© Algebra and Discrete Mathematics Volume **36** (2023). Number 2, pp. 151–165 DOI:10.12958/adm2007

On nearly S Φ -normal subgroups of finite groups M. T. Hussain and S. Ullah

Communicated by L. A. Kurdachenko

ABSTRACT. Let G be a finite group, H a subgroup of G and H_{sG} the subgroup of H generated by all those subgroups of H which are s-permutable in G. Then we say that H is nearly $S\Phi$ -normal in G if G has a normal subgroup T such that $HT \leq G$ and $H \cap T \leq \Phi(H)H_{sG}$. In this paper, we study the structure of group G under the condition that some given subgroups of G are nearly $S\Phi$ -normal in G. Some known results are generalised.

Introduction

Throughout this paper, all groups are finite. G always denotes a group, p denotes a prime, π denotes a set of primes, and $\Phi(G)$ denotes the Frattini subgroup of G.

Recall that a subgroup H of a group G is said to be *s*-permutable (or *s*-quasinormal) [17] in G if HP = PH for all Sylow subgroups P of G. A subgroup H of G is said to be *c*-normal in G [30] if there exists a normal subgroup T of G such that HT = G and $H \cap T \leq H_G$, where H_G is the largest normal subgroup of G contained in H. A subgroup H of G is said to be Φ -S-supplemented in G [18, 19] if there exists a subnormal subgroup T of G such that HT = G and $H \cap T \leq \Phi(H)$, where $\Phi(H)$ is Frattini subgroup of H. A subgroup H of G is said to be weakly Φ -supplemented in G [20] if there exists a subgroup T of G

The authors thank the referees for their careful reading and helpful comments.

²⁰²⁰ Mathematics Subject Classification: 20D10, 20D2, 20D35.

Key words and phrases: finite group, nearly $S\Phi$ -normal subgroup, Sylow p-subgroup, p-nilpotent group, supersoluble group.

such that HT = G and $H \cap T \leq \Phi(H)$. A subgroup H of G is said to be *nearly s-normal* [32] in G if there exists a normal subgroup T of Gsuch that $HT \leq G$ and $H \cap T \leq H_{sG}$, where H_{sG} is the subgroup of Hgenerated by all those subgroups of H which are *s*-permutable in G. A subgroup H of G is said to be *weakly* $S\Phi$ -supplemented [33] in G if there exists a subgroup T of G such that G = HT and $H \cap T \leq \Phi(H)H_{sG}$. By using these concepts, a large number of results have been obtained (see, for example, [3, 17-22, 30, 32, 33]). As a continuation of the above research, we now introduce the following new notion.

Definition 1. Let H be a subgroup of G. We say that H is nearly $S\Phi$ -normal in G when G has a normal subgroup T which satisfies $HT \trianglelefteq G$ and $H \cap T \le \Phi(H)H_{sG}$, here H_{sG} generated by all those subgroups of H which are all s-permutable in G.

Obviously, all normal subgroups, all *s*-permutable subgroups, all *c*-normal subgroups and all nearly *s*-normal subgroups of *G* are all nearly $S\Phi$ -normal in *G*. But the next example implies that the converse does not hold.

Example 1. Let $G = S_5$ be the symmetric group of order 120 and $H = \langle (1234) \rangle \leq G$. It is easily see that $H_{sG} = H_G = 1$. As H is not permutable with Sylow 3-subgroup of G, H is not s-permutable in G. Since $HA_5 = G$ and $H \cap A_5 = \Phi(H) = \langle (13)(24) \rangle$, clearly H is nearly $S\Phi$ -normal in G, but neither nearly s-normal in G nor c-normal in G.

Recall that a class of groups \mathfrak{F} is said to be a *formation* if it is closed under taking homomorphic images and subdirect products. A formation \mathfrak{F} is *saturated* (respectively *solubly saturated*) if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$ (respectively $G/\Phi(N) \in \mathfrak{F}$ for a soluble normal subgroup N of G) (see for example, [10, p. 3]). Also, the \mathfrak{F} -residual of G, denoted by $G^{\mathfrak{F}}$, is the smallest normal subgroup of G with the quotient in \mathfrak{F} .

Following [8,29] or [12], for a formation \mathfrak{F} , a chief factor H/K of G is said to be \mathfrak{F} -central in G if $H/K \rtimes G/C_G(H/K) \in \mathfrak{F}$. A normal subgroup N of G is \mathfrak{F} -central, if either N = 1 or $N \neq 1$ and every chief factor of G below N is \mathfrak{F} -central in G. The \mathfrak{F} -hypercentral $Z_{\mathfrak{F}}(G)$ of G is the product of all normal \mathfrak{F} -central subgroups of G.

A subgroup H of G has a supersoluble supplement in G if there exists a supersoluble subgroup L of G such that G = HL.

We use \mathfrak{U} and $\mathfrak{N}_{\mathfrak{p}}$ to denote the classes of all supersoluble groups and *p*-nilpotent groups respectively. In this paper, we obtain the following results.

Theorem 1. Assume that \mathfrak{F} is a solubly saturated formation that contains the class of all supersoluble groups and E a normal soluble subgroup of G satisfies $G/E \in \mathfrak{F}$. If every maximal subgroup of each noncyclic Sylow subgroup of F(E) either has a supersoluble supplement in G or is nearly $S\Phi$ -normal, then $G \in \mathfrak{F}$.

Theorem 2. Assume that \mathfrak{F} is a solubly saturated formation which containing the class of all supersoluble groups and $E \trianglelefteq G$ satisfies $G/E \in \mathfrak{F}$. Suppose that X = E or $X = F^*(E)$. If for every noncyclic Sylow subgroup Q of X and each cyclic subgroup of Q with order q or order 4(when the Sylow 2-subgroup of X is non-abelian) either has a supersoluble supplement or is nearly $S\Phi$ -normal in G, then $G \in \mathfrak{F}$.

We shall prove Theorems 1 and 2 in section 3. In section 4, we give some applications of our results.

The notation and terminology in this paper are standard and the reader is referred to see [5, 8, 10, 12, 29].

1. Preliminaries

The following known results will be needed in this paper.

Lemma 1 ([33, Lemma 2.1]). Let N be a normal subgroup of G and H a subgroup of G with (|H|, |N|) = 1. Then $\Phi(H)N/N = \Phi(HN/N)$.

Lemma 2. Let G has a subgroup H and $N \leq G$.

(1) Assume that H is s-permutable in G. Then HN/N is s-permutable in G/N (see [10, Chapter 1, Lemma 5.34]).

(2) Assume that H is a p-group. So $O^p(G) \leq N_G(H)$ if and only if H is s-permutable in G (see [25, Lemma A]).

Lemma 3 ([26, Lemma 2.8]). Let H, K be subgroups of G and $H \leq K$, then

- (1) H_{sG} is a s-permutable subgroup of G and $H_G \leq H_{sG}$;
- (2) $H_{sG} \leq H_{sK}$;
- (3) If $H \leq G$, then $(K/H)_{s(G/H)} = K_{sG}/H$.

Lemma 4. Let $H \leq K \leq G$ and $R \leq G$, then

(1) *H* is nearly $S\Phi$ -normal in *G* if and only if $N \trianglelefteq G$ satisfies $HN \trianglelefteq G$, $H_G \le N$, and $H \cap N \le \Phi(H)H_{sG}$.

(2) If H is nearly $S\Phi$ -normal in G, then H is nearly $S\Phi$ -normal in K.

(3) Assume that $R \leq H$. If H is nearly $S\Phi$ -normal in G, then H/R is nearly $S\Phi$ -normal in G/R. Moreover, the converse holds when $R \leq \Phi(H)$.

(4) If H is nearly $S\Phi$ -normal in G with (|H|, |R|) = 1, then HR/R is nearly $S\Phi$ -normal in G/R.

Proof. Assume that H is nearly $S\Phi$ -normal in G. So we there exists $N \leq G$ satisfies $HN \leq G$ and $H \cap N \leq \Phi(H)H_{sG}$.

(1) \Longrightarrow Let $N_0 = NH_G$. Then clearly, $N_0 \leq G$ and $HN_0 = HNH_G = HN \leq G$. It can easily see that $H \cap N_0 = H \cap NH_G = (H \cap N)H_G \leq \Phi(H)H_{sG}$.

 \Leftarrow Obviously.

(2) Let $N_0 = N \cap K$. Then $N_0 \leq K$ and $HN_0 = H(N \cap K) = HN \cap K \leq K$. By Lemma 3(2), we have that $H \cap N_0 = H \cap (N \cap K) \leq H \cap N \leq \Phi(H)H_{sG} \leq \Phi(H)H_{sK}$, which means that H is nearly $S\Phi$ -normal in K.

(3) Now assume that H is nearly $S\Phi$ -normal in G. Consider $\overline{G} = G/R$. Then $\overline{N} = NR/R \trianglelefteq G/R = \overline{G}$ and $\overline{H} \ \overline{N} = (H/R)(NR/R) = HNR/R \trianglelefteq G/R = \overline{G}$. Moreover, by [8, A, 9.2(e)] and Lemma 3(3), we have that $\overline{H} \cap \overline{N} = (H/R) \cap (NR/R) = (H \cap N)R/R \le \Phi(H)H_{sG}R/R \le \Phi(H/R)(H/R)_{s(G/R)} = \Phi(\overline{H})\overline{H}_{s\overline{G}}$. So H/R is nearly $S\Phi$ -normal in G/R.

Now suppose that $R \leq \Phi(H)$ and $N/R \leq G/R$ satisfies $(H/R)(N/R) \leq G/R$ and

$$(H/R) \cap (N/R) \le \Phi(H/R)(H/R)_{s(G/R)}$$

Then $HN \leq G$. Since $R \leq \Phi(H)$, it implies that $\Phi(H/R) = \Phi(H)/R$ by[8, A, 9.2(e)], and so $H \cap N \leq \Phi(H)H_{sG}$ by Lemma 3(3). This shows that H is nearly $S\Phi$ -normal in G.

(4) Let $\overline{G} = G/R$, $\overline{H} = HR/R$ and $\overline{N} = NR/R$. Then $\overline{N} \trianglelefteq \overline{G}$ and $\overline{H} \ \overline{N} \trianglelefteq \overline{G}$.

Since (|H|, |R|) = 1, we have

$$(|HR \cap N : HR \cap N \cap R|, |HR \cap N : HR \cap N \cap H|) = 1.$$

[12, Lemma 3.8.1] implies that

 $(HR \cap N) = (HR \cap N \cap R)(HR \cap N \cap H) = (N \cap H)(N \cap R).$

It follows that from Lemmas 1 and 2(1) that

$$\begin{array}{rcl} \overline{H} \cap \overline{N} &=& (HR/R) \cap (NR/R) \\ &=& (HR \cap NR)/R \\ &=& (HR \cap N)R/R \\ &=& (H \cap N)R/R \\ &\leq& \Phi(H)H_{sG}R/R \\ &\leq& \Phi(HR/R)(HR/R)_{s(G/R)} \end{array}$$

Hence HR/R is nearly $S\Phi$ -normal in G/R.

Let P be a p-group. If P is not a nonabelian 2-group, then we use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

Lemma 5 ([13, Lemma 4.3]). Let C be a Thompson critical subgroup (see [9, p.185]) of a nontrivial p-group of P.

(1) If p is odd, then the exponent of $\Omega(C)$ is p.

(2) If p = 2, then the exponent of $\Omega(C)$ is at most 4. Moreover, If P is an abelian 2-group, then the exponent of $\Omega(C)$ is 2.

Lemma 6 ([28, Theorem B]). Assume that \mathfrak{F} is a formation and $N \leq G$. If $F^*(N) \leq Z_{\mathfrak{F}}(G)$, then $N \leq Z_{\mathfrak{F}}(G)$.

Lemma 7 ([11, Lemma 3.3]). Let \mathfrak{F} be a solubly saturated formation which containing \mathfrak{U} and also $N \leq G$ satisfies $G/N \in \mathfrak{F}$. If $N \leq Z_{\mathfrak{U}}(G)$, then $G \in \mathfrak{F}$. In particular, if N is cyclic, then $G \in \mathfrak{F}$.

Lemma 8 ([6, Lemma 2.12] and [6, Lemma 2.8]). Let \mathfrak{F} be a solubly saturated formation and P a normal p-subgroup of G and C is a Thompson critical subgroup of P. If either $\Omega(C) \leq Z_{\mathfrak{F}}(G)$ or $P/\Phi(P) \leq Z_{\mathfrak{F}}(G/\Phi(P))$, then $P \leq Z_{\mathfrak{F}}(G)$.

Lemma 9 ([34, Lemma 2.8]). Let N be a maximal subgroup of G and P a normal p-subgroup of G such that G = NP, here p is a prime. Then $P \cap N \leq G$.

Lemma 10 ([16] or [4, Theorem 12]). Let G be a minimal non-supersoluble group, then G is soluble.

2. Proofs of Theorems 1 and 2

We start the proof of Theorem 1 with the following lemma.

Proposition 1. Let G has a normal q-subgroup Q. If every maximal subgroup of Q does not have a supersoluble supplement in G is nearly $S\Phi$ -normal, then $Q \leq Z_{\mathfrak{U}}(G)$.

Proof. Suppose that the proposition is false and we can consider a counterexample of (G, Q) for which |G| + |Q| minimal. Clearly, $G \neq Z_{\mathfrak{U}}(G)$, which means that G is not supersoluble.

(1) There is a unique minimal normal subgroup L of G which contained in $Q, Q/L \leq Z_{\mathfrak{U}}(G/L)$ and |L| > q.

Assume that L is a minimal normal subgroup of G which contained in Q. Then (G/L, Q/L) satisfies the hypothesis of the proposition by Lemma 4(3). This shows that $Q/L \leq Z_{\mathfrak{U}}(G/L)$. If |L| = q, then we have that $Q \leq Z_{\mathfrak{U}}(G)$, a contradiction. Hence |L| > q. Now consider that if R is another minimal normal subgroup of G in Q satisfies $L \neq R$. With a similar argument, we can get $Q/R \leq Z_{\mathfrak{U}}(G/R)$. It implies that $LR/R \leq Z_{\mathfrak{U}}(G/R)$, and thus |L| = q, a contradiction. Hence (1) holds. (2) $\Phi(Q) \neq 1$.

Assume that $\Phi(Q) = 1$, then we get Q is an elementary abelian group. So L has a complement S in Q. Let L_1 be a maximal subgroup of L satisfies L_1 is normal in G_q , where G_q is some Sylow q-subgroup of G. Hence $Q_1 = L_1 S$ is a maximal subgroup of Q and $Q_1 \cap L = L_1$. It follows from the hypothesis that either Q_1 has a supersoluble supplement in G or is nearly $S\Phi$ -normal in G. If Q_1 is nearly $S\Phi$ -normal in G, then we get G has a normal subgroup N satisfies $Q_1 N \leq G$ and $Q_1 \cap N \leq$ $\Phi(Q_1)(Q_1)_{sG} = (Q_1)_{sG}$. Thus $Q \cap Q_1 N = Q_1(Q \cap N) \trianglelefteq G$. If $Q \cap N = 1$, it follows that $Q_1 \leq G$ and we obtain $Q_1 \cap L = L_1 \leq G$. Therefore |L| = q, which contradicts with claim (1). Hence, $1 \neq Q \cap N \trianglelefteq G$. By claim (1), $L \leq Q \cap N$, and so $Q_1 \cap L \leq Q_1 \cap N \leq (Q_1)_{sG}$. It follows that $L_1 = Q_1 \cap L = (Q_1)_{sG} \cap L$ is s-permutable in G (see Lemma 3(1) and [17, Proposition 2]). Hence by Lemma 2(2), $O^q(G) \leq N_G(L_1)$ since L_1 is a q-group. But as $L_1 \leq G_q$, we obtain $L_1 \leq G$. This implies that |L| = q. So this contradiction means that Q_1 has a supersoluble supplement S in G. Thus $G = Q_1 S = QS$. Since $(G/L)/(Q/L) \cong G/Q \cong S/S \cap Q$ is supersoluble and by (1) $Q/L \leq Z_{\mathfrak{U}}(G/L)$, we can obtain that G/Lis supersoluble. But G is not supersoluble, and so $L \leq \Phi(G)$, which means that G has a maximal subgroup M satisfies $L \not\leq M$ and G = LM. Clearly, $Q \cap M \leq QM = G$. If $Q \cap M \neq 1$, then by (1), $L \leq Q \cap M$, which is impossible. Hence $Q \cap M = 1$. Then $Q = Q \cap LM = L$ and so $G = L_1S = LS$. Clearly, $L \cap S \trianglelefteq G$. If $L \cap S \ne 1$, then $L \le S$ and so G = S is supersoluble. This contradiction shows that $L \cap S = 1$. Hence $L = L \cap L_1S = L_1$, a contradiction. Hence $\Phi(Q) \ne 1$.

(3) Final contradiction.

(1) and (2) show that $L \leq \Phi(Q)$ and $Q/L \leq Z_{\mathfrak{U}}(G/L)$. It follows that $Q/\Phi(Q) \leq Z_{\mathfrak{U}}(G/\Phi(Q))$. Then $Q \leq Z_{\mathfrak{U}}(G)$ by Lemma 8. The final contradiction finishes the proof.

Proof of Theorem 1. Since E is soluble, we get $F(E) \neq 1$. Let Q be a Sylow q-subgroup of F(E), here q belongs in $\pi(F(E))$. It is easy to see that, Q is a normal q-subgroup of G. Suppose that Q is noncyclic, then for every maximal subgroup of Q which either has a supersoluble supplement in G or is nearly $S\Phi$ -normal in G. Then $Q \leq Z_{\mathfrak{U}}(G)$ by Proposition 1. So we need to consider Q is cyclic. Suppose that K/L be any G-chief factor below Q. Thus |K/L| = q, and therefore K/L is \mathfrak{U} -central in G. So, $Q \leq Z_{\mathfrak{U}}(G)$. This implies that $F(E) \leq Z_{\mathfrak{U}}(G)$. In particular, since E is soluble. Therefore by [10, Chap. 1, Proposition 5.4], we can get $F^*(E) = F(E)$. Then we have that $G \in \mathfrak{F}$ by Lemma 6 and Lemma 7.

The following two propositions are main steps to prove Theorem 2.

Proposition 2. Suppose that $N \trianglelefteq G$ satisfies G/N is q-nilpotent, here q is the smallest prime belongs in $\pi(G)$. If each cyclic subgroup of N of order q or 4 (when the Sylow 2-subgroup of N is non-abelian) is nearly $S\Phi$ -normal in G, then G is q-nilpotent.

Proof. Suppose that the proposition is false and we can consider a counterexample of G for which |G| minimal. Then

(1) G is a minimal non-nilpotent group.

Assume that M is a proper subgroup of G. Since $M/M \cap N \cong MN/N \leq G/N$, we get $M/M \cap N$ is q-nilpotent. Since every cyclic subgroup of $M \cap N$ of order q or 4 (when the Sylow 2-subgroup of N is not abelian) is nearly $S\Phi$ -normal in M by the hypothesis and Lemma 4(2). This means that M satisfies the hypothesis of the proposition. Thus M is q-nilpotent by the choice of G. It means that G is a minimal non-q-nilpotent group.

By [8, Chap. VII, Theorem 6.18] and [15, Chap. IV, Proposition 5.4], G is a minimal non-nilpotent group, $G = Q \rtimes P$, where P is a Sylow p-subgroup of G, $Q = G^{\mathfrak{N}}, Q/\Phi(Q)$ is a G-chief factor, exp(Q) is q or 4 (when Q is a nonabelian 2-group) and $\Phi(G) = Z_{\mathfrak{N}}(G)$. (2) Assume that y is an element of order q of Q. Then we have that $\langle y \rangle \leq \Phi(Q)$.

First we prove that $Q \leq N$. Since G/N is q-nilpotent, $G = Q \rtimes P$ and $G/N = (QN/N) \rtimes (PN/N)$. It shows that G/N is nilpotent, and so $Q = G^{\mathfrak{N}} \leq N$. Let $A = \langle y \rangle$ and $|\langle y \rangle| = q$. Then G has a normal subgroup T such that $AT \leq G$ and $A \cap T \leq \Phi(A)A_{sG} = A_{sG}$. It is clear that either $A_{sG} = A$ or $A_{sG} = 1$. If $A_{sG} = A$, then A is s-permutable in G by Lemma 3(1). It follows form Lemma 2 that $O^q(G/\Phi(Q)) \leq$ $N_{G/\Phi(Q)}(A\Phi(Q)/\Phi(Q))$. In addition, because $A\Phi(Q)/\Phi(Q) \leq Q/\Phi(Q)$, we can get $A\Phi(Q)/\Phi(Q) \leq G/\Phi(Q)$. But $Q/\Phi(Q)$ is a G-chief factor, we have that either $A\Phi(Q) = Q$ or $A\Phi(Q) = \Phi(Q)$. For the former case, we can get A = Q. Then by Lemma [23, (10.1.9)], G is q-nilpotent, a contradiction. So $A\Phi(Q) = \Phi(Q)$, which means that $A \leq \Phi(Q)$. If $A_{sG} = 1$, then $AT \leq G$ and $A \cap T = 1$. Since $Q/\Phi(Q)$ is a chief factor of G and $(Q \cap AT)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q)$. We have that either $(Q \cap AT)\Phi(Q) = \Phi(Q)$ or $(Q \cap AT)\Phi(Q) = Q$. In the former case, it is clear that $A \leq \Phi(Q)$. Now we consider $(Q \cap AT)\Phi(Q) = Q$. It implies that $A(Q \cap T) = Q$. If $Q \cap T \leq \Phi(Q)$, then Q = A, a contradiction as above. Hence $Q \cap T \leq \Phi(Q)$. But as $(Q \cap T)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q)$ and $Q/\Phi(Q)$ is a chief factor of G, we obtain that $(Q \cap T)\Phi(Q) = Q$, and so $Q \leq T$. It follows that $A = A \cap T \leq A_{sG} = 1$, a contradiction. This contradiction shows that, in any case, we have $A \leq \Phi(Q)$. Hence (2) holds.

(3) Q is a nonabelian 2-group.

If either Q is abelian or Q is nonabelian and q > 2, then exp(Q) is q. (2) means that $Q \leq \Phi(Q)$, a contradiction. Then Q is a nonabelian 2-group.

(4) Final contradiction.

Let y be an arbitrary element of Q with order 4 and $H = \langle y \rangle$. Our claim is $H \leq \Phi(Q)$. If $H = H_{sG}$, then $H \leq \Phi(Q)$ due to the same argument as in claim (2). If $H \neq H_{sG}$, then $H_{sG} \leq \Phi(H)$. There exists $T \leq G$ satisfies $HT \leq G$ and $H \cap T \leq \Phi(H)$ by the hypothesis. Since $Q/\Phi(Q)$ is a chief factor of G and $(Q \cap HT)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q)$. We have that either $(Q \cap HT)\Phi(Q) = \Phi(Q)$ or $(Q \cap HT)\Phi(Q) = Q$. In the former case it is clear that $H \leq \Phi(Q)$. Now we consider $(Q \cap HT)\Phi(Q) =$ Q. It follows that $H(Q \cap T) = Q$. If $Q \cap T \leq \Phi(Q)$, then Q = H. Then by [23, (10.1.9)], G is q-nilpotent, a contradiction. Therefore $Q \cap T \nleq \Phi(Q)$. But as $(Q \cap T)\Phi(Q)/\Phi(Q) \leq G/\Phi(Q)$ and $Q/\Phi(Q)$ is a chief factor of G, we obtain that $(Q \cap T)\Phi(Q) = Q$, and so $Q \leq T$. It follows that $H = H \cap T \leq \Phi(H)$, which is impossible. From above, we get $H \leq \Phi(Q)$. But by (3), exp(Q) is 4, (2) means that $Q \leq \Phi(Q)$, a contradiction. This contradiction finishes the proof.

Proposition 3. Suppose that Q is a normal q-subgroup of G. If each cyclic subgroup of Q of order q or order 4 (when Q is a nonabelian 2-group) either has a supersoluble supplement in G or is nearly $S\Phi$ -normal, then $Q \leq Z_{\mathfrak{U}}(G)$.

Proof. Let the proposition is false and we can consider a counterexample of (G, Q) for which |G| + |Q| minimal.

(1) There exists a unique normal subgroup N of G satisfies Q/N is a G-chief factor, $N \leq Z_{\mathfrak{U}}(G)$, and |Q/N| > q.

Let Q/N be a *G*-chief factor. Then the hypothesis holds for (G, N). So $N \leq Z_{\mathfrak{U}}(G)$. Assume that |Q/N| = q, then $Q/N \leq Z_{\mathfrak{U}}(G/N)$, and so $Q \leq Z_{\mathfrak{U}}(G)$. This contradiction shows that |Q/N| > q. Suppose that Q/K is a chief factor of G with $Q/N \neq Q/K$, then with a similar argument as above, we can get $K \leq Z_{\mathfrak{U}}(G)$. Therefore by Lemma [10, Chap. 1, Theorem 2.6(d)]

$$Q/N = NK/N \le NZ_{\mathfrak{U}}(G)/N \le Z_{\mathfrak{U}}(G/N).$$

Since $N \leq Z_{\mathfrak{U}}(G)$, we have $Q \leq Z_{\mathfrak{U}}(G)$, a contradiction of supposition.

(2) exp(Q) is q or 4 (when Q is a nonabelian 2-group).

Assume that Q has a Thompson critical subgroup C. If $\Omega(C) < Q$, then $\Omega(C) \le N \le Z_{\mathfrak{U}}(G)$ by claim (1). Thus by Lemma 8, $Q \le Z_{\mathfrak{U}}(G)$, a contradiction. Hence $Q = \Omega(C)$, and therefore exp(Q) is q or 4 (when Q is a nonabelian 2-group) by Lemma 5.

(3) Final contradiction.

Since $(Q/N) \cap Z(G_q/N) > 1$, here G_q is some Sylow q-subgroup of G. Suppose that $K/N \leq (Q/N) \cap Z(G_q/N)$ and |K/N| = q. Let $y \in K \setminus N$ and $H = \langle y \rangle$. Then we get K = HN and |H| = q or 4 (when Q is a nonabelian 2-group) by (2). If $H = H_{sG}$, then by Lemma 2(1) and Lemma 3(1), we have HN/N is s-permutable in G/N. Hence by Lemma 2(2) that $O^q(G/N) \leq N_{G/N}(HN/N)$. It is easy to see that $HN/N \leq G_q/N$. So it shows that $HN/N \leq G/N$. But Q/N is a G-chief factor and $H \leq N$, we get Q = HN. So |Q/N| = |K/N| = q, which contradicts with |Q/N| > q. Thus $H \neq H_{sG}$ and therefore $H_{sG} \leq \Phi(H)$. By the hypothesis, H is either nearly $S\Phi$ -normal in G or has a supersoluble supplement in G. First assume that H is nearly $S\Phi$ -normal in G. So there exists $T \leq G$ satisfies $HT \leq G$ and $H \cap T \leq \Phi(H)H_{sG} = \Phi(H)$. Since Q/N is a chief factor of G and $(Q \cap HT)N/N \trianglelefteq G/N$, we have that either $(Q \cap HT)N = N$ or $(Q \cap HT)N = Q$. For the former case, we see that $H \le N$, a contradiction. Hence now we consider $(Q \cap HT)N = Q$. It follows that $H(Q \cap T)N = Q$. If $Q \cap T \le N$, then K = HN = Q, and so |Q/N| = |K/N| = q, a contradiction of claim (1). Hence $Q \cap T \nleq N$, and so $N \le Q \cap T$ by claim (1). But as $(Q \cap T)N/N \trianglelefteq G/N$ and Q/Nis a chief factor of G, we obtain that $(Q \cap T)N = Q$, and so $Q \le T$. It follows that $H = H \cap T \le \Phi(H)$. This contradiction shows that H has a supersoluble supplement S in G. Then G = HS = QS. If $Q \le S$, then G = S is supersoluble, a contradiction. Therefore G has a maximal subgroup M satisfies $S \le M$ and G = QM. Then $Q \cap M$ is normal in Gby Lemma 9. By (1), $Q \cap M \le N$. So

$$Q = Q \cap HS = H(Q \cap S) \le H(Q \cap M) \le HN = K.$$

a contradiction. This finishes the proof.

Proof of Theorem 2.

We first prove that the assertion holds for X = E. Let the theorem is false and we can consider a counterexample of (G, E) for which |G| + |E|minimal. Then

(1) E is soluble.

If E is not soluble, then Feit-Thompson Theorem implies that $2 \in$ $\pi(E)$. Assume that E has a cyclic Sylow 2-subgroup. By [23, (10.1.9)], we have that E is 2-nilpotent. So E is soluble, a contradiction. Therefor every Sylow 2-subgroup of E is noncyclic. Then every cyclic subgroup of E with order 2 or 4 either has a supersoluble supplement or is nearly $S\Phi$ -normal in G. If every cyclic subgroup of E of order 2 or 4 is nearly $S\Phi$ -normal in G, then by Proposition 2, E is 2-nilpotent, so E is soluble, a contradiction. Hence, E has a cyclic subgroup H with order 2 or 4 satisfies H has a supersoluble supplement S in G. Thus G = HS = ES and so $G/E = ES/E \cong S/S \cap E \in \mathfrak{U}$. Now we need to show that G is a minimal non-supersoluble group. Assume that Ris a proper subgroup of G. As $R/R \cap E \cong RE/E \leq G/E$, we obtain that $R/R \cap E \in \mathfrak{U}$. Assume that $\langle y \rangle$ is a cyclic subgroup of a non-cyclic Sylow subgroup of $R \cap E$ with order q or order 4 (when the Sylow 2-subgroup of $R \cap E$ is non-abelian). Then either $\langle y \rangle$ has a supersoluble supplement in G or is nearly S Φ -normal in G. If $\langle y \rangle$ is nearly $S\Phi$ -normal in G, then $\langle y \rangle$ is nearly $S\Phi$ -normal in R by Lemma 4(2). If N is a supersoluble supplement of $\langle y \rangle$ in G, then $R = \langle y \rangle (N \cap R)$ and $N \cap R \in \mathfrak{U}$. It imply that $(R, R \cap E)$ satisfies the hypothesis. Then $R \in \mathfrak{U}$ by the choice of (G, E). Therefore G is a minimal non-supersoluble group. Thus G is soluble by ([16] or [4, Theorem 12]), and so E is soluble. Hence by this contradiction (1) exists.

(2) $G^{\mathfrak{F}} = V$ is a q-group, $V/\Phi(V)$ is a G-chief factor, and exp(V) is q or 4 (when q = 2 and V is nonabelian).

Since $G/E \in \mathfrak{F}$, we have $V \subseteq E$. Thus by (1), V is soluble. If $V \subseteq \Phi(G)$, then $V \subseteq S_G$ for every maximal subgroup S of G, and so $G/S_G \in \mathfrak{F}$. Therefore claim (2) holds by using Semenchuk Theorem (see [27] or [12, Theorem 3.4.2]). Now suppose that $V \not\subseteq \Phi(G)$. Let G has a maximal subgroup S such that $V \not\subseteq S$. Then G = VS = ES and $S/S \cap E \cong SE/E = G/E \in \mathfrak{F}$. For every non-cyclic Sylow subgroup P of $S \cap E$, we can let $\langle y \rangle$ be a cyclic subgroup of P of prime order or order 4 (when the Sylow 2-subgroup of $S \cap E$ is non-abelian). As the same discussion as (1) of the proof, $(S, S \cap E)$ also satisfies the hypothesis. It means that $S \in \mathfrak{F}$. Then we have (2) by the Semenchuk Theorem ([27] or [12, Theorem 3.4.2]).

(3) Final contradiction.

If V is noncyclic, then by Proposition 3 and (2), we have that $V \leq Z_{\mathfrak{U}}(G)$. Assume that V is cyclic. So, obviously, $V \leq Z_{\mathfrak{U}}(G)$. It follows that $V \in \mathfrak{F}$. This contradiction prove that the theorem is holds for X = E.

Now we prove that the theorem is also true for $X = F^*(E)$.

By Lemma 4(2), $(F^*(E), F^*(E))$ also satisfies the hypothesis. As above, we know that $F^*(E)$ is supersoluble, and thus $F(E) = F^*(E)$. Assume that H is a Sylow q-subgroup of F(E). Then H is normal in G. Assume that H is non-cyclic, then we have that the hypothesis of Proposition 3 holds for H. Hence $H \leq Z_{\mathfrak{U}}(G)$. Now let H is cyclic, then obviously, $H \leq Z_{\mathfrak{U}}(G)$. This induces that $F^*(E) = F(E) \leq Z_{\mathfrak{U}}(G)$. Hence from Lemma 6, $E \leq Z_{\mathfrak{U}}(G)$. It implies by Lemma 7 that $G \in \mathfrak{F}$. This finishes the proof.

3. Some applications of our results

From Theorem 1, we obtain the following corollaries.

Corollary 1 ([1, Theorem 3.2]). Assume that $N \leq G$ satisfies $G/N \in \mathfrak{U}$ and G is soluble. If each maximal subgroup of every Sylow subgroup of F(N), which are normal in G, then $G \in \mathfrak{U}$.

Corollary 2 ([21, Theorem 2]). Assume that N is a normal soluble

subgroup of G satisfies $G/N \in \mathfrak{U}$. Assume that every maximal subgroup of the Sylow subgroups of F(N) are c-normal in G, then $G \in \mathfrak{U}$.

Corollary 3 ([31, Theorem 1]). Assume that \mathfrak{F} is a saturated formation which contains the class of all supersoluble groups and N a normal soluble subgroup of G satisfies $G/N \in \mathfrak{F}$. If every maximal subgroup of the Sylow subgroups of F(N) are c-normal in G, then $G \in \mathfrak{F}$.

Corollary 4 ([1, Theorem 4.2]). Let G be a group and E a soluble normal subgroup of G with supersoluble quotient G/E. Suppose that every maximal subgroups of every Sylow subgroup of F(E) is s-permutable in G. Then G is supersoluble.

Theorem 2 covers a lot of results, in particular:

Corollary 5 ([32, Theorem 3.8]). Let \mathfrak{F} be a saturated formation containing all supersoluble groups and G be a group. Then $G \in \mathfrak{F}$ if and only if there exists a normal subgroup E of G such that $G/E \in \mathfrak{F}$ and every cyclic subgroup of every noncyclic Sylow subgroup of E with prime order or order 4 (if the Sylow 2-subgroup is not abelian) not having a supersoluble supplement in G is nearly s-normal in G.

Corollary 6 ([30, Theorem 4.2]). If every subgroup of order 4 or all minimal subgroups of G are c-normal in G, then $G \in \mathfrak{U}$.

Corollary 7 ([22, Theorem 3.4]). Assume that $N \leq G$ with supersoluble quotient G/N. If every subgroup of order 4 (when the Sylow 2-subgroup of N is non-abelian) or all minimal subgroups of N are c-normal in G, then $G \in \mathfrak{U}$.

Corollary 8 ([3, Theorem 3.4]). Assume that \mathfrak{F} is a saturated formation which contains the class of all supersoluble groups. If every cyclic subgroup with order 4 and all minimal subgroups of $G^{\mathfrak{F}}$ are c-normal in G, then $G \in \mathfrak{F}$.

Corollary 9 ([2, Theorem 3.1]). If every subgroup of G of prime order and each cyclic subgroup of G with order 4 are s-permutable in G, then $G \in \mathfrak{U}$.

Corollary 10 ([24, Theorem 3.9]). Assume that \mathfrak{F} is a saturated formation which contains the class of all supersoluble groups. Then $N \trianglelefteq G$ satisfies $G/N \in \mathfrak{F}$ and if every subgroup of order 4 and every minimal subgroup of N are c-normal in G if and only if $G \in \mathfrak{F}$.

References

- M. Asaad, M. Ramadan, A. Shaalan, Influence of π-quasinormality on maximal subgroup of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math. (Basel), 56, 1991, pp. 521–527.
- [2] M. Asaad, On the solvability of finite groups, Arch. Math. (Basel), 51, 1988, pp. 289–293.
- [3] A. Ballester-Bolinches, Y. Wang, Finite groups with some c-normal minimal subgroups, J. Pure Appl. Algebra, 153, 2000, pp. 121–127.
- [4] A. Ballester-Bolinches, R. Esteban-Romero, On minimal non-supersoluble groups, Rev. Mat. Iberoam., 23 (1), 2007, pp. 127–142.
- [5] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter-Berlin; New York, 2010.
- [6] X. Chen, W. Guo, A.N. Skiba, Some conditions under which a finite group belongs to a Baer-local formation, Commun. Algebra, 42, 2014, pp. 4188–4203.
- [7] X. Chen, W. Guo, On Π-supplemented subgroups of a finite group, Commun. Algebra, 44, 2016, pp. 731–745.
- [8] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter-Berlin; New York, 1992.
- [9] D. Gorenstein, *Finite Groups*, Chelsea Publishing Company-New York, 1980.
- [10] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer Verlag-Berlin; Heidelberg-New York, 2015.
- [11] W. Guo, A.N. Skiba, On βΦ*-hypercentral subgroups of finite groups, J. Algebra, 372, 2012, pp. 275–292.
- [12] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers-Beijing; New York-Dordrecht-Boston-London, 2000.
- [13] W. Guo, A.N. Skiba, Finite groups with generalized Ore supplement conditions for primary subgroups, J. Algebra, 432, 2015, pp. 205–227.
- [14] B. Huppert, N. Blackburn, *Finite Groups III*, Springer-Verlag-Berlin-New York, 1982.
- [15] B. Huppert, Endliche Gruppen I, Springer-Verlag-Berlin; Heidelberg-New York, 1967.
- B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math.
 Z., 60, 1954, pp. 409–434.
- [17] O. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78, 1962, pp. 205–221.

- [18] C. Li, The influence of Φ-S-supplemented subgroups on the structure of finite groups, J. Algebra Appl., 11 (4), 2012, pp. 1250064 (12 pages).
- [19] X. Li, T. Zhao, SΦ-supplemented subgroups of finite groups, Ukr. Math. J., 64, 2012, pp. 102–109.
- [20] J. Li, F. Xie, On inequalities of subgroups and the structure of finite groups, J. Ineq. Appl., 1, 2013, p. 427.
- [21] D. Li, X. Guo, The influence of c-normality of subgroups on the structure of finite groups II, Commun. Algebra, 26, 1998, pp. 1913–1922.
- [22] D. Li, X. Guo, The influence of c-normality of subgroups on the structure of finite groups, J. Pure Appl. Algebra, 150, 2000, pp. 53–60.
- [23] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag-New York, 1982.
- [24] M. Ramadan, M.M. Ezzat, A.A. Heliel, On c-normality of certain subgroups of prime power order of finite groups, Arch. Math., 85, 2005, pp. 203–210.
- [25] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207, 1998, pp. 285–293.
- [26] A.N. Sikba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315, 2007, pp. 192–209.
- [27] V.N. Semenchuk, *Minimal non-\$f-groups*, Algebra and Logic, **18** (3), 1979, pp. 349–382.
- [28] A.N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory, 13, 2010, pp. 841–850.
- [29] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka-Moscow, 1989.
- [30] Y. Wang, c-normality of groups and its properties, J. Algebra, 180, 1996, pp. 954–965.
- [31] H. Wei, On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups, Commun. Algebra, 29, 2001, pp. 2193–2200.
- [32] Y. Wang, W. Guo, Nearly s-normality of groups and its properties, Commun. Algebra, 38, 2010, pp. 3821–3836.
- [33] Z. Wu, Y. Mao, W. Guo, On weakly SΦ-supplemented subgroups of finite groups, Sib. Math. Journal, 57 (4), 2016, pp. 696–703.
- [34] Y. Wan, H. Wei, Y. Li, A generalisation of Kramer's theorem and its applications, Bull. Austral. Math. Soc., 65, 2002, pp. 467–475.

CONTACT INFORMATION

Muhammad	Department of Mathematics, University
Tanveer Hussain	of Management and Technology, Lahore 54770, Pakistan <i>E-Mail:</i> mthussain@mail.ustc.edu.cn <i>URL:</i>
Shamsher Ullah	National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, 518060, P. R. China <i>E-Mail:</i> shamsher@szu.edu.cn <i>URL:</i>

Received by the editors: 18.07.2022 and in final form 23.11.2023.