Finite intersection of valuation overrings of polynomial rings in at most three variables

Lokendra Paudel

Communicated by R. Wisbauer

Abstract

The group of divisibility of an integral domain is the multiplicative group of nonzero principal fractional ideals of the domain and is a partially ordered group under reverse inclusion. We study the group of divisibility of a finite intersection of valuation overrings of polynomial rings in at most three variables and we classify all semilocal lattice-ordered groups which are realizable over $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for $n \leq 3$.

Introduction

Let R be an integral domain with quotient field K, and let $K^{*}=K-\{0\}$. The group of divisibility $G(R)$ of R is defined as the multiplicative group of nonzero principal fractional ideals of R. The ring R is the identity element of $G(R)$. We define a partial order on $G(R)$ by setting $x R \leq y R$ if and only if $y R \subseteq x R$. For background on the group of divisibility see [10]. If R is a Bézout domain (meaning every finitely generated ideal is principal), then the group of divisibility $G(R)$ is an lattice-ordered group (ℓ-group).

[^0]Let D be an integral domain with quotient field K. Any ring R such that $D \subseteq R \subseteq K$, is called an overring of D. If D is integrally closed, then D is the intersection of all valuation overrings of D [4, Theorem 3.1.3]. A domain D is called a semilocal domain if the domain D has a finitely many maximal ideals. If D is a finite intersection of valuation domains over the same field K, then D is a semilocal Bézout domain [5, Theorem 1.7 Chapter II and Theorem 5.1 Chapter II]. In the case of semilocal Bézout domain, the group of divisibility is a semilocal ℓ-group (having a finite number of maximal filters) [3, Theorem 7]. In this article, we study the group of divisibility of a finite intersection of valuation overrings of a polynomial ring in at most three variables.

We recall that a valuation on K is a mapping ν of K onto a totally ordered group $G \cup\{\infty\}$, where ∞ is a symbol such that $g+\infty=\infty+g=$ $\infty+\infty=\infty$ and $g<\infty$ for all $g \in G$, for which the following conditions are satisfied.
(i) $\nu(K-\{0\})=G, \nu(0)=\infty$.
(ii) $\nu(x y)=\nu(x)+\nu(y)$ for all $x, y \in K$.
(ii) $\nu(x+y) \geq \inf \{\nu(x), \nu(y)\}$ for all $x, y \in K$.

Then $R_{\nu}=\left\{x \in K^{*}: \nu(x) \geq 0\right\} \cup\{0\}$ is a subring of K. Moreover, $G\left(R_{\nu}\right) \cong G\left[2\right.$, p. 103]. The domain R_{ν} is called a valuation domain. If $G \cong \mathbb{Z} \times_{\ell} \mathbb{Z} \times_{\ell} \cdots \times_{\ell} \mathbb{Z}$, then G is called discrete value group, where the product x_{ℓ} is a lexicographic product. We define the lexicographic order on $\mathbb{Z} \times_{l} \mathbb{Z} \times_{l} \ldots \times_{l} \mathbb{Z}$ as follows: $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \geq\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ if $\alpha_{1}>\beta_{1}$ or if for some $k>1, \alpha_{i}=\beta_{i}$ for $i=1,2, \ldots, k-1$ and $\alpha_{k}>\beta_{k}$. If $G\left(R_{\nu}\right) \cong \mathbb{Z} \times_{\ell} \mathbb{Z} \times_{\ell} \cdots \times_{\ell} \mathbb{Z}$, then R_{ν} is called a discrete valuation ring. If $G \cong \mathbb{Z}$, then R_{ν} is called a rank one discrete valuation ring $D V R$. Two valuation rings V_{1} and V_{2} of K are said to be independent if K is the only common overring of both V_{1} and V_{2}. Otherwise, V_{1} and V_{2} are dependent. Any valuation ring of Krull dimension one is independent with other incomparable valuation rings.

Let $\left\{G_{i}: i \in I\right\}$ denote a collection of lattice-ordered groups. The group $\prod_{i \in I} G_{i}$ with pointwise ordering is an ℓ-group called the cardinal product of the G_{i}. The group $\bigoplus_{i \in I} G_{i}$ with pointwise ordering is an ℓ-group called the cardinal sum of the G_{i}. For an ℓ-group G the rational rank of G is the dimension of $\mathbb{Q} \otimes_{\mathbb{Z}} G$ as a vector space over \mathbb{Q} and is denoted by rat. $\operatorname{rank}(G)$. The rank of totally ordered group G is the
order type of the set of proper convex subgroups of G. For a valuation ν we denote by $\operatorname{rank}\left(G_{\nu}\right)$ the rank of its totally ordered value group G_{ν}. The Krull dimension of a valuation domain is equal to rank of its value group [14, Corollary, p. 5]. We have $\operatorname{rank}\left(G_{\nu}\right) \leq \operatorname{rat} \cdot \operatorname{rank}\left(G_{\nu}\right)[14$, p. 8].

A short exact sequence of partially ordered groups

$$
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0
$$

is called lexicographically exact if

$$
B_{+}=\{b \in B: b \geq 0\}=\{b \in B: \beta(b)>0\} \cup\{\alpha(a): a \in A, a \geq 0\}
$$

The group B is called a lexicographic extension (or lex-extension) of A by $C[3$, p. 714].

An ℓ-group G is called realizable over a domain D if there exists a Bézout overring R of D such that $G(R) \cong G$ as ℓ-groups. By the Krull-Kaplansky-Jaffard-Ohm Theorem every abelian ℓ-group can be realized as the group of divisibility of a Bézout domain. Doering and Lequain in [3, Theorem 12] proved that every finitely generated ℓ-group can be realized as the group of divisibility of a semilocal Bézout overring of a polynomial ring over a field k in infinitely many variables, where each of the valuation rings appearing in the finite intersection has residue field k. In [13, Theorem 4.2], we show that every finitely generated ℓ-group can be realized over a polynomial ring in finitely many variables, where the number of variables depends on the rational rank of ℓ-group. An ℓ-group G is called weakly realizable over $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ if there exists a Bézout overring R of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that G and $G(R)$ admit a lexico-cardinal decomposition (see [3, p. 723]) of the same form. If G is order isomorphic to a group of the form lex-extension of A by B, then to be weakly realizable means, the group $G(R)$ is order isomorphic to a group of the form lex-extension of A by B.

In this work, we characterize the ℓ-groups which appear as the group of divisibility of a finite intersection of valuation overrings of a polynomial ring in at most three variables. Also, we discuss the ℓ-groups which can be realized as the group of divisibility of a finite intersection of valuation overrings of a polynomial ring in at most three variables. In proposition 2, we show ℓ-group which appears as the group of divisibility of a finite intersection of valuation overrings of $k[x]$, and conversely, we
show the ℓ-group is realizable over $k[x]$. In theorem 2 , we show ℓ-group which appears as the group of divisibility of a finite intersection of valuation overrings of $k\left[x_{1}, x_{2}\right]$, and conversely, we show the ℓ-group is realizable over $k\left[x_{1}, x_{2}\right]$. In theorem 3 , we show ℓ-group which appears as the group of divisibility of a finite intersection of valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$, and conversely, we show the ℓ-group is weakly realizable over $k\left[x_{1}, x_{2}, x_{3}\right]$. For two and three variables case, we use weak approximation theorem for dependent valuation rings [3, Theorem 4] to describe group of divisibility and composite of valuations [9, p. 486] to construct valuation overrings. Moreover, we construct each of the valuation rings that appear in a finite intersection to have the same residue field k using the composite of valuations.

1. Preliminaries

Let K be a field. If we have two valuation rings of K with one contained in the other, then the next result shows existence of a lexicographically exact sequence.

Lemma 1 ([3, Lemma 1]). Let K be a field and let V and W be two valuation rings of K. Let $V \subsetneq W$. Then the sequence

$$
\begin{equation*}
0 \longrightarrow U(W) / U(V) \xrightarrow{\alpha} G(V) \xrightarrow{\beta} G(W) \longrightarrow 0 \tag{1}
\end{equation*}
$$

is a lexicographically exact sequence, where $U(V)$ and $U(W)$ denote the units of the rings V and W respectively. Moreover, if the sequence (1) splits, then it splits lexicographically.

Proposition 1 ([6, Exercise 6, p. 285]). Let $\left\{\nu_{i}\right\}_{i=1}^{n}$ be a finite collection of valuations on a field K. For each i, let V_{i} be the valuation ring of ν_{i} and let G_{i} be the value group of ν_{i}. Assume that the valuation rings V_{i} are pairwise independent. Then $G\left(\bigcap_{i=1}^{n} V_{i}\right) \cong \bigoplus_{i=1}^{n} G_{i}$.

In the above proposition, if the valuation rings are dependent, then the $\operatorname{map} \phi: G(R) \rightarrow \bigoplus_{i=1}^{n} G\left(V_{i}\right)$ defined by $\phi(x R)=\left(x V_{1}, x V_{2}, \ldots, x V_{n}\right)$ is not surjective [3, p. 711], and hence finding the group of divisibility is more complicated. Doering and Lequain in 1999 introduced a weak
approximation theorem for dependent valuation rings [3, Theorem 4]. They showed that if each of the valuation domains in the intersection has a finitely generated value group then the group of divisibility of the intersection can be calculated explicitly.

Let K be a field, and let \mathscr{F} be a set of finite family of valuation rings of K. Let $\mathscr{N}(\mathscr{F})=\left\{\left(V, V^{\prime}\right): V, V^{\prime} \in \mathscr{F}\right\} \cup\{K\}$, where $\left(V, V^{\prime}\right)$ is the smallest valuation ring that contains both V and V^{\prime}. Let $\sigma, \tau \in \mathscr{N}(\mathscr{F})$. Then σ is called a predecessor of τ if $\sigma \supseteq \tau$ and is called immediate predecessor if there is no other valuation ring in between σ and τ. Let $H_{\sigma, \tau}=$ $\operatorname{ker}(G(\tau) \rightarrow G(\sigma))=U(\sigma) / U(\tau)$, where the map is the canonical homomorphism with the order induced from the order of $G(\tau)$. The weighted dependency tree of \mathscr{F} is defined by $\mathscr{T}(\mathscr{F} ; K):=\left(\mathscr{N}(\mathscr{F}),\left\{\left([\sigma, \tau], H_{\sigma, \tau}\right)\right.\right.$: $\sigma, \tau \in \mathscr{N}(\mathscr{F}), \tau$ immediate successor of $\sigma\})$. The elements of $\mathscr{N}(\mathscr{F})$ are the nodes of the tree, K is the root, and the elements of \mathscr{F} are the end nodes. The elements $\left([\sigma, \tau], H_{\sigma, \tau}\right)$ are the weighted edges of the tree. The dependency dimension of \mathscr{F} is defined by

$$
d=\text { dependency dimension }(\mathscr{F} ; K)=\max \left\{l_{V}-1: V \in \mathscr{F}\right\},
$$

where

$$
l_{V}=\text { cardinality of }\{[\sigma, \tau]: \tau \supseteq V, \sigma \text { an immediate predecessor of } \tau\}
$$

is the length of the line of predecessors of V. More details on the weighted dependency tree can be found in [3].

The following theorem, known as Weak Approximation Theorem, shows that the group of divisibility of the intersection of a finite family of valuation rings having the same quotient field with finite dependency dimension can be expressed in terms of cardinal products and lexicographic extensions, where the factor groups in the lexicographic extensions are totally ordered.

Theorem 1 ([3, Theorem 4]). Let K be a field, \mathscr{F} be a finite family of valuation rings of K, and G be the divisibility group of $\bigcap_{V \in \mathscr{F}} V$. Let $\mathscr{T}(\mathscr{F} ; K)$ be the weighted dependency tree of \mathscr{F} and d be the dependency dimension of \mathscr{F}. For every node σ in $\mathscr{N}(\mathscr{F})$, let $\mathscr{S}(\sigma):=\{\tau \in \mathscr{N}(\mathscr{F})$; τ is an immediate successor of $\sigma\}$. Then G is order isomorphic to a group of the form

$$
\prod_{\sigma_{1} \in \mathscr{S}(K)}\left(\text { lex-extension of } { } _ { 1 } \left[\prod _ { \sigma _ { 2 } \in \mathscr { S } (\sigma _ { 1 }) } \left(\text { lex-extension of } { } _ { 2 } \left[\prod_{\sigma_{3} \in \mathscr{S}\left(\sigma_{2}\right)}\right.\right.\right.\right.
$$

$$
\begin{gathered}
\left(\ldots \prod _ { \sigma _ { d } \in \mathscr { S } (\sigma _ { d - 1 }) } \left(\text { lex-extension of }{ }_{d}\left[\prod_{\sigma_{d+1} \in \mathscr{S}\left(\sigma_{d}\right)} H_{\sigma_{d}, \sigma_{d-1}}\right]_{d} b y\right.\right. \\
\left.\left.\left.\left.\left.\left.H_{\sigma_{d-1}, \sigma_{d}}\right) \ldots\right)\right]_{2} b y H_{\sigma_{1}, \sigma_{2}}\right)\right]_{1} b y H_{K, \sigma_{1}}\right)
\end{gathered}
$$

2. Finite intersections of valuation overrings of $\mathrm{k}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$

We shall discuss those ℓ-groups which arise as the group of divisibility of a semilocal Bézout overring of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for $n=1,2$ and 3 . We describe explicitly these ℓ-groups for $n=1$ and $n=2$. In this chapter, a field k will be assumed to be an infinite field.

2.1. Valuation overrings of $k[x]$

Let $D=k[x]$. Then by [4, Theorem 2.1.4], all the valuation overrings of $k[x]$ are obtained by localizing $k[x]$ at some prime ideal P. Let $V=$ $k[x]_{P}$. Since $k[x]$ is a Noetherian domain, V is a Noetherian valuation domain of Krull dimension ≤ 1, and hence $V=k(x)$ or V is a DVR and $G(V)=\mathbb{Z}$ [7, Proposition 6.4.4]. Let $R=\bigcap_{i=1}^{n} V_{i}$, where each V_{i} is a distinct nontrivial valuation overring of $k[x]$. Since $k[x]$ is a PID, each nonzero prime ideal P is generated by a prime element. If P is generated by a linear irreducible polynomial, then each $k[x]_{P}$ has residue field k. Since each V_{i} has Krull dimension one, the V_{i} are independent. The group of divisibility of R is $G(R)=\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}$ by using the proposition 1. Moreover, we can construct valuation rings appearing in a finite intersection in such a way that each of them has residue field k because k is an infinite field. Thus we have the following proposition.

Proposition 2. Let k be a field and x be an indeterminate of k. A nonzero semilocal ℓ-group G can be realized over $k[x]$ if and only if $G \cong \mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}$ for some finite number of copies of \mathbb{Z}.

2.2. Valuation overrings of $k\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$

Let $D=k\left[x_{1}, x_{2}\right]$. Then D is a two-dimensional Noetherian domain. The following proposition shows that there exist three types of valuation overrings of D.

Proposition 3 ([1, Theorem 1]). Each valuation overring of $k\left[x_{1}, x_{2}\right]$ belongs to one of the following three sets.
a) Valuation rings with rational value group; i.e., the value group is isomorphic to a subgroup of \mathbb{Q}.
b) Valuation rings with finitely generated value group of rank 1 and rational rank 2.
c) Valuation rings with discrete value group of rank two.

The following lemma describes a semilocal ℓ-group realizable over $k\left[x_{1}, x_{2}\right]$.

Lemma 2. Let G be a semilocal ℓ-group realizable over $k\left[x_{1}, x_{2}\right]$. Let $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a finite collection of valuation overrings of $k\left[x_{1}, x_{2}\right]$ such that $G\left(\bigcap_{i=1}^{n} V_{i}\right)=G$. Then the following statement hold.
(a) If each V_{i} has rank two, then G is isomorphic to a finite cardinal product of groups of the form $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.
(b) If each V_{i} has value group a subgroup of \mathbb{Q}, then G is isomorphic to a finite cardinal product of subgroups of \mathbb{Q}.
(c) If each V_{i} has a finitely generated value group which is a subgroup of \mathbb{R} having rational rank two, then G is isomorphic to a finite cardinal product of finitely generated subgroups of \mathbb{R} having rational rank two.

Proof. Denote the set $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ by \mathscr{F}. Suppose each V_{i} has rank two. Let $\mathscr{N}(\mathscr{F})=\left\{\left(V, V^{\prime}\right) ; V, V^{\prime} \in \mathscr{F}\right\} \cup\left\{k\left(x_{1}, x_{2}\right)\right\}$, where $\left(V, V^{\prime}\right)$ is the smallest valuation ring that contains both V and V^{\prime}. Let $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots$, $\mathscr{F}_{m}, m \leq n$, be the dependency classes of \mathscr{F}. For each $j=1,2, \ldots, m$, let W_{j} be a nontrivial valuation ring in $\mathscr{N}(\mathscr{F})$ that contains all the valuation rings in \mathscr{F}_{j}. Since W_{j} is an overring of V for some $V \in \mathscr{F}$, $G\left(W_{j}\right) \cong G(V) / H$, where H is a nonzero convex subgroup of $G(V)$ [14, Proposition 1.11]. Since $G(V)=\mathbb{Z} \times_{\ell} \mathbb{Z}$, we have $G\left(W_{j}\right)=\mathbb{Z}$. Moreover, for each $V \in \mathscr{F}_{j}, H_{W_{j}, V}=\operatorname{ker}\left(G(V) \rightarrow G\left(W_{j}\right)\right)$ and $H_{W_{j}, V}=\mathbb{Z}$ since $\operatorname{ker}\left(G(V) \rightarrow G\left(W_{j}\right)\right)$ is a nonzero convex subgroup of $G(V)$. Also, $H_{k\left(x_{1}, x_{2}\right), W_{j}}=\operatorname{ker}\left(G\left(W_{j}\right) \rightarrow G\left(k\left(x_{1}, x_{2}\right)\right)\right)=G\left(W_{j}\right)=\mathbb{Z}$ since
$G\left(k\left(x_{1}, x_{2}\right)\right)=0$. Let $S_{j}=\bigcap_{V \in \mathscr{F}_{j}} V$. Let $n_{j}=\left|\mathscr{F}_{j}\right|$. Then by Theorem 1 ,

$$
G\left(S_{j}\right) \text { is a lex-extension of } \prod_{V \in \mathscr{F}_{j}} c H_{W_{j}, V} \text { by } H_{k\left(x_{1}, x_{2}\right), W_{j}},
$$

which is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \text { by } \mathbb{Z} \text {. }
$$

Since \mathbb{Z} is projective, the lex-exact sequence splits, so $G\left(S_{j}\right)=\mathbb{Z} \times \ell\left(\mathbb{Z} \times_{c}\right.$ $\mathbb{Z} \times{ }_{c} \ldots \times_{c} \mathbb{Z}$), where the cardinal product has n_{j} copies of \mathbb{Z}.

Now, by Theorem 1,

$$
\begin{aligned}
G(R) & =\prod_{j=1}^{m} G\left(S_{j}\right) \\
& =\prod_{j=1}^{m} \mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times{ }_{c} \mathbb{Z} \times{ }_{c} \ldots \times_{c} \mathbb{Z}\right),
\end{aligned}
$$

where each cardinal product has n_{j} copies of \mathbb{Z}. This proves (a).
Suppose each V_{i} has value group a subgroup of \mathbb{Q}. Since the V_{i} are distinct and have dimension one, the V_{i} are independent. So by Proposition 1,

$$
G\left(\bigcap_{i=1}^{n} V_{i}\right)=G\left(V_{1}\right) \times_{c} G\left(V_{2}\right) \times_{c} \ldots \times_{c} G\left(V_{n}\right) .
$$

Thus $G\left(\bigcap_{i=1}^{n} V_{i}\right)$ is a finite cardinal product of subgroups of \mathbb{Q}. This proves (b).

Suppose each V_{i} has a finitely generated value group which is a subgroup of \mathbb{R} having rational rank two. Since the V_{i} are distinct and rank one, the V_{i} are independent. Then by Proposition 1,

$$
G\left(\bigcap_{i=1}^{n} V_{i}\right)=G\left(V_{1}\right) \times_{c} G\left(V_{2}\right) \times_{c} \ldots \times_{c} G\left(V_{n}\right) .
$$

So $G\left(\bigcap_{i=1}^{n} V_{i}\right)$ is a finite cardinal product of subgroups of \mathbb{R} having rational rank two. This proves (c).

The next theorem describes the group of divisibility of a finite intersection of valuation overrings of $k\left[x_{1}, x_{2}\right]$.

Theorem 2. Let k be an infinite field. A semilocal ℓ-group G can be realized over $k\left[x_{1}, x_{2}\right]$ if and only if $G=G_{1} \times{ }_{c} G_{2} \times{ }_{c} G_{3}$, where each G_{i}, if nonzero, is a semilocal ℓ-group such that

- G_{1} is isomorphic to a finite cardinal product of subgroups of \mathbb{Q},
- G_{2} is isomorphic to a finite cardinal product of finitely generated subgroups of \mathbb{R} having rational rank two, and
- G_{3} is isomorphic to a finite cardinal product of ℓ-groups of the form $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.

Moreover, each of valuation rings appearing in the finite intersection that realizes G can be chosen with residue field k.

Proof. Let G be an ℓ-group and suppose $G=G_{1} \times{ }_{c} G_{2} \times{ }_{c} G_{3}$, where G_{1}, G_{2} and G_{3} are as in theorem, and possibly any of the G_{i} are 0 .

If $G_{1}=0$, let $V=k\left(x_{1}, x_{2}\right)$ so that $G(V)=0=G_{1}$.
Assume that $G_{1} \neq 0$ and write $G_{1}=H_{1} \times_{c} H_{2} \times_{c} \ldots \times_{c} H_{n}$, where $H_{1}, H_{2}, \ldots, H_{n}$ are subgroups of \mathbb{Q}. First, we want to realize H_{i}.

Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct elements of k. If $H_{i} \cong \mathbb{Z}$, then we can construct a DVR overring of $k\left[x_{1}, x_{2}\right]$ whose maximal ideal is generated by $\left(x_{1}+a_{i}\right)$ as follows. There exists $y \in\left(x_{1}+a_{i}\right) k\left[\left[x_{1}+a_{i}\right]\right]$ transcendental over $k\left(x_{1}+a_{i}\right)$ [3, Lemma 13]. Let $K=k\left(x_{1}+a_{i}, y\right)$. Then $S_{i}^{\prime}=$ $k\left[\left[x_{1}+a_{i}\right]\right] \cap K$ is a DVR of K. Moreover,

$$
\begin{aligned}
k & \hookrightarrow S_{i}^{\prime} / \mu_{S_{i}^{\prime}} \\
& =S_{i}^{\prime} /\left(S_{i}^{\prime} \cap\left(x_{1}+a_{i}\right) k\left[\left[x_{1}+a_{i}\right]\right]\right) \\
& \cong\left(S_{i}^{\prime}+\left(x_{1}+a_{i}\right) k\left[\left[x_{1}+a_{i}\right]\right]\right) /\left(x_{1}+a_{i}\right) k\left[\left[x_{1}+a_{i}\right]\right] \\
& \subseteq k\left[\left[x_{1}+a_{i}\right]\right] /\left(x_{1}+a_{i}\right) k\left[\left[x_{1}+a_{i}\right]\right] \\
& =k .
\end{aligned}
$$

This shows S_{i}^{\prime} has residue field k. Let $\psi: K \rightarrow k\left(x_{1}, x_{2}\right)$ be the field isomorphism defined by $\psi\left(x_{1}+a_{i}\right)=x_{1}+a_{i}$ and $\psi(y)=x_{2}$. Then $S_{i}=\psi\left(S_{i}^{\prime}\right)$ is a rank one discrete valuation overring of $k\left[x_{1}, x_{2}\right]$ having k as residue field.

If H_{i} is not isomorphic to \mathbb{Z}, that is, H_{i} is not finitely generated, then we realize H_{i} as follows. Let $S=k\left[x_{1}+a_{i}\right]_{\left(x_{1}+a_{i}\right)}$. Then S is a DVR
[15, Corollary 2, page 42] and $G(S)=\mathbb{Z}$. Let ν be the corresponding valuation. Since $H_{i} \subseteq \mathbb{Q}$ and \mathbb{Q} / \mathbb{Z} is an infinite torsion group, then H_{i} / \mathbb{Z} is an infinite torsion group, since otherwise H_{i} will be finitely generated and hence isomorphic to \mathbb{Z}. Then by [8, Proposition 3.17], there exists an extension ω of ν to $k\left(x_{1}+a_{i}, x_{2}\right)$ such that ω has value group H_{i}, residue field k and $\omega\left(x_{2}\right)>0$. Denote by S_{i} the corresponding valuation ring. Let $\mu_{S_{i}}$ denote the maximal ideal of S_{i}. Since $x_{1}+a_{i}, x_{2} \in \mu_{S_{i}}$, then $\mu_{S_{i}} \cap k\left[x_{1}, x_{2}\right]=\left(x_{1}+a_{i}, x_{2}\right)$.

Let $R=\bigcap_{i=1}^{n} S_{i}$. Observe that for $j \neq i \in\{1,2, \ldots, n\},\left(x_{1}+a_{j}, x_{2}\right)=$ $\mu_{S_{j}} \cap k\left[x_{1}, x_{2}\right] \neq \mu_{S_{i}} \cap k\left[x_{1}, x_{2}\right]=\left(x_{1}+a_{i}, x_{2}\right)$. Thus the S_{i} are distinct. Since each S_{i} has Krull dimension one, the S_{i} are independent, so by Proposition 1, the group of divisibility of R_{1} is

$$
\begin{align*}
G\left(R_{1}\right) & =G\left(S_{1}\right) \times_{c} G\left(S_{2}\right) \times_{c} \ldots \times_{c} G\left(S_{n}\right) \\
& =H_{1} \times{ }_{c} H_{2} \times{ }_{c} \ldots \times_{c} H_{n} \\
& =G_{1} \tag{1}
\end{align*}
$$

Next, we realize G_{2}, where $G_{2} \neq 0$. Suppose $G_{2}=A_{1} \times{ }_{c} A_{2} \times{ }_{c} \ldots \times_{c}$ A_{m}, where for each $j=1,2, \ldots, m, A_{j}$ is a finitely generated subgroup of \mathbb{R} having rational rank two.

Let $c_{1}, c_{2}, \ldots, c_{m}$ be distinct elements of $k-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Since A_{j} is a finitely generated subgroup of \mathbb{R} having rational rank two, we can write $A_{j}=\mathbb{Z}+r_{j} \mathbb{Z}$, where r_{j} is an irrational number. Then we can realize A_{j} over $k\left[x_{1}, x_{2}\right]$ by a valuation ring W_{j} centered on $\left(x_{1}+c_{j}, x_{2}\right)$ and having residue field k [9, p. 512].

Let $R_{2}=\bigcap_{j=1}^{m} W_{j}$. Observe that for $i \neq j \in\{1,2, \ldots, m\},\left(x_{1}+c_{i}, x_{2}\right)=$ $\mu_{W_{i}} \cap k\left[x_{1}, x_{2}\right] \neq \mu_{W_{j}} \cap k\left[x_{1}, x_{2}\right]=\left(x_{1}+c_{j}, x_{2}\right)$. Thus the W_{j} are distinct. Since each W_{j} has Krull dimension one, the W_{j} are independent, so by Proposition 1, the group of divisibility of R_{2} is

$$
\begin{align*}
G\left(R_{2}\right) & =G\left(W_{1}\right) \times_{c} G\left(W_{2}\right) \times_{c} \ldots \times_{c} G\left(W_{m}\right) \\
& =A_{1} \times_{c} A_{2} \times_{c} \ldots \times_{c} A_{m} \\
& =G_{2} \tag{2}
\end{align*}
$$

Finally, we realize G_{3} when $G_{3} \neq 0$. Suppose $G_{3}=B_{1} \times_{c} B_{2} \times_{c} \ldots \times_{c}$ B_{q}, where $B_{t}=\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$ for each $t=1,2, \ldots, q$. Assume that B_{t} has n_{t} copies of \mathbb{Z} in the cardinal product.

Let $e_{1}, e_{2}, \ldots, e_{q}$ be nonzero elements in $k-\left\{a_{1}, a_{2}, \ldots, a_{n}, c_{1}, c_{2}, \ldots, c_{m}\right\}$. Let $p=\left(x_{1}+e_{t}\right)$. Then $V_{t}=D_{p}=k\left[x_{1}, x_{2}\right]_{\left(x_{1}+e_{t}\right)}$ is a DVR [15, Corollary 2, p. 42]. Let $\phi: V_{t} \rightarrow V_{t} / \mu_{V_{t}}$ be the canonical homomorphism, where $\mu_{V_{t}}$ denotes the maximal ideal of V_{t}. Now, we define a valuation on the field $V_{t} / \mu_{V_{t}}$. Let $\bar{x}_{2}=x_{2}+\mu_{V_{t}}$. Clearly, $k\left[\bar{x}_{2}\right] \subseteq V_{t} / \mu_{V_{t}}$. Let $V_{t i}^{\prime}=k\left[\bar{x}_{2}\right]_{\left(\bar{x}_{2}+\alpha_{i}\right)}$, where $\alpha_{i} \in k$ are distinct for $i=1,2, \ldots, n_{t}$. Then each $V_{t i}^{\prime}$ has residue field k. Since the $V_{t i}^{\prime}$ are independent, $V_{t i}^{\prime} V_{t j}^{\prime}=k\left(\bar{x}_{2}\right)$ for $i \neq j$.

Let $V_{t i}=\phi^{-1}\left(V_{t i}^{\prime}\right)$. Then $V_{t i} \subset V_{t}$ and by [14, p. 9], the group of divisibility of $V_{t i}$ is $G\left(V_{t i}\right)=\mathbb{Z} \times_{\ell} \mathbb{Z}$ and the residue field of $V_{t i}$ is k. By construction, each $V_{t i}$ contains $k\left[x_{1}, x_{2}\right]$ and the $V_{t i}$ are dependent but they are centered on different maximal ideals of $k\left[x_{1}, x_{2}\right]$.

Let $T_{t}=V_{t 1} \cap V_{t 2} \cap \cdots \cap V_{t n_{t}}$. Let $H_{V_{t}, V_{t i}}=\operatorname{ker}\left(G\left(V_{t i}\right) \rightarrow G\left(V_{t}\right)\right)$. Then by [14, Proposition 1.11], $H_{V_{t}, V_{t i}}$ is a nonzero convex subgroup of $\mathbb{Z} \times_{\ell} \mathbb{Z}$ because V_{t} is an overring of $V_{t i}$. Thus $H_{V_{t}, V_{t i}}=0 \times_{\ell} \mathbb{Z}$ for all $i=1,2, \ldots, n_{t}$. Since $G\left(k\left(x_{1}, x_{2}\right)\right)=0, H_{k\left(x_{1}, x_{2}\right), V_{t}}=\operatorname{ker}\left(G\left(V_{t}\right) \rightarrow\right.$ $\left.G\left(k\left(x_{1}, x_{2}\right)\right)\right)=G\left(V_{t}\right)=\mathbb{Z}$. Then by Theorem 1 , where the dependency dimension is $d=2-1=1$, the group of divisibility of T_{t} is

$$
G\left(T_{t}\right)=G\left(V_{t 1} \cap V_{t 2} \cap \cdots \cap V_{t r}\right)
$$

and $G\left(T_{t}\right)$ is order isomorphic to a group of the form
lex-extension of $\left(H_{V_{t}, V_{t 1}} \times{ }_{c} H_{V_{t}, V_{t 2}} \times{ }_{c} \ldots{ }_{c} H_{V_{t}, V_{t r}}\right)$ by $H_{k\left(x_{1}, x_{2}\right), V_{t}}$.
The group $G\left(T_{t}\right)$ is then order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \text { by } \mathbb{Z}
$$

Since \mathbb{Z} is projective, this lex-exact sequence splits, so

$$
G\left(T_{t}\right)=\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)=B_{t} .
$$

We have constructed $T_{1}, T_{2}, \ldots, T_{q}$ such that the valuation domains $V_{1}, V_{2}, \ldots, V_{q}$ are independent. Let $R_{3}=\bigcap_{t=1}^{q} B_{t}$. Then by Theorem 1,

$$
\begin{aligned}
G\left(R_{3}\right) & =G\left(T_{1}\right) \times_{c} G\left(T_{2}\right) \times_{c} \ldots \times_{c} G\left(T_{q}\right) \\
& =B_{1} \times_{c} B_{2} \times{ }_{c} \ldots \times_{c} B_{q} \\
& =G_{3}
\end{aligned}
$$

Let $R=R_{1} \cap R_{2} \cap R_{3}=\left(\bigcap_{i=1}^{n} S_{i}\right) \cap\left(\bigcap_{j=1}^{m} W_{j}\right) \cap\left(\bigcap_{t=1}^{q} B_{t}\right)$.

Since the S_{i} and W_{j} are distinct and each of them has rank one, the valuation rings in $\left\{S_{1}, S_{2}, \ldots, S_{n}, W_{1}, W_{2}, \ldots, W_{m}\right\}$ are independent. Also, for any $t \in\{1,2, \ldots, q\}, x_{1}+e_{t}$ belongs to the height one prime ideal of B_{t} and is a unit in S_{i} and W_{j} for all $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, m\}$. Thus the $V_{t i}$ are independent with the S_{i} and W_{j}. Then by Theorem 1,

$$
\begin{aligned}
G(R) & =G\left(R_{1}\right) \times_{c} G\left(R_{2}\right) \times_{c} G\left(R_{3}\right) \\
& =G_{1} \times{ }_{c} G_{2} \times_{c} G_{3} \\
& \cong G
\end{aligned}
$$

This shows G is realizable.
Conversely, suppose G is nonzero and realizable over $k\left[x_{1}, x_{2}\right]$. Let R be a semilocal Bézout overring of $k\left[x_{1}, x_{2}\right]$ such that $G(R)=G$. Let $R=\bigcap_{m \in M} R_{m}$, where M is the collection of all maximal ideals of R. Since R is semilocal, we may write $M=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. For each $i=1,2, \ldots, n$, let $V_{i}=R_{m_{i}}$. Denote the set $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ by \mathscr{F}.

From Proposition 3, there exist three types of valuation overrings of $k\left[x_{1}, x_{2}\right]$. Then by Lemma 2 ,

- If each V_{i} has rank two, then G is isomorphic to a finite cardinal product of groups of the form $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.
- If each V_{i} has value group a subgroup of \mathbb{Q}, then G is isomorphic to a finite cardinal product of subgroups of \mathbb{Q}.
- If each V_{i} has a finitely generated value group which is a subgroup of \mathbb{R} having rational rank two, then G is isomorphic to a finite cardinal product of finitely generated subgroups of \mathbb{R} having rational rank two.

Now assume that the collection $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ contains valuation domains appearing in Proposition 3. We relabel the V_{i} so that $V_{1}, V_{2}, \ldots, V_{p}$ have rational value group, $V_{p+1}, V_{p+2}, \ldots, V_{p+m}$ have real value group having rational rank two, and V_{p+m+1}, \ldots, V_{n} have discrete value group of rank two. Since distinct valuation rings of rank one are independent, $V_{1}, V_{2}, \ldots, V_{p+m}$ are independent. Moreover, $V_{1}, V_{2}, \ldots, V_{p+m}$ are independent with V_{p+m+1}, \ldots, V_{n} since $V_{1}, V_{2}, \ldots, V_{n}$ are incomparable and $V_{1}, V_{2}, \ldots, V_{p+m}$ have dimension one. Then by Theorem 1 ,

$$
\begin{aligned}
G(R)= & \left(G\left(V_{1}\right) \times_{c} G\left(V_{2}\right) \times_{c} \ldots \times_{c} G\left(V_{p}\right)\right) \times_{c}\left(G\left(V_{p+1}\right) \times_{c} G\left(V_{p+2}\right) \times_{c}\right. \\
& \left.\ldots \times_{c} G\left(V_{p+m}\right)\right) \times_{c}\left(G\left(V_{p+m+1} \cap V_{p+m+2} \cap \ldots \cap V_{n}\right)\right)
\end{aligned}
$$

where the groups appearing in the first component are subgroups of \mathbb{Q}, the groups in the second component are subgroups of \mathbb{R} and the groups in the third component are a finite cardinal product of groups of the form $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.

If \mathscr{F} contains only two types of valuation rings appearing in Proposition 3 , then we have the following cases.
Case I: If each $V_{i} \in \mathscr{F}$ has rank one, then we relabel the V_{i} so that $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ have rational value group and $\left\{V_{r+1}, V_{r+2}, \ldots, V_{n}\right\}$ have real value group of rational rank two. Since the V_{i} are distinct and of rank one, the V_{i} are independent. Then by Proposition 1,

$$
G(R)=\left(G\left(V_{1}\right) \times_{c} G\left(V_{2}\right) \times{ }_{c} \ldots \times_{c} G\left(V_{r}\right)\right) \times_{c}\left(G\left(V_{r+1}\right) \times_{c} \ldots \times_{c} G\left(V_{n}\right)\right),
$$

where the groups appearing in the first component are subgroups of \mathbb{Q}, and the groups in the second component are subgroups of \mathbb{R}.
Case II: If some elements in \mathscr{F} have rational value group and some elements in \mathscr{F} have discrete value group of rank two, then we relabel the V_{i} so that $V_{1}, V_{2}, \ldots, V_{q}$ have rational value group and $V_{q+1}, V_{q+2}, \ldots, V_{n}$ have discrete value group of rank two. Since distinct valuation rings of rank one are independent, $V_{1}, V_{2}, \ldots, V_{q}$ are independent. Moreover, $V_{1}, V_{2}, \ldots, V_{q}$ are independent with $V_{q+1}, V_{q+2}, \ldots, V_{n}$ since V_{i} are incomparable. Then by Theorem 1,

$$
\begin{aligned}
G(R)= & \left(G\left(V_{1}\right) \times_{c} G\left(V_{2}\right) \times_{c} \ldots \times_{c} G\left(V_{q}\right)\right) \times_{c} \\
& \left(G\left(V_{q+1}\right) \cap G\left(V_{q+2}\right) \cap \ldots \cap G\left(V_{n}\right)\right),
\end{aligned}
$$

where the groups appearing in the first component are subgroups of \mathbb{Q}, and the groups in the second component are a finite cardinal product of groups of the form $\mathbb{Z} \times \ell\left(\mathbb{Z} \times{ }_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.
Case III: If some elements in \mathscr{F} have real value group of rational rank two and some elements in \mathscr{F} have discrete value group of rank two, then we relabel the V_{i} so that $V_{1}, V_{2}, \ldots, V_{s}$ have real value group and $V_{s+1}, V_{s+2}, \ldots, V_{n}$ have discrete value group of rank two. Since distinct valuation rings of rank one are independent, $V_{1}, V_{2}, \ldots, V_{s}$ are independent. Moreover, $V_{1}, V_{2}, \ldots, V_{s}$ are independent with $V_{s+1}, V_{s+2}, \ldots, V_{n}$ since V_{i} are incomparable. Then by Theorem 1,

$$
\begin{aligned}
G(R)= & \left(G\left(V_{1}\right) \times_{c} G\left(V_{2}\right) \times_{c} \ldots \times_{c} G\left(V_{s}\right)\right) \times_{c} \\
& \left(G\left(V_{s+1}\right) \cap G\left(V_{s+2}\right) \cap \ldots \cap G\left(V_{n}\right)\right),
\end{aligned}
$$

where the groups appearing in the first component are subgroups of \mathbb{R}, and the groups in the second component are a finite cardinal product of groups of the form $\mathbb{Z} \times \ell\left(\mathbb{Z} \times{ }_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.

2.3. Valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$

In this section we discuss the semilocal ℓ-groups which can be realized over $k\left[x_{1}, x_{2}, x_{3}\right]$.

The following lemma describes the value group of a valuation overring V of $k\left[x_{1}, x_{2}, x_{3}\right]$ having Krull dimension greater than one in terms of the value group of a nontrivial valuation overring of V.

Lemma 3. Let V and V^{\prime} be two nontrivial valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ with $V \subsetneq V^{\prime}$.
(1) If rank $G\left(V^{\prime}\right)=1$, then $G\left(V^{\prime}\right)$ is isomorphic to a subgroup of \mathbb{Q} or $G\left(V^{\prime}\right)$ is isomorphic to $\mathbb{Z}+\alpha \mathbb{Z}$, where α is an irrational number.
(2) If rank $G\left(V^{\prime}\right)=2$, then $G\left(V^{\prime}\right) \cong \mathbb{Z} \times_{\ell} \mathbb{Z}$.
(3) If rank $G(V)=$ rat.rank $G(V)=2$, then either $G(V) \cong \mathbb{Z} \times_{\ell} H$, where $H \subseteq \mathbb{Q}$, or $G(V)$ is a lex-extension of \mathbb{Z} by H_{1}, where $H_{1} \subseteq$ \mathbb{Q} and H_{1} is not finitely generated.
(4) If $\operatorname{rank} G(V)=2$ and rat. $\operatorname{rank} G(V)=3$, then $G(V) \cong(\mathbb{Z}+r \mathbb{Z}) \times_{\ell}$ \mathbb{Z} or $G(V) \cong \mathbb{Z} \times \ell(\mathbb{Z}+r \mathbb{Z})$, where r is an irrational number.
(5) If rank $G(V)=3$, then $G(V) \cong \mathbb{Z} \times_{\ell} \mathbb{Z} \times \ell \mathbb{Z}$.

Proof. (1) Since $V \subsetneq V^{\prime}$, [14, Proposition 1.11] implies there exists a nontrivial convex subgroup H^{\prime} of $G(V)$ such that $G\left(V^{\prime}\right) \cong G(V) / H^{\prime}$. If rat.rank $G\left(V^{\prime}\right)=3$, then this implies rat.rank $G(V)>3$, which is not possible by [7, Theorem 6.6.7]. Thus rat.rank $G\left(V^{\prime}\right)=1$ or 2 .

If rat.rank $G\left(V^{\prime}\right)=1$, then $G\left(V^{\prime}\right) \cong H$, where $H \subseteq \mathbb{Q}$.
Suppose rat.rank $G\left(V^{\prime}\right)=2$. Since $G\left(V^{\prime}\right) \cong G(V) / H^{\prime}$, and H^{\prime} is a nontrivial convex subgroup, this implies rat.rank $G(V)=3$. Then by [7, Theorem 6.6.7], $G(V)$ is finitely generated, so $G\left(V^{\prime}\right)$ is finitely generated. Since rat.rank $G\left(V^{\prime}\right)=2$, and $\operatorname{rank} G\left(V^{\prime}\right)=1, G\left(V^{\prime}\right) \cong \mathbb{Z}+\alpha \mathbb{Z}$, where α is an irrational number.
(2) Since $V \subsetneq V^{\prime},[14$, Proposition 1.11] implies there exists a nontrivial convex subgroup B_{1} of $G(V)$ such that $G\left(V^{\prime}\right) \cong G(V) / B_{1}$. Since rank $G\left(V^{\prime}\right)=2$, this implies rank $G(V)=3$ and hence by [7, Theorem 6.6.7], $G(V) \cong \mathbb{Z} \times_{\ell} \mathbb{Z} \times_{\ell} \mathbb{Z}$. Since nontrivial convex subgroups of $G(V)$ have rank either one or two and $G\left(V^{\prime}\right)$ has rank two, B_{1} has rank one by [14, p. 9], and hence $B_{1} \cong \mathbb{Z}$. This implies $G\left(V^{\prime}\right) \cong \mathbb{Z} \times_{\ell} \mathbb{Z}$.
(3) Suppose rank $G(V)=$ rat.rank $G(V)=2$. Then by [4, Lemma 2.3.1], there exists a nonzero nonmaximal prime ideal P of V such
that the Krull dimension of V_{P} is one. If there exists a nontrivial valuation overring of V different from V_{P}, then the Krull dimension of V will be three, which is not possible since rank $G(V)=2$. Moreover, V / P is a valuation ring of $V_{P} / P V_{P}$ and $G(V / P)$ has rank one by [14, Proposition 1.11]. Thus by Lemma $1, G(V)$ is a lex-extension of $G(V / P)$ by $G\left(V_{P}\right)$. By [14, p. 9], $G\left(V_{P}\right)$ and $G(V / P)$ both have rational rank one. Then by [14, Proposition 1.11], $G\left(V_{P}\right)$ and $G(V / P)$ both are isomorphic to subgroups of the group of real numbers. Since rat.rank $G\left(V_{P}\right)=1$, $G\left(V_{P}\right)$ is cyclic or $G\left(V_{P}\right)$ is isomorphic to a noncyclic subgroup of \mathbb{Q}. Then we have the following two cases.
Case I: $G\left(V_{P}\right) \cong \mathbb{Z}$. In this case, $G(V)$ is a lex-extension of $G(V / P)$ by \mathbb{Z}. Since \mathbb{Z} is a projective \mathbb{Z}-module, by Lemma 1 a lex-extension of $G(V / P)$ by $G\left(V_{P}\right) \cong \mathbb{Z}$ splits. Thus $G(V) \cong \mathbb{Z} \times_{\ell} H$, where $G(V / P) \cong H$ and $H \subseteq \mathbb{Q}$.
Case II: $G\left(V_{P}\right)$ is isomorphic to a subgroup of \mathbb{Q} and is not finitely generated. By Theorem 2, $G\left(V_{P}\right)$ is realizable over $k\left[x_{1}, x_{2}\right]$. Then the transcendence degree of the quotient field of V_{P} over k is two. Here, rank $G(V / P)=1$, and rat.rank $G(V / P)=1$. We claim $G(V / P) \cong \mathbb{Z}$. Suppose not. Then $G(V / P)$ is isomorphic to a noncyclic subgroup of \mathbb{Q} and hence the transcendence degree of the quotient field of V / P over k is at least two since any subgroup of \mathbb{Q} which is not finitely generated cannot be realizable over $k[y]$, where y is transcendental over k [12, Lemma 4.3]. By using the composition of valuations from [14, Proposition 1.12], the transcendence degree of the quotient field of V over k is four, which is not possible since the transcendence degree of the quotient field of V over k is three. Thus $G(V / P) \cong \mathbb{Z}$ and $G(V)$ is a lex-extension of \mathbb{Z} by $G\left(V_{P}\right)$.
(4) Suppose rat.rank $G(V)=3$. Then by [7, Theorem 6.6.7], $G(V)$ is finitely generated and by [3, Corollary 9], we can write $G(V)$ as the lexicographic product of finitely generated subgroups of the group of real numbers. Since rank $G(V)=2, G(V) \cong G_{1} \times{ }_{\ell} G_{2}$, where G_{1} and G_{2} are finitely generated totally ordered groups of rank one.

If rat.rank $G_{1}=1$, then rat.rank $G_{2}=2$. Since G_{1} and G_{2} are finitely generated, $G_{1} \cong \mathbb{Z}$ and $G_{2} \cong \mathbb{Z}+r \mathbb{Z}$, where r is an irrational number. Thus $G(V) \cong \mathbb{Z} \times_{\ell}(\mathbb{Z}+r \mathbb{Z})$.

Similarly, if rat.rank $G_{1}=2$, then rat.rank $G_{2}=1$, and $G(V) \cong$ $(\mathbb{Z}+r \mathbb{Z}) \times \neq \mathbb{Z}$.
(5) If rank $G(V)=3$, then by [7, Theorem 6.6.7], $G(V) \cong \mathbb{Z} \times_{\ell} \mathbb{Z} \times_{\ell} \mathbb{Z}$.

The proposition below shows that the group of divisibility of the
intersection of a finite collection of dependent valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ depends on the group of divisibility of a valuation ring which contains all others valuation rings.

Proposition 4. Let V be a valuation overring of $k\left[x_{1}, x_{2}, x_{3}\right]$, and let $\mathscr{F}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a finite collection of incomparable dependent valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ such that for each $i=1,2, \ldots, n, V_{i} \subsetneq V$. Let $R=\bigcap_{i=1}^{n} V_{i}$.
(1) If for some i, there is a valuation ring W_{i} such that $V_{i} \subsetneq W_{i} \subsetneq V$, then $G(R) \cong \mathbb{Z} \times_{\ell} A$, where A is a finite cardinal product of one or more of the following groups, which are realizable over $k\left[x_{1}, x_{2}\right]$.

- $\left(\mathbb{Z}+r_{1} \mathbb{Z}\right) \times_{c}\left(\mathbb{Z}+r_{2} \mathbb{Z}\right) \times_{c} \ldots \times_{c}\left(\mathbb{Z}+r_{q} \mathbb{Z}\right)$, where for each $i=$ $1,2, \ldots, q, r_{i}$ is an irrational number.
- $H_{1} \times_{c} H_{2} \times_{c} \ldots \times_{c} H_{p}$, where for each $i=1,2, \ldots, p, H_{i} \subseteq \mathbb{Q}$.
- $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.
(2) Suppose that for each i, there are no valuation rings properly between V_{i} and V. Then
(a) If $G(V) \cong \mathbb{Z}$, then $G(R) \cong \mathbb{Z} \times_{\ell} C$, where C is a finite cardinal product of one or more of the following groups, which are realizable over $k\left[x_{1}, x_{2}\right]$.
- $\left(\mathbb{Z}+r_{1} \mathbb{Z}\right) \times_{c}\left(\mathbb{Z}+r_{2} \mathbb{Z}\right) \times_{c} \ldots \times_{c}\left(\mathbb{Z}+r_{q} \mathbb{Z}\right)$, where for each $i=$ $1,2, \ldots, q, r_{i}$ is an irrational number.
- $H_{1} \times_{c} H_{2} \times_{c} \ldots \times_{c} H_{p}$, where for each $i=1,2, \ldots, p, H_{i} \subseteq \mathbb{Q}$.
(b) If $G(V) \cong \mathbb{Z}+\alpha \mathbb{Z}$, where α is an irrational number, then $G(R) \cong$ $(\mathbb{Z}+\alpha \mathbb{Z}) \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right)$.
(c) If rat.rank $G(V)=1$ and $G(V)$ is not finitely generated, then $G(R)$ is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right) \text { by } H
$$

(d) If $G(V) \cong \mathbb{Z} \times_{\ell} \mathbb{Z}$, then $G(R) \cong\left(\mathbb{Z} \times_{\ell} \mathbb{Z}\right) \times_{\ell}\left(\mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.

Proof. (1) Let $W_{1}, W_{2}, \ldots, W_{m} \notin \mathscr{F}, m \leq n$ be distinct valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ such that for each $j=1,2, \ldots, m, W_{j}$ contains at least
one of the V_{i} with $W_{j} \subsetneq V$. Now by Theorem 1 , the group of divisibility $G(R)$ is order isomorphic to a group of the form

$$
\begin{align*}
& \text { lex-extension of }\left(\prod _ { j = 1 } ^ { m } \left(\text { lex-extension of }\left(\prod_{S \in \mathscr{F}, S \subsetneq W_{j}} H_{W_{j}, S}\right)\right.\right. \\
& \text { by } \left.\left.H_{V, W_{j}}\right) \times_{c} \prod_{T \in \mathscr{F}, T \nsubseteq W_{j}} H_{V, T}\right) \text { by } G(V) \tag{3}
\end{align*}
$$

where $H_{V, W_{j}}=\operatorname{ker}\left(G\left(W_{j}\right) \rightarrow G(V)\right), H_{V, T}=\operatorname{ker}(G(T) \rightarrow G(V)), H_{W_{j}, S}$ $=\operatorname{ker}\left(G(S) \rightarrow G\left(W_{j}\right)\right), H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=\operatorname{ker}\left(G(V) \rightarrow G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)\right)$ and $S, T \in \mathscr{F}$.

Here, by [7, Theorem 6.67], if $S \in \mathscr{F}$ with $S \subsetneq W_{j}$ for some $j=$ $1,2, \ldots, m$, then S has value group $\mathbb{Z} \times_{\ell} \mathbb{Z} \times_{\ell} \mathbb{Z}$, and by Lemma $3, G\left(W_{j}\right) \cong$ $\mathbb{Z} \times_{\ell} \mathbb{Z}$. Since $0 \times_{\ell} \mathbb{Z}$ is the only nontrivial convex subgroup of $G\left(W_{j}\right)$ and $W_{j} \subsetneq V$, we have $G(V) \cong G\left(W_{j}\right) /\left(0 \times_{\ell} \mathbb{Z}\right) \cong \mathbb{Z}$. Then for each $T \in \mathscr{F}$ with $T \nsubseteq W_{j}$ for all j , rank $G(T)=2$. Since $T \subsetneq V$, there exists a nontrivial convex subgroup B_{t} of $G(T)$ such that $G(T) / B_{t} \cong G(V) \cong \mathbb{Z}$. Then by Lemma $1, G(T) \cong \mathbb{Z} \times_{\ell} B_{t}$. Since $\operatorname{rank} G(T)=2$, either $B_{t} \cong \mathbb{Z}, B_{t}$ is isomorphic to a non-finitely generated subgroup of \mathbb{Q}, or $B_{t} \cong \mathbb{Z}+\gamma \mathbb{Z}$ for some irrational number γ.

Now $H_{V, W_{j}} \cong \mathbb{Z}$, since \mathbb{Z} is the only nonzero convex subgroup of $G\left(W_{j}\right), H_{V, T} \cong B_{t}$, since B_{t} is the only nonzero convex subgroup of $G(T)$, $H_{W_{j}, S} \cong \mathbb{Z}$, and $H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=G(V) \cong \mathbb{Z}$, since $G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)=0$. Since \mathbb{Z} is projective by Lemma 1 , the lex-exact sequences in (3) split and hence $G(R)$ is order isomorphic to

$$
\begin{equation*}
G(V) \times_{\ell}\left(\prod_{j=1}^{m}\left(H_{V, W_{j}} \times_{\ell}\left(\prod_{S \in \mathscr{F}, S \subsetneq W_{j}} H_{W_{j}, S}\right)\right) \times_{c} \prod_{T \in \mathscr{F}, T \notin W_{j}} H_{V, T}\right) \tag{4}
\end{equation*}
$$

$(2)(a)$ Since $G(V) \cong \mathbb{Z}, V$ is a DVR. Thus there are no valuation rings properly between V and $k\left(x_{1}, x_{2}, x_{3}\right)$. Then each valuation ring in \mathscr{F} has Krull dimension two since there are no valuation rings properly between V_{i} and V. By Theorem 1 , the group of divisibility $G(R)$ is order isomorphic to a group of the form

$$
\begin{equation*}
\text { lex-extension of }\left(\prod_{i=1}^{n} H_{V, V_{i}}\right) \text { by } G(V) \tag{5}
\end{equation*}
$$

where $H_{V, V_{i}}=\operatorname{ker}\left(G\left(V_{i}\right) \rightarrow G(V)\right)$.
Since each $G\left(V_{i}\right)$ has rank two and $V_{i} \subsetneq V$, there exists a nontrivial convex subgroup B_{i} of $G\left(V_{i}\right)$ such that $G\left(V_{i}\right) / B_{i} \cong G(V) \cong \mathbb{Z}$. Then by Lemma $1, G\left(V_{i}\right) \cong \mathbb{Z} \times_{\ell} B_{i}$. Since rank $G\left(V_{i}\right)=2$, either $B_{i} \cong \mathbb{Z}, B_{i}$ is isomorphic to a non-finitely generated subgroup of \mathbb{Q}, or $B_{i} \cong \mathbb{Z}+\beta \mathbb{Z}$ for some irrational number β. Also $H_{V, V_{i}}=B_{i}$ since B_{i} is the only nonzero convex subgroup of $G\left(V_{i}\right)$.

By Lemma 1 , since \mathbb{Z} is projective, the lex-exact sequence (5) splits and hence $G(R)$ is order isomorphic to $\mathbb{Z} \times_{\ell}\left(\prod_{i=1}^{n} H_{V, V_{i}}\right)$.
(b) Suppose $G(V) \cong \mathbb{Z}+\alpha \mathbb{Z}$, where α is an irrational number. Then by Lemma 3 (4), for each $i=1,2, \ldots, n, G\left(V_{i}\right) \cong(\mathbb{Z}+\alpha \mathbb{Z}) \times_{\ell} \mathbb{Z}$. Let $H_{V, V_{i}}=$ $\operatorname{ker}\left(G\left(V_{i}\right) \rightarrow G(V)\right)$ and let $H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=\operatorname{ker}\left(G(V) \rightarrow G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)\right)$. Then $H_{V, V_{i}} \cong \mathbb{Z}$, since the only nonzero convex subgroup of $G\left(V_{i}\right)$ is cyclic, and $H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=G(V) \cong \mathbb{Z}+\alpha \mathbb{Z}$ since $G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)=0$. Then by Theorem 1, the group of divisibility $G(R)$ is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(H_{V, V_{1}} \times{ }_{c} H_{V, V_{2}} \times{ }_{c} \cdots \times_{c} H_{V, V_{n}}\right) \text { by } H_{k\left(x_{1}, x_{2}, x_{3}\right), V}
$$

The group $G(R)$ is then order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right) \text { by }(\mathbb{Z}+\alpha \mathbb{Z})
$$

Since $\mathbb{Z}+\alpha \mathbb{Z}$ is projective, Lemma 1 implies that the lex-exact sequence $\left(b^{\prime}\right)$ splits and hence $G(R) \cong(\mathbb{Z}+\alpha \mathbb{Z}) \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.
(c) Suppose rat.rank $G(V)=1$ and $G(V)$ is not finitely generated. Then $G\left(V_{i}\right)$ is not finitely generated, since otherwise $G(V)$ is finitely generated by [14, Proposition 1.11]. Moreover, rank $G\left(V_{i}\right)$ cannot be three, since otherwise $G\left(V_{i}\right)$ will be finitely generated by Lemma 3. Thus each $G\left(V_{i}\right)$ has rank two. By [14, Proposition 1.11], there exists a nonzero convex subgroup H_{i}^{\prime} of $G\left(V_{i}\right)$ such that $G(V) \cong G\left(V_{i}\right) / H_{i}^{\prime}$. As in the proof of case II of (3) of Lemma $3, H_{i}^{\prime} \cong \mathbb{Z}$. Lemma 1 implies that $G\left(V_{i}\right)$ is order isomorphic to a group of the form

lex-extension of \mathbb{Z} by H.

Let $H_{V, V_{i}}=\operatorname{ker}\left(G\left(V_{i}\right) \rightarrow G(V)\right)$, and let $H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=\operatorname{ker}(G(V) \rightarrow$ $\left.G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)\right)$. Then $H_{V, V_{i}} \cong \mathbb{Z}$ since the only nontrivial convex subgroup of $G\left(V_{i}\right)$ is cyclic, and $H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=H$ since $G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)=$

0 . Now, by Theorem 1, the group of divisibility $G(R)$ is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(H_{V, V_{1}} \times_{c} H_{V, V_{2}} \times_{c} \cdots \times_{c} H_{V, V_{n}}\right) \text { by } H_{k\left(x_{1}, x_{2}, x_{3}\right), V}
$$

The group $G(R)$ is then order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right) \text { by } H
$$

(d) Suppose $G(V) \cong \mathbb{Z} \times_{\ell} \mathbb{Z}$. Since $V_{i} \subsetneq V$, rank $G\left(V_{i}\right)=3$. Then by [7, Theorem 6.6.7], $G\left(V_{i}\right) \cong \mathbb{Z} \times_{\ell} \mathbb{Z} \times_{\ell} \mathbb{Z}$. Let $H_{V, V_{i}}=\operatorname{ker}\left(G\left(V_{i}\right) \rightarrow G(V)\right)$ and let $H_{k\left(x_{1}, x_{2}, x_{3}\right), V}=\operatorname{ker}\left(G(V) \rightarrow G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)\right)$. Then $H_{V, V_{i}} \cong \mathbb{Z}$ since $\operatorname{ker}\left(G\left(V_{i}\right) \rightarrow G(V)\right)$ is cyclic, and $H_{k\left(x_{1}, x_{2}, x_{3}\right), V} \cong \mathbb{Z} \times_{\ell} \mathbb{Z}$ since $G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)=0$. Now, by Theorem 1 , the group of divisibility $G(R)$ is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(H_{V, V_{1}} \times_{c} H_{V, V_{2}} \times_{c} \cdots \times_{c} H_{V, V_{n}}\right) \text { by } H_{k\left(x_{1}, x_{2}, x_{3}\right), V}
$$

The group $G(R)$ is then order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right) \text { by }\left(\mathbb{Z} \times_{\ell} \mathbb{Z}\right)
$$

Since the group $\mathbb{Z} \times_{\ell} \mathbb{Z}$ is projective, Lemma 1 implies that the lex-exact sequence splits and hence $G(R) \cong\left(\mathbb{Z} \times_{\ell} \mathbb{Z}\right) \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right)$.

Definition 1. Let $G(R)$ be the group of divisibility of a semilocal Bézout domain R. Then $G(R)$ is called completely determined by the lexicocardinal decomposition form of $G(R)$ if each lex-exact sequence appearing in the lexico-cardinal decomposition form of $G(R)$ splits.

Definition 2. Let $\mathscr{F}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a finite collection of valuation rings with the same quotient field K and let $\mathscr{N}(\mathscr{F})=\{(V, W): V, W \in \mathscr{F}\}$ $\cup\{K\}$. Let $\mathscr{T}(\mathscr{F} ; K):=\left(\mathscr{N}(\mathscr{F}),\left\{\left([\sigma, \tau], H_{\sigma, \tau}\right) ; \sigma, \tau \in \mathscr{N}(\mathscr{F})\right\}\right)$, where τ immediate successor of σ be the weighted dependency tree of \mathscr{F} and d the dependency dimension of \mathscr{F}. Let $R=\bigcap_{i=1}^{n} V_{i}$ and let $G(R)$ be the group of divisibility of R. Then $G(R)$ is called completely determined by the weighted dependency tree of \mathscr{F} if $G(R)$ can be expressed as a finite product of sequences of lexicographic product and cardinal product of the totally ordered groups $H_{\sigma, \tau}$.

The following proposition shows that $G(R)$ being completely determined by the lexico-cardinal decomposition form of $G(R)$ implies $G(R)$ is completely determined by the weighted dependency tree of valuation rings in \mathscr{F}.

Proposition 5. Let $\mathscr{F}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a finite collection of valuation rings with the same quotient field K. Let $R=\bigcap_{i=1}^{n} V_{i}$. If $G(R)$ is completely determined by the lexico-cardinal decomposition form of $G(R)$, then $G(R)$ is completely determined by the weighted dependency tree of valuation rings in \mathscr{F}.

Proof. Let $R=\bigcap_{i=1}^{n} V_{i}$ and let $G(R)$ be completely determined by the lexico-cardinal decomposition form of $G(R)$.

Let $\mathscr{N}(\mathscr{F})=\{(V, W): V, W \in \mathscr{F}\} \cup\{K\}$. Then by Theorem 1, let

$$
\mathscr{T}(\mathscr{F} ; K):=\left(\mathscr{N}(\mathscr{F}),\left\{\left([\sigma, \tau], H_{\sigma, \tau}\right) ; \sigma, \tau \in \mathscr{N}(\mathscr{F}) \sigma\right\}\right),
$$

τ immediate successor of be the weighted dependency tree of \mathscr{F} and d the dependency dimension of \mathscr{F}. For every node $\sigma \in \mathscr{N}(\mathscr{F})$, let $\mathscr{S}(\sigma):=\{\tau \in \mathscr{N}(\mathscr{F}) ; \tau$ is an immediate successor of $\sigma\}$. Then, $G(R)$ is order isomorphic to a group of the form

$$
\begin{aligned}
& \prod_{\sigma_{1} \in \mathscr{S}(K)}\left(\text { lex-extension of } { } _ { 1 } \left[\prod _ { \sigma _ { 2 } \in \mathscr { S } (\sigma _ { 1 }) } \left(\text { lex-extension of } { } _ { 2 } \left[\prod_{\sigma_{3} \in \mathscr{S}\left(\sigma_{2}\right)}\right.\right.\right.\right. \\
& \left(\cdots \prod _ { \sigma _ { d } \in \mathscr { S } (\sigma _ { d - 1 }) } \left(\text { lex-extension of } { } _ { d } \left[\prod_{\sigma_{d+1} \in \mathscr{S}\left(\sigma_{d}\right)} H_{\left.\sigma_{d}, \sigma_{d-1}\right]_{d}} b y\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.H_{\sigma_{d-1}, \sigma_{d}}\right) \ldots\right)\right]_{2} \text { by } H_{\sigma_{1}, \sigma_{2}}\right)\right]_{1} \text { by } H_{K, \sigma_{1}}\right)
\end{aligned}
$$

which is the lexico-cardinal decomposition of $G(R)$.
Since each of the lex-exact sequence splits, then the group $G(R)$ is order isomorphic to

$$
\begin{align*}
& \prod_{\sigma_{1} \in \mathscr{S}(K)}\left(H_{K, \sigma_{1}} \times_{\ell}\left[\prod _ { 1 } \prod _ { \sigma _ { 2 } \in \mathscr { S } (\sigma _ { 1 }) } \left(H_{\sigma_{1}, \sigma_{2}} \times_{\ell}\left[\prod _ { 2 } \left[\prod_{\sigma_{3} \in \mathscr{S}\left(\sigma_{2}\right)}\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left(\ldots \prod_{\sigma_{d} \in \mathscr{S}\left(\sigma_{d-1}\right)}\left(H_{\sigma_{d-1}, \sigma_{d}} \times \ell\left[\prod_{\sigma_{d+1} \in \mathscr{S}\left(\sigma_{d}\right)} H_{\sigma_{d}, \sigma_{d-1}}\right]_{d}\right) \ldots\right)\right]_{2}\right)\right]_{1}\right) . \tag{6}
\end{align*}
$$

The expression (6) shows that $G(R)$ is completely determined by the weighted dependency tree of \mathscr{F}.

Corollary 1. Let \mathscr{F} be a finite collection of dependent valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ and let W be a nontrivial valuation overring of $k\left[x_{1}, x_{2}, x_{3}\right]$ that contains each $V \in \mathscr{F}$. If $G(W)$ is finitely generated,
then the group of divisibility $G\left(\bigcap_{V \in \mathscr{F}} V\right)$ is completely determined by the weighted dependency tree of valuations in \mathscr{F}.

Proof. Let $\mathscr{F}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$. Let $R=\bigcap_{i=1}^{n} V_{i}$. Then by the proof of (1) of Proposition 4, the group of divisibility of R is order isomorphic to a group of the form

$$
\begin{align*}
& \text { lex-extension of }\left(\prod _ { j = 1 } ^ { m } \left(\text { lex-extension of }\left(\prod_{S \in \mathscr{F}, S \subsetneq W_{j}} H_{W_{j}, S}\right)\right.\right. \\
& \text { by } \left.\left.H_{V, W_{j}}\right) \times_{c} \prod_{T \in \mathscr{F}, T \nsubseteq W_{j}} H_{V, T}\right) \text { by } G(V) \text {, } \tag{7}
\end{align*}
$$

Here, W_{j} may or may not exist. If W_{j} exists for some j, then by the proof of (1) of Proposition $4, G\left(W_{j}\right)$ is finitely generated and hence the convex subgroup $H_{V, W_{j}}$ of $G\left(W_{j}\right)$ is finitely generated. This determines the group of divisibility of R, since the lex-exact sequences appearing in (7) split by Lemma 1.

If the W_{j} do not exist, then the short exact sequence appearing in (7) splits by Lemma 1 , since $G(V)$ is finitely generated. This also determines the group of divisibility of R.

Corollary 2. Let \mathscr{F} be a finite collection of valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$. Let $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{r}$ be the dependency classes of \mathscr{F}. Let W_{i} be a nontrivial valuation overring of $k\left[x_{1}, x_{2}, x_{3}\right]$ which contains each of the valuation rings in \mathscr{F}_{i}. Then the group of divisibility $G\left(\bigcap_{V \in \mathscr{F}} V\right)$ is completely determined by the weighted dependency tree of the valuations in \mathscr{F} if for each $i=1,2, \ldots, r, G\left(W_{i}\right)$ is finitely generated.

Proof. Let $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{r}$ be the dependency classes of valuation rings in \mathscr{F}. For each $i=1,2, \ldots, r$, let $S_{i}=\bigcap_{V \in \mathscr{F}_{i}} V$. Let $R=\bigcap_{i=1}^{r} S_{i}$. By [3, Theorem 3], the group of divisibility $G(R)$ is order isomorphic to $\prod_{i=1}^{r} G\left(S_{i}\right)$, where $G\left(S_{i}\right)$ can be determined as in the Corollary 1. Thus $G(R)$ can be determined.

The following proposition gives an ℓ-group, which is a group of divisibility of the intersection of valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ having Krull dimension greater than one.

Proposition 6. Let \mathscr{F} be a finite collection of valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$ such that each valuation ring in \mathscr{F} has rank greater than one, and let $R=\bigcap_{V \in \mathscr{F}} V$. Then $G(R)$ is order isomorphic to a group of the form $G_{1} \times_{c} G_{2} \times{ }_{c} G_{3}$, where
(1) G_{1} is a finite cardinal product of the groups of the form

$$
\begin{equation*}
\mathbb{Z} \times_{\ell} A, \tag{8}
\end{equation*}
$$

where A is a finite cardinal product of one or more of the following groups, which are realizable over $k\left[x_{1}, x_{2}\right]$.

- $\left(\mathbb{Z}+r_{1} \mathbb{Z}\right) \times_{c}\left(\mathbb{Z}+r_{2} \mathbb{Z}\right) \times_{c} \ldots \times_{c}\left(\mathbb{Z}+r_{q} \mathbb{Z}\right)$, where $r_{1}, r_{2}, \ldots, r_{q}$ are irrational numbers.
- $H_{1} \times_{c} H_{2} \times_{c} \ldots \times_{c} H_{p}$, for each $i=1,2, \ldots, p, H_{i} \subseteq \mathbb{Q}$.
- $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$,
(2) G_{2} is a finite cardinal product of the groups of the form

$$
\begin{equation*}
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \text { by } H \tag{9}
\end{equation*}
$$

where $H \subseteq \mathbb{Q}$ and H is not finitely generated, and
(3) G_{3} is a finite cardinal product of the groups of the form

$$
\begin{equation*}
(\mathbb{Z}+r \mathbb{Z}) \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \tag{10}
\end{equation*}
$$

Proof. Let $\mathscr{F}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ and let $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{m}, m \leq n$ denote the set of dependency classes of \mathscr{F}. For each $j=1,2, \ldots, m$, let $W_{j} \in \mathscr{N}\left(\mathscr{F}_{j}\right)$ be a nontrivial valuation overring of $k\left[x_{1}, x_{2}, x_{3}\right]$ that contains each $V \in \mathscr{F}_{j}$.

Then we have the following cases.
Case I: Suppose for each $h=1,2, \ldots, r, G\left(W_{r}\right) \cong \mathbb{Z}$. Then by (1) and $(2)(a)$ of Proposition 4, $G\left(\bigcap_{V \in \mathscr{F}_{h}} V\right)$ is order isomorphic to a group of the form $\mathbb{Z} \times{ }_{\ell} A$. Let $R_{h}^{\prime}=\bigcap_{V \in \mathscr{F}_{h}} V$ and let $R_{1}=\bigcap_{h=1}^{r} R_{h}^{\prime}$. Then by [3, Theorem 3], $G_{1}:=G\left(R_{1}\right)$ is order isomorphic to $G\left(R_{1}^{\prime}\right) \times{ }_{c} G\left(R_{2}^{\prime}\right) \times{ }_{c}$ $\cdots \times{ }_{c} G\left(R_{r}^{\prime}\right)$.

Case II: Suppose for each $p=r+1, r+2, \ldots, s, G\left(W_{p}\right) \cong H \subseteq \mathbb{Q}$ and $G\left(W_{p}\right)$ is not finitely generated. Let $R_{p}^{\prime \prime}=\bigcap_{V \in \mathscr{F}_{p}} V$. Then by (2)(c) of Proposition 4, $G\left(R_{h}^{\prime \prime}\right)$ is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right) \text { by } H
$$

Let $R_{2}=\bigcap_{p=r+1}^{s} R_{h}^{\prime \prime}$. Then by [3, Theorem 3], $G_{2}:=G\left(R_{2}\right)$ is order isomorphic to $G\left(R_{r+1}^{\prime \prime}\right) \times_{c} G\left(R_{r+2}^{\prime \prime}\right) \times_{c} \cdots \times_{c} G\left(R_{s}^{\prime \prime}\right)$ which is in the form given in (2).
Case III: Suppose for each $q=s+1, s+2, \ldots, m, G\left(W_{q}\right) \cong \mathbb{Z} \times_{c} \gamma_{q} \mathbb{Z}$, where γ_{q} is an irrational number. Let $R_{q}^{\prime \prime \prime}=\bigcap_{V \in \mathscr{F}_{q}} V$. Then by $(2)(b)$ of Proposition 4, $G\left(R_{q}^{\prime \prime \prime}\right)$ is order isomorphic to the group $\left(\mathbb{Z} \times_{c} \gamma_{q} \mathbb{Z}\right) \times_{\ell}$ $\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \cdots \times_{c} \mathbb{Z}\right)$.

Let $R_{3}=\bigcap_{q=s+1}^{s} R_{q}^{\prime \prime \prime}$. Then by [3, Theorem 3], $G\left(R_{3}\right)$ is order isomorphic to $G\left(R_{s+1}^{\prime \prime \prime}\right) \times_{c} G\left(R_{s+2}^{\prime \prime \prime}\right) \times_{c} \cdots \times_{c} G\left(R_{m}^{\prime \prime \prime}\right)=G_{3}$.

Let $R=R_{1} \cap R_{2} \cap R_{3}$. Then $R=\bigcap_{V \in \mathscr{F}} V$. Now by [3, Theorem 3], $G(R)$ is order isomorphic to $G\left(R_{1}\right) \times{ }_{c} G\left(R_{2}\right) \times_{c} G\left(R_{3}\right)$ and by Theorem 1, $G(R)$ is order isomorphic to a group of the form $G_{1} \times{ }_{c} G_{2} \times{ }_{c} G_{3}$.

The result below describes the group of divisibility of a finite intersection of valuation overrings of $k\left[x_{1}, x_{2}, x_{3}\right]$.

Theorem 3. Let k be an infinite field. A semilocal ℓ-group G is weakly realizable over $k\left[x_{1}, x_{2}, x_{3}\right]$, where k is a field and x_{1}, x_{2}, x_{3} are indeterminates over k if and only if G is order isomorphic to a group of the form $G_{1} \times_{c} G_{2} \times_{c} G_{3} \times_{c} G_{4} \times_{c} G_{5} \times_{c} G_{6}$, where G_{1}, G_{2}, G_{3} are as in Proposition 6 and each of G_{4}, G_{5} and G_{6} is isomorphic to a cardinal sum of subgroups of the real numbers of rational rank one, two and three respectively.

Proof. Let G be an ℓ-group and suppose $G=G_{1} \times_{c} G_{2} \times_{c} G_{3} \times_{c} G_{4} \times_{c}$ $G_{5} \times_{c} G_{6}$, where each $G_{i} ; i=1,2, \ldots, 6$ is zero or $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ and G_{6} as in the theorem.

First, we realize the group G_{1}. If $G_{1}=0$, let $V=k\left(x_{1}, x_{2}, x_{3}\right)$ so that $G(V)=0=G_{1}$. Assume that $G_{1} \neq 0$ and write $G_{1}=A_{1} \times_{c} A_{2} \times_{c} \cdots \times_{c}$ A_{n}, where each $A_{i} \cong \mathbb{Z} \times_{\ell} A_{i}^{\prime}$ and where A_{i}^{\prime} is a finite cardinal product of one or more of the following groups, which are realizable over $k\left[x_{1}, x_{2}\right]$.

- $\left(\mathbb{Z}+r_{1} \mathbb{Z}\right) \times_{c}\left(\mathbb{Z}+r_{2} \mathbb{Z}\right) \times_{c} \ldots \times_{c}\left(\mathbb{Z}+r_{q} \mathbb{Z}\right)$, where $r_{1}, r_{2}, \ldots, r_{q}$ are irrational numbers.
- $H_{1} \times_{c} H_{2} \times_{c} \ldots \times_{c} H_{p}$, for each $i=1,2, \ldots, p, H_{i} \subseteq \mathbb{Q}$.
- $\mathbb{Z} \times_{\ell}\left(\mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$.

First, we want to realize A_{i}. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct elements of k.
Let $p_{i}=x_{1}+a_{i}$, and let $V_{i}=k\left[x_{1}, x_{2}, x_{3}\right]_{\left(x_{1}+a_{i}\right)}$. Then by $[15$, Corollary 2, p. 42], V_{i} is a DVR. Let $\mu_{V_{i}}$ be the maximal ideal of V_{i}. Let $\bar{x}_{2}=x_{2}+\mu_{V_{i}}$ and $\bar{x}_{3}=x_{3}+\mu_{V_{i}}$. Then $k\left[\bar{x}_{2}, \bar{x}_{3}\right] \subseteq V_{i} / \mu_{V_{i}}$.

The group A_{i}^{\prime} can be realized over $k\left[\bar{x}_{2}, \bar{x}_{3}\right]$ as in Theorem 2. Let R_{i}^{\prime} be the corresponding domain. Let $D_{i}=\phi^{-1}\left(R_{i}^{\prime}\right)$, where $\phi: V_{i} \rightarrow V_{i} / \mu_{V_{i}}$ be the canonical homomorphism. Then by [11, Theorem 3.2], the sequence

$$
\begin{equation*}
0 \rightarrow G\left(R_{i}^{\prime}\right) \rightarrow G\left(D_{i}\right) \rightarrow G\left(V_{i}\right) \rightarrow 0 \tag{a}
\end{equation*}
$$

is lexicographically exact. Since $G\left(V_{i}\right) \cong \mathbb{Z}$ by Lemma 1 , the sequence (a) splits and hence

$$
\begin{aligned}
G\left(D_{i}\right) & \cong \mathbb{Z} \times_{\ell} G\left(R_{i}^{\prime}\right) \\
& \cong \mathbb{Z} \times_{\ell} A_{i}^{\prime} \\
& \cong A_{i} .
\end{aligned}
$$

Let $R_{1}=\bigcap_{i=1}^{n} D_{i}$. We have constructed $D_{1}, D_{2}, \ldots, D_{n}$ such that the valuation domains $V_{1}, V_{2}, \ldots, V_{n}$ are independent. Then by [3, Theorem 3], $G\left(R_{1}\right)$ is order isomorphic to $A_{1} \times{ }_{c} A_{2} \times_{c} \cdots \times_{c} A_{n}$. Thus $G\left(R_{1}\right) \cong G_{1}$.

Next, we show that G_{2} can be weakly realized, where $G_{2} \neq 0$. Suppose $G_{2} \cong B_{1} \times{ }_{c} B_{2} \times{ }_{c} \cdots \times_{c} B_{m}$, where each B_{j} is in the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \text { by } H
$$

where H is a subgroup of \mathbb{Q}, and H is not finitely generated.
Let $b_{1}, b_{2}, \ldots, b_{m} \in k-\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. As in Theorem 2, we realize H over $k\left(x_{3}\right)\left[x_{1}+b_{j}, x_{2}\right]$. Let W_{j} be the corresponding valuation domain. Let $\bar{x}_{3}=x_{3}+\mu_{W_{j}}$, where $\mu_{W_{j}}$ denotes the maximal ideal of W_{j}. Then $k\left[\bar{x}_{3}\right] \subsetneq W_{j} / \mu_{W_{j}}$. Let $e_{1}, e_{2}, \ldots, e_{r_{1}}$ be distinct elements of k. Let $T_{i}^{\prime}=k\left[\bar{x}_{3}\right]_{\left(\bar{x}_{3}+e_{i}\right)}$. Then T_{i}^{\prime} is a DVR [15, Corollary 2, p. 42] and hence $G\left(T_{i}^{\prime}\right)=\mathbb{Z}$. Let $T_{i}=\psi^{-1}\left(T_{i}^{\prime}\right)$, where $\psi: W_{j} \rightarrow W_{j} / \mu_{W_{j}}$ is the canonical homomorphism. Then by Lemma $1, G\left(T_{i}\right)$ is order isomorphic to a lex-extension of \mathbb{Z} by H. Let $R_{2 j}=\bigcap_{i=1}^{r_{j}} T_{i}$, where r_{j} denotes
the number of copies of \mathbb{Z} in B_{j} which appear in the cardinal product. Let $H_{W_{j}, T_{i}}=\operatorname{ker}\left(G\left(T_{i}\right) \rightarrow G\left(W_{j}\right)\right)$ and $H_{k\left(x_{1}, x_{2}, x_{3}\right), W_{j}}=\operatorname{ker}\left(G\left(W_{j}\right) \rightarrow\right.$ $\left.G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)\right)$. Then $H_{W_{j}, T_{i}}=\mathbb{Z}$, since $H_{W_{j}, T_{i}}$ is a nontrivial convex subgroup of $G\left(T_{i}\right)$ and $H_{k\left(x_{1}, x_{2}, x_{3}\right), W_{j}}=H$, since $G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)=0$. Thus by Theorem 1, the group of divisibility $G\left(R_{2 j}\right)$ is order isomorphic to a group of the form
lex-extension of $\left(H_{W_{j}, T_{1}} \times{ }_{c} H_{W_{j}, T_{2}} \times{ }_{c} \ldots \times_{c} H_{W_{j}, T_{r_{1}}}\right)$ by $H_{k\left(x_{1}, x_{2}, x_{3}\right), W_{j}}$, which is order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \text { by } H
$$

Let $R_{2}=\bigcap_{j=1}^{m} R_{2 j}$. We have constructed $R_{21}, R_{22}, \ldots, R_{2 m}$ such that the valuation domains $W_{1}, W_{2}, \ldots, W_{m}$ are independent. Then by [3, Theorem 3], the group of divisibility $G\left(R_{2}\right)$ is order isomorphic to a group of the form $G\left(B_{1}\right) \times{ }_{c} G\left(B_{2}\right) \times_{c} \cdots \times_{c} G\left(B_{m}\right)$. Thus $G\left(R_{2}\right)$ is order isomorphic to a group of the form G_{2}. Hence G_{2} is weakly realizable over $k\left[x_{1}, x_{2}, x_{3}\right]$.

Finally, we realize the group G_{3}, where $G_{3} \neq 0$. Suppose $G_{3}=C_{1} \times_{c}$ $C_{2} \times{ }_{c} \cdots \times_{c} C_{p}$, where for each $t=1,2, \ldots, p, C_{t}$ is in the form $(\mathbb{Z}+\gamma \mathbb{Z}) \times_{\ell}$ $\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$, where γ is an irrational number.

Let $c_{1}, c_{2}, \ldots, c_{p} \in k-\left\{a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m}\right\}$. Let r_{t} be the number of copies of \mathbb{Z} in C_{t} which are appearing in the cardinal product. As in Theorem 2, we realize $\mathbb{Z}+\gamma \mathbb{Z}$ over $k\left(x_{2}\right)\left[x_{1}+a_{t}, x_{3}\right]$. Let N_{t} be the corresponding valuation ring. Let $\bar{x}_{2}=x_{2}+\mu_{N_{t}}$, where $\mu_{N_{t}}$ is the maximal ideal of N_{t}. Then $k\left[\bar{x}_{2}\right] \subsetneq N_{t} / \mu_{N_{t}}$. As in Proposition 2, we can realize $\mathbb{Z} \times{ }_{c} \mathbb{Z} \times{ }_{c} \ldots \times_{c} \mathbb{Z}$ over $k\left[\bar{x}_{2}\right]$. For each $i=1,2, \ldots, r_{t}$, let N_{i}^{\prime} be the corresponding valuation ring. Then $G\left(N_{i}^{\prime}\right)=\mathbb{Z}$ and the residue field of N_{i}^{\prime} is k. Let $S_{i}=\eta^{-1}\left(N_{i}^{\prime}\right)$, where $\eta: N_{t} \rightarrow N_{t} / \mu_{N_{t}}$ is the canonical homomorphism. Then by Lemma $1, G\left(S_{i}\right) \cong(\mathbb{Z}+\gamma \mathbb{Z}) \times_{\ell} \mathbb{Z}$.

Let $R_{3 t}=\bigcap_{i=1}^{r_{t}} S_{i}$. Let $H_{N_{t}, S_{i}}=\operatorname{ker}\left(G\left(S_{i}\right) \rightarrow G\left(N_{t}\right)\right)$ and let $H_{k\left(x_{1}, x_{2}, x_{3}\right), N_{t}}$ $=\operatorname{ker}\left(\left(G\left(N_{t}\right) \xrightarrow{i=1} G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)\right)\right.$. Then $H_{N_{t}, N_{i}}=\mathbb{Z}$ since $H_{N_{t}, N_{i}}$ is a nontrivial convex subgroup of $G\left(N_{i}\right)$, and $H_{k\left(x_{1}, x_{2}, x_{3}\right), N}=\mathbb{Z}+\gamma \mathbb{Z}$ since $G\left(k\left(x_{1}, x_{2}, x_{3}\right)\right)=0$. Then by using Theorem 1 , the group of divisibility $G\left(R_{3 t}\right)$ is order isomorphic to a group of the form
lex-extension of $\left(H_{N_{t}, N_{1}} \times{ }_{c} H_{N_{t}, N_{2}} \times{ }_{c} \ldots \times_{c} H_{N_{t}, N_{r_{2}}}\right)$ by $H_{k\left(x_{1}, x_{2}, x_{3}\right), N_{t}}$.
The group $G\left(R_{3 t}\right)$ is then order isomorphic to a group of the form

$$
\text { lex-extension of }\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right) \text { by }(\mathbb{Z}+\gamma \mathbb{Z})
$$

Since $\mathbb{Z}+\gamma \mathbb{Z}$ is projective, the lex-exact sequence splits and hence the group $G\left(R_{3 t}\right)$ is order isomorphic to $(\mathbb{Z}+\gamma \mathbb{Z}) \times_{\ell}\left(\mathbb{Z} \times_{c} \mathbb{Z} \times_{c} \ldots \times_{c} \mathbb{Z}\right)$ which is C_{t}. Let $R_{3}=\bigcap_{t=1}^{p} R_{3 t}$. We have constructed $R_{31}, R_{32}, \ldots, R_{3 p}$ such that the valuation domains $N_{1}, N_{2}, \ldots, N_{p}$ are independent. Then by [3, Theorem 3], the group of divisibility $G\left(R_{3}\right)$ is order isomorphic to $C_{1} \times_{c} C_{2} \times_{c} \cdots \times_{c} C_{p}$. Thus $G\left(R_{3}\right) \cong G_{3}$.

The groups of the form G_{4}, G_{5} and G_{6} can be realized by [12, Theorem 5.8]. Let R_{4}, R_{5} and R_{6} be the semilocal Bézout domains associated with the ℓ-groups G_{4}, G_{5} and G_{6} respectively.

Let $R=\bigcap_{i=1}^{6} R_{i}$. We have constructed R_{1}, R_{2} and R_{3} such that for each i, j and t, the valuation domains V_{i}, T_{j} and N_{t} are independent. Since the valuation domains corresponding to R_{4}, R_{5} and R_{6} are distinct and of rank one, they are independent. By Theorem 1, the group of divisibility $G(R)=G\left(\bigcap_{i=1}^{6} R_{i}\right)$ is order isomorphic to $G\left(R_{1}\right) \times_{c} G\left(R_{2}\right) \times_{c}$ $G\left(R_{3}\right) \times_{c} G\left(R_{4}\right) \times{ }_{c} G\left(R_{5}\right) \times{ }_{c} G\left(R_{6}\right)$. Since except for $i=2, G\left(R_{i}\right) \cong G_{i}$ and for $i=2, G\left(R_{2}\right)$ is order isomorphic to a group of the form G_{2}, then the group $G(R)$ is order isomorphic to a group of the form

$$
G_{1} \times_{c} G_{2} \times_{c} G_{3} \times_{c} G_{4} \times_{c} G_{5} \times_{c} G_{6}
$$

Thus the group G is weakly realizable over $k\left[x_{1}, x_{2}, x_{3}\right]$.
Conversely, let G be weakly realizable over $k\left[x_{1}, x_{2}, x_{3}\right]$, where k is a field and x_{1}, x_{2}, x_{3} are indeterminates over k. Then there exists a semilocal Bézout overring R of $k\left[x_{1}, x_{2}, x_{3}\right]$ such that G and $G(R)$ admit a lexico-cardinal decomposition of the same form. By using the Proposition $6, G$ is order isomorphic to a group of the form $G_{1} \times{ }_{c} G_{2} \times{ }_{c} G_{3} \times{ }_{c}$ $G_{4} \times_{c} G_{5} \times_{c} G_{6}$, where G_{4}, G_{5} and G_{6} are corresponding to the rank one valuation rings and G_{4}, G_{5} and G_{6} are isomorphic to a cardinal sum of subgroups of the real numbers of rational rank one, two and three respectively.

Finally, we conclude the following result.
Theorem 4. The semilocal ℓ-groups that can be realized over $k\left[x_{1}, x_{2}, \ldots\right.$, x_{n}] can be determined for $n=1,2$. For $n=3$, if $V_{1}, V_{2}, \ldots, V_{m}$ are dependent valuation overrings of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with finitely generated or divisible value groups then $G\left(V_{1} \cap V_{2} \cap \cdots \cap V_{m}\right)$ can be determined completely by the lexico-cardinal decomposition form of $G\left(V_{1} \cap V_{2} \cap \cdots \cap V_{m}\right)$.

Proof. From Proposition 2 and Theorem 2, semilocal ℓ-groups which can be realized over $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ can be determined for $n=1$ and $n=2$, respectively.

Let $V_{1}, V_{2}, \ldots, V_{m}$ be dependent the valuation overrings of $k\left[x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}\right]$, where $n \geq 3$. By Theorem 1, the group of divisibility $G\left(V_{1} \cap V_{2} \cap\right.$ $\left.\cdots \cap V_{m}\right)$ can be expressed in terms of the finite product of lex-exact sequences. If each $V_{i}, i=1,2, \ldots, m$ has finitely generated or each V_{i} has divisible value groups, then the lex-exact sequences split and the group $G\left(V_{1} \cap V_{2} \cap \cdots \cap V_{m}\right)$ can be determined completely.

References

[1] Abhyankar, S.: On the valuations centered in a local domain. Amer. J. Math. 78, 321-348 (1956). https://doi.org/10.2307/2372519
[2] Anderson, M., Feil, T.: Lattice-ordered groups. An introduction. Reidel Texts in the Mathematical Sciences. D. Reidel Publishing Co., Dordrecht (1988).
[3] Doering, A.M., Lequain, Y.: The Weak Approximation Theorem for Valuations. J. of Algebra. 211, 711-735 (1999). https://doi.org/10.1006/jabr.1998.7627
[4] Engler, A.J., Prestel, A.: Valued fields. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2005).
[5] Fuchs, L., Salce, L.: Modules over non-Noetherian domains. Mathematical Surveys and Monographs, vol. 84. American Mathematical Society, Providence, RI (2001).
[6] Gilmer, R.: Multiplicative ideal theory. Corrected reprint of the 1972 edition. Queen's Papers in Pure and Applied Mathematics, vol. 90. Queen's University, Kingston, ON (1992).
[7] Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006).
[8] Kuhlmann, F.V.: Value groups, residue fields, and bad places of rational function fields. Trans. Amer. Math. Soc. 356(11), 4559-4600 (2004).
[9] MacLane, S., Schilling, O.F.G.: Zero-dimensional branches of rank one on algebraic varieties. Ann. of Math. 40, 507-520 (1939). https://doi.org/10.2307/1968935
[10] Mockor, J.: Groups of divisibility. Mathematics and its Applications (East European Series). D. Reidel Publishing Co., Dordrecht (1983).
[11] Ohm, J.: Semi-valuations and groups of divisibility. Canad. J. Math. 21, 576-591 (1969). https://doi.org/10.4153/CJM-1969-065-9
[12] Olberding, B.: Charaterizations and Constructions of h-local domains. Models, modules and abelian groups, pp. 385-406. Walter de Gruyter, Berlin (2008). https://doi.org/10.1515/9783110203035.385
[13] Paudel, L.: The group of divisibility of a finite character intersection of valuation rings. Comm. Algebra. 45(11), 4906-4925 (2017). https://doi.org/10.1080/ 00927872.2017.1287269
[14] Vaquié, M.: Valuations and local uniformization. Singularity theory and its applications. Adv. Stud. Pure Math., vol. 43. Math. Soc. Japan, Tokyo (2006). https://doi.org/10.2969/aspm/04310477
[15] Zariski, O., Samuel, P.: Commutative algebra. Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-LondonNew York (1960).

Contact information

L. Paudel Department of Mathematical Sciences, University of South Carolina Salkehatchie, Walterboro, SC 29488
E-Mail: lpaudel@mailbox.sc.edu

Received by the editors: 02.07.2022
and in final form 01.03.2024.

[^0]: I would like to express the deepest gratitude to Bruce Olberding for suggesting this topic. I thank him for the helpful discussions and comments that made to achieve the aim of this article.

 2020 Mathematics Subject Classification: 13F05, 13F30, 20F60, $13 B 22$.
 Key words and phrases: group of divisibility, valuation domain, Bézout domain, lattice-ordered group.

