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Finite intersection of valuation overrings of
polynomial rings in at most three variables
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Abstract. The group of divisibility of an integral domain
is the multiplicative group of nonzero principal fractional ideals of
the domain and is a partially ordered group under reverse inclusion.
We study the group of divisibility of a finite intersection of valua-
tion overrings of polynomial rings in at most three variables and
we classify all semilocal lattice-ordered groups which are realizable
over k[x1, x2, ..., xn] for n ≤ 3.

Introduction

Let R be an integral domain with quotient fieldK, and letK∗ = K−{0} .
The group of divisibility G(R) of R is defined as the multiplicative group
of nonzero principal fractional ideals of R. The ring R is the identity
element of G(R). We define a partial order on G(R) by setting xR ≤ yR
if and only if yR ⊆ xR. For background on the group of divisibility
see [10]. If R is a Bézout domain (meaning every finitely generated ideal
is principal), then the group of divisibility G(R) is an lattice-ordered
group (ℓ-group).
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Let D be an integral domain with quotient field K. Any ring R such
thatD ⊆ R ⊆ K, is called an overring ofD. IfD is integrally closed, then
D is the intersection of all valuation overrings of D [4, Theorem 3.1.3].
A domain D is called a semilocal domain if the domain D has a finitely
many maximal ideals. If D is a finite intersection of valuation domains
over the same field K, then D is a semilocal Bézout domain [5, Theo-
rem 1.7 Chapter II and Theorem 5.1 Chapter II]. In the case of semilocal
Bézout domain, the group of divisibility is a semilocal ℓ-group (having a
finite number of maximal filters) [3, Theorem 7]. In this article, we study
the group of divisibility of a finite intersection of valuation overrings of
a polynomial ring in at most three variables.

We recall that a valuation on K is a mapping ν of K onto a totally
ordered group G∪{∞}, where ∞ is a symbol such that g+∞ = ∞+g =
∞+∞ = ∞ and g <∞ for all g ∈ G, for which the following conditions
are satisfied.

(i) ν(K − {0}) = G, ν(0) = ∞.

(ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ K.

(ii) ν(x+ y) ≥ inf {ν(x), ν(y)} for all x, y ∈ K.

Then Rν = {x ∈ K∗ : ν(x) ≥ 0} ∪ {0} is a subring of K. Moreover,
G(Rν) ∼= G [2, p. 103]. The domain Rν is called a valuation domain.
If G ∼= Z ×ℓ Z ×ℓ · · · ×ℓ Z, then G is called discrete value group, where
the product ×ℓ is a lexicographic product. We define the lexicographic
order on Z×l Z×l ...×l Z as follows: (α1, α2, ..., αn) ≥ (β1, β2, ..., βn) if
α1 > β1 or if for some k > 1, αi = βi for i = 1, 2, ..., k− 1 and αk > βk. If
G(Rν) ∼= Z×ℓ Z×ℓ · · · ×ℓ Z, then Rν is called a discrete valuation ring.
If G ∼= Z, then Rν is called a rank one discrete valuation ring DV R.
Two valuation rings V1 and V2 of K are said to be independent if K is
the only common overring of both V1 and V2. Otherwise, V1 and V2 are
dependent. Any valuation ring of Krull dimension one is independent
with other incomparable valuation rings.

Let {Gi : i ∈ I} denote a collection of lattice-ordered groups. The
group

∏
i∈I

Gi with pointwise ordering is an ℓ-group called the cardinal

product of the Gi. The group
⊕
i∈I

Gi with pointwise ordering is an

ℓ-group called the cardinal sum of the Gi. For an ℓ-group G the ra-
tional rank of G is the dimension of Q⊗ZG as a vector space over Q and
is denoted by rat.rank(G). The rank of totally ordered group G is the
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order type of the set of proper convex subgroups of G. For a valuation
ν we denote by rank(Gν) the rank of its totally ordered value group Gν .
The Krull dimension of a valuation domain is equal to rank of its value
group [14, Corollary, p. 5]. We have rank(Gν) ≤ rat.rank(Gν) [14, p. 8].

A short exact sequence of partially ordered groups

0 −→ A
α−→ B

β−→ C −→ 0

is called lexicographically exact if

B+ = {b ∈ B : b ≥ 0} = {b ∈ B : β(b) > 0} ∪ {α(a) : a ∈ A, a ≥ 0} .

The group B is called a lexicographic extension (or lex-extension) of A
by C [3, p. 714].

An ℓ-group G is called realizable over a domain D if there exists a

Bézout overring R of D such that G(R) ∼= G as ℓ-groups. By the Krull-

Kaplansky-Jaffard-Ohm Theorem every abelian ℓ-group can be realized

as the group of divisibility of a Bézout domain. Doering and Lequain

in [3, Theorem 12] proved that every finitely generated ℓ-group can be

realized as the group of divisibility of a semilocal Bézout overring of a

polynomial ring over a field k in infinitely many variables, where each of

the valuation rings appearing in the finite intersection has residue field k.

In [13, Theorem 4.2], we show that every finitely generated ℓ-group can be

realized over a polynomial ring in finitely many variables, where the num-

ber of variables depends on the rational rank of ℓ-group. An ℓ-group G is

called weakly realizable over k[x1, x2, ..., xn] if there exists a Bézout over-

ring R of k[x1, x2, ..., xn] such that G and G(R) admit a lexico-cardinal

decomposition (see [3, p. 723]) of the same form. If G is order isomor-

phic to a group of the form lex-extension of A by B, then to be weakly

realizable means, the group G(R) is order isomorphic to a group of the

form lex-extension of A by B.

In this work, we characterize the ℓ-groups which appear as the group

of divisibility of a finite intersection of valuation overrings of a poly-

nomial ring in at most three variables. Also, we discuss the ℓ-groups

which can be realized as the group of divisibility of a finite intersection

of valuation overrings of a polynomial ring in at most three variables. In

proposition 2, we show ℓ-group which appears as the group of divisibili-

ty of a finite intersection of valuation overrings of k[x], and conversely, we
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show the ℓ-group is realizable over k[x]. In theorem 2, we show ℓ-group

which appears as the group of divisibility of a finite intersection of valua-

tion overrings of k[x1, x2], and conversely, we show the ℓ-group is reali-

zable over k[x1, x2]. In theorem 3, we show ℓ-group which appears as

the group of divisibility of a finite intersection of valuation overrings of

k[x1, x2, x3], and conversely, we show the ℓ-group is weakly realizable

over k[x1, x2, x3]. For two and three variables case, we use weak approxi-

mation theorem for dependent valuation rings [3, Theorem 4] to describe

group of divisibility and composite of valuations [9, p. 486] to construct

valuation overrings. Moreover, we construct each of the valuation rings

that appear in a finite intersection to have the same residue field k using

the composite of valuations.

1. Preliminaries

Let K be a field. If we have two valuation rings of K with one contained
in the other, then the next result shows existence of a lexicographically
exact sequence.

Lemma 1 ([3, Lemma 1]). Let K be a field and let V and W be two
valuation rings of K. Let V ⊊W. Then the sequence

0 −→ U(W )/U(V )
α−→ G(V )

β−→ G(W ) −→ 0 (1)

is a lexicographically exact sequence, where U(V ) and U(W ) denote the
units of the rings V and W respectively. Moreover, if the sequence (1)
splits, then it splits lexicographically.

Proposition 1 ([6, Exercise 6, p. 285]). Let {νi}ni=1 be a finite collection
of valuations on a field K. For each i, let Vi be the valuation ring of νi
and let Gi be the value group of νi. Assume that the valuation rings Vi

are pairwise independent. Then G(
n⋂

i=1
Vi) ∼=

n⊕
i=1

Gi.

In the above proposition, if the valuation rings are dependent, then

the map ϕ : G(R) →
n⊕

i=1
G(Vi) defined by ϕ(xR) = (xV1, xV2, ..., xVn)

is not surjective [3, p. 711], and hence finding the group of divisibility
is more complicated. Doering and Lequain in 1999 introduced a weak
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approximation theorem for dependent valuation rings [3, Theorem 4].
They showed that if each of the valuation domains in the intersection
has a finitely generated value group then the group of divisibility of the
intersection can be calculated explicitly.

Let K be a field, and let F be a set of finite family of valuation rings
of K. Let N (F ) = {(V, V ′

) : V, V
′ ∈ F} ∪ {K} , where (V, V

′
) is the

smallest valuation ring that contains both V and V
′
. Let σ, τ ∈ N (F ).

Then σ is called a predecessor of τ if σ ⊇ τ and is called immediate prede-
cessor if there is no other valuation ring in between σ and τ. Let Hσ,τ =
ker(G(τ) → G(σ)) = U(σ)/U(τ), where the map is the canonical homo-
morphism with the order induced from the order of G(τ). The weighted
dependency tree of F is defined by T (F ;K) := (N (F ) , {([σ, τ ], Hσ,τ ) :
σ, τ ∈ N (F ), τ immediate successor of σ}). The elements of N (F ) are
the nodes of the tree, K is the root, and the elements of F are the end
nodes. The elements ([σ, τ ], Hσ,τ ) are the weighted edges of the tree. The
dependency dimension of F is defined by

d = dependency dimension (F ;K) = max {lV − 1 : V ∈ F} ,

where

lV = cardinality of {[σ, τ ] : τ ⊇ V, σ an immediate predecessor of τ}

is the length of the line of predecessors of V . More details on the weighted
dependency tree can be found in [3].

The following theorem, known as Weak Approximation Theorem,
shows that the group of divisibility of the intersection of a finite family of
valuation rings having the same quotient field with finite dependency di-
mension can be expressed in terms of cardinal products and lexicographic
extensions, where the factor groups in the lexicographic extensions are
totally ordered.

Theorem 1 ([3, Theorem 4]). Let K be a field, F be a finite family
of valuation rings of K, and G be the divisibility group of

⋂
V ∈F

V . Let

T (F ;K) be the weighted dependency tree of F and d be the dependency
dimension of F . For every node σ in N (F ), let S (σ) := {τ ∈ N (F );
τ is an immediate successor of σ}. Then G is order isomorphic to a gro-
up of the form∏

σ1∈S (K)

(
lex-extension of

1

[ ∏
σ2∈S (σ1)

(
lex-extension of

2

[ ∏
σ3∈S (σ2)
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...

∏
σd∈S (σd−1)

(
lex-extension of

d

[ ∏
σd+1∈S (σd)

Hσd,σd−1

]
d
by

Hσd−1,σd

)
...

)]
2
by Hσ1,σ2

)]
1
by HK,σ1

)
.

2. Finite intersections of valuation overrings of
k[x1,x2, ...,xn]

We shall discuss those ℓ-groups which arise as the group of divisibility
of a semilocal Bézout overring of k[x1, x2, ..., xn] for n = 1, 2 and 3. We
describe explicitly these ℓ-groups for n = 1 and n = 2. In this chapter, a
field k will be assumed to be an infinite field.

2.1. Valuation overrings of k[x]

Let D = k[x]. Then by [4, Theorem 2.1.4], all the valuation overrings
of k[x] are obtained by localizing k[x] at some prime ideal P . Let V =
k[x]P . Since k[x] is a Noetherian domain, V is a Noetherian valuation
domain of Krull dimension ≤ 1, and hence V = k(x) or V is a DVR

and G(V ) = Z [7, Proposition 6.4.4]. Let R =
n⋂

i=1
Vi, where each Vi is a

distinct nontrivial valuation overring of k[x]. Since k[x] is a PID, each
nonzero prime ideal P is generated by a prime element. If P is generated
by a linear irreducible polynomial, then each k[x]P has residue field k.
Since each Vi has Krull dimension one, the Vi are independent. The
group of divisibility of R is G(R) = Z ×c Z ×c · · · ×c Z by using the
proposition 1. Moreover, we can construct valuation rings appearing in
a finite intersection in such a way that each of them has residue field k
because k is an infinite field. Thus we have the following proposition.

Proposition 2. Let k be a field and x be an indeterminate of k. A
nonzero semilocal ℓ-group G can be realized over k[x] if and only if
G ∼= Z×c Z×c · · · ×c Z for some finite number of copies of Z.

2.2. Valuation overrings of k[x1,x2]

Let D = k[x1, x2]. Then D is a two-dimensional Noetherian domain.
The following proposition shows that there exist three types of valuation
overrings of D.
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Proposition 3 ([1, Theorem 1]). Each valuation overring of k[x1, x2]
belongs to one of the following three sets.

a) Valuation rings with rational value group; i.e., the value group is
isomorphic to a subgroup of Q.

b) Valuation rings with finitely generated value group of rank 1 and
rational rank 2.

c) Valuation rings with discrete value group of rank two.

The following lemma describes a semilocal ℓ-group realizable over
k[x1, x2].

Lemma 2. Let G be a semilocal ℓ-group realizable over k[x1, x2]. Let
{V1, V2, ..., Vn} be a finite collection of valuation overrings of k[x1, x2]

such that G(
n⋂

i=1
Vi) = G. Then the following statement hold.

(a) If each Vi has rank two, then G is isomorphic to a finite cardinal
product of groups of the form Z×ℓ (Z×c Z×c ...×c Z).

(b) If each Vi has value group a subgroup of Q, then G is isomorphic
to a finite cardinal product of subgroups of Q.

(c) If each Vi has a finitely generated value group which is a subgroup
of R having rational rank two, then G is isomorphic to a finite
cardinal product of finitely generated subgroups of R having rational
rank two.

Proof. Denote the set {V1, V2, ..., Vn} by F . Suppose each Vi has rank

two. Let N (F ) =
{
(V, V

′
);V, V

′ ∈ F
}
∪ {k(x1, x2)} , where (V, V

′
) is

the smallest valuation ring that contains both V and V
′
. Let F1,F2, ...,

Fm,m ≤ n, be the dependency classes of F . For each j = 1, 2, ...,m,
let Wj be a nontrivial valuation ring in N (F ) that contains all the
valuation rings in Fj . Since Wj is an overring of V for some V ∈ F ,
G(Wj) ∼= G(V )/H, where H is a nonzero convex subgroup of G(V )
[14, Proposition 1.11]. Since G(V ) = Z×ℓZ, we have G(Wj) = Z. More-
over, for each V ∈ Fj , HWj ,V = ker(G(V ) → G(Wj)) and HWj ,V = Z
since ker(G(V ) → G(Wj)) is a nonzero convex subgroup of G(V ).
Also, Hk(x1,x2),Wj

= ker(G(Wj) → G(k(x1, x2))) = G(Wj) = Z since
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G(k(x1, x2)) = 0. Let Sj =
⋂

V ∈Fj
V . Let nj = |Fj |. Then by Theo-

rem 1,

G(Sj) is a lex-extension of
∏

V ∈Fj
c
HWj ,V by Hk(x1,x2),Wj

,

which is order isomorphic to a group of the form

lex-extension of (Z×c Z×c ...×c Z) by Z.

Since Z is projective, the lex-exact sequence splits, so G(Sj) = Z×ℓ (Z×c

Z×c ...×c Z), where the cardinal product has nj copies of Z.
Now, by Theorem 1,

G(R) =
m∏
j=1

c
G(Sj)

=

m∏
j=1

c
Z×ℓ (Z×c Z×c ...×c Z),

where each cardinal product has nj copies of Z. This proves (a).
Suppose each Vi has value group a subgroup of Q. Since the Vi

are distinct and have dimension one, the Vi are independent. So by
Proposition 1,

G(
n⋂

i=1

Vi) = G(V1)×c G(V2)×c ...×c G(Vn).

Thus G(
n⋂

i=1
Vi) is a finite cardinal product of subgroups of Q. This pro-

ves (b).
Suppose each Vi has a finitely generated value group which is a sub-

group of R having rational rank two. Since the Vi are distinct and rank
one, the Vi are independent. Then by Proposition 1,

G(

n⋂
i=1

Vi) = G(V1)×c G(V2)×c ...×c G(Vn).

So G(
n⋂

i=1
Vi) is a finite cardinal product of subgroups of R having rational

rank two. This proves (c).
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The next theorem describes the group of divisibility of a finite inter-
section of valuation overrings of k[x1, x2].

Theorem 2. Let k be an infinite field. A semilocal ℓ-group G can be
realized over k[x1, x2] if and only if G = G1 ×cG2 ×cG3, where each Gi,
if nonzero, is a semilocal ℓ-group such that

� G1 is isomorphic to a finite cardinal product of subgroups of Q,

� G2 is isomorphic to a finite cardinal product of finitely generated
subgroups of R having rational rank two, and

� G3 is isomorphic to a finite cardinal product of ℓ-groups of the form
Z×ℓ (Z×c Z×c ...×c Z).

Moreover, each of valuation rings appearing in the finite intersection that
realizes G can be chosen with residue field k.

Proof. Let G be an ℓ-group and suppose G = G1 ×c G2 ×c G3, where
G1, G2 and G3 are as in theorem, and possibly any of the Gi are 0.

If G1 = 0, let V = k(x1, x2) so that G(V ) = 0 = G1.
Assume that G1 ̸= 0 and write G1 = H1 ×c H2 ×c ... ×c Hn, where

H1, H2, ...,Hn are subgroups of Q. First, we want to realize Hi.
Let a1, a2, ..., an be distinct elements of k. If Hi

∼= Z, then we can
construct a DVR overring of k[x1, x2] whose maximal ideal is generated
by (x1+ai) as follows. There exists y ∈ (x1+ai)k[[x1+ai]] transcendental
over k(x1 + ai) [3, Lemma 13]. Let K = k(x1 + ai, y). Then S

′
i =

k[[x1 + ai]] ∩K is a DVR of K. Moreover,

k ↪→ S
′
i/µS′

i

= S
′
i/
(
S

′
i ∩ (x1 + ai)k[[x1 + ai]]

)
∼=

(
S

′
i + (x1 + ai)k[[x1 + ai]]

)
/(x1 + ai)k[[x1 + ai]]

⊆ k[[x1 + ai]]/(x1 + ai)k[[x1 + ai]]

= k.

This shows S
′
i has residue field k. Let ψ : K → k(x1, x2) be the field

isomorphism defined by ψ(x1 + ai) = x1 + ai and ψ(y) = x2. Then
Si = ψ(S

′
i) is a rank one discrete valuation overring of k[x1, x2] having k

as residue field.
If Hi is not isomorphic to Z, that is, Hi is not finitely generated, then

we realize Hi as follows. Let S = k[x1 + ai](x1+ai). Then S is a DVR
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[15, Corollary 2, page 42] and G(S) = Z. Let ν be the corresponding
valuation. Since Hi ⊆ Q and Q/Z is an infinite torsion group, then Hi/Z
is an infinite torsion group, since otherwise Hi will be finitely generated
and hence isomorphic to Z. Then by [8, Proposition 3.17], there exists
an extension ω of ν to k(x1 + ai, x2) such that ω has value group Hi,
residue field k and ω(x2) > 0. Denote by Si the corresponding valuation
ring. Let µSi denote the maximal ideal of Si. Since x1 + ai, x2 ∈ µSi ,
then µSi ∩ k[x1, x2] = (x1 + ai, x2).

Let R =
n⋂

i=1
Si. Observe that for j ̸= i ∈ {1, 2, ..., n} , (x1 + aj , x2) =

µSj ∩ k[x1, x2] ̸= µSi ∩ k[x1, x2] = (x1 + ai, x2). Thus the Si are distinct.
Since each Si has Krull dimension one, the Si are independent, so by
Proposition 1, the group of divisibility of R1 is

G(R1) = G(S1)×c G(S2)×c ...×c G(Sn)

= H1 ×c H2 ×c ...×c Hn

= G1. (1)

Next, we realize G2, where G2 ̸= 0. Suppose G2 = A1 ×c A2 ×c ...×c

Am, where for each j = 1, 2, ...,m,Aj is a finitely generated subgroup of
R having rational rank two.

Let c1, c2, ..., cm be distinct elements of k − {a1, a2, ..., an}. Since Aj

is a finitely generated subgroup of R having rational rank two, we can
write Aj = Z + rjZ, where rj is an irrational number. Then we can
realize Aj over k[x1, x2] by a valuation ring Wj centered on (x1 + cj , x2)
and having residue field k [9, p. 512].

Let R2 =
m⋂
j=1

Wj . Observe that for i ̸= j ∈ {1, 2, ...,m} , (x1+ci, x2) =

µWi∩k[x1, x2] ̸= µWj ∩k[x1, x2] = (x1+cj , x2). Thus theWj are distinct.
Since each Wj has Krull dimension one, the Wj are independent, so by
Proposition 1, the group of divisibility of R2 is

G(R2) = G(W1)×c G(W2)×c ...×c G(Wm)

= A1 ×c A2 ×c ...×c Am

= G2. (2)

Finally, we realize G3 when G3 ̸= 0. Suppose G3 = B1×cB2×c ...×c

Bq, where Bt = Z×ℓ (Z×c Z×c ...×c Z) for each t = 1, 2, ..., q. Assume
that Bt has nt copies of Z in the cardinal product.
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Let e1, e2, ..., eq be nonzero elements in k−{a1, a2, ..., an, c1, c2, ..., cm}.
Let p = (x1 + et). Then Vt = Dp = k[x1, x2](x1+et) is a DVR [15, Corol-
lary 2, p. 42]. Let ϕ : Vt → Vt/µVt be the canonical homomorphism,
where µVt denotes the maximal ideal of Vt. Now, we define a valuation
on the field Vt/µVt . Let x̄2 = x2 + µVt . Clearly, k[x̄2] ⊆ Vt/µVt . Let
V

′
ti = k[x̄2](x̄2+αi), where αi ∈ k are distinct for i = 1, 2, ..., nt. Then

each V
′
ti has residue field k. Since the V

′
ti are independent, V

′
tiV

′
tj = k(x̄2)

for i ̸= j.
Let Vti = ϕ−1(V

′
ti). Then Vti ⊂ Vt and by [14, p. 9], the group of

divisibility of Vti is G(Vti) = Z×ℓ Z and the residue field of Vti is k. By
construction, each Vti contains k[x1, x2] and the Vti are dependent but
they are centered on different maximal ideals of k[x1, x2].

Let Tt = Vt1 ∩ Vt2 ∩ · · · ∩ Vtnt . Let HVt,Vti = ker(G(Vti) → G(Vt)).
Then by [14, Proposition 1.11], HVt,Vti is a nonzero convex subgroup
of Z ×ℓ Z because Vt is an overring of Vti. Thus HVt,Vti = 0 ×ℓ Z for
all i = 1, 2, ..., nt. Since G(k(x1, x2)) = 0, Hk(x1,x2),Vt

= ker(G(Vt) →
G(k(x1, x2))) = G(Vt) = Z. Then by Theorem 1, where the dependency
dimension is d = 2− 1 = 1, the group of divisibility of Tt is

G(Tt) = G(Vt1 ∩ Vt2 ∩ · · · ∩ Vtr)

and G(Tt) is order isomorphic to a group of the form

lex-extension of (HVt,Vt1 ×c HVt,Vt2 ×c ...×c HVt,Vtr) by Hk(x1,x2),Vt
.

The group G(Tt) is then order isomorphic to a group of the form

lex-extension of (Z×c Z×c ...×c Z) by Z.

Since Z is projective, this lex-exact sequence splits, so

G(Tt) = Z×ℓ (Z×c Z×c ...×c Z) = Bt.

We have constructed T1, T2, ..., Tq such that the valuation domains

V1, V2, ..., Vq are independent. Let R3 =
q⋂

t=1
Bt. Then by Theorem 1,

G(R3) = G(T1)×c G(T2)×c ...×c G(Tq)

= B1 ×c B2 ×c ...×c Bq

= G3.

Let R = R1 ∩R2 ∩R3 =

(
n⋂

i=1
Si

)
∩

(
m⋂
j=1

Wj

)
∩
(

q⋂
t=1

Bt

)
.
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Since the Si and Wj are distinct and each of them has rank one, the
valuation rings in {S1, S2, ..., Sn,W1,W2, ...,Wm} are independent. Also,
for any t ∈ {1, 2, ..., q} , x1 + et belongs to the height one prime ideal of
Bt and is a unit in Si and Wj for all i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m} .
Thus the Vti are independent with the Si and Wj . Then by Theorem 1,

G(R) = G(R1)×c G(R2)×c G(R3)

= G1 ×c G2 ×c G3

∼= G.

This shows G is realizable.
Conversely, suppose G is nonzero and realizable over k[x1, x2]. Let

R be a semilocal Bézout overring of k[x1, x2] such that G(R) = G. Let
R =

⋂
m∈M

Rm, where M is the collection of all maximal ideals of R.

Since R is semilocal, we may write M = {m1,m2, ...,mn}. For each
i = 1, 2, ..., n, let Vi = Rmi . Denote the set {V1, V2, ..., Vn} by F .

From Proposition 3, there exist three types of valuation overrings of
k[x1, x2]. Then by Lemma 2,

� If each Vi has rank two, then G is isomorphic to a finite cardinal
product of groups of the form Z×ℓ (Z×c Z×c ...×c Z).

� If each Vi has value group a subgroup of Q, then G is isomorphic
to a finite cardinal product of subgroups of Q.

� If each Vi has a finitely generated value group which is a subgroup of
R having rational rank two, then G is isomorphic to a finite cardinal
product of finitely generated subgroups of R having rational rank
two.

Now assume that the collection {V1, V2, ..., Vn} contains valuation do-
mains appearing in Proposition 3. We relabel the Vi so that V1, V2, ..., Vp
have rational value group, Vp+1, Vp+2, ..., Vp+m have real value group ha-
ving rational rank two, and Vp+m+1, ..., Vn have discrete value group
of rank two. Since distinct valuation rings of rank one are indepen-
dent, V1, V2, ..., Vp+m are independent. Moreover, V1, V2, ..., Vp+m are in-
dependent with Vp+m+1, ..., Vn since V1, V2, ..., Vn are incomparable and
V1, V2, ..., Vp+m have dimension one. Then by Theorem 1,

G(R) = (G(V1)×c G(V2)×c ...×c G(Vp))×c (G(Vp+1)×c G(Vp+2)×c

...×c G(Vp+m))×c (G(Vp+m+1 ∩ Vp+m+2 ∩ ... ∩ Vn)) ,
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where the groups appearing in the first component are subgroups of Q,
the groups in the second component are subgroups of R and the groups
in the third component are a finite cardinal product of groups of the form
Z×ℓ (Z×c Z×c ...×c Z).

If F contains only two types of valuation rings appearing in Propo-
sition 3, then we have the following cases.
Case I: If each Vi ∈ F has rank one, then we relabel the Vi so that
{V1, V2, ..., Vr} have rational value group and {Vr+1, Vr+2, ..., Vn} have
real value group of rational rank two. Since the Vi are distinct and of
rank one, the Vi are independent. Then by Proposition 1,

G(R) = (G(V1)×c G(V2)×c ...×c G(Vr))×c (G(Vr+1)×c ...×c G(Vn)) ,

where the groups appearing in the first component are subgroups of Q,
and the groups in the second component are subgroups of R.
Case II: If some elements in F have rational value group and some ele-
ments in F have discrete value group of rank two, then we relabel the
Vi so that V1, V2, ..., Vq have rational value group and Vq+1, Vq+2, ..., Vn
have discrete value group of rank two. Since distinct valuation rings
of rank one are independent, V1, V2, ..., Vq are independent. Moreover,
V1, V2, ..., Vq are independent with Vq+1, Vq+2, ..., Vn since Vi are incom-
parable. Then by Theorem 1,

G(R) = (G(V1)×c G(V2)×c ...×c G(Vq))×c

(G(Vq+1) ∩G(Vq+2) ∩ ... ∩G(Vn)) ,

where the groups appearing in the first component are subgroups of Q,
and the groups in the second component are a finite cardinal product of
groups of the form Z×ℓ (Z×c Z×c ...×c Z).
Case III: If some elements in F have real value group of rational rank
two and some elements in F have discrete value group of rank two,
then we relabel the Vi so that V1, V2, ..., Vs have real value group and
Vs+1, Vs+2, ..., Vn have discrete value group of rank two. Since distinct
valuation rings of rank one are independent, V1, V2, ..., Vs are indepen-
dent. Moreover, V1, V2, ..., Vs are independent with Vs+1, Vs+2, ..., Vn since
Vi are incomparable. Then by Theorem 1,

G(R) = (G(V1)×c G(V2)×c ...×c G(Vs))×c

(G(Vs+1) ∩G(Vs+2) ∩ ... ∩G(Vn)) ,

where the groups appearing in the first component are subgroups of R,
and the groups in the second component are a finite cardinal product of
groups of the form Z×ℓ (Z×c Z×c ...×c Z).
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2.3. Valuation overrings of k[x1,x2,x3]

In this section we discuss the semilocal ℓ-groups which can be realized
over k[x1, x2, x3].

The following lemma describes the value group of a valuation overring
V of k[x1, x2, x3] having Krull dimension greater than one in terms of the
value group of a nontrivial valuation overring of V.

Lemma 3. Let V and V
′
be two nontrivial valuation overrings of

k[x1, x2, x3] with V ⊊ V
′
.

(1) If rank G(V
′
) = 1, then G(V

′
) is isomorphic to a subgroup of Q or

G(V
′
) is isomorphic to Z+ αZ, where α is an irrational number.

(2) If rank G(V
′
) = 2, then G(V

′
) ∼= Z×ℓ Z.

(3) If rank G(V ) = rat.rank G(V ) = 2, then either G(V ) ∼= Z ×ℓ H,
where H ⊆ Q, or G(V ) is a lex-extension of Z by H1, where H1 ⊆
Q and H1 is not finitely generated.

(4) If rank G(V ) = 2 and rat.rank G(V ) = 3, then G(V ) ∼= (Z+rZ)×ℓ

Z or G(V ) ∼= Z×ℓ (Z+ rZ), where r is an irrational number.

(5) If rank G(V ) = 3, then G(V ) ∼= Z×ℓ Z×ℓ Z.

Proof. (1) Since V ⊊ V
′
, [14, Proposition 1.11] implies there exists a

nontrivial convex subgroup H
′
of G(V ) such that G(V

′
) ∼= G(V )/H

′
. If

rat.rank G(V
′
) = 3, then this implies rat.rank G(V ) > 3, which is not

possible by [7, Theorem 6.6.7]. Thus rat.rank G(V
′
) = 1 or 2.

If rat.rank G(V
′
) = 1, then G(V

′
) ∼= H, where H ⊆ Q.

Suppose rat.rank G(V
′
) = 2. Since G(V

′
) ∼= G(V )/H

′
, and H

′
is

a nontrivial convex subgroup, this implies rat.rank G(V ) = 3. Then by
[7, Theorem 6.6.7], G(V ) is finitely generated, so G(V

′
) is finitely genera-

ted. Since rat.rank G(V
′
) = 2, and rank G(V

′
) = 1, G(V

′
) ∼= Z + αZ,

where α is an irrational number.
(2) Since V ⊊ V

′
, [14, Proposition 1.11] implies there exists a non-

trivial convex subgroup B1 of G(V ) such that G(V
′
) ∼= G(V )/B1. Since

rank G(V
′
) = 2, this implies rank G(V ) = 3 and hence by [7, Theo-

rem 6.6.7], G(V ) ∼= Z ×ℓ Z ×ℓ Z. Since nontrivial convex subgroups of
G(V ) have rank either one or two and G(V

′
) has rank two, B1 has rank

one by [14, p. 9], and hence B1
∼= Z. This implies G(V

′
) ∼= Z×ℓ Z.

(3) Suppose rank G(V ) = rat.rank G(V ) = 2. Then by [4, Lem-
ma 2.3.1], there exists a nonzero nonmaximal prime ideal P of V such



120 Finite intersection of valuation overrings

that the Krull dimension of VP is one. If there exists a nontrivial valua-
tion overring of V different from VP , then the Krull dimension of V will
be three, which is not possible since rank G(V ) = 2. Moreover, V/P is
a valuation ring of VP /PVP and G(V/P ) has rank one by [14, Propo-
sition 1.11]. Thus by Lemma 1, G(V ) is a lex-extension of G(V/P ) by
G(VP ). By [14, p. 9], G(VP ) and G(V/P ) both have rational rank one.
Then by [14, Proposition 1.11], G(VP ) and G(V/P ) both are isomorphic
to subgroups of the group of real numbers. Since rat.rank G(VP ) = 1,
G(VP ) is cyclic or G(VP ) is isomorphic to a noncyclic subgroup of Q.
Then we have the following two cases.
Case I:G(VP ) ∼= Z. In this case, G(V ) is a lex-extension of G(V/P ) by Z.
Since Z is a projective Z-module, by Lemma 1 a lex-extension of G(V/P )
by G(VP ) ∼= Z splits. Thus G(V ) ∼= Z ×ℓ H, where G(V/P ) ∼= H and
H ⊆ Q.
Case II: G(VP ) is isomorphic to a subgroup of Q and is not finitely
generated. By Theorem 2, G(VP ) is realizable over k[x1, x2]. Then the
transcendence degree of the quotient field of VP over k is two. Here, rank
G(V/P ) = 1, and rat.rank G(V/P ) = 1.We claim G(V/P ) ∼= Z. Suppose
not. Then G(V/P ) is isomorphic to a noncyclic subgroup of Q and hence
the transcendence degree of the quotient field of V/P over k is at least
two since any subgroup of Q which is not finitely generated cannot be
realizable over k[y], where y is transcendental over k [12, Lemma 4.3].
By using the composition of valuations from [14, Proposition 1.12], the
transcendence degree of the quotient field of V over k is four, which is not
possible since the transcendence degree of the quotient field of V over k
is three. Thus G(V/P ) ∼= Z and G(V ) is a lex-extension of Z by G(VP ).

(4) Suppose rat.rank G(V ) = 3. Then by [7, Theorem 6.6.7], G(V )
is finitely generated and by [3, Corollary 9], we can write G(V ) as the
lexicographic product of finitely generated subgroups of the group of real
numbers. Since rank G(V ) = 2, G(V ) ∼= G1×ℓG2, where G1 and G2 are
finitely generated totally ordered groups of rank one.

If rat.rank G1 = 1, then rat.rank G2 = 2. Since G1 and G2 are
finitely generated, G1

∼= Z and G2
∼= Z + rZ, where r is an irrational

number. Thus G(V ) ∼= Z×ℓ (Z+ rZ).
Similarly, if rat.rank G1 = 2, then rat.rank G2 = 1, and G(V ) ∼=

(Z+ rZ)×ℓ Z.
(5) If rankG(V ) = 3, then by [7, Theorem 6.6.7], G(V ) ∼= Z×ℓ Z×ℓ Z.

The proposition below shows that the group of divisibility of the
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intersection of a finite collection of dependent valuation overrings of
k[x1, x2, x3] depends on the group of divisibility of a valuation ring which
contains all others valuation rings.

Proposition 4. Let V be a valuation overring of k[x1, x2, x3], and let
F = {V1, V2, ..., Vn} be a finite collection of incomparable dependent valu-
ation overrings of k[x1, x2, x3] such that for each i = 1, 2, ..., n, Vi ⊊ V.

Let R =
n⋂

i=1
Vi.

(1) If for some i, there is a valuation ring Wi such that Vi ⊊ Wi ⊊ V,
then G(R) ∼= Z×ℓA, where A is a finite cardinal product of one or more
of the following groups, which are realizable over k[x1, x2].

� (Z + r1Z) ×c (Z + r2Z) ×c ... ×c (Z + rqZ), where for each i =
1, 2, ..., q, ri is an irrational number.

� H1 ×c H2 ×c ...×c Hp, where for each i = 1, 2, ..., p,Hi ⊆ Q.

� Z×ℓ (Z×c ...×c Z).

(2) Suppose that for each i, there are no valuation rings properly
between Vi and V. Then

(a) If G(V ) ∼= Z, then G(R) ∼= Z ×ℓ C, where C is a finite cardinal
product of one or more of the following groups, which are realizable over
k[x1, x2].

� (Z + r1Z) ×c (Z + r2Z) ×c ... ×c (Z + rqZ), where for each i =
1, 2, ..., q, ri is an irrational number.

� H1 ×c H2 ×c ...×c Hp, where for each i = 1, 2, ..., p,Hi ⊆ Q.

(b) If G(V ) ∼= Z+ αZ, where α is an irrational number, then G(R) ∼=
(Z+ αZ)×ℓ (Z×c Z×c · · · ×c Z).

(c) If rat.rank G(V ) = 1 and G(V ) is not finitely generated, then G(R)
is order isomorphic to a group of the form

lex-extension of (Z×c Z×c · · · ×c Z) by H.

(d) If G(V ) ∼= Z×ℓ Z, then G(R) ∼= (Z×ℓ Z)×ℓ (Z×c ...×c Z).

Proof. (1) Let W1,W2, ...,Wm /∈ F ,m ≤ n be distinct valuation over-
rings of k[x1, x2, x3] such that for each j = 1, 2, ...,m,Wj contains at least
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one of the Vi with Wj ⊊ V . Now by Theorem 1, the group of divisibility
G(R) is order isomorphic to a group of the form

lex-extension of

 m∏
j=1

(
lex-extension of (

∏
S∈F ,S⊊Wj

HWj ,S)

by HV,Wj

)
×c

∏
T∈F ,T ̸⊆Wj

HV,T

 by G(V ), (3)

where HV,Wj = ker(G(Wj) → G(V )), HV,T = ker(G(T ) → G(V )), HWj ,S

= ker(G(S) → G(Wj)), Hk(x1,x2,x3),V = ker(G(V ) → G(k(x1, x2, x3)))
and S, T ∈ F .

Here, by [7, Theorem 6.67], if S ∈ F with S ⊊ Wj for some j =
1, 2, ...,m, then S has value group Z×ℓZ×ℓZ, and by Lemma 3, G(Wj) ∼=
Z×ℓZ. Since 0×ℓZ is the only nontrivial convex subgroup of G(Wj) and
Wj ⊊ V, we have G(V ) ∼= G(Wj)/(0×ℓZ) ∼= Z. Then for each T ∈ F with
T ̸⊆ Wj for all j, rank G(T ) = 2. Since T ⊊ V, there exists a nontrivial
convex subgroup Bt of G(T ) such that G(T )/Bt

∼= G(V ) ∼= Z. Then by
Lemma 1, G(T ) ∼= Z ×ℓ Bt. Since rank G(T ) = 2, either Bt

∼= Z, Bt is
isomorphic to a non-finitely generated subgroup of Q, or Bt

∼= Z + γZ
for some irrational number γ.

Now HV,Wj
∼= Z, since Z is the only nonzero convex subgroup of

G(Wj), HV,T
∼= Bt, since Bt is the only nonzero convex subgroup ofG(T ),

HWj ,S
∼= Z, and Hk(x1,x2,x3),V = G(V ) ∼= Z, since G(k(x1, x2, x3)) = 0.

Since Z is projective by Lemma 1, the lex-exact sequences in (3) split
and hence G(R) is order isomorphic to

G(V )×ℓ

 m∏
j=1

HV,Wj ×ℓ (
∏

S∈F ,S⊊Wj

HWj ,S)

×c

∏
T∈F ,T ̸⊆Wj

HV,T

 (4)

(2)(a) Since G(V ) ∼= Z, V is a DVR. Thus there are no valuation
rings properly between V and k(x1, x2, x3). Then each valuation ring in
F has Krull dimension two since there are no valuation rings properly
between Vi and V. By Theorem 1, the group of divisibility G(R) is order
isomorphic to a group of the form

lex-extension of (

n∏
i=1

HV,Vi) by G(V ), (5)
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where HV,Vi = ker(G(Vi) → G(V )).

Since each G(Vi) has rank two and Vi ⊊ V, there exists a nontrivial
convex subgroup Bi of G(Vi) such that G(Vi)/Bi

∼= G(V ) ∼= Z. Then by
Lemma 1, G(Vi) ∼= Z ×ℓ Bi. Since rank G(Vi) = 2, either Bi

∼= Z, Bi is
isomorphic to a non-finitely generated subgroup of Q, or Bi

∼= Z+βZ for
some irrational number β. Also HV,Vi = Bi since Bi is the only nonzero
convex subgroup of G(Vi).

By Lemma 1, since Z is projective, the lex-exact sequence (5) splits

and hence G(R) is order isomorphic to Z×ℓ (
n∏

i=1
HV,Vi).

(b) Suppose G(V ) ∼= Z+ αZ, where α is an irrational number. Then
by Lemma 3 (4), for each i = 1, 2, ..., n,G(Vi) ∼= (Z+αZ)×ℓZ. LetHV,Vi =
ker(G(Vi) → G(V )) and letHk(x1,x2,x3),V = ker(G(V ) → G(k(x1, x2, x3))).
Then HV,Vi

∼= Z, since the only nonzero convex subgroup of G(Vi) is
cyclic, and Hk(x1,x2,x3),V = G(V ) ∼= Z + αZ since G(k(x1, x2, x3)) = 0.
Then by Theorem 1, the group of divisibility G(R) is order isomorphic
to a group of the form

lex-extension of (HV,V1 ×c HV,V2 ×c · · · ×c HV,Vn) by Hk(x1,x2,x3),V .

The group G(R) is then order isomorphic to a group of the form

lex-extension of (Z×c Z×c · · · ×c Z) by (Z+ αZ) (b
′
).

Since Z+αZ is projective, Lemma 1 implies that the lex-exact sequence
(b

′
) splits and hence G(R) ∼= (Z+ αZ)×ℓ (Z×c Z×c ...×c Z).
(c) Suppose rat.rank G(V ) = 1 and G(V ) is not finitely generated.

Then G(Vi) is not finitely generated, since otherwise G(V ) is finitely
generated by [14, Proposition 1.11]. Moreover, rank G(Vi) cannot be
three, since otherwise G(Vi) will be finitely generated by Lemma 3. Thus
each G(Vi) has rank two. By [14, Proposition 1.11], there exists a nonzero
convex subgroupH

′
i ofG(Vi) such thatG(V ) ∼= G(Vi)/H

′
i . As in the proof

of case II of (3) of Lemma 3, H
′
i
∼= Z. Lemma 1 implies that G(Vi) is

order isomorphic to a group of the form

lex-extension of Z by H.

Let HV,Vi = ker(G(Vi) → G(V )), and let Hk(x1,x2,x3),V = ker(G(V ) →
G(k(x1, x2, x3))). Then HV,Vi

∼= Z since the only nontrivial convex sub-
group of G(Vi) is cyclic, and Hk(x1,x2,x3),V = H since G(k(x1, x2, x3)) =
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0. Now, by Theorem 1, the group of divisibility G(R) is order isomorphic
to a group of the form

lex-extension of (HV,V1 ×c HV,V2 ×c · · · ×c HV,Vn) by Hk(x1,x2,x3),V .

The group G(R) is then order isomorphic to a group of the form

lex-extension of (Z×c Z×c · · · ×c Z) by H.

(d) Suppose G(V ) ∼= Z×ℓ Z. Since Vi ⊊ V, rank G(Vi) = 3. Then by
[7, Theorem 6.6.7], G(Vi) ∼= Z×ℓZ×ℓZ. Let HV,Vi = ker(G(Vi) → G(V ))
and let Hk(x1,x2,x3),V = ker(G(V ) → G(k(x1, x2, x3))). Then HV,Vi

∼= Z
since ker(G(Vi) → G(V )) is cyclic, and Hk(x1,x2,x3),V

∼= Z ×ℓ Z since
G(k(x1, x2, x3)) = 0. Now, by Theorem 1, the group of divisibility G(R)
is order isomorphic to a group of the form

lex-extension of (HV,V1 ×c HV,V2 ×c · · · ×c HV,Vn) by Hk(x1,x2,x3),V .

The group G(R) is then order isomorphic to a group of the form

lex-extension of (Z×c Z×c · · · ×c Z) by (Z×ℓ Z).

Since the group Z×ℓ Z is projective, Lemma 1 implies that the lex-exact
sequence splits and hence G(R) ∼= (Z×ℓ Z)×ℓ (Z×c Z×c · · · ×c Z).

Definition 1. Let G(R) be the group of divisibility of a semilocal Bézout
domain R. Then G(R) is called completely determined by the lexico-
cardinal decomposition form of G(R) if each lex-exact sequence appearing
in the lexico-cardinal decomposition form of G(R) splits.

Definition 2. Let F = {V1, V2, ..., Vn} be a finite collection of valuation
rings with the same quotient field K and let N (F ) = {(V,W ) : V,W ∈ F}
∪{K} . Let T (F ;K) := (N (F ) , {([σ, τ ], Hσ,τ ) ;σ, τ ∈ N (F )}), where
τ immediate successor of σ be the weighted dependency tree of F and d

the dependency dimension of F . Let R =
n⋂

i=1
Vi and let G(R) be the

group of divisibility of R. Then G(R) is called completely determined by
the weighted dependency tree of F if G(R) can be expressed as a finite
product of sequences of lexicographic product and cardinal product of the
totally ordered groups Hσ,τ .

The following proposition shows that G(R) being completely deter-
mined by the lexico-cardinal decomposition form of G(R) implies G(R)
is completely determined by the weighted dependency tree of valuation
rings in F .



L. Paudel 125

Proposition 5. Let F = {V1, V2, ..., Vn} be a finite collection of val-

uation rings with the same quotient field K. Let R =
n⋂

i=1
Vi. If G(R) is

completely determined by the lexico-cardinal decomposition form of G(R),
then G(R) is completely determined by the weighted dependency tree of
valuation rings in F .

Proof. Let R =
n⋂

i=1
Vi and let G(R) be completely determined by the

lexico-cardinal decomposition form of G(R).

Let N (F ) = {(V,W ) : V,W ∈ F} ∪ {K} . Then by Theorem 1, let

T (F ;K) := (N (F ) , {([σ, τ ], Hσ,τ ) ;σ, τ ∈ N (F )σ}),

τ immediate successor of be the weighted dependency tree of F and
d the dependency dimension of F . For every node σ ∈ N (F ), let
S (σ) := {τ ∈ N (F ); τ is an immediate successor of σ}. Then, G(R) is
order isomorphic to a group of the form∏

σ1∈S (K)

(
lex-extension of

1

[ ∏
σ2∈S (σ1)

(
lex-extension of

2

[ ∏
σ3∈S (σ2)(

...
∏

σd∈S (σd−1)

(
lex-extension of

d

[ ∏
σd+1∈S (σd)

Hσd,σd−1

]
d
by

Hσd−1,σd

)
...

)]
2
by Hσ1,σ2

)]
1
by HK,σ1

)
,

which is the lexico-cardinal decomposition of G(R).

Since each of the lex-exact sequence splits, then the group G(R) is
order isomorphic to

∏
σ1∈S (K)

(
HK,σ1 ×ℓ

1

[ ∏
σ2∈S (σ1)

(
Hσ1,σ2 ×ℓ

2

[ ∏
σ3∈S (σ2)(

...
∏

σd∈S (σd−1)

(
Hσd−1,σd

×ℓ

[ ∏
σd+1∈S (σd)

Hσd,σd−1

]
d

)
...

)]
2

)]
1

)
. (6)

The expression (6) shows that G(R) is completely determined by the
weighted dependency tree of F .

Corollary 1. Let F be a finite collection of dependent valuation over-
rings of k[x1, x2, x3] and let W be a nontrivial valuation overring of
k[x1, x2, x3] that contains each V ∈ F . If G(W ) is finitely generated,
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then the group of divisibility G(
⋂

V ∈F
V ) is completely determined by the

weighted dependency tree of valuations in F .

Proof. Let F = {V1, V2, ..., Vn} . Let R =
n⋂

i=1
Vi. Then by the proof of

(1) of Proposition 4, the group of divisibility of R is order isomorphic to
a group of the form

lex-extension of

 m∏
j=1

(
lex-extension of (

∏
S∈F ,S⊊Wj

HWj ,S)

by HV,Wj

)
×c

∏
T∈F ,T ̸⊆Wj

HV,T

 by G(V ), (7)

Here, Wj may or may not exist. If Wj exists for some j, then by the
proof of (1) of Proposition 4, G(Wj) is finitely generated and hence the
convex subgroup HV,Wj of G(Wj) is finitely generated. This determines
the group of divisibility of R, since the lex-exact sequences appearing
in (7) split by Lemma 1.

If theWj do not exist, then the short exact sequence appearing in (7)
splits by Lemma 1, since G(V ) is finitely generated. This also determines
the group of divisibility of R.

Corollary 2. Let F be a finite collection of valuation overrings of
k[x1, x2, x3]. Let F1,F2, ...,Fr be the dependency classes of F . Let Wi

be a nontrivial valuation overring of k[x1, x2, x3] which contains each of
the valuation rings in Fi. Then the group of divisibility G(

⋂
V ∈F

V ) is

completely determined by the weighted dependency tree of the valuations
in F if for each i = 1, 2, ..., r, G(Wi) is finitely generated.

Proof. Let F1,F2, ...,Fr be the dependency classes of valuation rings

in F . For each i = 1, 2, ..., r, let Si =
⋂

V ∈Fi

V. Let R =
r⋂

i=1
Si. By

[3, Theorem 3], the group of divisibility G(R) is order isomorphic to
r∏

i=1
G(Si), where G(Si) can be determined as in the Corollary 1. Thus

G(R) can be determined.
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The following proposition gives an ℓ-group, which is a group of di-
visibility of the intersection of valuation overrings of k[x1, x2, x3] having
Krull dimension greater than one.

Proposition 6. Let F be a finite collection of valuation overrings of
k[x1, x2, x3] such that each valuation ring in F has rank greater than
one, and let R =

⋂
V ∈F

V . Then G(R) is order isomorphic to a group of

the form G1 ×c G2 ×c G3, where
(1) G1 is a finite cardinal product of the groups of the form

Z×ℓ A, (8)

where A is a finite cardinal product of one or more of the following groups,
which are realizable over k[x1, x2].

� (Z + r1Z) ×c (Z + r2Z) ×c ... ×c (Z + rqZ), where r1, r2, ..., rq are
irrational numbers.

� H1 ×c H2 ×c ...×c Hp, for each i = 1, 2, ..., p,Hi ⊆ Q.

� Z×ℓ (Z×c ...×c Z),

(2) G2 is a finite cardinal product of the groups of the form

lex-extension of (Z×c Z×c ...×c Z) by H, (9)

where H ⊆ Q and H is not finitely generated, and
(3) G3 is a finite cardinal product of the groups of the form

(Z+ rZ)×ℓ (Z×c Z×c ...×c Z). (10)

Proof. Let F = {V1, V2, ..., Vn} and let F1,F2, ...,Fm,m ≤ n denote the set
of dependency classes of F . For each j = 1, 2, ...,m, let Wj ∈ N (Fj) be
a nontrivial valuation overring of k[x1, x2, x3] that contains each V ∈ Fj.

Then we have the following cases.
Case I: Suppose for each h = 1, 2, ..., r, G(Wr) ∼= Z. Then by (1) and

(2)(a) of Proposition 4, G

( ⋂
V ∈Fh

V

)
is order isomorphic to a group

of the form Z ×ℓ A. Let R
′
h =

⋂
V ∈Fh

V and let R1 =
r⋂

h=1

R
′
h. Then by

[3, Theorem 3], G1 := G(R1) is order isomorphic to G(R
′
1)×c G(R

′
2)×c

· · · ×c G(R
′
r).
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Case II: Suppose for each p = r + 1, r + 2, ..., s, G(Wp) ∼= H ⊆ Q and
G(Wp) is not finitely generated. Let R

′′
p =

⋂
V ∈Fp

V. Then by (2)(c) of

Proposition 4, G(R
′′
h) is order isomorphic to a group of the form

lex-extension of (Z×c Z×c · · · ×c Z) by H.

Let R2 =
s⋂

p=r+1
R

′′
h. Then by [3, Theorem 3], G2 := G(R2) is order

isomorphic to G(R
′′
r+1)×c G(R

′′
r+2)×c · · · ×c G(R

′′
s ) which is in the form

given in (2).
Case III: Suppose for each q = s + 1, s + 2, ...,m,G(Wq) ∼= Z ×c γqZ,
where γq is an irrational number. Let R

′′′
q =

⋂
V ∈Fq

V. Then by (2)(b) of

Proposition 4, G(R
′′′
q ) is order isomorphic to the group (Z ×c γqZ) ×ℓ

(Z×c Z×c · · · ×c Z).

Let R3 =
s⋂

q=s+1
R

′′′
q . Then by [3, Theorem 3], G(R3) is order isomor-

phic to G(R
′′′
s+1)×c G(R

′′′
s+2)×c · · · ×c G(R

′′′
m) = G3.

Let R = R1 ∩ R2 ∩ R3. Then R =
⋂

V ∈F
V. Now by [3, Theorem 3],

G(R) is order isomorphic to G(R1)×cG(R2)×cG(R3) and by Theorem 1,
G(R) is order isomorphic to a group of the form G1 ×c G2 ×c G3.

The result below describes the group of divisibility of a finite inter-
section of valuation overrings of k[x1, x2, x3].

Theorem 3. Let k be an infinite field. A semilocal ℓ-group G is weakly
realizable over k[x1, x2, x3], where k is a field and x1, x2, x3 are indeter-
minates over k if and only if G is order isomorphic to a group of the
form G1 ×c G2 ×c G3 ×c G4 ×c G5 ×c G6, where G1, G2, G3 are as in
Proposition 6 and each of G4, G5 and G6 is isomorphic to a cardinal
sum of subgroups of the real numbers of rational rank one, two and three
respectively.

Proof. Let G be an ℓ-group and suppose G = G1 ×c G2 ×c G3 ×c G4 ×c

G5 ×c G6, where each Gi; i = 1, 2, ..., 6 is zero or G1, G2, G3, G4, G5 and
G6 as in the theorem.

First, we realize the group G1. If G1 = 0, let V = k(x1, x2, x3) so that
G(V ) = 0 = G1. Assume that G1 ̸= 0 and write G1 = A1 ×cA2 ×c · · · ×c

An, where each Ai
∼= Z×ℓA

′
i and where A

′
i is a finite cardinal product of

one or more of the following groups, which are realizable over k[x1, x2].
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� (Z + r1Z) ×c (Z + r2Z) ×c ... ×c (Z + rqZ), where r1, r2, ..., rq are
irrational numbers.

� H1 ×c H2 ×c ...×c Hp, for each i = 1, 2, ..., p,Hi ⊆ Q.

� Z×ℓ (Z×c ...×c Z).

First, we want to realize Ai. Let a1, a2, ..., an be distinct elements of k.
Let pi = x1+ ai, and let Vi = k[x1, x2, x3](x1+ai). Then by [15, Corol-

lary 2, p. 42], Vi is a DVR. Let µVi be the maximal ideal of Vi. Let
x̄2 = x2 + µVi and x̄3 = x3 + µVi . Then k[x̄2, x̄3] ⊆ Vi/µVi .

The group A
′
i can be realized over k[x̄2, x̄3] as in Theorem 2. Let R

′
i be

the corresponding domain. Let Di = ϕ−1(R
′
i), where ϕ : Vi → Vi/µVi be

the canonical homomorphism. Then by [11, Theorem 3.2], the sequence

0 → G(R
′
i) → G(Di) → G(Vi) → 0 (a)

is lexicographically exact. Since G(Vi) ∼= Z by Lemma 1, the sequence
(a) splits and hence

G(Di) ∼= Z×ℓ G(R
′
i)

∼= Z×ℓ A
′
i

∼= Ai.

Let R1 =
n⋂

i=1
Di.We have constructed D1, D2, ..., Dn such that the valua-

tion domains V1, V2, ..., Vn are independent. Then by [3, Theorem 3],
G(R1) is order isomorphic to A1 ×c A2 ×c · · · ×c An. Thus G(R1) ∼= G1.

Next, we show that G2 can be weakly realized, where G2 ̸= 0. Sup-
pose G2

∼= B1 ×c B2 ×c · · · ×c Bm, where each Bj is in the form

lex-extension of (Z×c Z×c ...×c Z) by H,

where H is a subgroup of Q, and H is not finitely generated.
Let b1, b2, ..., bm ∈ k − {a1, a2, ..., an} . As in Theorem 2, we realize

H over k(x3)[x1 + bj , x2]. Let Wj be the corresponding valuation do-
main. Let x̄3 = x3 + µWj , where µWj denotes the maximal ideal of
Wj . Then k[x̄3] ⊊ Wj/µWj . Let e1, e2, ..., er1 be distinct elements of k.

Let T
′
i = k[x̄3](x̄3+ei). Then T

′
i is a DVR [15, Corollary 2, p. 42] and

hence G(T
′
i ) = Z. Let Ti = ψ−1(T

′
i ), where ψ : Wj → Wj/µWj is the

canonical homomorphism. Then by Lemma 1, G(Ti) is order isomor-

phic to a lex-extension of Z by H. Let R2j =
rj⋂
i=1

Ti, where rj denotes
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the number of copies of Z in Bj which appear in the cardinal product.
Let HWj ,Ti = ker(G(Ti) → G(Wj)) and Hk(x1,x2,x3),Wj

= ker(G(Wj) →
G(k(x1, x2, x3))). Then HWj ,Ti = Z, since HWj ,Ti is a nontrivial convex
subgroup of G(Ti) and Hk(x1,x2,x3),Wj

= H, since G(k(x1, x2, x3)) = 0.
Thus by Theorem 1, the group of divisibility G(R2j) is order isomorphic
to a group of the form

lex-extension of (HWj ,T1 ×c HWj ,T2 ×c ...×c HWj ,Tr1
) by Hk(x1,x2,x3),Wj

,

which is order isomorphic to a group of the form

lex-extension of (Z×c Z×c ...×c Z) by H.

Let R2 =
m⋂
j=1

R2j . We have constructed R21, R22, ..., R2m such that

the valuation domainsW1,W2, ...,Wm are independent. Then by [3, The-
orem 3], the group of divisibility G(R2) is order isomorphic to a group
of the form G(B1) ×c G(B2) ×c · · · ×c G(Bm). Thus G(R2) is order iso-
morphic to a group of the form G2. Hence G2 is weakly realizable over
k[x1, x2, x3].

Finally, we realize the group G3, where G3 ̸= 0. Suppose G3 = C1 ×c

C2×c · · ·×cCp, where for each t = 1, 2, ..., p, Ct is in the form (Z+γZ)×ℓ

(Z×c Z×c ...×c Z), where γ is an irrational number.
Let c1, c2, ..., cp ∈ k−{a1, a2, ..., an, b1, b2, ..., bm} . Let rt be the num-

ber of copies of Z in Ct which are appearing in the cardinal product.
As in Theorem 2, we realize Z + γZ over k(x2)[x1 + at, x3]. Let Nt be
the corresponding valuation ring. Let x̄2 = x2 + µNt , where µNt is the
maximal ideal of Nt. Then k[x̄2] ⊊ Nt/µNt . As in Proposition 2, we can
realize Z ×c Z ×c ... ×c Z over k[x̄2]. For each i = 1, 2, ..., rt, let N

′
i be

the corresponding valuation ring. Then G(N
′
i ) = Z and the residue field

of N
′
i is k. Let Si = η−1(N

′
i ), where η : Nt → Nt/µNt is the canonical

homomorphism. Then by Lemma 1, G(Si) ∼= (Z+ γZ)×ℓ Z.
Let R3t =

rt⋂
i=1

Si. LetHNt,Si
= ker(G(Si) → G(Nt)) and letHk(x1,x2,x3),Nt

= ker((G(Nt) → G(k(x1, x2, x3))). Then HNt,Ni = Z since HNt,Ni is a
nontrivial convex subgroup of G(Ni), and Hk(x1,x2,x3),N = Z + γZ since
G(k(x1, x2, x3)) = 0. Then by using Theorem 1, the group of divisibility
G(R3t) is order isomorphic to a group of the form

lex-extension of (HNt,N1 ×c HNt,N2 ×c ...×c HNt,Nr2
) by Hk(x1,x2,x3),Nt

.

The group G(R3t) is then order isomorphic to a group of the form

lex-extension of (Z×c Z×c ...×c Z) by (Z+ γZ).
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Since Z + γZ is projective, the lex-exact sequence splits and hence the
group G(R3t) is order isomorphic to (Z + γZ) ×ℓ (Z ×c Z ×c ... ×c Z)

which is Ct. Let R3 =
p⋂

t=1
R3t. We have constructed R31, R32, ..., R3p

such that the valuation domains N1, N2, ..., Np are independent. Then
by [3, Theorem 3], the group of divisibility G(R3) is order isomorphic to
C1 ×c C2 ×c · · · ×c Cp. Thus G(R3) ∼= G3.

The groups of the form G4, G5 and G6 can be realized by [12, Theo-
rem 5.8]. Let R4, R5 and R6 be the semilocal Bézout domains associated
with the ℓ-groups G4, G5 and G6 respectively.

Let R =
6⋂

i=1
Ri. We have constructed R1, R2 and R3 such that for

each i, j and t, the valuation domains Vi, Tj and Nt are independent.
Since the valuation domains corresponding to R4, R5 and R6 are distinct
and of rank one, they are independent. By Theorem 1, the group of

divisibility G(R) = G(
6⋂

i=1
Ri) is order isomorphic to G(R1)×c G(R2)×c

G(R3)×c G(R4)×c G(R5)×c G(R6). Since except for i = 2, G(Ri) ∼= Gi

and for i = 2, G(R2) is order isomorphic to a group of the form G2, then
the group G(R) is order isomorphic to a group of the form

G1 ×c G2 ×c G3 ×c G4 ×c G5 ×c G6.

Thus the group G is weakly realizable over k[x1, x2, x3].

Conversely, let G be weakly realizable over k[x1, x2, x3], where k is
a field and x1, x2, x3 are indeterminates over k. Then there exists a
semilocal Bézout overring R of k[x1, x2, x3] such that G and G(R) admit
a lexico-cardinal decomposition of the same form. By using the Propo-
sition 6, G is order isomorphic to a group of the form G1×cG2×cG3×c

G4 ×c G5 ×c G6, where G4, G5 and G6 are corresponding to the rank
one valuation rings and G4, G5 and G6 are isomorphic to a cardinal sum
of subgroups of the real numbers of rational rank one, two and three
respectively.

Finally, we conclude the following result.

Theorem 4. The semilocal ℓ-groups that can be realized over k[x1, x2, ...,
xn] can be determined for n = 1, 2. For n = 3, if V1, V2, ..., Vm are de-
pendent valuation overrings of k[x1, x2, ..., xn] with finitely generated or
divisible value groups then G(V1 ∩ V2 ∩ · · · ∩ Vm) can be determined comp-
letely by the lexico-cardinal decomposition form of G(V1 ∩ V2 ∩ · · · ∩ Vm).
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Proof. From Proposition 2 and Theorem 2, semilocal ℓ-groups which can
be realized over k[x1, x2, ..., xn] can be determined for n = 1 and n = 2,
respectively.

Let V1, V2, ..., Vm be dependent the valuation overrings of k[x1, x2, ...,
xn], where n ≥ 3. By Theorem 1, the group of divisibility G(V1 ∩ V2 ∩
· · · ∩ Vm) can be expressed in terms of the finite product of lex-exact
sequences. If each Vi, i = 1, 2, ...,m has finitely generated or each Vi has
divisible value groups, then the lex-exact sequences split and the group
G(V1 ∩ V2 ∩ · · · ∩ Vm) can be determined completely.
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