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Abstract. The Cartwright-Steger lattice is a group whose

Cayley graph can be identiőed with the Bruhat-Tits building of

PGLd over a local őeld of positive characteristic. We give a lower

bound on the abelianization of this lattice, and report that the

bound is tight in all computationally accessible cases.

Introduction

Arithmetic lattices acting on trees provide a linkage between group
theory, arithmetic and dynamics, paving the way to applications of repre-
sentation theory to combinatorics, as beautifully demonstrated by Mar-
gulis and Lubotzky-Philips-Sarnak in the construction of Ramanujan
graphs (see [4]). The lattice constructed by Cartwright and Steger [3] is a
higher-dimensional analog, acting on a Bruhat-Tits building associated
with PGLd over a local őeld in arbitrary rank. Acting simply transitively,
this remarkable lattice can be identiőed with the building, giving the
building a structure of a Cayley complex. This identiőcation allows for an
explicit construction of Ramanujan complexes [7], as well as the construc-
tion of isospectral but noncommensurable complexes of any dimension
d ⩾ 5 (d ̸= 6) [8]. These are obtained as quotients of the lattice with
respect to congruence subgroups.
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The epimorphism from the lattice to Z/dZ is a d-coloring of the
building, essentially deőned by the quotient PGLd(F )/PSLd(F ), which
result in colored Laplacians generating the Hecke algebra. The purpose
of this short note is to describe a larger abelian quotient of each of
the Cartwright-Steger lattices, which could be used to reőne the colored
Laplacians. Computer-aided veriőcation suggest that our quotient is the
full abelianization.

The recent construction of lattices acting simply transitively on a
product of trees [9] is quite similar in nature, and one may expect the
abelianization of these lattices to be amenable to the same analysis.

We deőne the building and the Cartwright-Steger lattice in section 1.
In section 2 we introduce an extension Γ̃ of Γ, obtained by removing one
of the deőning relations. The abelian quotient of Γ̃ is given in section 3,
leading to a closely related abelian quotient of Γ in section 4. Finally in
section 5 we describe the computation of Γ/[Γ,Γ] for the cases where the
relation matrix has up to 228 entries. In all cases, the abelianization is
identical with the quotient described in Conjecture 1. Part of this work is
based on [10].

1. The affine Bruhat-Tits building

Fix an integer d ⩾ 2 and a prime power q. Let Fq denote the őnite
őeld of order q. Let F = Fq((π)) be the local őeld of Laurent series over Fq.
Let O = Fq[[π]] be the ring of integers in F with respect to the π-adic
valuation. We refer the reader to [6] and references therein for more details.

1.1. The building

The Bruhat-Tits building associated to the group G = PGLd(F ) is a
simply connected simplicial complex of dimension d. The group G acts
transitively on the vertex set, and the stabilizer of a vertex is a maximal
compact subgroup, conjugate to K = PGLd(O). In this sense the building
can be described as the quotient G/K. A quotient Γ\G/K with respect
to a discrete cocompact subgroups Γ ⩽ G is a őnite simplicial complex.

Let us now deőne the building as a simplicial complex. The vertices are
the O-submodules of full rank of the vector space V = F d, up to similitude:
a submodule M is equivalent to all the multiples c ·M , for any c ∈ F×.
Every two submodules of full rank are commensurable. Distinct vertices
[M0], . . . , [Mi] compose an i-cell if, after reordering, the representatives
can be chosen so that πM0 ⊂ Mi ⊂ Mi−1 ⊂ · · · ⊂ M1 ⊂ M0. Since the
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quotients 0 ⊂ Mi/πM0 ⊂ Mi−1/πM0 ⊂ · · · ⊂ M1/πM0 ⊂ M0/πM0 =
(Fq)

d would then compose a ŕag of subspaces in (Fq)
d, the maximal cells

all have dimension d, and the links are isomorphic to the projective ŕag
complex of (Fq)

d. The vertices can be colored by taking the index of a
submodule in a őxed pivot, such as [Od]. This leads to a coloring of the
directed edges of the complex: we color the edge from [M ] to [M ′] by
color k if (up to choice of representatives) M ′ ⊆M and dimFq

(M/M ′) = k.
This coloring of the edges gives rise to d−1 łcolored Laplaciansž, generating
the Hecke algebra of G. We say that [M ′] is an immediate neigbor of [M ]
if the color of the edge from [M ] to [M ′] is 1.

1.2. The division algebra

In order to deőne an arithmetic lattice in PGLd(F ), let k = Fq(π)
be a global őeld endowed with the π-adic valuation, whose completion
is F . Let ϕ :Fqd→Fqd denote the Frobenius automorphism of the őnite
őeld, extended to k̄ = Fqd(π) by acting trivially on π. Let D denote the
algebra generated over k by k̄ and z, subject to the relations zf = ϕ(f)z
for every f ∈ k̄, and zd = 1 + π. Thus deőned, D is a division algebra
of dimension d2 over its center k. Moreover, extension of scalars to F
splits the algebra, namely F⊗kD ∼= Md(F ). We then have an embedding
D× ⊆ (F⊗kD)× = Md(F )

× = GLd(F ), and so D×/k× embeds in G =
PGLd(F ).

1.3. The lattice

Now consider the special element b1 = 1 − z−1 ∈ D. It has reduced
norm π/(1+π), which is equivalent to π up to units of O. The immediate
neighbors of the special vertex [Od] are the vertices [buO

d], where bu =
ub1u

−1 are the conjugates of b1 by scalars u ∈ F
×

qd
/F×

q .

Cartwright and Steger proved that the subgroup of D×/k× generated
by the conjugates bu (u ∈ F

×

qd
/F×

q ), which we denote henceforth by Γ, acts
simply transitively on the vertices of the building. Embedded through
Γ ⊆ D×/k× ⊆ PGLd(F ), this is indeed a cocompact discrete subgroup
of PGLd(F ).

Notice that bu = u(1− z−1)u−1 = 1− u
ϕ−1(u)

z−1. Let F
(1)

qd
denote the

set of elements of norm 1 in the extension Fqd/Fq. The map u 7→ u
ϕ−1(u)

is

an isomorphism F
×

qd
/F×

q →F
(1)

qd
by Hilbert’s theorem 90. For our purposes

it will be more convenient to write the generators of Γ as b(r) = 1− rz−1,

ranging over r ∈ F
(1)

qd
.
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1.4. The relations

We need some easy facts on products of generators of Γ. First, when
d > 2, we have the equality

b(r)b(r′) = b(s)b(s′) (1.1)

as elements of D, if and only if

r + r′ = s+ s′ (1.2)

rϕ−1(r′) = sϕ−1(s′), (1.3)

by comparing the elements in D.

Furthermore, let us say that a series of scalars r1, . . . , rd ∈ F
(1)

qd
forms

a ŕag if b(r1) · · · b(rd) is central in D; norm considerations then show that
b(r1) · · · b(rd) =

π
1+π . Indeed, such series are in one-to-one correspondence

with maximal ŕags of subspaces in F
d
q . For each ŕag we have that

b(r1) · · · b(rd) = 1 (1.4)

in Γ ⩽ D×/k×, and it is easy to show that the relations resulting from
various ŕags are all equivalent modulo (1.1).

Finally, it is shown in [7, Theorem 5.2] that the relations (1.1) (for
every r, r′, s, s′ satisfying (1.2)ś(1.3)), together with a single relation of
the form (1.4), compose a presentation of Γ. From now on, we view Γ
as the group generated by the b(r), subject to the deőning relations (1.1)
and (1.4).

1.5. The case d = 2

Remark 1. If d = 2, the conditions (1.2)ś(1.3) imply that r′ = −r and
s′ = −s.

Indeed, in this case ϕ−1(r′) = ϕ(r′) = r′−1 since N(r′) = 1 by assump-
tion, so (1.3) implies sr′ = s′r, and then s(s+ s′) = s(r + r′) = r(s+ s′),
but r ̸= s.

When d = 2 the building is a tree, and it is now easy to show that Γ
is a free group of rank (q + 1)/2 when q is odd, and a free product of q
cyclic groups of order two when q is even [7, Cor. 5.4]. The abelianization
is easily computed in each case, so our main focus is on the case d > 2.
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2. Covering Γ

There is a length function Γ→Z/dZ, deőned by sending each generator
to 1; indeed this is the coloring mentioned above. It would be more
convenient to work with the group Γ̃, formally generated by the b(r)

(r ∈ F
(1)

qd
), subject only to the relations (1.1). The length function is now

deőned in the same manner as Γ̃→Z.

Remark 2. For every r ≠ s, there are unique r′, s′ ∈ F
(1)

qd
for which the

relation (1.1) holds. Solving the equations we őnd that

r′ =
r − s

ϕ(r)− ϕ(s)
ϕ(s) and s′ =

r − s

ϕ(r)− ϕ(s)
ϕ(r).

We thus have a presentation of Γ̃ with N = qd−1
q−1 generators, the b(r),

and
(

N
2

)

relations.

This fact implies an interesting property of Γ̃, namely that the sub-
monoid Γ̃0 generated by the b(r) satisőes the Ore condition. Indeed, given

r ̸= s, we can write b−1
(s)b(r) = b(s′)b

−1
(r′), so by induction on the length,

every element of Γ̃ can be expressed in the form uw−1 for u,w ∈ Γ̃0. This
property holds in Γ as well, by projection.

Remark 3. The pullback Γ̂ of the diagram

Γ̂

��

// Γ

��

Z // Z/dZ ,

is an intermediate group in the sense that there are projections Γ̃→Γ̂→Γ.

Choose a ŕag r1, . . . , rd ∈ F
(1)

qd
, and let t = b(r1) · · · b(rd) ∈ Γ̃. Then Γ is

the quotient of Γ̃ obtained by imposing the relation t = 1, and Γ̂ is the
quotient obtained by imposing that t is cental. (A presentation of the
pullback is discussed in [1]).

3. An abelian quotient of Γ̃

We produce an abelian quotient of Γ̃, which is the full abelianization
in all the cases we computed (see section 5).

Let µd(Fq) =
{

a ∈ F
×

q : ad = 1
}

denote the multiplicative group of
roots of unity of order d in Fq, which has order |µd(Fq)| = (d, q − 1),
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the greatest common divisor of d and q − 1. Since the Galois norm of
elements in Fq in the extension Fqd/Fq is exponentiation by d, we have

that µd(Fq) = F
×

q ∩ F
(1)

qd
. Let

θ = [F
(1)

qd
:µd(Fq)] =

qd − 1

(q − 1)(d, q − 1)

be the index, which is necessarily an integer. Let ϕ :Fqd→Fqd denote the
Frobenius automorphism of exponentiation by q .

Lemma 1. For α ∈ F
(1)

qd
we have that (ϕα)θ = αθ.

Proof. Since µd(Fq) ⩽ F
(1)

qd
are cyclic groups and the index is θ, we have

that αθ ∈ µd(Fq) for every α ∈ F
(1)

qd
. Now (ϕα)θ = ϕ(αθ) = αθ.

Clearly θ is minimal with this property. Now we can prove:

Proposition 1. There is a homomorphism

ψ̃ : Γ̃→ Z× (Fqd ,+)× µd(Fq).

Proof. Deőne ψ̃ on the generators of Γ through the components

ψ̃1(b(r)) = 1; ψ̃2(b(r)) = r; ψ̃3(b(r)) = rθ.

We need to verify that each ψ̃i is well-deőned, namely that the maps
respect the deőning relations (1.1). Assume b(r)b(r′) = b(s)b(s′). The map

ψ̃1 maps both sides to

1 + 1 = 2. (3.1)

The map ψ̃2 maps the products to r + r′ and s+ s′, respectively, which

are equal by (1.2). For ψ̃3, notice that the scalars r, r′, s, s′ ∈ F
(1)

qd
have

norm 1, so by Lemma 1, (rr′)θ = (rϕ−1(r′))θ = (sϕ−1(s′))θ = (ss′)θ

because of (1.3).

Surjectivity requires the following lemmas:

Lemma 2. Let K/F be a őnite dimensional extension of őelds. Let 1 ̸=
A ⊆ B ⩽ K× be multiplicative subgroups. Then spanF ((A−A)B) = F [B].

Here A−A = {a− a′ : a, a′ ∈ A}.
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Proof. Let V be the subspace spanned over F by (A−A)B. The inclusion
V ⊆ spanF (AB) = spanF (B) = F [B] is trivial. Since ((A − A)B)2 =
(A − A)(A − A)B ⊆ (A(A − A) − A(A − A))B = ((A2 − A2) − (A2 −
A2))B = ((A − A) − (A − A))B ⊆ V , we get that V is a subring, and
thus contains F [(A − A)B]. Take arbitrary a ̸= a′ in A, and let b ∈ B.
Then a − a′, (a − a′)b ∈ V , but since V is a domain of őnite dimension
over F , it is a subőeld, so b ∈ V . It follows that F [B] ⊆ V .

Lemma 3. Let Fqd/Fq be a proper extension of őnite őelds. The elements

of norm 1 in Fqd span Fqd over the prime őeld.

We őrst prove a stronger statement:

Lemma 4. Let Fqd/Fq be a proper extension of őnite őelds. The subgroup

of order θ = qd−1
(q−1)(d,q−1) of F×

qd
spans Fqd over the prime őeld, with two

exceptions: F9/F3 and F64/F4.

Proof. In the extension F9/F3 (q = 3 and d = 2) the subgroup of order
θ = 9−1

(3−1)(2,3−1) = 2 spans F3 < F9, and in the extension F64/F4 (q = 4

and d = 3) the subgroup of order θ = 64−1
(4−1)(3,4−1) = 7 spans F8 < F64.

Let Fqd/Fq be any other extension of őnite őelds. A subgroup spans a
subalgebra, which, as a őnite domain, is necessarily a subőeld of Fqd . We
show that θ does not divides the order of the multiplicative group of any
proper subőeld.

1) For d ⩾ 4 we have that qd − 1 > qd/2+1(q − 1) > qd/2(q − 1)2, so

θ = qd−1
(q−1)(d,q−1) ⩾

qd−1
(q−1)2

> qd/2.

2) Assume d = 3. We have that θ = q2+q+1
3 > q− 1, so if the subgroup

spans a proper subőeld it has to have codimension 2; so write q = p2

where p is a prime power. Now θ− (
√

q3−1) ⩾ p4+p2+1
3 − (p3−1) =

p2+p+1
3 (p− 2)2 > 0 unless q = 4, which was ruled out.

3) Assume d = 2. If q is even then θ = q + 1 is larger than the order of
any subőeld. Assume q is odd, then θ = q+1

2 is always larger than

q2/3 − 1, so if the subgroup is contained in a proper subőeld it has
to have codimension 2. But q+1

2 | q − 1 only when q = 3, which was
also ruled out.

Proof of Lemma 3. The group of elements of norm 1 has order qd−1
q−1 , a

multiple of θ, so the claim follows from Lemma 4, except for the two
exceptional cases, which we now verify: In F9/F3 there are four elements
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of norm 1, and in F64/F4 there are 21 such elements; both groups are
larger than any subőeld.

Theorem 1. The map ψ̃ of Proposition 1 is surjective.

Proof. Let Γ̃i denote the kernel of ψ̃i and let Γ̃ij = Γ̃i ∩ Γ̃j .
We prove three claims:

1) ψ̃1 is onto. This is trivial, as ψ̃1(b(r)) = 1 for every r ∈ F
(1)

qd
.

2) The restriction of ψ̃3 to Γ̃1 is onto. Indeed, the image of b(r)b
−1
(1) ∈

Γ̃1 is rθ, and exponentiation by θ is onto µd(Fq) because θ =

[F
(1)

qd
:µd(Fq)].

3) The restriction of ψ̃2 to Γ̃13 is onto. Denote B = F
(1)

qd
and let A be the

group of elements whose order divides θ; this is a subgroup of B, of
order θ. Notice that we always have θ > 1. Choose any α, α′ ∈ A, and
any r ∈ B. Then ψ̃3(b(α′r)b

−1
(αr)) = (α′/α)θ = 1, so that b(αr)b

−1
(r) ∈

Γ̃13, and its image under ψ̃2 is (α′ − α)r. Letting Fp be the prime
subőeld underlying Fq, it follows that spanFp

((A−A)B) ⊆ ψ̃2(Γ̃13).
Taking K/F to be extension Fqd/Fp, we obtain from Lemma 2 that

ψ̃2(Γ̃13) contains Fp[B], which is all of Fqd by Lemma 3.
To complete the proof, write A1, A2, A3 for the summands of the range
of ψ̃. The claims just proved translate, respectively, to the inclusions
A1A2A3 ⊆ Im(ψ̃)A2A3 ⊆ Im(ψ̃)A2 ⊆ Im(ψ̃).

4. Abelianization of Γ

The map ψ̃ deőned in section 3 does not always induce a map from Γ to
the same abelian group; sometimes we need to fold up the third component

by a factor of 2. Recall that θ = qd−1
(q−1)(d,q−1) . Let

µ′d(Fq) = µd(Fq)/
〈

(−1)(d−1)θ
〉

,

which is equal to µd(Fq) unless q and θ are odd and d is even (see Propo-
sition 3 below for complete details).

Proposition 2. There is a commutative diagram

Γ̃
ψ̃

//

��

Z× (Fqd ,+)× µd(Fq)

��

Γ
ψ

// Z/dZ× (Fqd ,+)× µ′d(Fq)
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Proof. We need to show that the components ψ̃1, ψ̃2 and ψ̃3 induce well-
deőned maps from Γ to the respective components. Since the relation (1.1)
holds in Γ̃, it remains to verify the relation (1.4). So assume r1, . . . , rd form
a ŕag. We need to compute that each product ti = ψi(b(r1)) · · ·ψi(b(rd))
is the identity element in the respective component. We are done with
t1 = d ≡ 0 ∈ Z/dZ by counting. The fact that (1.4) holds means that

(1− r1z
−1) · · · (1− rdz

−1)

is central in the division algebra D. Opening parentheses, this product is
equal to 1− (r1 + · · ·+ rd)z

−1 + · · ·+ (−1)dρz−d where

ρ = r1ϕ
−1(r2)ϕ

−2(r3) · · ·ϕ
−(d−1)(rd).

Since this element is assumed to be central in D, we have that

r1 + · · ·+ rd = 0,

which proves that t2 = 0 in Fqd . The coefficients of each z−i (i = 1, . . . , d−
1) must be zero, so the product is (1 − r1z

−1) · · · (1 − rdz
−1) = 1 +

(−1)d ρ
1+π = 1+(−1)dρ+π

1+π since zd = 1+π by deőnition. Taking the reduced

norm, we now obtain ( π
1+π )

d = (1+(−1)dρ+π
1+π )d since the right-hand side is

a scalar, so necessarily ρ = (−1)d−1. But now, by Lemma 1, we have that

t3 = rθ1 · · · r
θ
d = (r1ϕ

−1(r2)ϕ
−2(r3) · · ·ϕ

−(d−1)(rd))
θ = ρθ = (−1)(d−1)θ,

which is the identity element in µ′d(Fq) by deőnition.

Corollary 1. There is an epimorphism from the abelianization of Γ to

Z/dZ× (Fqd ,+)× µ′d(Fq).

Conjecture 1. When d > 2 we have that

Γ̃/[Γ̃, Γ̃] ∼= Z× (Fqd ,+)× µd(Fq)

and
Γ/[Γ,Γ] ∼= Z/dZ× (Fqd ,+)× µ′d(Fq).

We conclude with a number-theoretic observation concerning the kernel
of the map µd(Fq)→µ′d(Fq).

Proposition 3. Let q be a prime power and d ⩾ 2. Let λ = (d, q−1) be the

greatest common divisor. For an integer m, let ν2(m) denote the highest j
for which 2j divides m. Let (#) denote the condition max{2, ν2(d)} ⩽

ν2(q − 1).
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(1) qd−1
q−1 is odd if and only if: d is odd; or q is even.

(2) θ = qd−1
(q−1)λ is odd if and only if: d is odd; or q is even; or (#) holds.

(3) θ(d−1) is odd if and only if: d and q are even; or d is even and (#).
(4) (−1)θ(d−1) ̸= 1 in Fq if and only if: d is even and (#).

Proof. (1) is easy. For (2) notice that if λ = (d, q − 1) is odd we are back
in (1), and otherwise substitute q = 1 + 2q′ and expand. Then (3) follows
by imposing the condition that d is odd, and (4) by adding that q is odd
as well.

In particular µ′d(Fq) = µd(Fq), unless d is even and max {2, ν2(d)} ⩽

ν2(q − 1).

5. Computational results

Given a presentation of a group G, the abelianization G/[G,G] is
a Z-module, generated by the same generators with the same relations,
viewed as equations over the integers. In our case, őxing d > 2 and a prime

power q, the generators correspond to the scalars in F
(1)

qd
, and the relations

of Γ̃ are given in (1.1). As stated above, there are N =
∣

∣

∣
F
(1)

qd

∣

∣

∣
= qd−1

q−1

generators, and
(

N
2

)

relations. The number of entries in the matrix is

therefore N
(

N
2

)

.
We used a standard matrix reduction algorithm, written in sage [11],

to bring the matrix to the Smith normal form, diag(d1, . . . , dN ) where the
fundamental invariants satisfy d1 | d2 | · · · | dN . The module in this case
is (Z/d1Z)⊕ · · · ⊕ (Z/dNZ). We did not try to employ any scarce matrix
techniques.

We carried out the computation for all the cases where N
(

N
2

)

<
228, namely: d = 3, 4, 5, 6, 7, 8, 9 for q = 2; d = 3, 4, 5, 6 for q = 3;
3 ⩽ d ⩽ 5 for q = 4, 5; d = 3, 4 for q = 7, 8; and d = 3 for q =
9, 11, 13, 16, 17, 19, 23, 25, 27. In all cases, the abelianization of Γ̃ coincides
with the prediction of Conjecture 1.
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