N | = q, which contradicts
with |Q/N | > q. Thus H ̸= HsG and therefore HsG ≤ Φ(H). By the
hypothesis, H is either nearly SΦ-normal in G or has a supersoluble
supplement in G. First assume that H is nearly SΦ-normal in G. So
there exists T � G satisfies HT � G and H ∩ T ≤ Φ(H)HsG = Φ(H).
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Since Q/N is a chief factor of G and (Q∩HT )N/N�G/N , we have that
either (Q∩HT )N = N or (Q∩HT )N = Q. For the former case, we see
that H ≤ N , a contradiction. Hence now we consider (Q ∩HT )N = Q.
It follows that H(Q∩T )N = Q. If Q∩T ≤ N , then K = HN = Q, and
so |Q/N | = |K/N | = q, a contradiction of claim (1). Hence Q ∩ T ≰ N ,
and so N ≤ Q ∩ T by claim (1). But as (Q ∩ T )N/N � G/N and Q/N
is a chief factor of G, we obtain that (Q ∩ T )N = Q, and so Q ≤ T . It
follows that H = H ∩ T ≤ Φ(H). This contradiction shows that H has
a supersoluble supplement S in G. Then G = HS = QS. If Q ≤ S,
then G = S is supersoluble, a contradiction. Therefore G has a maximal
subgroup M satisfies S ≤ M and G = QM . Then Q∩M is normal in G
by Lemma 9. By (1), Q ∩M ≤ N . So

Q = Q ∩HS = H(Q ∩ S) ≤ H(Q ∩M) ≤ HN = K,

a contradiction. This finishes the proof.

Proof of Theorem 2.

We first prove that the assertion holds for X = E. Let the theorem is
false and we can consider a counterexample of (G,E) for which |G|+ |E|
minimal. Then

(1) E is soluble.

If E is not soluble, then Feit-Thompson Theorem implies that 2 ∈
π(E). Assume that E has a cyclic Sylow 2-subgroup. By [23, (10.1.9)],
we have that E is 2-nilpotent. So E is soluble, a contradiction. There-
fore every Sylow 2-subgroup of E is noncyclic. Then every cyclic sub-
group of E with order 2 or 4 either has a supersoluble supplement or
is nearly SΦ-normal in G. If every cyclic subgroup of E of order 2 or
4 is nearly SΦ-normal in G, then by Proposition 2, E is 2-nilpotent, so
E is soluble, a contradiction. Hence, E has a cyclic subgroup H with
order 2 or 4 satisfies H has a supersoluble supplement S in G. Thus
G = HS = ES and so G/E = ES/E ∼= S/S ∩ E ∈ U. Now we need
to show that G is a minimal non-supersoluble group. Assume that R
is a proper subgroup of G. As R/R ∩ E ∼= RE/E ≤ G/E, we ob-
tain that R/R ∩ E ∈ U. Assume that ⟨y⟩ is a cyclic subgroup of a
non-cyclic Sylow subgroup of R ∩ E with order q or order 4 (when the
Sylow 2-subgroup of R∩E is non-abelian). Then either ⟨y⟩ has a super-
soluble supplement in G or is nearly SΦ-normal in G. If ⟨y⟩ is nearly
SΦ-normal in G, then ⟨y⟩ is nearly SΦ-normal in R by Lemma 4(2).
If N is a supersoluble supplement of ⟨y⟩ in G, then R = ⟨y⟩(N ∩ R)
and N ∩R ∈ U. It imply that (R,R ∩ E) satisfies the hypothesis. Then
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R ∈ U by the choice of (G,E). Therefore G is a minimal non-supersoluble
group. Thus G is soluble by ([16] or [4, Theorem 12]), and so E is so-
luble. Hence by this contradiction (1) exists.

(2) GF = V is a q-group, V/Φ(V ) is a G-chief factor, and exp(V ) is
q or 4 (when q = 2 and V is nonabelian).

Since G/E ∈ F, we have V ⊆ E. Thus by (1), V is soluble. If
V ⊆ Φ(G), then V ⊆ SG for every maximal subgroup S of G, and so
G/SG ∈ F. Therefore claim (2) holds by using Semenchuk Theorem (see
[27] or [12, Theorem 3.4.2]). Now suppose that V ̸⊆ Φ(G). Let G has
a maximal subgroup S such that V ̸⊆ S. Then G = V S = ES and
S/S ∩ E ∼= SE/E = G/E ∈ F. For every non-cyclic Sylow subgroup P
of S∩E, we can let ⟨y⟩ be a cyclic subgroup of P of prime order or order
4 (when the Sylow 2-subgroup of S ∩ E is non-abelian). As the same
discussion as (1) of the proof, (S, S ∩E) also satisfies the hypothesis. It
means that S ∈ F. Then we have (2) by the Semenchuk Theorem ([27]
or [12, Theorem 3.4.2]).

(3) Final contradiction.

If V is noncyclic, then by Proposition 3 and (2), we have that V ≤
ZU(G). Assume that V is cyclic. So, obviously, V ≤ ZU(G). It follows
that V ∈ F. This contradiction prove that the theorem is holds for
X = E.

Now we prove that the theorem is also true for X = F ∗(E).

By Lemma 4(2), (F ∗(E), F ∗(E)) also satisfies the hypothesis. As
above, we know that F ∗(E) is supersoluble, and thus F (E) = F ∗(E).
Assume that H is a Sylow q-subgroup of F (E). Then H is normal in
G. Assume that H is non-cyclic, then we have that the hypothesis of
Proposition 3 holds for H. Hence H ≤ ZU(G). Now let H is cyclic,
then obviously, H ≤ ZU(G). This induces that F ∗(E) = F (E) ≤ ZU(G).
Hence from Lemma 6, E ≤ ZU(G). It implies by Lemma 7 that G ∈ F.
This finishes the proof.

3. Some applications of our results

From Theorem 1, we obtain the following corollaries.

Corollary 1 ([1, Theorem 3.2]). Assume that N �G satisfies G/N ∈ U
and G is soluble. If each maximal subgroup of every Sylow subgroup of
F (N), which are normal in G, then G ∈ U.

Corollary 2 ([21, Theorem 2]). Assume that N is a normal soluble
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subgroup of G satisfies G/N ∈ U. Assume that every maximal subgroup
of the Sylow subgroups of F (N) are c-normal in G, then G ∈ U.

Corollary 3 ([31, Theorem 1]). Assume that F is a saturated formation
which contains the class of all supersoluble groups and N a normal soluble
subgroup of G satisfies G/N ∈ F. If every maximal subgroup of the Sylow
subgroups of F (N) are c-normal in G, then G ∈ F.

Corollary 4 ([1, Theorem 4.2]). Let G be a group and E a soluble nor-
mal subgroup of G with supersoluble quotient G/E. Suppose that every
maximal subgroups of every Sylow subgroup of F (E) is s-permutable in
G. Then G is supersoluble.

Theorem 2 covers a lot of results, in particular:

Corollary 5 ([32, Theorem 3.8]). Let F be a saturated formation con-
taining all supersoluble groups and G be a group. Then G ∈ F if and
only if there exists a normal subgroup E of G such that G/E ∈ F and
every cyclic subgroup of every noncyclic Sylow subgroup of E with prime
order or order 4 (if the Sylow 2-subgroup is not abelian) not having a
supersoluble supplement in G is nearly s-normal in G.

Corollary 6 ([30, Theorem 4.2]). If every subgroup of order 4 or all
minimal subgroups of G are c-normal in G, then G ∈ U.

Corollary 7 ([22, Theorem 3.4]). Assume that N �G with supersoluble
quotient G/N . If every subgroup of order 4 (when the Sylow 2-subgroup
of N is non-abelian) or all minimal subgroups of N are c-normal in G,
then G ∈ U.

Corollary 8 ([3, Theorem 3.4]). Assume that F is a saturated forma-
tion which contains the class of all supersoluble groups. If every cyclic
subgroup with order 4 and all minimal subgroups of GF are c-normal in
G, then G ∈ F.

Corollary 9 ([2, Theorem 3.1]). If every subgroup of G of prime order
and each cyclic subgroup of G with order 4 are s-permutable in G, then
G ∈ U.

Corollary 10 ([24, Theorem 3.9]). Assume that F is a saturated for-
mation which contains the class of all supersoluble groups. Then N �G
satisfies G/N ∈ F and if every subgroup of order 4 and every minimal
subgroup of N are c-normal in G if and only if G ∈ F.
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