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The comb-like representations of cellular ordinal

balleans

Igor Protasov and Ksenia Protasova

Abstract. Given two ordinal λ and γ, let f : [0, λ) → [0, γ)
be a function such that, for each α < γ, sup{f(t) : t ∈ [0, α]} < γ.

We define a mapping df : [0, λ) × [0, λ) −→ [0, γ) by the rule: if
x < y then df (x, y) = df (y, x) = sup{f(t) : t ∈ (x, y]}, d(x, x) = 0.
The pair ([0, λ), df ) is called a γ−comb defined by f . We show
that each cellular ordinal ballean can be represented as a γ−comb.
In General Asymptology, cellular ordinal balleans play a part of
ultrametric spaces.

Introduction

In [3], a function f : [0, 1] → [0, ∞) is called a comb if, for every
ε > 0, the set {t ∈ [0, 1] : f(t) > ε} is finite. Each comb f defines a
pseudo-metric df on the set If = {t ∈ [0, 1] : f(t) = 0} by the rule: if
x < y then

df (x, y) = max{f(t) : t ∈ (x, y)},

df (y, x) = df (x, y), d(x, x) = 0.

After some reduced completion of (If , df ), the authors get a compact
ultrametric space and show that each compact ultrametric space with no
isolated points can be obtained in this way.

In this note, we modify the basic construction from [3] to get the
comb-like representations of cellular ordinal balleans which, in General

Asymptology [7], play a part of ultrametric spaces.
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1. Balleans

Following [5], [7], we say that a ball structure is a triple B = (X, P, B),
where X, P are non-empty sets, and for all x ∈ X and α ∈ P , B(x, α) is
a subset of X which is called a ball of radius α around x. It is supposed
that x ∈ B(x, α) for all x ∈ X, α ∈ P . The set X is called the support

of B, P is called the set of radii.
Given any x ∈ X, A ⊆ X, α ∈ P , we set

B∗(x, α) = {y ∈ X : x ∈ B(y, α)},

B(A, α) =
⋃

a∈A

B(a, α) and B∗(A, α) =
⋃

a∈A

B∗(a, α).

A ball structure B = (X, P, B) is called a ballean if

• for any α, β ∈ P , there exist α′, β′ ∈ P such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′) and B∗(x, β) ⊆ B(x, β′);

• for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ);

• for any x, y ∈ X, there exists α ∈ P such that y ∈ B(x, α).

We note that a ballean can be considered as an asymptotic counterpart
of a uniform space, and could be defined [8] in terms of the entourages of
the diagonal ∆X = {(x, x) : x ∈ X} in X × X. In this case a ballean is
called a coarse structure.

For categorical look at the balleans and coarse structures as “two faces
of the same coin” see [2].

Let B =(X, P, B), B′ =(X ′, P ′, B′) be balleans. A mapping f : X → X ′

is called a ≺-mapping if, for every α ∈ P , there exists α′ ∈ P ′ such that,
for every x ∈ X, f(B(x, α)) ⊆ B′(f(x), α′).

A bijection f : X → X ′ is called an asymorphism between B and B′ if
f and f−1 are ≺-mappings. In this case B and B′ are called asymorphic.

Given a ballean B = (X, P, B), we define a preodering < on P by the
rule: α < β if and only if B(x, α) ⊆ B(x, β) for each x ∈ X. A subset P ′

of P is called cofinal if, for every α ∈ P , there exists α′ ∈ P ′ such that
α < α′. A ballean B is called ordinal if there exists a cofinal well-ordered
(by <) subset P ′ of P .

For a ballean B = (X, P, B), x, y ∈ X and α ∈ P , we say that x and
y are α-path connected if there exists a finite sequence x0, . . . , xn, x0 = x,
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xn = y such that xi+1 ∈ B(xi, α) for each i ∈ {0, . . . , n − 1}. For any
x ∈ X and α ∈ P , we set

B⋄(x, α) = {y ∈ X : x, y are α-path connected},

and say that the ballean B⋄ = (X, P, B⋄) is a cellularization of B. A
ballean B is called cellular if the identity id : X → X is an asymorphism
between B and B⋄.

Each metric space (X, d) defines a metric ballean

B(X, d) = (X,R+, Bα),

where Bd(x, r) = {y ∈ X : d(x, y) 6 r}. Clearly, B(X, d) is ordinal and, if
d is an ultrametric then B(X, d) is cellular.

For examples, decompositions and classification of cellular ordinal
balleans see [1], [2], [4], [6].

2. Representations

For ordinals α, β, α < β, we use the standard notations

[α, β] = {t : α 6 t 6 β}, [α, β) = {t : α 6 t < β},

(α, β] = {t : α < t 6 β}.

Let X be a set and γ be an ordinal. We say that a mapping d : X×X →
[0, γ) is a γ-ultrametric if d(x, x) = 0, d(x, y) = d(y, x) and

d(x, y) 6 max{d(x, z), d(z, y)}.

Clearly, each ultrametric space with integer valued metric is an ω-
ultrametric space. By [7, Theorem 3.1.1], every cellular metrizable ballean
is asymorphic to some ω-ultrametric space.

Given two γ-ultrametric spaces (X, d), (X ′, d′), a bijection h : X → X ′

is called an isometry if, for any x, y ∈ X, we have

d(x, y) = d′(h(x), h(y)).

Now let λ, γ be ordinal and f : [0, λ) → [0, γ) be a function such
that, for each α < λ, sup{f(t) : t ∈ [0, α]} < γ. We define a mapping
df : [0, λ) × [0, λ) → [0, γ) by the rule: if x < y then

df (x, y) = df (y, x) = sup{f(t) : t ∈ (x, y]}, d(x, x) = 0,

and say that ([0, λ), df ) is a γ-comb determined by f . Evidently, each
γ-comb is a γ-ultrametric space.
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Theorem. Every γ-ultrametric space (X, d) is isometric to some γ-comb

([0, λ), df ).

Proof. We proceed on induction by γ. For γ = 1, we just enumerate X

as [0, λ) and take f ≡ 0. Assume that we have proved the statement for
all ordinals less than γ and consider two cases.

Case 1. Let γ is not a limit ordinal, so γ = γ′ + 1. We partition X =⋃
{Xδ : δ ∈ [0, ν)} into classes of the equivalence ∼ defined by x ∼ y if and

only if d(x, y) < γ′. If δ < δ′ < ν and x ∈ Xδ, y ∈ Xδ′ then d(x, y) = γ′.

By the inductive hypothesis, each Xδ is isometric to some γ′-comb
([0, λδ), dfδ

). We replace inductively each δ ∈ [0, ν) with consecutive
intervals {[lδ, lδ +λδ) : δ ∈ [0, ν)}, l0 = 0 and define a function f : [0, λ) →
[0, γ), [0, λ) =

⋃
{[lδ, lδ + λδ) : δ ∈ [0, ν)} as follows. We put f = f0

on [0, λ0). If δ > 0 then we put f(lδ) = γ′ and f(lδ + x) = fδ(x) for
x ∈ (0, λδ).

After |ν| steps, we get the desired γ-comb ([0, λ), df ).

Case 2. γ is a limit ordinal. We fix some x0 ∈ X and, for each δ < γ,
denote Xδ = {x ∈ X : d(x0, x) < δ}. By the inductive hypothesis, there
is an isometry hδ : Xδ → ([0, λδ), dfδ

). Moreover, in view of Case 1, fδ+1

and hδ+1 can be chosen as the extensions of fδ and hδ. Hence, we can use
induction by δ to get the desired γ-comb and isometry.

Every γ-ultrametric space (X, d) can be considered as the ballean
(X, [0, γ), Bd), where Bd(x, α) = {y ∈ X : d(x, y) 6 α}.

On the other hand, let (X, P, B) be a cellular ordinal ballean. We may
suppose that P = [0, γ) and B(x, α) = B⋄(x, α) for all x ∈ X, α ∈ [0, γ).
We define a γ-ultrametric d on X by d(x, y) = min{α ∈ [0, γ) : y ∈
B(x, α)}. Then (X, P, B) is asymorphic to (X, d).

Corollary. Every cellular ordinal ballean is asymorphic to some γ-comb.
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