© Algebra and Discrete Mathematics Volume **34** (2022). Number 1, pp. 15–21 DOI:10.12958/adm1991

Note on cyclic doppelsemigroups

V. Gavrylkiv

Communicated by A. Zhuchok

ABSTRACT. A doppelsemigroup (G, \dashv, \vdash) is called *cyclic* if (G, \dashv) is a cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist $\tau(n)$ finite cyclic (strong) doppelsemigroups of order n, where τ is the number of divisors function. Also there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups.

Introduction

Given a semigroup (S, \dashv) , consider a semigroup (S, \vdash) defined on the same set. We say that the semigroups (S, \vdash) and (S, \dashv) are *interassociative* provided

 $(x \dashv y) \vdash z = x \dashv (y \vdash z)$ and $(x \vdash y) \dashv z = x \vdash (y \dashv z)$

for all $x, y, z \in S$. When this occurs, we say that (S, \vdash) is an *interassociate* of (S, \dashv) , or that the semigroups are interassociates of each other. If the semigroups (S, \vdash) and (S, \dashv) are interassociative, then rearranging the parentheses in an expression that contains only operations \vdash , \dashv and elements of S will not change the result. In 1971, Zupnik [25] coined the term interassociativity in a general groupoid setting. However, he required only one of the two defining equations to hold. The present concept of interassociativity for semigroups originated in 1986 in Drouzy [3], where

²⁰²⁰ MSC: 08B20, 20M10, 20M50, 17A30.

Key words and phrases: semigroup, interassociativity, doppels emigroup, strong doppels emigroup.

it is noted that every group is isomorphic to each of its interassociates. In 1983, Gould and Richardson [6] introduced strong interassociativity, defined by the above equations along with $x \dashv (y \vdash z) = x \vdash (y \dashv z)$. J. B. Hickey in 1983 [7] and 1986 [8] dealt with the special case of interassociativity in which the operation \vdash is defined by specifying $a \in S$ and stipulating that $x \vdash y = x \dashv a \dashv y$ for all $x, y \in S$. Clearly (S, \vdash) , which Hickey calls a variant of (S, \dashv) , is a semigroup that is an interassociate of (S, \dashv) . It is easy to show that if (S, \dashv) is a monoid, every interassociate (S, \vdash) must satisfy the condition $x \vdash y = x \dashv a \dashv y$ for some fixed element $a \in S$ and for all $x, y \in S$, that is (S, \vdash) is a variant of (S, \dashv) . Methods of constructing interassociates were developed, for semigroups in general and for specific classes of semigroups, in 1997 by Boyd, Gould and Nelson [1]. The description of all interassociates of finite monogenic semigroups was presented by Gould, Linton and Nelson in 2004, see [5].

This paper is devoted to study of doppelsemigroups which are sets with two associative binary operations satisfying axioms of interassociativity. More accurately, a *doppelsemigroup* is an algebraic structure (D, \dashv, \vdash) consisting of a non-empty set D equipped with two associative binary operations \dashv and \vdash satisfying the following axioms:

Thus, we can see that in any doppelsemigroup $(D, \dashv, \vdash), (D, \vdash)$ is an interassociate of (D, \dashv) , and conversely, if a semigroup (D, \vdash) is an interassociate of a semigroup (D, \dashv) , then (D, \dashv, \vdash) is a doppelsemigroup. A doppelsemigroup (D, \dashv, \vdash) is called *commutative* [18] if both semigroups (D, \dashv) and (D, \vdash) are commutative. A doppelsemigroup (D, \dashv, \vdash) is said to be *strong* [20] if it satisfies the axiom $x \dashv (y \vdash z) = x \vdash (y \dashv z)$.

The study of doppelsemigroups was initiated by A. Zhuchok. The idea of doppelsemigroups bases on the study of dimonoids in the sense of Loday [11]. Doppelalgebras introduced by Richter [13] in the context of algebraic K-theory are linear analogs of doppelsemigroups and commutative dimonoids are examples of doppelsemigroups. Consequently, doppelsemigroup theory has connections to doppelalgebra theory and dimonoid theory. A doppelsemigroup can also be determined by using the notion of a duplex [12]. Free duplexes were constructed in [12]. Doppelsemigroups are closely related to bisemigroups considered in the work of Schein [15]. The latter algebras have applications in the theory of binary relations [16]. If operations of a doppelsemigroup coincide, we obtain the notion of a semigroup.

Many classes of doppelsemigroups were studied by A. Zhuchok and his coauthors. The free product of doppelsemigroups, the free (strong) doppelsemigroup, the free commutative (strong) doppelsemigroup, the free n-nilpotent (strong) doppelsemigroup and the free rectangular doppelsemigroup were constructed in [18,20,24]. Relatively free doppelsemigroups were studied in [22]. The free n-dinilpotent (strong) doppelsemigroup was constructed in [17,20]. In [19], A. Zhuchok described the free left n-dinilpotent doppelsemigroup. Representations of ordered doppelsemigroups by binary relations were studied by Yu. Zhuchok and J. Koppitz, see [23].

One of the main tasks in the study of algebraic structures is their classification up to isomorphism. In [4], the task of describing all pairwise non-isomorphic (strong) doppelsemigroups of order 3 has been solved. It was proved that there exist 75 pairwise non-isomorphic three-element doppelsemigroups among which 41 doppelsemigroups are commutative. Non-commutative doppelsemigroups are divided into 17 pairs of dual doppelsemigroups. Also up to isomorphism there are 65 strong doppelsemigroups of order 3, and all non-strong doppelsemigroups are not commutative.

In this paper, we concentrate on studying cyclic doppelsemigroups. A doppelsemigroup (G, \dashv, \vdash) said to be *cyclic* if (G, \dashv) is a cyclic group. Of course, the task of classifying all cyclic doppelsemigroups up to isomorphism is quite interesting. We prove that up to isomorphism there exist $\tau(n)$ finite cyclic (strong) doppelsemigroups of order n, where τ is the number of divisors function. Also we show that there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups.

1. Preliminaries

First, recall some useful facts which we shall use in this paper. In fact, each semigroup (S, \dashv) can be consider as a (strong) doppelsemigroup (S, \dashv, \dashv) , and we denote this *trivial* doppelsemigroup by S. We denote by (S, \dashv_a) a variant of a semigroup (S, \dashv) , where $x \dashv_a y = x \dashv a \dashv y$, $a \in S$.

Proposition 3.1 and Lemma 6.1 of [20] imply the following corollary. **Corollary 1.** Let (S, \dashv) be a commutative semigroup and let $a, b \in S$. Then (S, \dashv_a, \dashv_b) is a commutative strong doppelsemigroup.

A bijective map $\psi: D_1 \to D_2$ is called an *isomorphism of doppelsemi*groups $(D_1, \dashv_1, \vdash_1)$ and $(D_2, \dashv_2, \vdash_2)$ if

 $\psi(a \dashv_1 b) = \psi(a) \dashv_2 \psi(b)$ and $\psi(a \vdash_1 b) = \psi(a) \vdash_2 \psi(b)$

for all $a, b \in D_1$.

If there exists an isomorphism between the doppelsemigroups $(D_1, \dashv_1, \vdash_1)$ and $(D_2, \dashv_2, \vdash_2)$ then $(D_1, \dashv_1, \vdash_1)$ and $(D_2, \dashv_2, \vdash_2)$ are said to be *isomorphic*, denoted $(D_1, \dashv_1, \vdash_1) \cong (D_2, \dashv_2, \vdash_2)$.

A doppelsemigroup (G, \dashv, \vdash) is called a group doppelsemigroup if (G, \dashv) is a group. Since every group is isomorphic to each of its interassociates, it follows that (G, \vdash) is a group isomorphic to (G, \dashv) .

Proposition 1. Let (G, \dashv) be a group and let (G, \dashv, \vdash) be a doppelsemigroup. Then $\vdash = \dashv_a$ for some $a \in G$.

Proof. Let e be identity of a group (G, \dashv) . It follows that

$$x \vdash y = (x \dashv e) \vdash (e \dashv y) = x \dashv (e \vdash e) \dashv y,$$

and we conclude that $\vdash = \dashv_a$ for $a = e \vdash e$.

Proposition 1 and Corollary 1 imply the following corollary.

Corollary 2. Let (G, \dashv) be an Abelian group and let (G, \dashv, \vdash) be a doppelsemigroup. Then (G, \dashv, \vdash) is a commutative strong doppelsemigroup and $\vdash = \dashv_a$ for some $a \in G$.

2. Characterization of cyclic doppelsemigroups

In this section, we characterize up to isomorphism all finite cyclic doppelsemigroups. First, let us recall some known information concerning finite cyclic groups. If H is a subgroup of a finite cyclic group G, then each group automorphism $\psi : H \to H$ can be extended to a group automorphism $\overline{\psi} : G \to G$, see [10, Lemma 3.1]. Let a and b be elements of a finite cyclic group G. Then there exists a group automorphism ψ of G such that $\psi(a) = b$ if and only if |a| = |b|. For more information about group theory, see for example [14].

Recall that the number of divisors function $\tau(n)$ is defined as the number of natural divisors of a natural number n. It is well-known that $\tau(n) = (a_1 + 1) \cdot (a_2 + 1) \cdot \ldots \cdot (a_t + 1)$, where $n = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_t^{a_t}$ is the prime factorization of n.

Theorem 1. There exist $\tau(n)$ pairwise non-isomorphic finite cyclic doppelsemigroups of order n. All finite cyclic doppelsemigroups are strong and commutative.

Proof. Let us describe up to isomorphism all cyclic (strong) doppelsemigroups of finite order n. Let $(\mathbb{Z}_n, +, \vdash)$ be arbitrary doppelsemigroup of order n. According to Proposition 1, we can assume without loss of generality that $(\mathbb{Z}_n, +, \vdash) = (\mathbb{Z}_n, +, +_a)$ for some $a \in \{0, \ldots, n-1\}$.

Consider two arbitrary doppels emigroups $(\mathbb{Z}_n, +, +_a)$ and $(\mathbb{Z}_n, +, +_b)$. Taking into account that

$$(n-a) +_a x = n - a + a + x = x \pmod{n}$$

and

$$x +_a (n-a) = x + a + n - a = x \pmod{n}$$

for any $x \in \mathbb{Z}_n$, we conclude that n - a is a neutral element of the group $(\mathbb{Z}_n, +_a)$.

Consider the following two cases:

Case 1. Let $|a| \neq |b|$. Since |n - a| = |a| and |n - b| = |b|, it follows that also $|n - a| \neq |n - b|$. Let us show by contradiction that in this case the doppelsemigroups $(\mathbb{Z}_n, +, +_a)$ and $(\mathbb{Z}_n, +, +_b)$ are not isomorphic. Assume conversely that $\psi : \mathbb{Z}_n \to \mathbb{Z}_n$ is a doppelsemigoup isomorphism from $(\mathbb{Z}_n, +, +_a)$ to $(\mathbb{Z}_n, +, +_b)$. Taking into account that isomorphisms preserve the neutral elements, we conclude that $\psi(n-a) = n-b$. Therefore, |n - a| = |n - b|, and we get a contradiction.

Case 2. Let |a| = |b|. Let us show that in this case the doppelsemigroups $(\mathbb{Z}_n, +, +_a)$ and $(\mathbb{Z}_n, +, +_b)$ are isomorphic. Let $\psi : \mathbb{Z}_n \to \mathbb{Z}_n$ be an automorphism of the group $(\mathbb{Z}_n, +)$ such that $\psi(a) = b$. It follows that ψ is also a doppelsemgroup isomorphism from $(\mathbb{Z}_n, +, +_a)$ to $(\mathbb{Z}_n, +, +_b)$. Indeed,

$$\psi(x +_a y) = \psi(x + a + y) = \psi(x) + \psi(a) + \psi(y)$$
$$= \psi(x) + b + \psi(y) = \psi(x) + b \psi(y)$$

for any $x, y \in \mathbb{Z}_n$.

Taking into account that for each positive divisor d of |G|, there exists an element of order d (see [14]), we conclude that the number of pairwise non-isomorphic doppelsemigroups of order n is equal to number of natural divisors of n, and hence is equal to $\tau(n)$.

According to Corollary 2, all finite cyclic doppels emigroups are strong and commutative. $\hfill \Box$

It is well-known that each infinite cyclic group is isomorphic to the additive group of integers.

Theorem 2. Let $a, b \in \mathbb{Z}$. The doppelsemigroups $(\mathbb{Z}, +, +_a)$ and $(\mathbb{Z}, +, +_b)$ are isomorphic if and only if $b \in \{a, -a\}$. Consequently, there exist countably infinite many pairwise non-isomorphic infinite cyclic (commutative strong) doppelsemigroups.

Proof. It is well-known that there are exactly two automorphisms of the group $(\mathbb{Z}, +)$: the identity automorphism $\mathrm{id}_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}$, $\mathrm{id}_{\mathbb{Z}}(x) = x$ and $\mathrm{inv}_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}$, $\mathrm{inv}_{\mathbb{Z}}(x) = -x$.

It is clear that $\mathrm{id}_{\mathbb{Z}}$ is an automorphism of a doppelse migroup $(\mathbb{Z}, +, +_a)$. Taking into account that

$$\operatorname{inv}_{\mathbb{Z}}(x+a+y) = \operatorname{inv}_{\mathbb{Z}}(x+a+y) = -(x+a+y) = -x + (-a) - y$$
$$= \operatorname{inv}_{\mathbb{Z}}(x) + (-a) + \operatorname{inv}_{\mathbb{Z}}(y) = \operatorname{inv}_{\mathbb{Z}}(x) + (-a + \operatorname{inv}_{\mathbb{Z}}(y))$$

we conclude that $\operatorname{inv}_{\mathbb{Z}}$ is an isomorphism of the doppelsemigroups $(\mathbb{Z}, +, +_a)$ and $(\mathbb{Z}, +, +_a)$.

Let $\psi : \mathbb{Z} \to \mathbb{Z}$ be arbitrary doppedsemigoup isomorphism from $(\mathbb{Z}, +, +_a)$ to $(\mathbb{Z}, +, +_b)$. It follows that ψ is a group automorphism of $(\mathbb{Z}, +)$ and a group isomorphism from the group $(\mathbb{Z}, +_a)$ with neutral element -a to the group $(\mathbb{Z}, +_b)$ with neutral element -b. It follows that $\psi(-a) = -b$, and hence $\psi(a) = b$. If $\psi = \mathrm{id}_{\mathbb{Z}}$, then a = b, and in the case $\psi = \mathrm{inv}_{\mathbb{Z}}$, we get a = -b.

We conclude that the doppelse migroups $(\mathbb{Z}, +, +_a)$ and $(\mathbb{Z}, +, +_b)$ are isomorphic if and only if b = a or b = -a.

According to Corollary 2, all infinite cyclic doppels emigroups are strong and commutative. $\hfill \Box$

3. Acknowledgment

The author would like to express his sincere thanks to the anonymous referee for a very careful reading of the paper and for all his insightful comments and valuable suggestions, which considerably improve the presentation of this paper.

References

- S.J. Boyd, M. Gould, A. Nelson: *Interassociativity of Semigroups*, Proceedings of the Tennessee Topology Conference, World Scientific (1997), 33-51.
- [2] A.H. Clifford, G.B. Preston: The algebraic theory of semigroups, Vol. I, Mathematical Surveys, Vol. 7, AMS, Providence, RI (1961).
- [3] M. Drouzy: La structuration des ensembles de semigroupes d'ordre 2, 3 et 4 par la relation d'interassociativité, manuscript (1986).
- [4] V.M. Gavrylkiv, D.V. Rendziak: Interassociativity and three-element doppelsemigroups, Algebra Discrete Math. 28(2) (2019), 224-247.
- [5] M. Gould, K.A. Linton, A.W. Nelson: Interassociates of monogenic semigroups, Semigroup Forum 68 (2004), 186-201.
- [6] M. Gould, R.E. Richardson: Translational hulls of polynomially related semigroups, *Czechoslovak Math. J.* 33 (1983), 95-100.

- J.B. Hickey: Semigroups under a sandwich operation, Proc. Edinburgh Math. Soc. 26 (1983), 371-382.
- [8] J.B. Hickey: On Variants of a semigroup, Bull. Austral. Math. Soc. 34 (1986), 447-459.
- [9] J.M. Howie: Fundamentals of semigroup theory, The Clarendon Press, Oxford University Press, New York (1995).
- [10] W. Kubiś, B. Kuzeljević: Uniform homogeneity, arXiv:2004.13643
- [11] J.L. Loday: Dialgebras. In: Dialgebras and related operads: *Lect. Notes Math.*, vol. 1763, Berlin: Springer-Verlag (2001), 7-66.
- [12] T. Pirashvili: Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169-183.
- [13] B. Richter: Dialgebren, Doppelalgebren und ihre Homologie. Diplomarbeit, Universitat Bonn. (1997).
- [14] D. Robinson: A course in the theory of groups, Springer-Verlag, New York (1996).
- [15] B.M. Schein: Restrictive semigroups and bisemigroups. Technical Report. University of Arkansas, Fayetteville, Arkansas, USA (1989), 1-23.
- [16] B.M. Schein: Restrictive bisemigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (44) (1965), 168-179 (in Russian).
- [17] A.V. Zhuchok, M. Demko: Free n-dinilpotent doppelsemigroups, Algebra Discrete Math. 22(2) (2016), 304-316.
- [18] A.V. Zhuchok: Free products of doppelsemigroups, Algebra Univers. 77(3) (2017), 361-374.
- [19] A.V. Zhuchok: Free left n-dinilpotent doppelsemigroups, Commun. Algebra 45(11) (2017), 4960-4970.
- [20] A.V. Zhuchok: Structure of free strong doppelsemigroups, Commun. Algebra 46(8) (2018), 3262-3279.
- [21] A.V. Zhuchok, K. Knauer: Abelian doppelsemigroups, Algebra Discrete Math. 26(2) (2018), 290-304.
- [22] A.V. Zhuchok: *Relatively free doppelsemigroups*. Monograph series Lectures in Pure and Applied Mathematics. Germany, Potsdam: Potsdam University Press. 5 (2018), 86 p.
- [23] Y.V. Zhuchok, J. Koppitz: Representations of ordered doppelsemigroups by binary relations, Algebra Discrete Math. 27(1) (2019), 144-154.
- [24] A.V. Zhuchok, Yul. V. Zhuchok, J. Koppitz: Free rectangular doppelsemigroups, J. Algebra Appl. 19(11) (2020), 2050205.
- [25] D. Zupnik: On interassociativity and related questions, Aequationes Math. 6 (1971), 141-148.

VolodymyrCONTACT INFORMATIONVolodymyrVasyl Stefanyk Precarpathian National
University, Ivano-Frankivsk, Ukraine
E-Mail(s): vgavrylkiv@gmail.com
Web-page(s): http://gavrylkiv.pu.if.ua/

Received by the editors: 29.06.2022 and in final form 13.10.2022.