# Abelianization of the Cartwright-Steger lattice* <br> G. Blachar, O. Sela-Ben-David, and U. Vishne 

Communicated by E. I. Zelmanov

Abstract. The Cartwright-Steger lattice is a group whose Cayley graph can be identified with the Bruhat-Tits building of $\mathrm{PGL}_{d}$ over a local field of positive characteristic. We give a lower bound on the abelianization of this lattice, and report that the bound is tight in all computationally accessible cases.

## Introduction

Arithmetic lattices acting on trees provide a linkage between group theory, arithmetic and dynamics, paving the way to applications of representation theory to combinatorics, as beautifully demonstrated by Margulis and Lubotzky-Philips-Sarnak in the construction of Ramanujan graphs (see [4]). The lattice constructed by Cartwright and Steger [3] is a higher-dimensional analog, acting on a Bruhat-Tits building associated with $\mathrm{PGL}_{d}$ over a local field in arbitrary rank. Acting simply transitively, this remarkable lattice can be identified with the building, giving the building a structure of a Cayley complex. This identification allows for an explicit construction of Ramanujan complexes [7], as well as the construction of isospectral but noncommensurable complexes of any dimension $d \geqslant 5(d \neq 6)[8]$. These are obtained as quotients of the lattice with respect to congruence subgroups.

[^0]The epimorphism from the lattice to $\mathbb{Z} / d \mathbb{Z}$ is a $d$-coloring of the building, essentially defined by the quotient $\mathrm{PGL}_{d}(F) / \mathrm{PSL}_{d}(F)$, which result in colored Laplacians generating the Hecke algebra. The purpose of this short note is to describe a larger abelian quotient of each of the Cartwright-Steger lattices, which could be used to refine the colored Laplacians. Computer-aided verification suggest that our quotient is the full abelianization.

The recent construction of lattices acting simply transitively on a product of trees [9] is quite similar in nature, and one may expect the abelianization of these lattices to be amenable to the same analysis.

We define the building and the Cartwright-Steger lattice in section 1. In section 2 we introduce an extension $\tilde{\Gamma}$ of $\Gamma$, obtained by removing one of the defining relations. The abelian quotient of $\tilde{\Gamma}$ is given in section 3 , leading to a closely related abelian quotient of $\Gamma$ in section 4 . Finally in section 5 we describe the computation of $\Gamma /[\Gamma, \Gamma]$ for the cases where the relation matrix has up to $2^{28}$ entries. In all cases, the abelianization is identical with the quotient described in Conjecture 1. Part of this work is based on [10].

## 1. The affine Bruhat-Tits building

Fix an integer $d \geqslant 2$ and a prime power $q$. Let $\mathbb{F}_{q}$ denote the finite field of order $q$. Let $F=\mathbb{F}_{q}((\pi))$ be the local field of Laurent series over $\mathbb{F}_{q}$. Let $\mathcal{O}=\mathbb{F}_{q}[[\pi]]$ be the ring of integers in $F$ with respect to the $\pi$-adic valuation. We refer the reader to [6] and references therein for more details.

### 1.1. The building

The Bruhat-Tits building associated to the group $G=\mathrm{PGL}_{d}(F)$ is a simply connected simplicial complex of dimension $d$. The group $G$ acts transitively on the vertex set, and the stabilizer of a vertex is a maximal compact subgroup, conjugate to $K=\mathrm{PGL}_{d}(\mathcal{O})$. In this sense the building can be described as the quotient $G / K$. A quotient $\Gamma \backslash G / K$ with respect to a discrete cocompact subgroups $\Gamma \leqslant G$ is a finite simplicial complex.

Let us now define the building as a simplicial complex. The vertices are the $\mathcal{O}$-submodules of full rank of the vector space $V=F^{d}$, up to similitude: a submodule $M$ is equivalent to all the multiples $c \cdot M$, for any $c \in F^{\times}$. Every two submodules of full rank are commensurable. Distinct vertices $\left[M_{0}\right], \ldots,\left[M_{i}\right]$ compose an $i$-cell if, after reordering, the representatives can be chosen so that $\pi M_{0} \subset M_{i} \subset M_{i-1} \subset \cdots \subset M_{1} \subset M_{0}$. Since the
quotients $0 \subset M_{i} / \pi M_{0} \subset M_{i-1} / \pi M_{0} \subset \cdots \subset M_{1} / \pi M_{0} \subset M_{0} / \pi M_{0}=$ $\left(\mathbb{F}_{q}\right)^{d}$ would then compose a flag of subspaces in $\left(\mathbb{F}_{q}\right)^{d}$, the maximal cells all have dimension $d$, and the links are isomorphic to the projective flag complex of $\left(\mathbb{F}_{q}\right)^{d}$. The vertices can be colored by taking the index of a submodule in a fixed pivot, such as $\left[\mathcal{O}^{d}\right]$. This leads to a coloring of the directed edges of the complex: we color the edge from $[M]$ to $\left[M^{\prime}\right]$ by color $k$ if (up to choice of representatives) $M^{\prime} \subseteq M$ and $\operatorname{dim}_{\mathbb{F}_{q}}\left(M / M^{\prime}\right)=k$. This coloring of the edges gives rise to $d-1$ "colored Laplacians", generating the Hecke algebra of $G$. We say that $\left[M^{\prime}\right]$ is an immediate neigbor of $[M]$ if the color of the edge from $[M]$ to $\left[M^{\prime}\right]$ is 1 .

### 1.2. The division algebra

In order to define an arithmetic lattice in $\mathrm{PGL}_{d}(F)$, let $k=\mathbb{F}_{q}(\pi)$ be a global field endowed with the $\pi$-adic valuation, whose completion is $F$. Let $\phi: \mathbb{F}_{q^{d}} \rightarrow \mathbb{F}_{q^{d}}$ denote the Frobenius automorphism of the finite field, extended to $\bar{k}=\mathbb{F}_{q^{d}}(\pi)$ by acting trivially on $\pi$. Let $D$ denote the algebra generated over $k$ by $\bar{k}$ and $z$, subject to the relations $z f=\phi(f) z$ for every $f \in \bar{k}$, and $z^{d}=1+\pi$. Thus defined, $D$ is a division algebra of dimension $d^{2}$ over its center $k$. Moreover, extension of scalars to $F$ splits the algebra, namely $F \otimes_{k} D \cong \mathrm{M}_{d}(F)$. We then have an embedding $D^{\times} \subseteq\left(F \otimes_{k} D\right)^{\times}=\mathrm{M}_{d}(F)^{\times}=\mathrm{GL}_{d}(F)$, and so $D^{\times} / k^{\times}$embeds in $G=$ $\mathrm{PGL}_{d}(F)$.

### 1.3. The lattice

Now consider the special element $b_{1}=1-z^{-1} \in D$. It has reduced norm $\pi /(1+\pi)$, which is equivalent to $\pi$ up to units of $\mathcal{O}$. The immediate neighbors of the special vertex $\left[\mathcal{O}^{d}\right]$ are the vertices $\left[b_{u} \mathcal{O}^{d}\right]$, where $b_{u}=$ $u b_{1} u^{-1}$ are the conjugates of $b_{1}$ by scalars $u \in \mathbb{F}_{q^{d}}^{\times} / \mathbb{F}_{q}^{\times}$.

Cartwright and Steger proved that the subgroup of $D^{\times} / k^{\times}$generated by the conjugates $b_{u}\left(u \in \mathbb{F}_{q^{d}}^{\times} / \mathbb{F}_{q}^{\times}\right)$, which we denote henceforth by $\Gamma$, acts simply transitively on the vertices of the building. Embedded through $\Gamma \subseteq D^{\times} / k^{\times} \subseteq \mathrm{PGL}_{d}(F)$, this is indeed a cocompact discrete subgroup of $\mathrm{PGL}_{d}(F)$.

Notice that $b_{u}=u\left(1-z^{-1}\right) u^{-1}=1-\frac{u}{\phi^{-1}(u)} z^{-1}$. Let $\mathbb{F}_{q^{d}}^{(1)}$ denote the set of elements of norm 1 in the extension $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$. The map $u \mapsto \frac{u}{\phi^{-1}(u)}$ is an isomorphism $\mathbb{F}_{q^{d}}^{\times} / \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q^{d}}^{(1)}$ by Hilbert's theorem 90 . For our purposes it will be more convenient to write the generators of $\Gamma$ as $b_{(r)}=1-r z^{-1}$, ranging over $r \in \mathbb{F}_{q^{d}}^{(1)}$.

### 1.4. The relations

We need some easy facts on products of generators of $\Gamma$. First, when $d>2$, we have the equality

$$
\begin{equation*}
b_{(r)} b_{\left(r^{\prime}\right)}=b_{(s)} b_{\left(s^{\prime}\right)} \tag{1.1}
\end{equation*}
$$

as elements of $D$, if and only if

$$
\begin{align*}
r+r^{\prime} & =s+s^{\prime}  \tag{1.2}\\
r \phi^{-1}\left(r^{\prime}\right) & =s \phi^{-1}\left(s^{\prime}\right) \tag{1.3}
\end{align*}
$$

by comparing the elements in $D$.
Furthermore, let us say that a series of scalars $r_{1}, \ldots, r_{d} \in \mathbb{F}_{q^{d}}^{(1)}$ forms a flag if $b_{\left(r_{1}\right)} \cdots b_{\left(r_{d}\right)}$ is central in $D$; norm considerations then show that $b_{\left(r_{1}\right)} \cdots b_{\left(r_{d}\right)}=\frac{\pi}{1+\pi}$. Indeed, such series are in one-to-one correspondence with maximal flags of subspaces in $\mathbb{F}_{q}^{d}$. For each flag we have that

$$
\begin{equation*}
b_{\left(r_{1}\right)} \cdots b_{\left(r_{d}\right)}=1 \tag{1.4}
\end{equation*}
$$

in $\Gamma \leqslant D^{\times} / k^{\times}$, and it is easy to show that the relations resulting from various flags are all equivalent modulo (1.1).

Finally, it is shown in [7, Theorem 5.2] that the relations (1.1) (for every $r, r^{\prime}, s, s^{\prime}$ satisfying (1.2)-(1.3)), together with a single relation of the form (1.4), compose a presentation of $\Gamma$. From now on, we view $\Gamma$ as the group generated by the $b_{(r)}$, subject to the defining relations (1.1) and (1.4).

### 1.5. The case $d=2$

Remark 1. If $d=2$, the conditions (1.2)-(1.3) imply that $r^{\prime}=-r$ and $s^{\prime}=-s$.

Indeed, in this case $\phi^{-1}\left(r^{\prime}\right)=\phi\left(r^{\prime}\right)=r^{\prime-1}$ since $\mathrm{N}\left(r^{\prime}\right)=1$ by assumption, so (1.3) implies $s r^{\prime}=s^{\prime} r$, and then $s\left(s+s^{\prime}\right)=s\left(r+r^{\prime}\right)=r\left(s+s^{\prime}\right)$, but $r \neq s$.

When $d=2$ the building is a tree, and it is now easy to show that $\Gamma$ is a free group of rank $(q+1) / 2$ when $q$ is odd, and a free product of $q$ cyclic groups of order two when $q$ is even [7, Cor. 5.4]. The abelianization is easily computed in each case, so our main focus is on the case $d>2$.

## 2. Covering $\Gamma$

There is a length function $\Gamma \rightarrow \mathbb{Z} / d \mathbb{Z}$, defined by sending each generator to 1 ; indeed this is the coloring mentioned above. It would be more convenient to work with the group $\tilde{\Gamma}$, formally generated by the $b_{(r)}$ $\left(r \in \mathbb{F}_{q^{d}}^{(1)}\right)$, subject only to the relations (1.1). The length function is now defined in the same manner as $\tilde{\Gamma} \rightarrow \mathbb{Z}$.
Remark 2. For every $r \neq s$, there are unique $r^{\prime}, s^{\prime} \in \mathbb{F}_{q^{d}}^{(1)}$ for which the relation (1.1) holds. Solving the equations we find that

$$
r^{\prime}=\frac{r-s}{\phi(r)-\phi(s)} \phi(s) \quad \text { and } \quad s^{\prime}=\frac{r-s}{\phi(r)-\phi(s)} \phi(r)
$$

We thus have a presentation of $\tilde{\Gamma}$ with $N=\frac{q^{d}-1}{q-1}$ generators, the $b_{(r)}$, and $\binom{N}{2}$ relations.

This fact implies an interesting property of $\tilde{\Gamma}$, namely that the submonoid $\tilde{\Gamma}_{0}$ generated by the $b_{(r)}$ satisfies the Ore condition. Indeed, given $r \neq s$, we can write $b_{(s)}^{-1} b_{(r)}=b_{\left(s^{\prime}\right)} b_{\left(r^{\prime}\right)}^{-1}$, so by induction on the length, every element of $\tilde{\Gamma}$ can be expressed in the form $u w^{-1}$ for $u, w \in \tilde{\Gamma}_{0}$. This property holds in $\Gamma$ as well, by projection.
Remark 3. The pullback $\hat{\Gamma}$ of the diagram

is an intermediate group in the sense that there are projections $\tilde{\Gamma} \rightarrow \hat{\Gamma} \rightarrow \Gamma$. Choose a flag $r_{1}, \ldots, r_{d} \in \mathbb{F}_{q^{d}}^{(1)}$, and let $t=b_{\left(r_{1}\right)} \cdots b_{\left(r_{d}\right)} \in \tilde{\Gamma}$. Then $\Gamma$ is the quotient of $\tilde{\Gamma}$ obtained by imposing the relation $t=1$, and $\hat{\Gamma}$ is the quotient obtained by imposing that $t$ is cental. (A presentation of the pullback is discussed in [1]).

## 3. An abelian quotient of $\tilde{\Gamma}$

We produce an abelian quotient of $\tilde{\Gamma}$, which is the full abelianization in all the cases we computed (see section 5).

Let $\mu_{d}\left(\mathbb{F}_{q}\right)=\left\{a \in \mathbb{F}_{q}^{\times}: a^{d}=1\right\}$ denote the multiplicative group of roots of unity of order $d$ in $\mathbb{F}_{q}$, which has order $\left|\mu_{d}\left(\mathbb{F}_{q}\right)\right|=(d, q-1)$,
the greatest common divisor of $d$ and $q-1$. Since the Galois norm of elements in $\mathbb{F}_{q}$ in the extension $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$ is exponentiation by $d$, we have that $\mu_{d}\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q}^{\times} \cap \mathbb{F}_{q^{d}}^{(1)}$. Let

$$
\theta=\left[\mathbb{F}_{q^{d}}^{(1)}: \mu_{d}\left(\mathbb{F}_{q}\right)\right]=\frac{q^{d}-1}{(q-1)(d, q-1)}
$$

be the index, which is necessarily an integer. Let $\phi: \mathbb{F}_{q^{d}} \rightarrow \mathbb{F}_{q^{d}}$ denote the Frobenius automorphism of exponentiation by $q$.

Lemma 1. For $\alpha \in \mathbb{F}_{q^{d}}^{(1)}$ we have that $(\phi \alpha)^{\theta}=\alpha^{\theta}$.
Proof. Since $\mu_{d}\left(\mathbb{F}_{q}\right) \leqslant \mathbb{F}_{q^{d}}^{(1)}$ are cyclic groups and the index is $\theta$, we have that $\alpha^{\theta} \in \mu_{d}\left(\mathbb{F}_{q}\right)$ for every $\alpha \in \mathbb{F}_{q^{d}}^{(1)}$. Now $(\phi \alpha)^{\theta}=\phi\left(\alpha^{\theta}\right)=\alpha^{\theta}$.

Clearly $\theta$ is minimal with this property. Now we can prove:
Proposition 1. There is a homomorphism

$$
\tilde{\psi}: \tilde{\Gamma} \rightarrow \mathbb{Z} \times\left(\mathbb{F}_{q^{d}},+\right) \times \mu_{d}\left(\mathbb{F}_{q}\right)
$$

Proof. Define $\tilde{\psi}$ on the generators of $\Gamma$ through the components

$$
\tilde{\psi}_{1}\left(b_{(r)}\right)=1 ; \quad \tilde{\psi}_{2}\left(b_{(r)}\right)=r ; \quad \tilde{\psi}_{3}\left(b_{(r)}\right)=r^{\theta}
$$

We need to verify that each $\tilde{\psi}_{i}$ is well-defined, namely that the maps respect the defining relations (1.1). Assume $b_{(r)} b_{\left(r^{\prime}\right)}=b_{(s)} b_{\left(s^{\prime}\right)}$. The map $\tilde{\psi}_{1}$ maps both sides to

$$
\begin{equation*}
1+1=2 \tag{3.1}
\end{equation*}
$$

The map $\tilde{\psi}_{2}$ maps the products to $r+r^{\prime}$ and $s+s^{\prime}$, respectively, which are equal by (1.2). For $\tilde{\psi}_{3}$, notice that the scalars $r, r^{\prime}, s, s^{\prime} \in \mathbb{F}_{q^{d}}^{(1)}$ have norm 1, so by Lemma $1,\left(r r^{\prime}\right)^{\theta}=\left(r \phi^{-1}\left(r^{\prime}\right)\right)^{\theta}=\left(s \phi^{-1}\left(s^{\prime}\right)\right)^{\theta}=\left(s s^{\prime}\right)^{\theta}$ because of (1.3).

Surjectivity requires the following lemmas:
Lemma 2. Let $K / F$ be a finite dimensional extension of fields. Let $1 \neq$ $A \subseteq B \leqslant K^{\times}$be multiplicative subgroups. Then $\operatorname{span}_{F}((A-A) B)=F[B]$.

Here $A-A=\left\{a-a^{\prime}: a, a^{\prime} \in A\right\}$.

Proof. Let $V$ be the subspace spanned over $F$ by $(A-A) B$. The inclusion $V \subseteq \operatorname{span}_{F}(A B)=\operatorname{span}_{F}(B)=F[B]$ is trivial. Since $((A-A) B)^{2}=$ $(A-A)(A-A) B \subseteq(A(A-A)-A(A-A)) B=\left(\left(A^{2}-A^{2}\right)-\left(A^{2}-\right.\right.$ $\left.\left.A^{2}\right)\right) B=((A-A)-(A-A)) B \subseteq V$, we get that $V$ is a subring, and thus contains $F[(A-A) B]$. Take arbitrary $a \neq a^{\prime}$ in $A$, and let $b \in B$. Then $a-a^{\prime},\left(a-a^{\prime}\right) b \in V$, but since $V$ is a domain of finite dimension over $F$, it is a subfield, so $b \in V$. It follows that $F[B] \subseteq V$.

Lemma 3. Let $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$ be a proper extension of finite fields. The elements of norm 1 in $\mathbb{F}_{q^{d}}$ span $\mathbb{F}_{q^{d}}$ over the prime field.

We first prove a stronger statement:
Lemma 4. Let $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$ be a proper extension of finite fields. The subgroup of order $\theta=\frac{q^{d}-1}{(q-1)(d, q-1)}$ of $\mathbb{F}_{q^{d}}^{\times}$spans $\mathbb{F}_{q^{d}}$ over the prime field, with two exceptions: $\mathbb{F}_{9} / \mathbb{F}_{3}$ and $\mathbb{F}_{64} / \mathbb{F}_{4}$.

Proof. In the extension $\mathbb{F}_{9} / \mathbb{F}_{3}(q=3$ and $d=2)$ the subgroup of order $\theta=\frac{9-1}{(3-1)(2,3-1)}=2$ spans $\mathbb{F}_{3}<\mathbb{F}_{9}$, and in the extension $\mathbb{F}_{64} / \mathbb{F}_{4}(q=4$ and $d=3$ ) the subgroup of order $\theta=\frac{64-1}{(4-1)(3,4-1)}=7$ spans $\mathbb{F}_{8}<\mathbb{F}_{64}$.

Let $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$ be any other extension of finite fields. A subgroup spans a subalgebra, which, as a finite domain, is necessarily a subfield of $\mathbb{F}_{q^{d}}$. We show that $\theta$ does not divides the order of the multiplicative group of any proper subfield.

1) For $d \geqslant 4$ we have that $q^{d}-1>q^{d / 2+1}(q-1)>q^{d / 2}(q-1)^{2}$, so $\theta=\frac{q^{d}-1}{(q-1)(d, q-1)} \geqslant \frac{q^{d}-1}{(q-1)^{2}}>q^{d / 2}$.
2) Assume $d=3$. We have that $\theta=\frac{q^{2}+q+1}{3}>q-1$, so if the subgroup spans a proper subfield it has to have codimension 2 ; so write $q=p^{2}$ where $p$ is a prime power. Now $\theta-\left(\sqrt{q^{3}}-1\right) \geqslant \frac{p^{4}+p^{2}+1}{3}-\left(p^{3}-1\right)=$ $\frac{p^{2}+p+1}{3}(p-2)^{2}>0$ unless $q=4$, which was ruled out.
3) Assume $d=2$. If $q$ is even then $\theta=q+1$ is larger than the order of any subfield. Assume $q$ is odd, then $\theta=\frac{q+1}{2}$ is always larger than $q^{2 / 3}-1$, so if the subgroup is contained in a proper subfield it has to have codimension 2 . But $\left.\frac{q+1}{2} \right\rvert\, q-1$ only when $q=3$, which was also ruled out.

Proof of Lemma 3. The group of elements of norm 1 has order $\frac{q^{d}-1}{q-1}$, a multiple of $\theta$, so the claim follows from Lemma 4, except for the two exceptional cases, which we now verify: In $\mathbb{F}_{9} / \mathbb{F}_{3}$ there are four elements
of norm 1 , and in $\mathbb{F}_{64} / \mathbb{F}_{4}$ there are 21 such elements; both groups are larger than any subfield.

Theorem 1. The map $\tilde{\psi}$ of Proposition 1 is surjective.
Proof. Let $\tilde{\Gamma}_{i}$ denote the kernel of $\tilde{\psi}_{i}$ and let $\tilde{\Gamma}_{i j}=\tilde{\Gamma}_{i} \cap \tilde{\Gamma}_{j}$.
We prove three claims:

1) $\tilde{\psi}_{1}$ is onto. This is trivial, as $\tilde{\psi}_{1}\left(b_{(r)}\right)=1$ for every $r \in \mathbb{F}_{q^{d}}^{(1)}$.
2) The restriction of $\tilde{\psi}_{3}$ to $\tilde{\Gamma}_{1}$ is onto. Indeed, the image of $b_{(r)} b_{(1)}^{-1} \in$ $\tilde{\Gamma}_{1}$ is $r^{\theta}$, and exponentiation by $\theta$ is onto $\mu_{d}\left(\mathbb{F}_{q}\right)$ because $\theta=$ $\left[\mathbb{F}_{q^{d}}^{(1)}: \mu_{d}\left(\mathbb{F}_{q}\right)\right]$.
3) The restriction of $\tilde{\psi}_{2}$ to $\tilde{\Gamma}_{13}$ is onto. Denote $B=\mathbb{F}_{q^{d}}^{(1)}$ and let $A$ be the group of elements whose order divides $\theta$; this is a subgroup of $B$, of order $\theta$. Notice that we always have $\theta>1$. Choose any $\alpha, \alpha^{\prime} \in A$, and any $r \in B$. Then $\tilde{\psi}_{3}\left(b_{\left(\alpha^{\prime} r\right)} b_{(\alpha r)}^{-1}\right)=\left(\alpha^{\prime} / \alpha\right)^{\theta}=1$, so that $b_{(\alpha r)} b_{(r)}^{-1} \in$ $\tilde{\Gamma}_{13}$, and its image under $\tilde{\psi}_{2}$ is $\left(\alpha^{\prime}-\alpha\right) r$. Letting $\mathbb{F}_{p}$ be the prime subfield underlying $\mathbb{F}_{q}$, it follows that $\operatorname{span}_{\mathbb{F}_{p}}((A-A) B) \subseteq \tilde{\psi}_{2}\left(\tilde{\Gamma}_{13}\right)$. Taking $K / F$ to be extension $\mathbb{F}_{q^{d}} / \mathbb{F}_{p}$, we obtain from Lemma 2 that $\tilde{\psi}_{2}\left(\tilde{\Gamma}_{13}\right)$ contains $\mathbb{F}_{p}[B]$, which is all of $\mathbb{F}_{q^{d}}$ by Lemma 3.
To complete the proof, write $A_{1}, A_{2}, A_{3}$ for the summands of the range of $\tilde{\psi}$. The claims just proved translate, respectively, to the inclusions $A_{1} A_{2} A_{3} \subseteq \operatorname{Im}(\tilde{\psi}) A_{2} A_{3} \subseteq \operatorname{Im}(\tilde{\psi}) A_{2} \subseteq \operatorname{Im}(\tilde{\psi})$.

## 4. Abelianization of $\Gamma$

The map $\tilde{\psi}$ defined in section 3 does not always induce a map from $\Gamma$ to the same abelian group; sometimes we need to fold up the third component by a factor of 2 . Recall that $\theta=\frac{q^{d}-1}{(q-1)(d, q-1)}$. Let

$$
\mu_{d}^{\prime}\left(\mathbb{F}_{q}\right)=\mu_{d}\left(\mathbb{F}_{q}\right) /\left\langle(-1)^{(d-1) \theta}\right\rangle
$$

which is equal to $\mu_{d}\left(\mathbb{F}_{q}\right)$ unless $q$ and $\theta$ are odd and $d$ is even (see Proposition 3 below for complete details).

Proposition 2. There is a commutative diagram


Proof. We need to show that the components $\tilde{\psi}_{1}, \tilde{\psi}_{2}$ and $\tilde{\psi}_{3}$ induce welldefined maps from $\Gamma$ to the respective components. Since the relation (1.1) holds in $\tilde{\Gamma}$, it remains to verify the relation (1.4). So assume $r_{1}, \ldots, r_{d}$ form a flag. We need to compute that each product $t_{i}=\psi_{i}\left(b_{\left(r_{1}\right)}\right) \cdots \psi_{i}\left(b_{\left(r_{d}\right)}\right)$ is the identity element in the respective component. We are done with $t_{1}=d \equiv 0 \in \mathbb{Z} / d \mathbb{Z}$ by counting. The fact that (1.4) holds means that

$$
\left(1-r_{1} z^{-1}\right) \cdots\left(1-r_{d} z^{-1}\right)
$$

is central in the division algebra $D$. Opening parentheses, this product is equal to $1-\left(r_{1}+\cdots+r_{d}\right) z^{-1}+\cdots+(-1)^{d} \rho z^{-d}$ where

$$
\rho=r_{1} \phi^{-1}\left(r_{2}\right) \phi^{-2}\left(r_{3}\right) \cdots \phi^{-(d-1)}\left(r_{d}\right)
$$

Since this element is assumed to be central in $D$, we have that

$$
r_{1}+\cdots+r_{d}=0
$$

which proves that $t_{2}=0$ in $\mathbb{F}_{q^{d}}$. The coefficients of each $z^{-i}(i=1, \ldots, d-$ 1) must be zero, so the product is $\left(1-r_{1} z^{-1}\right) \cdots\left(1-r_{d} z^{-1}\right)=1+$ $(-1)^{d} \frac{\rho}{1+\pi}=\frac{1+(-1)^{d} \rho+\pi}{1+\pi}$ since $z^{d}=1+\pi$ by definition. Taking the reduced norm, we now obtain $\left(\frac{\pi}{1+\pi}\right)^{d}=\left(\frac{1+(-1)^{d} \rho+\pi}{1+\pi}\right)^{d}$ since the right-hand side is a scalar, so necessarily $\rho=(-1)^{d-1}$. But now, by Lemma 1 , we have that

$$
t_{3}=r_{1}^{\theta} \cdots r_{d}^{\theta}=\left(r_{1} \phi^{-1}\left(r_{2}\right) \phi^{-2}\left(r_{3}\right) \cdots \phi^{-(d-1)}\left(r_{d}\right)\right)^{\theta}=\rho^{\theta}=(-1)^{(d-1) \theta}
$$

which is the identity element in $\mu_{d}^{\prime}\left(\mathbb{F}_{q}\right)$ by definition.
Corollary 1. There is an epimorphism from the abelianization of $\Gamma$ to $\mathbb{Z} / d \mathbb{Z} \times\left(\mathbb{F}_{q^{d}},+\right) \times \mu_{d}^{\prime}\left(\mathbb{F}_{q}\right)$.

Conjecture 1. When $d>2$ we have that

$$
\tilde{\Gamma} /[\tilde{\Gamma}, \tilde{\Gamma}] \cong \mathbb{Z} \times\left(\mathbb{F}_{q^{d}},+\right) \times \mu_{d}\left(\mathbb{F}_{q}\right)
$$

and

$$
\Gamma /[\Gamma, \Gamma] \cong \mathbb{Z} / d \mathbb{Z} \times\left(\mathbb{F}_{q^{d}},+\right) \times \mu_{d}^{\prime}\left(\mathbb{F}_{q}\right)
$$

We conclude with a number-theoretic observation concerning the kernel of the map $\mu_{d}\left(\mathbb{F}_{q}\right) \rightarrow \mu_{d}^{\prime}\left(\mathbb{F}_{q}\right)$.

Proposition 3. Let $q$ be a prime power and $d \geqslant 2$. Let $\lambda=(d, q-1)$ be the greatest common divisor. For an integer $m$, let $\nu_{2}(m)$ denote the highest $j$ for which $2^{j}$ divides $m$. Let (\#) denote the condition $\max \left\{2, \nu_{2}(d)\right\} \leqslant$ $\nu_{2}(q-1)$.
(1) $\frac{q^{d}-1}{q-1}$ is odd if and only if: $d$ is odd; or $q$ is even.
(2) $\theta=\frac{q^{d}-1}{(q-1) \lambda}$ is odd if and only if: $d$ is odd; or $q$ is even; or (\#) holds.
(3) $\theta(d-1)$ is odd if and only if: $d$ and $q$ are even; or $d$ is even and $(\#)$.
(4) $(-1)^{\theta(d-1)} \neq 1$ in $\mathbb{F}_{q}$ if and only if: $d$ is even and $(\#)$.

Proof. (1) is easy. For (2) notice that if $\lambda=(d, q-1)$ is odd we are back in (1), and otherwise substitute $q=1+2 q^{\prime}$ and expand. Then (3) follows by imposing the condition that $d$ is odd, and (4) by adding that $q$ is odd as well.

In particular $\mu_{d}^{\prime}\left(\mathbb{F}_{q}\right)=\mu_{d}\left(\mathbb{F}_{q}\right)$, unless $d$ is even and $\max \left\{2, \nu_{2}(d)\right\} \leqslant$ $\nu_{2}(q-1)$.

## 5. Computational results

Given a presentation of a group $G$, the abelianization $G /[G, G]$ is a $\mathbb{Z}$-module, generated by the same generators with the same relations, viewed as equations over the integers. In our case, fixing $d>2$ and a prime power $q$, the generators correspond to the scalars in $\mathbb{F}_{q^{d}}^{(1)}$, and the relations of $\tilde{\Gamma}$ are given in (1.1). As stated above, there are $N=\left|\mathbb{F}_{q^{d}}^{(1)}\right|=\frac{q^{d}-1}{q-1}$ generators, and $\binom{N}{2}$ relations. The number of entries in the matrix is therefore $N\binom{N}{2}$.

We used a standard matrix reduction algorithm, written in sage [11], to bring the matrix to the Smith normal form, $\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ where the fundamental invariants satisfy $d_{1}\left|d_{2}\right| \cdots \mid d_{N}$. The module in this case is $\left(\mathbb{Z} / d_{1} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / d_{N} \mathbb{Z}\right)$. We did not try to employ any scarce matrix techniques.

We carried out the computation for all the cases where $N\binom{N}{2}<$ $2^{28}$, namely: $d=3,4,5,6,7,8,9$ for $q=2 ; d=3,4,5,6$ for $q=3$; $3 \leqslant d \leqslant 5$ for $q=4,5 ; d=3,4$ for $q=7,8$; and $d=3$ for $q=$ $9,11,13,16,17,19,23,25,27$. In all cases, the abelianization of $\tilde{\Gamma}$ coincides with the prediction of Conjecture 1 .

## References

[1] M.R. Bridson, J. Howie, Ch.F. Miller III and H. Short, On the finite presentation of subdirect products and the nature of residually free groups, Amer J. Math 135(4), 891-933, (2013).
[2] D.I. Cartwright, Groups Acting Simply Transitive on the Verticies of a Building of Type $\tilde{A}_{n}$, in Proceedings of the Conference "Groups of Lie Type and Their Geometries", Como 1993 (W.N. Kantor, ed.), Cambridge University Press.
[3] D.I. Cartwright and T. Steger, A family of $\tilde{A}_{n}$ groups, Israel J.Math. 103, 125-140, (1998).
[4] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Progress in Math. 125, Birkhäuser, (1994).
[5] A. Lubotzky, R. Philips and P. Sarnak, Ramanujan graphs, Combinatorica 8, 261-277, (1988).
[6] A. Lubotzky, B. Samuels and U. Vishne, Ramanujan complexes of type $\tilde{A}_{d}$, Israel Journal Math, 149, 267-299, (2005).
[7] A. Lubotzky, B. Samuels and U. Vishne, Explicit construction of Ramanujan complexes, European Journal of Combinatorics, 26, 965-993, (2005).
[8] A. Lubotzky, B. Samuels and U. Vishne, Isospectral Cayley graphs of some finite simple groups, Duke J. Math., 135, 381-393, (2006).
[9] N. Rungtanapirom, J. Stix and A. Vdovina, Infinite series of quaternionic 1vertex cube complexes, the doubling construction, and explicit cubical Ramanujan complexes, International J of Algebra and Computation, 29(6), 951-1007, (2019).
[10] O. Sela-Ben-David, "Lattices and their action on buildings and hyperbolic Riemannian surfaces", PhD dissertation, Bar Ilan Univerity, 2011.
[11] SageMath, the Sage Mathematics Software System (Version 9.2), The Sage Developers, 2020, https://www.sagemath.org.

## Contact information

| Guy Blachar, | Department of Mathematics, Bar Ilan |
| :--- | :--- |
| Uzi Vishne | University, Israel |
|  | $E-M a i l(s):$ guy.blachar@gmail.com, |
|  | vishne@math.biu.ac.il |

## Orit <br> Sela-Ben-David

Kinneret Academic College, Jordan Valley, Israel
E-Mail(s): bndvd7@gmail.com

Received by the editors: 10.04.2022
and in final form 28.07.2022.


[^0]:    *Partially supported by an ISF grant \#1994/20.
    2020 MSC: 20E42.
    Key words and phrases: Bruhat-Tits affine building, Cartwright-Steger lattice, abelianization.

