
© Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 35 (2023). Number 2, pp. 125ś133
DOI:10.12958/adm1959

On the containment I
(3)

⊂ I
2 and configurations

of triple points in Böröczky line arrangements

J. Kabat∗

Communicated by I. V. Protasov

Abstract. We study sets of triple points of Böröczky’s

arrangements of lines in the context of the containment problem

proposed by Harbourne and Huneke. We show that in the class of

those arrangements, the smallest counterexample to the containment

I(3) ⊂ I2 is obtained when the number of lines is equal to 12.

Introduction

In the present paper we study the so-called containment problem for
fat point schemes in the projective plane. Let P = {P1, . . . , Ps} ⊂ P

2
C

be a őnite set of mutually distinct points. We denote by I(P) := I the
associated ideal, i.e.,

I(P) = I(P1) ∩ · · · ∩ I(Ps),

where I(Pi) is the deőning ideal of point Pi. Then, for every m ⩾ 1, we
deőne the m-th symbolic power of I, denoted here by I(m), as

I(m) = Im(P1) ∩ · · · ∩ Im(Ps).

Using the celebrated result by Nagata and Zariski we know that the
m-symbolic power of I consists of all homogeneous forms in C[x, y, z]
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vanishing along V (I) with multiplicity at least m. It is somehow natural
to ask whether there is a relation between symbolic and ordinary powers
of ideals. Here is the chronological list of problems and achievements
regarding the mentioned relations.
(2001) Ein, Lazarsfeld, and Smith [5]: I(2k) ⊂ Ik for every k ⩾ 1.
(2006) Huneke: Does the containment I(3) ⊂ I2 hold?
(2009) Bocci and Harbourne: Does the containment I(2k−1) ⊂ Ik hold

for every k ⩾ 1?
(2013) Dumnicki, Szemberg, and Tutaj-Gasińska [4]: The őrst counterex-

ample to the containment I(3) ⊂ I2 ś they used the dual-Hesse
arrangement of 9 lines and 12 triple intersection points.

(2013) Czapliński et al. [2]: The őrst counterexample to the containment
I(3) ⊂ I2 over the real numbers ś Böröczky’s arrangement of 12
lines, 19 triple and 9 double intersection points.

(2015) Lampa-Baczyńska and Szpond [10]: The őrst counterexample to
the containment I(3) ⊂ I2 over the rational numbers ś using the
parameter space of Böröczky arrangement of 12 lines they found
a rational realization of this combinatorics.

(2015) Harbourne: Construct new counterexamples to the containment
I(3) ⊂ I2 over the rational numbers using parameter spaces of
Böröczky’s line arrangements.

The main aim of the present note is to investigate the radical ideals of the
triple intersection points in Böröczky’s arrangements of n ∈ {4, . . . , 11} in
order to verify whether the minimal counterexample to Huneke’s question
in this class of arrangements is obtained for n = 12 lines. Here by the
minimal counterexample we mean the minimal number of lines. The main
result of the present note can be formulated as follows.

Main Theorem. Let Pn ⊂ P
2
C

be a set of triple intersection points of
the Böröczky’s arrangement of n lines. Denote by In the associated radical
ideal of Pn. Then

I(3)n ⊂ I2n

holds provided that n ∈ {4, . . . , 11}. In other words, n = 12 is the minimal
number of lines for which the containment

I(3)n ⊂ I2n

does not hold.

All necessary details regarding Böröczky’s line arrangements will be
delivered in the forthcoming section. In Section 3, we present necessary
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tools that we need to prove our results, and in Section 4 we present our
proof on Main Theorem (which is divided into two separate results).

1. Böröczky’s line arrangements

In this subsection, we describe the main construction, namely
Böröczky’s arrangements Bn which were introduced in [6, Example 2].
Following this example, we present here an outline of the construction.

Consider a regular 2n-gon inscribed in the unit circle in the real affine
plane. Let us őx one of the 2n vertices and denote it by Q0. By Qα we
denote the point arising by the rotation of Q0 around the center of the
circle by angle α.

Then we take the following set of lines

Bn =

{

QαQπ−2α,where α =
2kπ

n
for k = 0, . . . , n− 1

}

.

If α ≡ (π − 2α)(mod 2π), then the line QαQπ−2α is the tangent to the

circle at the point Qα. The arrangement Bn has
⌊n(n−3)

6

⌋

+1 triple points
by [6, Property 4], and we denote this set of triple points by Tn. On
Figure 1 we depicted Böröczky’s arrangement of n = 12 lines.

Example 1 (Böröczky arrangement of 12 lines).

Figure 1. Böröczky arrangement of 12 lines.
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In the sequel we will need the following simple fact concerning the
distribution of triple points on the arrangement lines. These results have
been already presented in [9, Proposition 3.3 and Corollary 3.4], but for
the completeness we recall them there.

Proposition 1. Every line in the Bn arrangement contains at least
⌊

n−3
2

⌋

triple points and there exists a line containing at least one more triple
point.

Proposition 2. For a őxed n ⩾ 8 let C be a plane curve (possibly reducible
and non-reduced) of degree d passing through every point in the set Tn

with multiplicity at least 3. Then d ⩾ n. Moreover, if d = n, then C is the
union of all arrangement lines in Bn.

2. Containment criteria

Over the years a number of containment criteria has been developed.
We recall here those which are relevant for our applications. We begin
by recalling some standard notions in a general setting of homogeneous
ideals in the ring of polynomials. In order to őx the notation, let I be a
homogeneous ideal in the polynomial ring R = K[x0, . . . , xn]. Let

0 → . . . → ⊕jR(−j)βi,j(I) → . . . → ⊕jR(−j)β1,j(I)

→ ⊕jR(−j)β0,j(I) → I → 0

be the minimal free resolution of I. From this resolution we derive one of
central invariants in commutative algebra and algebraic geometry.

Deőnition 1. The Castelnuovo-Mumford regularity (or simply, regularity)
of I, denoted by reg(I), is the integer

reg(I) = max {j − i : βi,j(I) ̸= 0} .

Thus reg(I) is the height of the Betti table of I.

Another important invariant of a homogeneous ideal I = ⊕∞

t=0(I)t is
its initial degree

α(I) = min {t : (I)t ̸= 0} = min {j : β0,j ̸= 0} .

Note that it is always

α(I) ⩽ reg(I)
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because reg(I) is at least equal to the maximal degree of a generator in
the minimal set of generators.

Bocci and Harbourne proved in [1, Lemma 2.3.3 (c)] an important
containment statement, which we recall here only in the case of saturated
ideals of zero-dimensional subschemes in P

n.

Proposition 3 (Bocci-Harbourne Containment Criterion). Let I ⊂ R
be a non-trivial saturated homogeneous ideal deőning a zero-dimensional
subscheme. For t ⩾ r · reg(I) there is

(Ir)t = (I(r))t.

Remark 1. It follows from the proof of Lemma 2.3.3 in [1] that the
conclusion in Proposition 3 holds as soon, as t ⩾ reg(Ir).

From Proposition 3 and Remark 1 we derive the following useful result.

Corollary 1 (Bocci-Harbourbe Containment Criterion 2). Let I ⊂ R be
a non-trivial ideal deőning a zero-dimensional subscheme in P

n.

If reg(Ir) ⩽ α(I(m)), then I(m) ⊂ Ir.

In the rest of this section, we consider zero-dimensional strict almost
complete intersections, i.e., ideals of height h that have a minimal set of
generators of cardinality h+ 1. In the case of projective plane, a reduced
set of points is strict almost complete intersection if its ideal is 3-generated
ś the minimal set of homogeneous generators of degree d has cardinality
3. Let I = (f, g, h) ⊂ R := K[x, y, z] (here we do not assume anything
about K) be a homogeneous ideal with minimal generators of the same
degree. We are interested in free resolutions for powers of I, and in order
to do so we need to consider the Rees algebra of I, which is deőned by
R(I) = ⊕i⩾0I

iti. In that case we have the following description, see [11].

Theorem 1. Let I be a strict almost complete intersection ideal deőning a

reduced set of points in P
2 and let AT =

(

P1 P2 P3

Q1 Q2 Q3

)

be a presenta-

tion matrix for the module of syzygies on I, i.e., the Hilbert-Burch matrix
of I. Then the Rees algebra of I is given as a quotient of the polynomial
ring S = R(T1, T2, T3) of the following form

R(I) ∼= S/(P1T1 + P2T2 + P3T3, Q1T1 +Q2T2 +Q3T3).

Furthermore, the deőning ideal of this algebra, (P1T1+P2T2+P3T3, Q1T1+
Q2T2 +Q3T3) is a complete intersection.
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Before we present our main tool, we need the following result providing
a precise description of powers of strict almost complete intersection ideals.

Theorem 2. Let I be a strict almost complete intersection ideal with
minimal generators of the same degree d deőning a reduced set of points in

P
2
K
. Let AT =

(

P1 P2 P3

Q1 Q2 Q3

)

be the Hilbert-Burch matrix of I. Let d0

and d1 denote the respective degrees of the polynomials in each of the two
rows of AT . Then the minimal free resolutions of I2 and I3 are as follows:

0 → R(−3d)
X
−→ R(−2d− d0)

3 ⊕R(−2d− d1)
3 → R(−2d)6 → I2 → 0,

0 → R(−4d)3
Y
−→ R(−3d− d0)

6 ⊕R(−3d− d1)
6 → R(−3d)10 → I3 → 0,

and the last homomorphism in the respective resolutions can be described
by the matrices X and Y given below by:

X = [P1, P2, P3, −Q1, −Q2, −Q3]
T ,

and

Y =





P1 P2 P3 0 0 0 −Q1 −Q2 −Q3 0 0 0
0 P1 0 P2 P3 0 0 −Q1 0 −Q2 −Q3 0
0 0 P1 0 P2 P3 0 0 −Q1 0 −Q2 −Q3





T

.

Theorem 3 (Seceleanu). Let I be a 3-generated homogeneous ideal with
minimal generators f, g, h of the same degree d, deőning a reduced set
of points in P

2
K
, where K is an arbitrary őeld of characteristic different

than 3. Set Y to be the matrix representing the last homomorphism in the
minimal free resolution of I3 (see above):

0 −→ R3 Y
−→ R12 −→ R10 −→ I3 −→ 0.

Then I(3) ⊆ I2 if and only if [f, g, h]T ∈ Image(Y T ).

In the same direction, we can follow ideas of Grifo, Huneke, and
Mukundan developed in [7]. In order to formulate more efficient criterion
on the containment I3 ⊂ I2 for ideals generated by 2× 2 minors of 2× 3
matrices.

Theorem 4 (Grifo-Huneke-Mukundan). Let R = K[x, y, z], where K is
a őeld of characteristic different than 3. Let a1, a2, a3, b1, b2, b3 ∈ R and
consider the ideal I which is generated by 2× 2 minors of the matrix

A =

(

a1 a2 a3
b1 b2 b3

)

.
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If the ideal ⟨a1, a2, a3, b1, b2, b3⟩ can be generated by 5 or less elements,
then I(3) ⊂ I2.

3. Containment results for some Böröczky’s line

arrangements

It turns out that we can use this interesting result in a straightforward
way in the case of Böröczky’s arrangements of n ∈ {4, . . . , 10} lines in
order to verify that for the radical ideals of triple intersection points I3
the containment I(3) ⊂ I2 does hold. Since the method is the same for all
cases, we are going to present our considerations only for n = 10.

Proposition 4. Let I3 be the radical ideal of the triple intersection points

of Böröczky’s arrangement of 10 lines. Then the containment I
(3)
3 ⊂ I23

does hold.

Proof. First of all, we need to observe that the ideal of the triple intersec-
tion points is generated as bellow by

I3 = ⟨4xy3 + 2x2yz + 4y3z − xyz2 − 3yz3, 4x3y + 2x2yz − 3xyz2 − yz3,

x4 − 6x2y2 + y4 − 4x3z + x2z2 + y2z2 + 2xz3 − z4⟩.

Since the ideal I3 is 3-generated, we can use the theory of Hilbert-Burch.
We compute the minimal free resolution of I3, and the matrix A that we
are searching for is given by the following Hilbert-Burch matrix, namely

A =

(

4x2−2xz−z2 4y2−14xz+z2 −4y2−2xz+3z2

4x2−24y2−14xz+13z2 0 −16xy−16yz

)

.

Since it is obvious that the ideal given by the entries of matrix A is 5 or

less generated (in fact it is 5 generated), thus the containment I
(3)
3 ⊂ I23

holds.

Now we are going to consider the last remaining case which would
allow us to conclude that the minimal counterexample to the containment
problem I(3) ⊂ I2 (in the sense of the number of lines) for Böröczky’s
family of line arrangements is the case of 12 lines. As a őrst observation,
we can show that for n = 11 lines the ideal of the triple intersection points
is not 3-generated ś in fact the minimal set of generators has cardinality 4,
so we cannot use the Grifo-Huneke-Mukundan method. In the remaining
part of this section, we are going to show explicitly the following theorem.
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Theorem 5. Let us denote by I3 the radical ideal of the triple intersection

points of Böröczky’s arrangement of 11 lines. Then the containment I
(3)
3 ⊂

I23 holds.

Proof. Our proof heavily relies on computer aid methods with use of Sin-
gular. First of all, we compute the ideal I3 which has exactly 4 generators,
namely

I3 =⟨4x3y − 4xy3 − 3x2yz − 3y3z − 2xyz2 + 2yz3,

32y5 + 88xy3z + 33x2yz2 − 55y3z2 − 66xyz3 + 22yz4,

32x2y3 + 72xy3z + 11x2yz2 + 35y3z2 − 22xyz3 − 22yz4,

2x5 − 10xy4 − 8x4z − 15x2y2z − 7y4z + 4x3z2 + 2xy2z2

+ 10x2z3 + 8y2z3 − 4xz4 − 2z5⟩.

Then we compute the minimal free resolution of I23 which has the following
form

0 → S(−13)2 ⊕ S(−12) → S(−12)3 ⊕ S(−11)7 ⊕ S(−10)2

→ S(−10)6 ⊕ S(−9)3 ⊕ S(−8) → I23 → 0.

Thus we have reg(I23 ) = 11. Taking into account Corollary 2 we obtain

α(I
(3)
3 ) = 11. Applying in turn Corollary 1 with m = 3 and r = 2 we

conclude that
I
(3)
3 ⊂ I23 .
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