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Some properties of the commutators of special
linear quantum groups

Mehsin Jabel Atteya

Communicated by A. Petravchuk

Abstract. This article is interested to a detailed computa-
tion of the commutators of the Hopf algebra Uq(sl(n)). It can be
treated as a second way to computation the brackets of the Hopf
algebra Uq(sl(n)) which could be introducing and understanding
the Uq(sl(n)) for the researchers.

Introduction

In 1986, the concept of quantum groups initiated via Drinfeld [1], where
Drinfeld forms a assured class of Hopf algebras Uq to date there is no
rigorous, assume k = C and that q is not a root of unity. Then re-
call Uq is the algebra generated by symbols E,F,K,K−1 subject to the
constraints KE = q2EK, KK−1 = K−1K = 1, KF = q−2FK, and
[E,F ] = K−K−1

q−q−1 , where [E,F ] = EF − FE denotes the commutator.
In fact, universally accepted the definition, but it is mostly agreed that
this term depends on assured deformations in one or more parameters
of classical objects associated to algebraic groups. A good example to
illustrated that the fact that, the enveloping algebras which has action
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on semisimple Lie algebras or algebras of regular functions on the corre-
sponding algebraic groups. It is possible for anyone to link the algebraic
groups with commutative Hopf algebras via group schemes, in addition
to that, it was agreed that the category of quantum groups should coin-
cide with the opposite category of the category of Hopf algebras. This is
one of the important reasons why some authors define quantum groups
as non-commutative and non-cocommutative Hopf algebras. As a mat-
ter of fact, something of a misnomer concerns the name of the quantum
group. They are not really groups at all. In a measure, the quantum
groups seem almost to look like science fiction. Particularly given the
weirdness surrounding the discoveries of quantum physics.

Consequently, just what are these exciting new structures called quan-
tum groups? It’s always nice to be honest at the outset of a significant
undertaking. Nevertheless, the readers will probably be disappointed
to know that there is no extremist, universally accepted definition of
the concept of the quantum group. In spite of that, this has not re-
stricted the development of a rich, powerful, and elegant theory with
an ever-broadening horizon of application. Pleasurable. There is also
a significant collection of patterns for which mathematicians in general
can say that’s a quantum group. One of the realities is that it began to
be in the language of mathematics. It is not an unusual relation that a
part of mathematics is development with no physical application in re-
membrance. Although this is not a one-way road, the theory of quantum
groups happens to be an occasion for this. Their roots are in the work of
theoretical and mathematical physics. It is no coincidence that the ad-
jective quantum suggests a strong association with quantum mechanics
in particular. Therefore, let us begin with an outline of the transition
from classical to quantum mechanics. The quantum revolution began
in the 1920s. Without wasting time plowing through the details of the
several experiments that called for a complete modification of our under-
standing of reality, suffice it to say that the axiomatic heritage was built
and handed down to us. For more information, see the references [1-6].
In this paper, we give a description of computation of the commutators
of the Hopf algebra Uq(sl(n)).

1. The Lie algebra sl(n)

In any event, the complex Lie algebra g represents a vector space over
C equipped with the concept of a non-associative product, ordinarily
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denoted by the Lie bracket. This is a linear map [., .] : g⊗ g −→ g which
satisfies the following identities:

(i) [e, g] = −[g, e] anti-symmetry,

(ii) [e, [g, h]] = [[e, g], h] + [g, [e, h]] Jacobi identity,

where e, g, h ∈ R. During this article, sl(2) denoted to the complex simple
Lie algebra spanned as a vector space via three elements σ+, σ− and τ .
The Lie bracket which write as [σ+, σ−] = τ, [τ, σ±] = ±2σ±.

At the same time with the previous relations anti-symmetry property
and the bilinearity defined the Lie bracket on the whole algebra uniquely.
Postulate V acts as a vector space and treat the algebra End(V ) consis-
ting of an endomorphisms of V (with composition supplying the multipli-
cation). Named that a (Lie algebra) representation of g on V is simply
a linear map ϕ : g → End(V ) such that ϕ([g1, g2]) = ϕ(g1) ◦ ϕ(g2) −
ϕ(g2) ◦ ϕ(g1), for all g1 and g2 in g. Automatically, the associated map
ϕ : Ug → End(V ) which is an (algebra) representation of Ug on V and
equivalently, we may do view V as a Ug-module. In categorical terms,
the category of representations of g and the category of left Ug-modules
are isomorphic.

The special linear Lie algebra of order n which denoted via sln(F) or
sl(n,F) is the Lie algebra of n× n matrices. In fact, the influence point
here is that sln(F) has trace zero with the Lie bracket. [σ, τ ] := στ − τσ.

2. The Quantized Enveloping Algebra Uq(gl(n))

We postulate an invertible element q ∈ C, q ̸= 1. Therefore, the fraction
1

q−q−1 is well defined. For any integer n define [n] := qn−q−n

q−q−1 = qn−1 +

qn−3 + ...+ q−n+3 + q−n+1.
If q is not a root of unity, then [n] ̸= 0 for any non-zero integer n.

If q is a root of unity, then denote its order by d, i.e. d ∈ N is minimal
such that qd = 1.

We define Uq(gl(n)) as a unital associative complex algebra generated
by ei, fi, i = 1, 2, · · · , n−1, kj , k

−1
j , j = 1, 2, · · · , n subject to the relations

kikj = kjki, kik
−1
i = k−1

i ki = 1,

kiejk
−1
i = q

δ ij
2 q

−δ ij+1
2 ej ,

kifjk
−1
i = q

−δ ij
2 q

δ ij+1
2 fj ,
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[ei, fj ] = δij
k2i k

2
i+1 − k2i+1k

2
i

q + q−1
,

[ei, fj ] = [fj , ei] = 0, | i− j |≥ 2,

e2i ei±1 − (q + q−1)eiei±1ei + ei±1e
2
i = 0,

f2
i fi±1 − (q + q−1)fifi±1fi + fi±1f

2
i = 0. The generators ei and fi

correspond to the simple roots.

3. The Main Results

Proposition 1. Assume that u1, u2 and u3 are elements of Uq(sl(n))
with q, a and b are arbitrary parameters then

(i) [u1, u2]q − [u2, u1]q = (1 + q)(u1u2 − u2u1);

(ii) [u1, u2]q + [u2, u1]q = (1− q)(u1u2 + u2u1);

(iii) [u1, u2]q − [u2, u1]q−1 = (1 + q−1)u1u2 − (1 + q)u2u1;

(iv) [u1, u2]q + [u2, u1]q−1 = (1− q−1)u1u2 + (1− q)u2u1;

(v) [u1, u2]q=[u2, u1]q, if [u1, u2] = 0;

(vi) [[u2, u3]a, u1]b = [[u2, u1]b, u3]a, with [u3, u1] = 0;

(vii) [u3, [u2, u1]a]b = [u2, [u3, u1]b]a, with [u2, u3] = 0.

Proof. To prove (i), we postulate [u1, u2]q − [u2, u1]q = (u1u2 − qu2u1)−
(u2u1 − qu1u2). Then

= u1u2 − qu2u1 − u2u1 + qu1u2 = (1 + q)u1u2 − (1 + q)u2u1

= (1 + q)(u1u2 − u2u1).

The result as required.
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For Branch (iii), we suppose

[u1, u2]q + [u2, u1]q−1 = (u1u2 − qu2u1) + (u2u1 − q−1u1u2)

= (u1u2 − q−1u1u2) + (u2u1 − qu2u1)

= (1− q−1)u1u2 − (1 + q)u2u1.

The result as required.
We depend on the same technique to proof other branches.
To prove Branch (vi), we deduce that

[[u2, u3]a, u1]b = [u2, u3]au1 − bu1[u2, u3]a

= (u2u3 − au3u2)u1 − bu1(u2u3 − au3u2)

= u2u3u1 − au3u2u1 − bu1u2u3 + abu1u3u2.

Since u3u1 = u1u3, we note that
= u2u1u3 − au3u2u1 − bu1u2u3 + abu3u1u2.

Then
= [u2, u1]bu3 − au3[u2, u1]b = [[u2, u1]b, u3]a.

The result as required.
We depend on the same strategy for Branch (vii), to prove [u3, [u2, u1]a]b
= [u2, [u3, u1]b]a, with the term [u2, u3] = 0.

Proposition 2. The elements e12 and f12 of Uq(sl(3)) have the bracket

[e12, f12] = (1− q−1)([e1, e2]q[f2, f1] + [f2, f1][e1, e2]q)

−([[[e1, e2]q, f1]q−1 , f2] + [[f2, [e1, e2]q]q−1 , f1]).

Proof. We have [e12, f12] = [[e1, e2]q, [f2, f1]q−1 ] = −[[f2, f1]q−1 , [e1, e2]q].

On the above bracket, we employ the following identity

[[λ, µ]x, κ] = [[λ, κ], µ]x + [λ, [µ, κ]]x.

Suppose λ = f2, µ = f1, κ = [e1, e2]q and x = q−1. Then

[[f2, f1]q−1 , [e1, e2]q] = [[f2, [e1, e2]q], f1]q−1 + [f2, [f1, [e1, e2]q]]q−1 . (1)

Again we apply the previous identity on the first term of equation (1)
which is [[f2, [e1, e2]q], f1]q−1 . Then

[[λ, µ]x, κ] = [[λ, κ], µ]x + [λ, [µ, κ]]x.
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Suppose λ = [e1, e2]q, µ = f1, κ = f2 and x = q−1.

[[[e1, e2]q, f1]q−1 , f2] = [[[e1, e2]q, f2], f1]q−1 + [[e1, e2]q, [f1, f2]]q−1 . (2)

We can rewrite equation (2) as the following:

[[f2, [e1, e2]q], f1]q−1 = [[e1, e2]q, [f2, f1]]q−1 − [[[e1, e2]q, f1]q−1 , f2]. (3)

Again we apply the previous identity on the second term which is
[f2, [f1, [e1, e2]q]]q−1 , so we suppose

λ = f2, µ = [e1, e2]q, κ = f1 andx = q−1.

[[f2, [e1, e2]q]q−1 , f1] = [[f2, f1], [e1, e2]q]q−1 + [f2, [[e1, e2]q, f1]]q−1 . (4)

Also, we rewrite equation (4), we achieve

[f2, [f1, [e1, e2]q]]q−1 = [[f2, f1], [e1, e2]q]q−1 − [[f2, [e1, e2]q]q−1 , f1]. (5)

Substituting relations (3) and (5) in relation (1), we note that

[[f2, f1]q−1 , [e1, e2]q] =[[e1, e2]q, [f2, f1]]q−1 − [[[e1, e2]q, f1]q−1 , f2]+

[[f2, f1], [e1, e2]q]q−1 − [[f2, [e1, e2]q]q−1 , f1].

Collect the brackets [[e1, e2]q, [f2, f1]]q−1 and [[f2, f1], [e1, e2]q]q−1 to-
gether with applying proposition 1(i), after suppose u1 = [e1, e2]q and
u2 = [f2, f1], we achieve

[[f2, f1]q−1 , [e1, e2]q] =(1− q−1)([e1, e2]q[f2, f1] + [f2, f1][e1, e2]q)−
([[[e1, e2]q, f1]q−1 , f2] + [[f2, [e1, e2]q]q−1 , f1]).

Theorem 1. The elements eij and fij of Uq(sl(n)) have the bracket

[eij , fij ] = (1− q)([fi, fi+1,j ]q[ei, ei+1,j ] + [ei, ei+1,j ][fi, fi+1,j ]q)−

([[[fi, fi+1,j ]q, ei]q, ei+1,j ] + [[ei+1,j , [fi, fi+1,j ]q]q, ei])

where i, j = 1, 2, . . . , n.



166 Some properties of the commutators of groups

Proof. At the beginning of the hypothesis, we have the bracket

[eij , fij ] = [[ei+1,j , ei]q, [fi, fi+1,j ]q].

Emphasis is placed on the right side of this equation. We apply the
relation

[[λ, µ]x, κ] = [[λ, κ], µ]x + [λ, [µ, κ]]x.

Suppose λ = ei+1,j , µ = ei, κ = [fi, fi+1,j ]q and x = q. Then

[[ei+1,j , ei]q, [fi, fi+1,j ]q] = (6)

[[ei+1,j , [fi, fi+1,j ]q], ei]q + [ei+1,j , [ei, [fi, fi+1,j ]q]]q.

Take the first term of equation (6) which is [[ei+1,j , [fi, fi+1,j ]q], ei]q.
Based on the previous identity, we write

λ = [fi, fi+1,j ]q, µ = ei, κ = ei+1,j and x = q.

[[[fi, fi+1,j ]q, ei]q, ei+1,j ] = (7)

[[[fi, fi+1,j ]q, ei+1,j ], ei]q + [[fi, fi+1,j ]q, [ei, ei+1,j ]]q.

We rewrite relation (7), as the following:

[[ei+1,j , [fi, fi+1,j ]q], ei]q = (8)

[[fi, fi+1,j ]q, [ei, ei+1,j ]]q − [[[fi, fi+1,j ]q, ei]q, ei+1,j ].

Moreover, we use the previous relation on the second term which is
[ei+1,j , [ei, [fi, fi+1,j ]q]]q.

We firstly suppose λ = ei+1,j , µ = [fi, fi+1,j ]q, κ = ei and x = q.
Then

[[ei+1,j , [fi, fi+1,j ]q]q, ei] = (9)

[[ei+1,j , ei], [fi, fi+1,j ]q]q + [ei+1,j , [[fi, fi+1,j ]q, ei]]q.

We can rewrite relation (9), as the following:

[ei+1,j , [ei, [fi, fi+1,j ]q]]q = (10)

[[ei+1,j , ei], [fi, fi+1,j ]q]q − [[ei+1,j , [fi, fi+1,j ]q]q, ei].

Investment relations (8) and (10) in relation (6), we observe

[[ei+1,j , ei]q, [fi, fi+1,j ]q] =

[[fi, fi+1,j ]q, [ei, ei+1,j ]]q − [[[fi, fi+1,j ]q, ei]q, ei+1,j ]+
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[[ei+1,j , ei], [fi, fi+1,j ]q]q − [[ei+1,j , [fi, fi+1,j ]q]q, ei].

Collect the first and forth terms on the right side of the above relation.
Applying proposition 1(ii), we harvest the result.

[[ei+1,j , ei]q, [fi, fi+1,j ]q] =

(1− q)([fi, fi+1,j ]q[ei, ei+1,j ] + [ei, ei+1,j ][fi, fi+1,j ]q)−

([[[fi, fi+1,j ]q, ei]q, ei+1,j ] + [[ei+1,j , [fi, fi+1,j ]q]q, ei]).

The result as required.

Theorem 2. The elements hj and eij of Uq(sl(n)) have the bracket

[hj , eij ] = (q−1)(−aij(eiei+1,j + ei+1,jei))+(ei[ei+1,j , hj ]+ [ei+1,j , hj ]ei).

Proof. From the hypothesis we have

[hj , eij ] = [hj , [ei, [ei+1, · · · , [ej−1, ej ]q · · · ]q].

To apply the simply identity which is [[λ, µ]x, κ] = [[λ, κ], µ]x+[λ, [µ, κ]]x
on above of the right side of the bracket.

We suppose λ = ei, µ = [ei+1, · · · , [ej−1, ej ]q · · · ]q,κ = hj and x = q.
Then, we obtain

[[ei, [ei+1, · · · , [ej−1, ej ]q · · · ]q]q, hj ] = (11)

[[ei, hj ][ei+1, · · · , [ej−1, ej ]q · · · ]q]q + [ei, [[ei+1, · · · , [ej−1, ej ]q · · · ]q, hj ]]q.

According to the relation [hj , ei] = aijei, the right-side of equa-
tion (11) becomes

= −aij [ei, [ei+1, [ei+2, · · · , [ej−1, ej ]q · · · ]q]q+ (12)

[ei, [[ei+1, [ei+2, · · · , [ej−1, ej ]q · · · ]q, hj ]]q.

Rewrite the above equation, we achieve

[[ei, [ei+1, · · · , [ej−1, ej ]q · · · ]q]q, hj ] = −aij [ei, ei+1,j ]q + [ei, [ei+1,j , hj ]]q. (13)

In the main bracket, we suppose

λ = [ei+1, · · · , [ej−1, ej ]q · · · ]q, µ = ei, κ = hj and x = q.
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Thus, we obtain

[[[ei+1, · · · , [ej−1, ej ]q · · · ]q, ei]q, hj ] =

[[[ei+1, · · · , [ej−1, ej ]q · · · ]q, hj ], ei]q + [[ei+1, · · · , [ej−1, ej ]q · · · ]q, [ei, hj ]]q.
Investment the relation [hj , ei] = aijei, which lies in the second term

of the right part of the previous equation. This action produces the
result.

[[[ei+1, · · · , [ej−1, ej ]q · · · ]q, ei]q, hj ] = [[ei+1,j , hj ], ei]q − aij [ei+1,j , ei]q. (14)

In this step, we focus on the left side of equation (14). By reason of
the element ej commuting with the element ej−2, it will push the element
ej−1 to the left. Hence, the left side modifies

[[[ei+1, · · · , [ej−2, ej−1]q · · · ]q, ej ]q, ei]q, hj ] = [[ei+1,j , hj ], ei]q − aij [ei+1,j , ei]q.

Concentration on the left side and applying proposition 1(vii). After
that, we write

u1 = ei, u2 = [ei+1, · · · , [ej−2, ej−1]q · · · ]q, andu3 = ej ,

with the bracket [u1, u3] = [ei, ej ] = 0, we achieve

[[[ei+1, · · · , [ej−2, ej−1]q · · · ]q, ei]q, ej ]q, hj ] = [[ei+1,j , hj ], ei]q − aij [ei+1,j , ei]q.

Continue with the left-side, since ei+2 commute with the element
ei, therefore, it will push [ei+3, [ei+4, · · · , [ej−2, ej−1]q · · · ]q to right way
which leads to obtain

[[[ei+1, ei+2]q, [[ei+3, [ei+4, · · · , [ej−2, ej−1]q · · · ]q, ei]q]q, ej ]q, hj ] =

[[ei+1,j , hj ], ei]q − aij [ei+1,j , ei]q.

It’s clearly the internal bracket [[ei+3, [ei+4, · · · , [ej−2, ej−1]q · · · ]q, ei]q]q = 0.

Consequently the above relation becomes

[[ei+1,j , hj ], ei]q − aij [ei+1,j , ei]q = 0.

Apply this result in left-side of equation (14) and combine with equa-
tion (13), we harvest that

[[ei, [ei+1, · · · , [ej−, ej ]q · · · ]q]q, hj ] =

−aij([ei, ei+1,j ]q + [ei+1,j , ei]q) + ([ei, [ei+1,j , hj ]]q + [[ei+1,j , hj ], ei]q).

Moreover, the right-side of the previous equation becomes

[hj , eij ] = (q−1)(−aij(eiei+1,j + ei+1,jei))+(ei[ei+1,j , hj ]+ [ei+1,j , hj ]ei).

The result as required.
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Based on the same technique of the proof in an above theorem, we
can achieve the following:

Theorem 3. The elements hj and fij of Uq(sl(n)) have the bracket

[hj , fij ] = (q−1)(−aij(fifi+1,j+fi+1,jfi))+(fi[fi+1,j , hj ]+[fi+1,j , hj ]fi).

Adapted from Severin Pos̆ta and Miloslav Havĺic̆ek [3]. One can
prove the following corollary.

Corollary 1. For any n,m ≥ 1 and k ≥ 0 we have the following

fn
i f

k
i−1f

m
i ∈ span{fk

i−1f
n+m
i , fk−1

i−1 f
n+m
i fi−1, · · · , fn+m

i fk
i−1} (15)

and

fn+m
i−1 fn

i ∈ span{fn
i−1f

n
i f

m
i−1, f

n−1
i−1 fn

i f
m+1
i−1 , · · · , fn

i f
m+n
i−1 }. (16)

Then fn+1
i−1 fn

i = fn+1−l
i−1 fn

i f
l
i−1 and fn+1

i fn
i−1 = fn+1−l

i fn
i−1f

l
i .

Proof. From relation (7) in [3, Lemma 3.1], we observe

fn+1
i−1 fn

i =
n+1∑
l=1

(−1)l+1
(
n+1
l

)
fn+1−l
i−1 fn

i f
l
i−1.

Divided both sides on fn+1
i−1 fn

i , we deduce 1 =
n+1∑
l=1

(−1)l+1
(
n+1
l

)
.

Applying this result in above equation, we arrive to

fn+1
i−1 fn

i = fn+1−l
i−1 fn

i f
l
i−1.

The result as required.

We depend on the relation fn+1
i fn

i−1 =
n+1∑
l=1

(−1)l+1
(
n+1
l

)
fn+1−l
i fn

i−1f
l
i

which appear in [3, Lemma 3.1] and apply same technique, we see

fn+1
i fn

i−1 = fn+1−l
i fn

i−1f
l
i .

Conclusion

In this short paper, we provide a new technique for the commutators
of the Hopf algebra Uq(sl(n)) with an approach suitable for researchers.
Using elementary mathematical tools, it is, in our opinion, possible to
understand this new manner of computation.
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