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Abstract. Let R be a finite ring and let X be a non-empty
subset of R. If ab ̸= ba for any two distinct a, b ∈ X, then X is
called a set of pairwise non-commuting elements of R. Moreover, X
is said to be a set of pairwise non-commuting elements of R with
maximal size if its cardinality is the largest one among all such
sets. In this paper, we study the structures for some finite rings
with maximal size of pairwise non-commuting elements is 5.

Let R be a ring. We let Zn denote the additive group under modulo n.

The centralizer of r in R is defined as CR(r) = {s ∈ R | sr = rs} and the

center of R is defined as Z(R) = {s ∈ R | sr = rs for any r ∈ R}. For

any subring S of a ring R, we let R/S to represent the additive factor

group of (R,+) by (S,+) and let |R : S| to represent the index of (S,+)

in (R,+). The isomorphisms considered in this paper are the additive

group isomorphisms. Besides that, we denote r = r+Z(R) for any r ∈ R

and denote S = S/Z(R) for any S ⩽ R containing Z(R).

Let Cent(R) denote the set of all distinct centralizers in a ring R,

and Cent(R) = {CR(r) | r ∈ R}. A ring R is said to be an n-centralizer
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ring if |Cent(R)| = n, where n ∈ N. The study of n-centralizer ring was

first introduced by Dutta et al. [7] in 2015, and it is published in 2022

(see [10]). By the definition of n-centralizer rings, we note that for any

ring R, R is a 1-centralizer ring if and only if R is commutative. In [10],

Nath et al. proved that there does not exist any 2-centralizer ring and

3-centralizer ring. They also classified all 4-centralizer and 5-centralizer

finite rings. Apart from this, Dutta et al. [8] determined the possible va-

lues of |R : Z(R)| for any 6-centralizer and 7-centralizer finite rings. Be-

sides that, in [9] Dutta et al. found some characterization of n-centralizer

finite rings for n ⩽ 7. In [5], Chan et al. obtained a new characteriza-

tion for all 6-centralizer and 7-centralizer finite rings. In the same paper,

Chan et al. also characterized all n-centralizer finite rings for n = 8, 9.

Motivated by the study of n-centralizer rings, Chan et al. introduced the

notion of (m,n)-centralizer rings in [4] and given some characterizations

of the (m,n)-centralizer finite rings for n ≤ 7.

Let R be a finite ring and let X be a non-empty subset of R. If

ab ̸= ba for any two distinct a, b ∈ X, then X is called a set of pair-

wise non-commuting elements of R. Moreover, X is said to be a set of

pairwise non-commuting elements of R with maximal size if its cardi-

nality is the largest one among all such sets. The definition of pairwise

non-commuting elements of rings is introduced by Dutta et al. in [8]. In

the same paper, Dutta et al. have obtained some results regarding set

of pairwise non-commuting elements having maximal size. Besides that,

they completely determined the characterization for all finite rings with

maximal size of pairwise non-commuting elements is t, where t ∈ {3, 4}.
In [1], Abdollahi et al. have found some interesting relations between

centralizers and pairwise non-commuting elements in groups. By mo-

tivated by [1] and [3], we are interested to investigate the relationship

between centralizers and pairwise non-commuting elements in rings. In

this paper, we study the structure for some finite rings with maximal

size of pairwise non-commuting elements is 5. To achieve it, we applied

the similar techniques which have been used in [2]. We end the paper

with our main result as follows.

Theorem 1. Let R be a finite ring with maximal size of pairwise non-

commuting elements is 5. If |Cent(R)| > 6, then |Cent(R)| = 16 and

R/Z(R) ∼= Z2 × Z2 × Z2 × Z2.
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1. Preliminary results

Here, we establish some results that are helpful for the proof of the main
result.

Lemma 1. Let R be a finite ring. If r1, r2 ∈ R \ Z(R) with CR(r1) ∩
CR(r2) = Z(R), then |R| ⩽ |R : CR(r1)||R : CR(r2)|.

Proof. Obviously, CR(r1) + CR(r2) ⊆ R. Thus, |CR(r1) + CR(r2)| ⩽ |R|
and it follows that, |CR(r1)||CR(r2)|

|CR(r1)∩CR(r2)| ⩽ |R|. So, we have |R| ⩽ |R : CR(r1)|
|R : CR(r2)|.

Lemma 2. Let R be a finite ring. Let r1, r2 ∈ R\Z(R) with r1r2 ̸= r2r1.
If CR(r1) is commutative and |R : CR(r1)| = p for some prime p, then
CR(r1) ∩ CR(r2) = Z(R).

Proof. Let a ∈ CR(r1) ∩ CR(r2). From the given assumption, we know
that CR(r1) is commutative. Thus, CR(r1) ⩽ CR(a). Since r2 ̸∈ CR(r1)

but r2 ∈ CR(a), then CR(r1) < CR(a). Since |CR(r1)| = |R|
p , then it is

clear that there does not exist anyK < R such that CR(r1) < K < R. So,
we are forced to conclude that CR(a) = R. This implies that a ∈ Z(R).
Hence, CR(r1)∩CR(r2) ⩽ Z(R). Also, it is obvious that Z(R) ⩽ CR(r1)∩
CR(r2). Consequently, we obtain CR(r1) ∩ CR(r2) = Z(R).

Lemma 3. Let R be a finite ring. Let r ∈ R \ Z(R) with |CR(r)| = pm
for some prime p and m ∈ N. If CR(r) is non-commutative, then the
order of r is not m.

Proof. Suppose that the order of r ism. Since CR(r) is non-commutative,
then CR(r) satisfies {Z(R)} < Z(CR(r)) < CR(r). Since r ∈ Z(CR(r)),
then |Z(CR(r))| is divisible by m. Hence, |CR(r) : Z(CR(r))| = p. This
leads to CR(r)/Z(CR(r)) is cyclic. It yields that CR(r) is commutative;
a contradiction.

Lemma 4. Let R be a finite ring. Let r1 ∈ R \ Z(R) with |CR(r1)| =
p1p2p3 for some primes p1, p2, p3. If CR(r1) is non-commutative, then
CR(r1) ̸= CR(r2) for any r2 ∈ R \ Z(R) with r1 ̸∈< r2 >.

Proof. Assume that CR(r1) = CR(r2) for some r2 ∈ R \ Z(R) with
r1 ̸∈< r2 >. Since CR(r1) is non-commutative, then CR(r1) must satisfies
{Z(R)} < Z(CR(r1)) < CR(r1). Suppose that |Z(CR(r1))| = pipj for
two distinct i, j ∈ {1, 2, 3}, then |CR(r1) : Z(CR(r1))| = pk where k ∈
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{1, 2, 3}\{i, j}. This yields that CR(r1) is cyclic. Consequently, CR(r1) is
commutative, which is a contradiction. Thus, we have |Z(CR(r1))| = pi
for some i ∈ {1, 2, 3}. This shows that Z(CR(r1)) is cyclic. So, we obtain
r1 ∈ Z(CR(r1)) = Z(CR(r2)) =< r2 >, which leads to a contradiction.

In the following, we provide some results for finite rings with |R| = 16.

Lemma 5. Let R be a finite ring with |R| = 16. If r ∈ R \ Z(R) with
|R : CR(r)| ≠ 2, then CR(r) is commutative.

Proof. Suppose that there exists some r ∈ R\Z(R) with |R : CR(r)| ≠ 2
such that CR(r) is non-commutative. Thus, |R : CR(r)| = 4 or 8.
Since CR(r) is non-commutative, then CR(r) must satisfies Z(R) <
Z(CR(r)) < CR(r) < R. Obviously, CR(r) is not satisfies Z(R) <
Z(CR(r)) < CR(r) < R when |R : CR(r)| = 8. If |R : CR(r)| = 4, then
|CR(r) : Z(CR(r))| = 2. This implies that CR(r)/Z(CR(r)) is cyclic. It
follows that CR(r) is commutative, which is a contradiction.

Proposition 1. Let R be a finite ring with |Cent(R)| > 6 and |R| = 16.
Let {x1, x2, x3, x4, x5} be a set of pairwise non-commuting elements of R
with maximal size. If |R : CR(xi)| ̸= 2 for any i ∈ {1, 2, 3, 4, 5}, then
|Cent(R)| = 16.

Proof. From [8, Proposition 2.4(a)], we have R =
5
∪
i=1

CR(xi). Given that

|R : CR(xi)| ̸= 2 for any i ∈ {1, 2, 3, 4, 5} and |R| = 16. It follows that
|CR(xi)| = 4 for any i ∈ {1, 2, 3, 4, 5} and CR(xi) ∩ CR(xj) = {Z(R)}
for any two distinct i, j ∈ {1, 2, 3, 4, 5}. By Lemma 5, CR(xi) is com-
mutative for any i ∈ {1, 2, 3, 4, 5}. Thus, it can be checked that for any
r ∈ R\Z(R), CR(r) is non-commutative if and only if |CR(r)| = 8. Since
|Cent(R)| > 6, then there exists some a1 ∈ R \ Z(R), such that CR(a1)
is non-commutative with |CR(a1)| = 8. Without loss of generality, we
assume that a1 ∈ CR(x1). Therefore, we have

CR(x1) = {0, x1, a1, x1 + a1}

and

CR(a1) = {0, x1, a1, x1 + a1, a2, a3, a4, a5}

for some a2, a3, a4, a5 ∈ R \ Z(R). Now, we claim that |CR(xi) ∩ A| = 1
for any i ∈ {2, 3, 4, 5} where A = {a2, a3, a4, a5}. Suppose that |CR(xi)∩
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A| ⩾ 2 for some i ∈ {2, 3, 4, 5}. So, we have ak1 , ak2 ∈ CR(xi) for
two distinct k1, k2 ∈ {2, 3, 4, 5}. If |CR(ak1) ∩ CR(ak2)| = 4|Z(R)|, then
a1 ∈ CR(x1)∩CR(ak1)∩CR(ak2) = CR(x1)∩CR(xi) = Z(R), which is a
contradiction. If |CR(ak1)∩CR(ak2)| = 8|Z(R)|, then CR(ak1) = CR(ak2)
with |CR(ak1)| = 8, which contradicts with Lemma 3 and Lemma 4. So,
our claim is true. Without loss of generality, we let ai ∈ CR(xi) for any
i ∈ {2, 3, 4, 5}. Hence, we have

CR(xi) = {0, xi, ai, xi + ai}

for any i ∈ {2, 3, 4, 5}. Since a1 ∈ CR(ai) but a1 ̸∈ CR(xi) for any
i ∈ {2, 3, 4, 5}, then CR(xi) < CR(ai) for any i ∈ {2, 3, 4, 5}. So, we
note that |CR(ai)| = 8 for any i ∈ {2, 3, 4, 5}. Next, we claim that
|CR(xj + aj)| = 8 for some j ∈ {1, 2, 3, 4, 5}. Assume that |CR(xi + ai)| =
4 for any i ∈ {1, 2, 3, 4, 5}. Thus, CR(xi + ai) = CR(xi) for any
i ∈ {1, 2, 3, 4, 5}. This implies that

CR(a2) = {0, x2, a2, x2 + a2, a1, a3, a4, a5}.

This shows that |CR(a1) ∩ CR(a2)| = 6, which contradicts the fact that
|CR(a1)∩CR(a2)| is divide |R|. Consequently, we have |CR(xj + aj)| = 8
for some j ∈ {1, 2, 3, 4, 5}, as claimed. By Lemma 3 and Lemma 4, we
obtain CR(aj) ̸= CR(xj + aj). It follows that CR(aj) ∩ CR(xj + aj) =

CR(xj). Here, we claim that |CR(aj) ∩ {ai, xi + ai}| = |CR(xj + aj) ∩
{ai, xi + ai}| = 1 for any i ∈ {1, 2, 3, 4, 5} \ {j}. Assume to the contrary
that |CR(aj) ∩ {ai, xi + ai}| = 2 or |CR(xj + aj) ∩ {ai, xi + ai}| = 2 for
some i ∈ {1, 2, 3, 4, 5} \ {j}. Then, we obtain aj ∈ CR(xi) or xj + aj ∈
CR(xi), which is a contradiction. Thus, our claim is true. So, we note
that xi+ai ∈ CR(aj) or xi+ai ∈ CR(xj+aj) for any i ∈ {1, 2, 3, 4, 5}\{j}.
This implies that |CR(xi + ai)| ⩾ 5 for any i ∈ {1, 2, 3, 4, 5}\{j}. Hence,
we have |CR(xi + ai)| = 8 for any i ∈ {1, 2, 3, 4, 5} \ {j}. Consequently,
we obtain |Cent(R)| = 1 + 5 + 10 = 16 by Lemma 3 and Lemma 4, as
desired.

Proposition 2. Let R be a finite ring with |Cent(R)| > 6 and |R| = 16.
Let {x1, x2, x3, x4, x5} be a set of pairwise non-commuting elements of R
with maximal size. Let m = |{i | i ∈ {1, 2, 3, 4, 5}, |R : CR(xi)| = 2}|. If
m ̸= 0, then m ⩾ 2.

Proof. Suppose that m = 1. Without loss of generality, we let |R :
CR(x1)| = 2. Thus, CR(x1) can be written as

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b}
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for some a, b ∈ R \ Z(R). By [8, Proposition 2.4(a)], we have R =
5
∪
i=1

CR(xi). Hence, we obtain |CR(xi)| = 4 for any i ∈ {2, 3, 4, 5} by

[6, Theorem 1]. Here, we claim that ab ̸= ba. Assume that ab = ba,
then it is clear that CR(x1) is commutative. It follows from Lemma 2
and Lemma 1 that |R| ⩽ 2(4) = 8; a contradiction. So, we conclude
that ab ̸= ba. By using similar arguments as in the proof of Lemma 1,
we obtain |CR(x1) ∩ CR(xi)| = 2 for any i ∈ {2, 3, 4, 5}. Then, we
note that there exist four elements w2, w3, w4, w5 ∈ {a, b, a + b, x1 +
a, x1 + b, x1 + a + b} such that wi ∈ CR(xi) for any i ∈ {2, 3, 4, 5}. Let
A = {a, b, a+ b, x1+ a, x1+ b, x1+ a+ b} \ {w2, w3, w4, w5}. It is obvious
that all the elements in the set A are non-commute with x2, x3, x4, x5.
Now, we claim that A = {u3, x1+u3} for some u3 ∈ {a, b, a+b}. Suppose
to the contrary that A ̸= {w, x1+w} for any w ∈ {a, b, a+b}. Hence, we
note that there exist two distinct u, v ∈ {a, b, a + b} such that u, v ∈ A,
u, x1 + v or x1 + u, x1 + v ∈ A. So, we have {α, β, x2, x3, x4, x5} is a
set of pairwise non-commuting elements of R where α ∈ {u, x1 + u} and
β ∈ {v, x1 + v}. This contradicts with the fact that the maximal size of
pairwise non-commuting elements of R is 5. Therefore, A = {u3, x1+u3}
for some u3 ∈ {a, b, a + b}, as claimed. Without loss of generality, we
have

CR(x2) = {0, x2, u1, x2 + u1},
CR(x3) = {0, x3, x1 + u1, x1 + x3 + u1},
CR(x4) = {0, x4, u2, x4 + u2},
CR(x5) = {0, x5, x1 + u2, x1 + x5 + u2}

where u1, u2 ∈ {a, b, a+ b} \ {u3} with u1 ̸= u2. Lemma 5 reminds that
CR(xi) is commutative for any i ∈ {2, 3, 4, 5}. Consequently, we obtain

CR(u1) = {0, x1, u1, x1 + u1, x2, x2 + u1, x4 + u2, x1 + x5 + u2}

and

CR(x1 + u1) = {0, x1, u1, x1 + u1, x3, x1 + x3 + u1, x4 + u2,

x1 + x5 + u2}.

This shows that |CR(u1)∩CR(x1 + u1)| = 6. We have reached a contra-
diction as |CR(u1) ∩ CR(x1 + u1)| is divide |R|.
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Proposition 3. Let R be a finite ring with |Cent(R)| > 6 and |R| = 16.
Let {x1, x2, x3, x4, x5} be a set of pairwise non-commuting elements of R
with maximal size. Let m = |{i | i ∈ {1, 2, 3, 4, 5}, |R : CR(xi)| = 2}|. If
m ⩾ 2, then |Cent(R)| = 16.

Proof. Without loss of generality, we let |R : CR(x1)| = |R : CR(x2)| =
2. By using similar arguments as in the proof of Lemma 1, we obtain
|CR(x1) ∩ CR(x2)| = 4. Therefore, CR(x1) ∩ CR(x2) can be written as
CR(x1) ∩CR(x2) = {0, a, b, a+ b} for some a, b ∈ R \ Z(R). So, we have

CR(x1) = {0, x1, a, b, a+ b, x1 + a, x1 + b, x1 + a+ b},
CR(x2) = {0, x2, a, b, a+ b, x2 + a, x2 + b, x2 + a+ b}.

Now, we claim that ab ̸= ba. Suppose that ab = ba, then it is obvious
that CR(x1) and CR(x2) are commutative. By Lemma 2 and Lemma 1,
we obtain |R| ⩽ 2(2) = 4, which is a contradiction. So, our claim is
proved. Thus, we have

CR(a) = {0, a, x1, x2, x1 + x2, x1 + a, x2 + a, x1 + x2 + a},
CR(b) = {0, b, x1, x2, x1 + x2, x1 + b, x2 + b, x1 + x2 + b},

CR(a+ b) = {0, a+ b, x1, x2, x1 + x2, x1 + a+ b, x2 + a+ b,

x1 + x2 + a+ b},
CR(x1 + x2) = {0, x1 + x2, a, b, a+ b, x1 + x2 + a, x1 + x2 + b,

x1 + x2 + a+ b}.

Apart from this, we have

CR(u+ v) = {0, u, v, u+ v}

for any u ∈ {x1, x2, x1+x2} and v ∈ {a, b, a+ b}. Consequently, we have
|Cent(R)| = 1 + 2 + 4 + 9 = 16. This completes the proof.

2. Main Theorem

Lastly, we give the proof for our main result.

Theorem 2. Let R be a finite ring with maximal size of pairwise non-
commuting elements is 5. If |Cent(R)| > 6, then |Cent(R)| = 16 and
R/Z(R) ∼= Z2 × Z2 × Z2 × Z2.
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Proof. Let {x1, x2, x3, x4, x5} be a set of pairwise non-commuting ele-
ments of R with maximal size. By [8, Proposition 2.4(b) and (c)] and
[3, Theorem 1.2], we have |R : Z(R)| ⩽ 16. It follows that |R : Z(R)| ⩾
6. Since |R : Z(R)| = 6, 7, 10, 11, 13, 14 or 15, we have R/Z(R) ∼=
Z6,Z7,Z10,Z11,Z13,Z14 or Z15, which gives R/Z(R) is cyclic. Hence,
R is commutative; a contradiction. If |R : Z(R)| = 9, then R/Z(R) ∼= Z9

or Z3 × Z3. Since R/Z(R) is non-commutative, then R/Z(R) is not
cyclic. Hence, R/Z(R) ∼= Z3×Z3. It follows from [10, Theorem 2.5] that
|Cent(R)| = 5; a contradiction.

Now, we claim that if |R : Z(R)| = 8 or 12, then CR(r) is commu-
tative for any r ∈ R \ Z(R). Suppose that CR(r) is non-commutative
for some r ∈ R \ Z(R), then CR(r) must satisfies Z(R) < Z(CR(r)) <
CR(r) < R. Therefore, |CR(r) : Z(CR(r))| = 2 or 3. This implies that
CR(r)/Z(CR(r)) is cyclic, which yields CR(r) is commutative; a contra-
diction. From [8, Proposition 2.4(a)], we note that for any r ∈ R \Z(R),
r ∈ CR(xi) for some i ∈ {1, 2, 3, 4, 5}. Thus, if given |R : Z(R)| = 8 or
12, then for any r ∈ R\Z(R), CR(r) = CR(xi) for some i ∈ {1, 2, 3, 4, 5}.
It follows that |Cent(R)| = 6, which is a contradiction. Consequently,
we obtain |R : Z(R)| = 16.

From Propositions 1, 2 and 3, we obtain |Cent(R)| = 16. We let
R/Z(R) ̸∼= Z2 × Z2 × Z2 × Z2. Then, there exists some a ∈ R \ Z(R)
such that the order of a is 4 or 8. Since gcd(3, order of a) = 1, then it
can be shown that CR(a) = CR(3a). It is clear that a ̸= 3a, therefore,
|Cent(R)| < |R : Z(R)|; a contradiction. So, we conclude that R/Z(R) ∼=
Z2 × Z2 × Z2 × Z2. This completes the proof.
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