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Abelianization of the Cartwright-Steger lattice*
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ABSTRACT. The Cartwright-Steger lattice is a group whose
Cayley graph can be identified with the Bruhat-Tits building of
PGLy over a local field of positive characteristic. We give a lower
bound on the abelianization of this lattice, and report that the
bound is tight in all computationally accessible cases.

Introduction

Arithmetic lattices acting on trees provide a linkage between group
theory, arithmetic and dynamics, paving the way to applications of repre-
sentation theory to combinatorics, as beautifully demonstrated by Mar-
gulis and Lubotzky-Philips-Sarnak in the construction of Ramanujan
graphs (see [4]). The lattice constructed by Cartwright and Steger [3] is a
higher-dimensional analog, acting on a Bruhat-Tits building associated
with PGL4 over a local field in arbitrary rank. Acting simply transitively,
this remarkable lattice can be identified with the building, giving the
building a structure of a Cayley complex. This identification allows for an
explicit construction of Ramanujan complexes |7], as well as the construc-
tion of isospectral but noncommensurable complexes of any dimension
d > 5 (d # 6) [8]. These are obtained as quotients of the lattice with
respect to congruence subgroups.
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The epimorphism from the lattice to Z/dZ is a d-coloring of the
building, essentially defined by the quotient PGL4(F')/PSL4(F"), which
result in colored Laplacians generating the Hecke algebra. The purpose
of this short note is to describe a larger abelian quotient of each of
the Cartwright-Steger lattices, which could be used to refine the colored
Laplacians. Computer-aided verification suggest that our quotient is the
full abelianization.

The recent construction of lattices acting simply transitively on a
product of trees [9] is quite similar in nature, and one may expect the
abelianization of these lattices to be amenable to the same analysis.

We define the building and the Cartwright-Steger lattice in section 1.
In section 2 we introduce an extension T' of T, obtained by removing one
of the defining relations. The abelian quotient of I is given in section 3,
leading to a closely related abelian quotient of I' in section 4. Finally in
section 5 we describe the computation of I'/[I', '] for the cases where the
relation matrix has up to 22® entries. In all cases, the abelianization is
identical with the quotient described in Conjecture 1. Part of this work is
based on [10].

1. The affine Bruhat-Tits building

Fix an integer d > 2 and a prime power ¢. Let F;, denote the finite
field of order ¢q. Let F' = [Fy((7)) be the local field of Laurent series over F,,.
Let O = F,[[n]] be the ring of integers in F' with respect to the m-adic
valuation. We refer the reader to [6] and references therein for more details.

1.1. The building

The Bruhat-Tits building associated to the group G = PGL4(F) is a
simply connected simplicial complex of dimension d. The group G acts
transitively on the vertex set, and the stabilizer of a vertex is a maximal
compact subgroup, conjugate to K = PGL4(O). In this sense the building
can be described as the quotient G/K. A quotient I'\G/K with respect
to a discrete cocompact subgroups I' < G is a finite simplicial complex.

Let us now define the building as a simplicial complex. The vertices are
the O-submodules of full rank of the vector space V' = F? up to similitude:
a submodule M is equivalent to all the multiples ¢ - M, for any ¢ € F'*.
Every two submodules of full rank are commensurable. Distinct vertices
[Mo], ..., [M;] compose an i-cell if, after reordering, the representatives
can be chosen so that #My C M; € M;_1 C --- C My C My. Since the
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quotients 0 C M;/nMy C M;_1/nMy C --- C My/mMy C My/mMy =
(F,)% would then compose a flag of subspaces in (F,)?, the maximal cells
all have dimension d, and the links are isomorphic to the projective flag
complex of (F,)%. The vertices can be colored by taking the index of a
submodule in a fixed pivot, such as [09]. This leads to a coloring of the
directed edges of the complex: we color the edge from [M] to [M'] by
color k if (up to choice of representatives) M’ C M and dimg, (M/M') = k.
This coloring of the edges gives rise to d—1 “colored Laplacians”, generating
the Hecke algebra of G. We say that [M’] is an immediate neigbor of [M]
if the color of the edge from [M] to [M'] is 1.

1.2. The division algebra

In order to define an arithmetic lattice in PGL4(F), let k = Fy(m)
be a global field endowed with the w-adic valuation, whose completion
is F'. Let ¢:F a—F a denote the Frobenius automorphism of the finite
field, extended to k = Fga(m) by acting trivially on 7. Let D denote the
algebra generated over k by k and z, subject to the relations zf = ¢(f)z
for every f € k, and 2% = 1 4+ 7. Thus defined, D is a division algebra
of dimension d? over its center k. Moreover, extension of scalars to F
splits the algebra, namely F®;D = My(F'). We then have an embedding
D* C (FerD)* = My(F)* = GLy4(F), and so D*/k* embeds in G =
PGL4(F).

1.3. The lattice

Now consider the special element by = 1 — 2~! € D. It has reduced
norm 7/(14 ), which is equivalent to 7 up to units of O. The immediate
neighbors of the special vertex [O9] are the vertices [b, 0], where b, =
ubju~! are the conjugates of by by scalars u € F;d/IFqX.

Cartwright and Steger proved that the subgroup of D* /k* generated
by the conjugates b, (u € IFqu /T ), which we denote henceforth by I', acts
simply transitively on the vertices of the building. Embedded through
I' C D*/k* C PGL4(F), this is indeed a cocompact discrete subgroup
of PGLy(F).

Notice that b, = u(l1 — 2z Hu=t =1— d)_+(u)z_1. Let F;}i) denote the
set of elements of norm 1 in the extension F 4 /F,. The map u —

)

o
o1 (w)
by Hilbert’s theorem 90. For our purposes

it will be more convenient to write the generators of I' as b,) =1 — rz71,

(1)
qd

an isomorphism IFqu [FS —>Fé}i

ranging over r € ¥
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1.4. The relations

We need some easy facts on products of generators of I'. First, when
d > 2, we have the equality

b by = bs)bs) (1.1)
as elements of D, if and only if

/ /
r4+1r = s+s

ro~ (1) = soT (),

by comparing the elements in D.

Furthermore, let us say that a series of scalars r1,...,rq € F(ld) forms
a flag if b, -+ - b,y is central in D; norm considerations then show that
biry)*+bry) = 707 Indeed, such series are in one-to-one correspondence

with maximal flags of subspaces in Fg. For each flag we have that

biry) b =1 (1.4)

in I' < D*/k*, and it is easy to show that the relations resulting from
various flags are all equivalent modulo (1.1).

Finally, it is shown in [7, Theorem 5.2| that the relations (1.1) (for
every 1,1’ s, s satisfying (1.2)—(1.3)), together with a single relation of
the form (1.4), compose a presentation of I'. From now on, we view I'
as the group generated by the b(,, subject to the defining relations (1.1)
and (1.4).

1.5. The case d = 2

Remark 1. If d = 2, the conditions (1.2)—(1.3) imply that ' = —r and
s’ = —s.

Indeed, in this case ¢~ (1) = ¢(r') = /=1 since N(r') = 1 by assump-
tion, so (1.3) implies s’ = s'r, and then s(s+ s') = s(r +1') = r(s + §'),
but r # s.

When d = 2 the building is a tree, and it is now easy to show that I’
is a free group of rank (¢ + 1)/2 when ¢ is odd, and a free product of ¢
cyclic groups of order two when ¢ is even |7, Cor. 5.4]. The abelianization
is easily computed in each case, so our main focus is on the case d > 2.
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2. Covering I'

There is a length function I'=7Z/dZ, defined by sending each generator
to 1; indeed this is the coloring mentioned above. It would be more
convenient to work with the group I', formally generated by the b,

(re IF;?), subject only to the relations (1.1). The length function is now

defined in the same manner as I'—Z.

Remark 2. For every r # s, there are unique r’, s’ € F EI? for which the
relation (1.1) holds. Solving the equations we find that

= ————(s) and 8 = ————0(r).

~ d
We thus have a presentation of I' with N = qqf_ll generators, the by,

and (g ) relations.
This fact implies an interesting property of I', namely that the sub-
monoid I'g generated by the b, satisfies the Ore condition. Indeed, given

r #£ s, we can write b(_s r) = b(S/)b(T}), so by induction on the length,

every element of I' can be expressed in the form uw™! for u,w € T'y. This
property holds in I" as well, by projection.

Remark 3. The pullback I of the diagram

is an intermediate group in the sense that there are projections I—I—T.
Choose a flag r1,...,rq € Fé}i), and let t = by )b, € I. Then I is

the quotient of T’ obtained by imposing the relation ¢ = 1, and I is the
quotient obtained by imposing that ¢ is cental. (A presentation of the
pullback is discussed in [1]).

3. An abelian quotient of T

We produce an abelian quotient of T, which is the full abelianization
in all the cases we computed (see section 5).

Let pq(Fq) = {a ey : at = 1} denote the multiplicative group of
roots of unity of order d in F,, which has order |uq(F,)| = (d,q — 1),
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the greatest common divisor of d and ¢ — 1. Since the Galois norm of
elements in F; in the extension F 4 /Fq is exponentiation by d, we have

that 11g(F,) = Fy NF). Let
¢* -1
(¢ —1)(d,g—1)

be the index, which is necessarily an integer. Let ¢:[F a—F 4 denote the
Frobenius automorphism of exponentiation by ¢ .

0= [F\): pa(Fy)) =

Lemma 1. For a € FE]? we have that (pa)? = af.

Proof. Since pq(Fq) < IF((I? are cyclic groups and the index is #, we have

that af € pg(F,) for every a € IF[(;Z). Now (¢a)? = p(af) = af. O
Clearly 6 is minimal with this property. Now we can prove:

Proposition 1. There is a homomorphism
¥ T Zx (Fya, +) x pa(Fy).
Proof. Define v on the generators of I' through the components
D1(bgy) = 1 Pa(biy) =1 b3(bgy) =17

We need to verify that each 1); is well-defined, namely that the maps
respect the defining relations (1.1). Assume b(,yb(,/) = bs)brsy. The map
1;1 maps both sides to

1+1=2. (3.1)

The map 122 maps the products to r + 1" and s + s', respectively, which
are equal by (1.2). For 13, notice that the scalars r, 7', s,s" € Iﬁ‘é? have

norm 1, so by Lemma 1, (r)? = (r¢=1(r"))? = (s¢~1(s"))? = (s5')?
because of (1.3). O

Surjectivity requires the following lemmas:

Lemma 2. Let K/F be a finite dimensional extension of fields. Let 1 #
A C B < K* be multiplicative subgroups. Then spanp((A—A)B) = F[B.

Here A— A={a—d: a,d € A}.
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Proof. Let V be the subspace spanned over F' by (A — A)B. The inclusion
V C spany(AB) = spany(B) = F[B] is trivial. Since ((A — A)B)? =
(A— A)(A—A)B C (A(A— A) — A(A - A))B = ((A% — A%) — (A% -
AH)B = ((A— A) — (A— A))B C V, we get that V is a subring, and
thus contains F[(A — A)B|. Take arbitrary a # o’ in A, and let b € B.
Then a —d/, (a — a’)b € V, but since V is a domain of finite dimension
over F, it is a subfield, so b € V. It follows that F[B] C V. O

Lemma 3. Let F a/F, be a proper extension of finite fields. The elements
of norm 1 in F 4 span F a over the prime field.

We first prove a stronger statement:

Lemma 4. Let qu/Fq be a proper extension of finite fields. The subgroup

of order 0 = (q—]_q)d(igz—l) of F;d spans Foa over the prime field, with two

exceptions: Fo/Fs and Fgy/Fy.

Proof. In the extension Fg/F3 (¢ = 3 and d = 2) the subgroup of order
0= % = 2 spans F3 < Fg, and in the extension Fgs4/Fy (¢ = 4
and d = 3) the subgroup of order 6 = % = 7 spans Fg < Fg4.
Let Fa/F, be any other extension of finite fields. A subgroup spans a
subalgebra, which, as a finite domain, is necessarily a subfield of F 4. We
show that 6 does not divides the order of the multiplicative group of any
proper subfield.
1) For d > 4 we have that ¢¢ — 1 > ¢¥/?T1(qg — 1) > ¢*/?(q¢ — 1)?, so
_ g% q?-1 d/2
=@ 2 e 74
2) Assume d = 3. We have that 6 = % > ¢ — 1, so if the subgroup
spans a proper subfield it has to have codimension 2; so write ¢ = p?
: . 3 pip3+1 3
where p is a prime power. Now 0 — (y/¢> —1) > 25" — (p° — 1) =

m%“(p —2)2 > 0 unless ¢ = 4, which was ruled out.
3) Assume d = 2. If ¢ is even then 6 = ¢+ 1 is larger than the order of

any subfield. Assume ¢ is odd, then 6 = % is always larger than

¢?/3 — 1, so if the subgroup is contained in a proper subfield it has
to have codimension 2. But % | ¢ — 1 only when ¢ = 3, which was

also ruled out.
O
¢-1

Proof of Lemma 3. The group of elements of norm 1 has order i@

multiple of 0, so the claim follows from Lemma 4, except for the two
exceptional cases, which we now verify: In Fg/[F3 there are four elements
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of norm 1, and in Fgq/Fy there are 21 such elements; both groups are
larger than any subfield. O

Theorem 1. The map ¢ of Proposition 1 is surjective.

Proof. Let f‘l denote the kernel of TZJZ and let f‘ij = f‘l N f‘j.
We prove three claims:

1) 41 is onto. This is trivial, as 1/;1(b(r)) =1 for every r € Fg?.

2) The restriction of 1/;3 to f’l is onto. Indeed, the image of b( )b(1) S

Iy is 77, and exponentiation by @ is onto pug(F,) because 6 =

1
[P - pa(Fy).
3) The restriction of 1/;2 to I'13 is onto. Denote B = Fg}i) and let A be the
group of elements whose order divides #; this is a subgroup of B, of

order . Notice that we always have 6 > 1. Choose any a, o/ € A, and
any r € B. Then @bg(b(a T)b ) = (a//a)? =1, so that b(w)b(;% €
I3, and its image under wg is (o — a)r. Letting F,, be the prime
subfield underlying Fg, it follows that spang ((A —A)B) C Po(T13).
Taking K/F to be extension FF 4 /I, we obtain from Lemma 2 that
2(T'13) contains F,[B], which is all of F i by Lemma 3.

To complete the proof, write Ay, Az, A3 for the summands of the range

of 1. The claims just proved translate, respectively, to the inclusions
A1 Ay Az C Im(w)AgAg - Im(@b)Ag - Im(i/J) L]

4. Abelianization of T’

The map z/; defined in section 3 does not always induce a map from I to
the same abelian group; sometimes we need to fold up the third component
by a factor of 2. Recall that 6 = % Let

HalFq) = palB) /(1))

which is equal to pq(IF4) unless ¢ and 6 are odd and d is even (see Propo-
sition 3 below for complete details).

Proposition 2. There is a commutative diagram

P Z % (Fpu, +) % a(Fy)

¢ |

D~ Z/dZ x (Fpa, +) x y(F,)
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Proof. We need to show that the components 1;1, 1;2 and 1;3 induce well-
defined maps from I" to the respective components. Since the relation (1.1)
holds in T', it remains to verify the relation (1.4). So assume 71, ..., rq form
a flag. We need to compute that each product t; = 9;(b(,.)) - - - 1i(bgr,))
is the identity element in the respective component. We are done with
t1 = d =0 € Z/dZ by counting. The fact that (1.4) holds means that

(1 — le_l) cee (1 — ’I"dz_l)

is central in the division algebra D. Opening parentheses, this product is
equal to 1 — (11 + - +rg)z" + - + (—=1)%pz~¢ where

p=r1¢  (ra)d *(rs) - ¢~V (ra).
Since this element is assumed to be central in D, we have that
T1+"'+Td:0,

which proves that t2 = 0 in F a. The coefficients of each T (i=1,...,d—
1) must be zero, so the product is (1 — riz7')--- (1 —rgz™t) = 1 +
(—1)di = L(CDdpdm since z% = 1+ by definition. Taking the reduced

1+7m 147 d
. 14(—1
norm, we now obtain ({7-)? = (w

a scalar, so necessarily p = (—1)?~1. But now, by Lemma 1, we have that

ty=r{-ry = (ro~ (r2)d 2(ra) -~V (rg)! = p¥ = (1)1,

which is the identity element in p/,(F,) by definition. O

)% since the right-hand side is

Corollary 1. There is an epimorphism from the abelianization of I' to
ZJdZ, X (Fya, +) X iy(Fy).

Conjecture 1. When d > 2 we have that

D0, F) 2 Z x (Fya, +) x pa(Fy)

and
T/[0,T] 2 Z/dZ x (Fya, +) % pig(Fy).

We conclude with a number-theoretic observation concerning the kernel
of the map pq(Fq)— 1y (IFy).

Proposition 3. Let g be a prime power andd > 2. Let A\ = (d,q—1) be the
greatest common divisor. For an integer m, let vo(m) denote the highest j
for which 27 divides m. Let (#) denote the condition max{2,vo(d)} <

va(q —1).
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(1) qqd_ll is odd if and only if: d is odd; or q is even.

(2) 6= (Z is odd if and only if: d is odd; or q is even; or (#) holds.
(3) 0(d—1) is odd if and only if: d and q are even; or d is even and (#).
(4) (=)D £ 1 in F, if and only if: d is even and (#).

Proof. (1) is easy. For (2) notice that if A = (d,q — 1) is odd we are back
n (1), and otherwise substitute ¢ = 1 + 2¢’ and expand. Then (3) follows
by imposing the condition that d is odd, and (4) by adding that ¢ is odd
as well. O

In particular p;(Fy) = pq(Fy), unless d is even and max {2, v5(d)} <
va(qg—1).

5. Computational results

Given a presentation of a group G, the abelianization G/[G,G] is
a Z-module, generated by the same generators with the same relations,
viewed as equations over the integers. In our case, fixing d > 2 and a prime
power q, the generators correspond to the scalars in Fé}i), and the relations
_ ¢
q—1
generators, and (g] ) relations. The number of entries in the matrix is
therefore N (g] )

We used a standard matrix reduction algorithm, written in sage [11],
to bring the matrix to the Smith normal form, diag(dy, ..., dy) where the
fundamental invariants satisfy dj |da | -+ |dx. The module in this case
is (Z)dWZ) @ - & (Z/dNZ). We did not try to employ any scarce matrix
techniques.

We carried out the computation for all the cases where N (];; <
228 namely: d = 3,4,5,6,7,8,9 for ¢ = 2; d = 3,4,5,6 for ¢ = 3;
3<d<bforq=4,5d=3,4forq=78 and d = 3 for ¢ =
9,11,13,16,17,19, 23,25, 27. In all cases, the abelianization of ' coincides
with the prediction of Conjecture 1.

of T' are given in (1.1). As stated above, there are N = ‘Fg}i)
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