
© Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 34 (2022). Number 2, pp. 244ś272
DOI:10.12958/adm1952

Nakajima quiver varieties, affine crystals and

combinatorics of Auslander-Reiten quivers∗

D. Kus and B. Schumann

Communicated by A. P. Petravchuk

Abstract. We obtain an explicit crystal isomorphism be-

tween two realizations of crystal bases of őnite dimensional irre-

ducible representations of simple Lie algebras of type A and D.

The őrst realization we consider is a geometric construction in

terms of irreducible components of certain Nakajima quiver vari-

eties established by Saito and the second is a realization in terms of

isomorphism classes of quiver representations obtained by Reineke.

We give a homological description of the irreducible components of

Lusztig’s quiver varieties which correspond to the crystal of a őnite

dimensional representation and describe the promotion operator

in type A to obtain a geometric realization of Kirillov-Reshetikhin

crystals.

Introduction

Let g be a Kac-Moody algebra with symmetric Cartan matrix. A
groundbreaking result by Lusztig was the construction of the canonical
basis of the negative part U−

q of the quantized enveloping algebra of g (see
[10, 11]). The canonical basis has remarkable properties and yields a basis
for any irreducible highest weight g-module V (λ) of highest weight λ. The
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main tool of Lusztig’s work is given by a certain class of quiver varieties,
known in the literature as Lusztig’s quiver varieties, (for a precise deőnition
see Section 2.1).

Motivated by Lusztig’s work Nakajima introduced another class of
quiver varieties associated to irreducible highest weight g-modules (see [12]
for details). Here a geometric description of the action on V (λ) is obtained
and certain Lagrangian subvarieties of Nakajima’s quiver varieties are
deőned whose irreducible components yield a geometric basis of V (λ).

Using ideas from [10] an alternative construction of Lusztig’s canonical
bases of U−

q and V (λ) was given by Kashiwara in [5]. These bases have
well-behaved combinatorial analogues, called the crystal basis B(∞) of
U

−
q and B(λ) of V (λ), respectively. The crystal B(∞) has a geometric

realization in terms of irreducible components of Lusztig’s quiver varieties
established in [7]; we denote this realization by Bg(∞). Moreover, Saito
has shown in [14] that B(λ) also admits a geometric realization in terms
of irreducible components of Lagrangian subvarieties of Nakajima’s quiver
varieties. We denote the geometric realization of Saito in the rest of the
paper by Bg(λ) and view the crystal graph of Bg(λ) as a full subgraph
of Bg(∞) by identifying the irreducible components in Bg(λ) with the
subset of irreducible components of Lusztig’s quiver varieties satisfying a
certain stability condition (see Section 2).

The motivation of this paper is to give a homological interpretation
of the actions of the crystal operators in Bg(λ) using the combinatorics
of Auslander-Reiten quivers of a őxed Dynkin quiver Q of the same type
as g. This is achieved by constructing an explicit crystal isomorphism
to a realization of B(λ) in terms of isomorphism classes of Q-modules
introduced by Reineke in [13]; we denote this realization by Bh(λ). We
őrst give in Theorem 3 a homological description of the stable irreducible
components and then make use of the homological description of Bg(∞)
developed by the second author in [16] and show in Theorem 4 that the
embedding of Bg(λ) into Bg(∞) is compatible with this description when
g is of őnite type A or D.

In the last part of the paper we consider the standard orientation of
the type A quiver and extend the classical crystal structure on the set
of irreducible components to an affine crystal structure isomorphic to
the Kirillov-Reshetikhin crystal (KR crystal for short). The main idea
is to use the close connection to Young tableaux (see [15]) and to deőne
the promotion operator pr (see Deőnition 4.2) which is the analogue of
the cyclic Dynkin diagram automorphism i 7→ i+ 1 mod (n+ 1) on the
level of crystals. This gives, together with the homological description in
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Theorem 4, a geometric realization of KR crystals (see Corollary 4.4); for
combinatorial descriptions of KR crystals in type A we refer the reader
to [9, 18]). It will be interesting to discuss the promotion operator for
various orientations of the quiver. The connection to Young tableaux
(see Section 4.3) is not known in that case but the description is still
possible with several technical difficulties. This construction will be part
of forthcoming work.

This paper is organized as follows. In section 1 we present background
material. We recall facts on representations of quivers and the construction
of Auslander-Reiten quivers of Dynkin quivers as well as facts on quantum
groups and crystal bases. In section 2 we recall the geometric construction
of crystal bases in terms of irreducible components of quiver varieties
due to Kashiwara-Saito [7] and Saito [14]. In section 3.1 we develop
combinatorics on the geometric constructions using Auslander-Reiten
quivers. For this we recall results by Reineke [13], prove a criterion for
an irreducible component of Lusztig’s quiver variety to contain a stable
point (Theorem 3) and construct an explicit crystal isomorphism from
Bg(λ) to Bh(λ) (Theorem 4). In the őnal section 4 we apply the results
of section 3.1 to give a geometric realization of KR-crystals in type A.

1. Background and Notation

1.1. Let Q be a Dynkin quiver of type A or D with path algebra CQ.
Let I = {1, 2, . . . , n} be the vertex set of Q and Q1 the arrow set. For
each arrow h of Q pointing from the vertex i to the vertex j we write
out(h) = i and in(h) = j. Let g be the simple Lie algebra associated to the
underlying diagram of Q over C with simple system {αi : i ∈ I}, simple
coroots {hi : i ∈ I}, Cartan matrix C = (ci,j)i,j∈I , weight lattice P and
dominant integral weights P+. By Gabriel’s theorem the isomorphism
classes of őnite dimensional indecomposable representations of Q over C
are in bijection to the set Φ+ of positive roots of g. For a positive root
α ∈ Φ+, we denote by M(α) a representative of the isomorphism class of
indecomposable CQ-modules associated to this root.

We denote by CQ-mod the abelian category of őnite dimensional left
CQ-modules. On CQ-mod we have a non-degenerate bilinear form called
the Euler form given by:

⟨M,N⟩R := dimHomCQ(M,N)− dimExt1CQ(M,N).
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This form is known to depend only on the dimension vectors dimM and
dimN and is equal to

∑

j∈I

dimMj dimNj −
∑

h∈Q1

dimMout(h) dimNin(h).

The symmetrization of the Euler form

(M,N)R := ⟨M,N⟩R + ⟨N,M⟩R

is determined by the Cartan matrix of g; we have

(M,N)R = t(dimM)C(dimN)

(see [4, Lemma 3.6.11] for details).

1.2. Here we recall brieŕy the construction of the Auslander-Reiten
quiver ΓQ of Q from [3, Section 6.5]. The vertices of this quiver are
given by the isomorphism classes M of indecomposable representations of
Q while there is an arrow M → N if and only if there is an irreducible
morphismsM → N in CQ-mod (non-isomorphisms that cannot be written
as a composition of two non-isomorphisms). Let Q∗ be the quiver with
the same set of vertices and reversed arrows. As an intermediate step we
construct the inőnite quiver ZQ∗ which has Z× I as set of vertices and
for each arrow h : i → j in Q we draw an arrow from (r, i) to (r + 1, j)
and (r, j) to (r, i) for all r ∈ Z.

Example. Consider the Dynkin quiver of type A3 with orientation

2→ 1← 3.

Then ZQ∗ is given as follows:

(−1, 3)

$$

(0, 3)

##

(1, 3)

· · · (−1, 1)

99

%%

(0, 1)

##

;;

(1, 1)

;;

##

· · ·

(−1, 2)

::

(0, 2)

;;

(1, 2)

A slice of ZQ∗ is a connected full subquiver which contains for each
i ∈ I a unique vertex of the form (r, i), r ∈ Z. There is a unique slice
SQ which contains (0, 1) and is isomorphic to Q (in the above example
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highlighted in blue). The Nakayama functor ν : Z × I → Z × I gives a
bijective correspondence between the indecomposable projectives of CQ
and the indecomposable injectives of CQ. For example, in type An we
have

ν(r, i) = (r + i− 1, n+ 1− i).

Now ΓQ can be identiőed with the full subquiver of ZQ∗ formed by the
vertices lying between SQ and the image of this slice under ν (see [3, Propo-
sition 6.5]). Furthermore ZQ∗ has a translation structure given by the
AuslanderśReiten translation τ given by τ(p, q) = (p−1, q). This function
gives rise to a bijection between the isomorphism classes of indecom-
posable nonśprojectives and the isomorphism classes of indecomposable
nonśinjectives when restricted to ΓQ. We can describe τ as a function on
the dimension vectors. For i ∈ I deőne ri : Z|I| → Z|I| via

ri(v) = v − (v, ei)Rei.

Here we denote the dimension vector of the simple CQ-module S(i) by ei.
We őx a labeling i1, i2, . . . , in of I adapted to Q, that is i1 is a sink of Q
and i2 is a sink of σ1Q and so on (σ1 revereses the direction of all arrows
at vertex 1). For an indecomposable non-projective CQ-module M , the
indecomposable non-injective CQ-module τM has dimension vector

rinrin−1
· · · ri1(dimM).

If we consider the quiver 1 ← 3 → 2 and denote a vertex of ΓQ by the
dimension vector of its isomorphism class we get

011

""

100τ
oo

010

""

<<

111

<<

τ
oo

""
110

<<

001τ
oo

1.3. Let (CQ)op be the opposite algebra of CQ. We have a functor
D : CQ-mod→ (CQ)op −mod, called standard duality functor, between
the category of CQ-modules and the category of (CQ)op-modules. For
M ∈ CQ-mod we have D(M) := HomC(M,C) with (CQ)op-module
structure deőned by

(aφ)(m) = φ(am), m ∈M, a ∈ (CQ)op, φ ∈ D(M).
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Furthermore, for M,N ∈ CQ-mod, f ∈ HomCQ(M,N), we have D(f) :
D(N) → D(M), ϕ 7→ ϕ ◦ f . From the deőnitions it is straightforward
to see that D(τM) = τ−1D(M). Also we can identify representations of
(CQ)op −mod with representations of CQ∗ −mod. Thus the Auslander-
Reiten quiver of Q∗ can be obtained by reversing each arrow in the
Auslander-Reiten quiver of Q and interchanging the roles of τ and τ−1.

1.4. Let Uq(g) be the Q(q)-algebra with generators Ei, Fi,K
±1
i , i ∈ I

and the following relations for j ∈ I \ {i}

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi, KiEiK
−1
i = q2Ei

KiFiK
−1
i = q−2Fi, EiFj − FjEi = 0, EiFi − FiEi =

Ki −K
−1
i

q − q−1

If ci,j = −1 : E2
i Ej + EjE

2
i = (q + q−1)EiEjEi,

F 2
i Fj + FjF

2
i = (q + q−1)FiFjFi,KiEjK

−1
i = q−1Ej , KiFjK

−1
i = qFj .

If ci,j = 0 : EiEj = EjEi, FiFj = FjFi,

KiEjK
−1
i = Ej , KiFjK

−1
i = Fj .

For m ∈ N, let [m]q := qm−1 + qm−3 + · · · + q−m+1 and deőne for
x ∈ Uq(g) the divided power

x(m) :=
xm

[m]q!
. (1)

For λ ∈ P+ we denote by V (λ) the irreducible Uq(g)-module of highest
weight λ and let U

−
q ⊆ Uq(g) be the subalgebra generated by Fi, i ∈ I.

Deőnition. An abstract g-crystal B is a set endowed with maps

wt : B → P, εi : B → Z ⊔ {−∞}, φi : B → Z ⊔ {−∞},

ẽi : B → B ⊔ {0}, f̃i : B → B ⊔ {0} for i ∈ I.

satisfying the following axioms for i ∈ I and b, b′ ∈ B
• φi(b) = εi(b) + wt(b)(hi),

• if b ∈ B satisőes ẽib ̸= 0 then

wt(ẽib) = wt(b) + αi, φi(ẽib) = φi(b) + 1, εi(ẽib) = εi(b)− 1,
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• if b ∈ B satisőes f̃ib ̸= 0 then

wt(f̃ib) = wt(b)− αi, φi(f̃ab) = φi(b)− 1, εi(f̃ib) = εi(b) + 1,

• ẽib = b′ if and only if f̃ib
′ = b,

• if εi(b) = −∞, then ẽib = f̃ib = 0.

Let B1 and B2 be abstract g-crystals. A map ψ : B1 ⊔{0} → B2 ⊔{0}
satisfying ψ(0) = 0 is called a morphism of crystals if for b ∈ B1, ψ(b) ∈ B2

and i ∈ I we have

wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), φi(ψ(b)) = φi(b),

ψ(ẽib) = ẽiψ(b), if ẽib ̸= 0 ψ(f̃ib) = f̃iψ(b), if f̃ib ̸= 0.

A morphism of crystals which commutes with all ẽi, f̃i is called strict
morphism of crystals. An injective (strict) morphism is called a (strict)
embedding of crystals and a bijective strict morphism is called an isomor-
phism of crystals.

Let B1 and B2 be abstract g-crystals. The set

B1 ⊗B2 := {b1 ⊗ b2 | b1 ∈ B2, b2 ∈ B2}

is called the tensor product of B1 and B2 and admits a g-crystal structure
where wt(b1 ⊗ b2) = wt(b1) + wt(b2) and

εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− wt(b1)(hi)},

φi(b1 ⊗ b2) = max{φi(b2), φi(b1) + wt(b2)(hi)},

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if φi(b1) ⩾ εi(b2)

b1 ⊗ ẽib2 else,

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if φi(b1) > εi(b2)

b1 ⊗ f̃ib2 else.

1.5. We recall the deőnition of the crystal bases B(∞) and B(λ) of U−
q

and V (λ), respectively, following [5, Sections 2 and 3]. We őx i ∈ I in the
rest of the discussion. For P ∈ U

−
q there exists unique Q,R ∈ U

−
q such

that

EiP − PEi =
KiQ−K

−1
i R

q − q−1
.

The endomorphism E′
i : U

−
q → U

−
q given by E′

i(P ) = R induces a vector
spaces decomposition

U
−
q =

⊕

m⩾0

F
(m)
i Ker(E′

i).
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We deőne the Kashiwara operators ẽi, f̃i on U
−
q by the following rule

f̃i(F
(m)
i u) = F

(m+1)
i u, ẽi(F

(m)
i u) = F

(m−1)
i u, u ∈ Ker(E′

i).

Let A be the subring of Q(q) consisting of rational functions f(q) without
a pole at q = 0. Let L(∞) be the A-submodule generated by all elements
of the form

f̃i1 f̃i2 · · · f̃iℓ(1) (2)

and let B(∞) ⊆ L(∞)/qL(∞) be the subsets of all residues of (2). For b ∈
B(∞) we let wt(b) be the weight of the element and εi(b) = max{ẽki (b) ̸=
0 | k ∈ N}. This endows B(∞) with the structure of an abstract crystal
(see Deőnition 1.4). The Q(q)-antiautomorphism ∗ : U−

q → U
−
q given by

E∗
i = Ei, F

∗
i = Fi, K

∗
i = K−1

i

has the properties L(∞)∗ = L(∞), B(∞)∗ = B(∞) and ∗ preserves the
weight function (see [6, Theorem 8.3] for details). We can endow B(∞)
with a second structure of an abstract crystal denoted by B(∞)∗ with
Kashiwara operators (also called the ∗-twisted maps)

f̃∗i (x) = (f̃ix
∗)∗, ẽ∗i (x) = (ẽix

∗)∗, ε∗i (x) = εi(x
∗)

By construction ∗ induces a crystal isomorphism between B(∞) and
B(∞)∗. For λ ∈ P+ let πλ : U−

q → V (λ) be the U
−
q -homomorphism

sending 1 to vλ and denote by (L(λ), B(λ)) the crystal base of V (λ). Then
we have (see [5, Theorem 5]) πλ(L(∞)) = L(λ) and we obtain an induced
surjective homomorphism

πλ : L(∞)/qL(∞)→ L(λ)/qL(λ)

with the following properties

• The map πλ induces a bijection between B(λ) and {πλ(b) : b ∈
B(∞)}\{0}.

• f̃i ◦ πλ = πλ ◦ f̃i for all i ∈ I,

• If b ∈ B(∞) is such that πλ(b) ̸= 0, then we have ẽiπλ(b) = πλ(ẽib)
for all i ∈ I.

We denote by Tλ = {rλ} the abstract g-crystal consisting of one element
and

wt(tλ) = λ, εi(tλ) = φi(tλ) = −∞, ẽitλ = f̃itλ = 0, ∀i ∈ I.
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By the above properties we have an embedding of crystals

B(λ)→ B(∞)⊗ Tλ, πλ(b) 7→ b⊗ tλ

which commutes with the ẽi’s (but not necessarily with the f̃i’s) whose
image is given by (see [6, Proposition 8.2])

{b⊗ tλ ∈ B(∞)⊗ Tλ : ε∗i (b) ⩽ λ(hi) ∀i ∈ I}. (3)

We summarize the above discussion in the following theorem.

Theorem 1 ([6, Proposition 8.2]). Let λ ∈ P+. Then the crystal graph
B(λ) of the irreducible highest weight module V (λ) can be realized as
the full subgraph of B(∞) consisting of all vertices b ∈ B(∞) such that
ε∗i (b) ⩽ λ(hi) for all i ∈ I. For b ∈ B(λ) the Kashiwara operators f̃λi , ẽ

λ
i

on B(λ) are given by

ẽλi b = ẽib, f̃λi b =

{
0, if f̃ib /∈ B(λ)

f̃ib, if f̃ib ∈ B(λ).

2. Geometric construction of crystal bases

In this section we review a geometric construction of the crystals
B(∞) and B(λ) for λ ∈ P+ in terms of irreducible components of quiver
varieties.

2.1. We denote by Q = (I,H) the associated double quiver of Q, where
for each h ∈ Q1, H contains two arrows with the same endpoints, one
in each direction. For an arrow h ∈ H, we denote by h the arrow with
out(h) = in(h) and in(h) = out(h). In this notation, the double quiver
Q = (I,H) has as set of arrows H = Q1 ⊔Q1.

Example. For Q = 1
h1←− 2

h2←− 3, the double quiver Q looks as follows.

Q = 1
h1 // 2
h1

oo
h2 // 3.
h2

oo

We deőne the function

ϵ : H → {±1}

h 7→

{
1, if h ∈ Q1

−1, if h /∈ Q1.
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The preprojective algebra Π(Q) is the quotient of the path algebra of the
double quiver Q by the ideal generated by

∑

h∈H,in(h)=i

ϵ(h)hh̄, i ∈ I.

For a őxed őniteśdimensional Iśgraded vector spaces V =
⊕

i∈I Vi over C,
we deőne Lusztig’s quiver variety ΛV to be the variety of representations
of Π(Q) with underlying vector space V , i.e.

ΛV := {(xh)h∈H ∈
⊕

h∈H

HomC(Vout(h), Vin(h)) :

∑

h∈H,in(h)=i

ϵ(h)xhxh̄ = 0∀i ∈ I}.

Let RepV (Q) be the variety of representations of Q with underlying vector
space V , that is

RepV (Q) =
⊕

h∈Q1

Hom(Vout(h), Vin(h)),

which is clearly a closed subvariety of the affine variety ΛV . From now
on we constantly identify the points of ΛV (resp. RepV (Q)) with the
corresponding modules over Π(Q) (resp. CQ) and write expressions like
M ∈ ΛV for M = (V, x) ∈ Π(Q) − mod. We have an action of the
group Gv =

∏
iGL(Vi) on ΛV and RepV (Q) by base change, that is for

M = (V, x) ∈ ΛV , g.M = M̃ , where M̃ = (V, x̃) ∈ Π(Q)−mod with

x̃h := gin(h)xhg
−1
out(h), h ∈ H

and analogously for M ∈ RepV (Q). The orbits of this action on ΛV

(resp. RepV (Q)) are exactly the isomorphism classes of representations of
Π(Q)−mod (resp. CQ-mod) with őxed dimension vector v := dim(V ).
For M ∈ RepV (Q), we denote the corresponding orbit by OM and let
glv =

⊕
i∈I glvi the Lie algebra of Gv.

Remark. The deőnition of preprojective algebras is motivated by sym-
plectic geometry, namely Lusztig’s quiver variety can be viewed as the zero
őbre of the moment map for the action of Gv on RepV (Q). The additional
nilpotency condition on the elements of ΛV is omitted, since we restrict
ourselves to preprojective algebras of Dynkin quivers and this condition
is automatically satisőed (see [11, Proposition 14.2(a)]).
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Note that, up to isomorphism, ΛV depends only on the graded dimen-
sion of V . Therefore we also denote ΛV by Λ(v), regarding the graded
dimension of the vector spaces as part of the datum of the representations
of Π(Q). The next lemma describes the irreducible components of the
variety Λ(v).

Lemma. An element (x = (xh), x = (xh))h∈Q1
∈ RepV (Q)⊕ RepV (Q

∗)
lies in the quiver variety Λ(v) if and only if

tr([a, x]x) :=
∑

h∈Q1

tr((ain(h)xh − xhaout(h))xh) = 0, for all a ∈ glv.

The irreducible components are exactly the closures of conormal bundles
to Gv-orbits in RepV (Q):

Λ(v) =
⋃

OM∈RepV (Q)/Gv

⋃

x∈OM

({x} ×Xx).

where Xx = {x ∈ RepV (Q
∗) : tr([a, x]x) = 0 ∀a ∈ glv} .

Proof. For the őrst claim see [8, Lemma 5.6] and hence Λ(v) is in fact
the union of these conormal bundles. Since Gv is irreducible, we also have
that the closures of conormal bundles are irreducible subvarieties of Λ(v).
The fact that they are as well the irreducible components follows from
Gabriel’s theorem, since the orbit space RepV (Q)/Gv is őnite.

We denote the irreducible components of Λ(v) by Irr Λ(v) and the
closure of the conormal bundle corresponding to the orbit OM by XM .

Example. LetQ = 1→ 2 and v = (1, 1). We have Repv(Q) = OM1
⊔OM2

,

where M1 = C
0
−→ C and M2 = C

1
−→ C. Using Lemma 2.1 we see that

XM1
= {(0, x) | x ∈ C} and XM2

= {(x, 0) | x ∈ C∗} = {(x, 0) | x ∈ C}.

2.2. Now, we recall the geometric construction of Kashiwara operators on
the set of irreducible components Irr Λ(v) from [7]. For i ∈ I andM ∈ Λ(v),
deőne εi(M) to be the dimension of the S(i)-isotypic component of the
head of M . For M = (V, x) ∈ Π(Q)−mod, that is

εi(M) = dimCoker


 ⊕

h:in(h)=i

Vout(h)
xh−→ Vi


 . (4)



D. Kus, B. Schumann 255

For c ∈ Z⩾0, we further introduce the subsets

Λ(v)i,c := {M ∈ Λ(v) | εi(M) = c}.

Let ei ∈ Z|I|
⩾0 be as usual the i-th unit vecor and őx c ∈ Z⩾0 such that

vi − c ⩾ 0. We deőne

Λ(v, c, i) := {(M,N,φ) :M ∈ Λ(v)i,c, N ∈ Λ(v − cei)i,0,

φ ∈ HomΠ(Q)(N,M) injective}.

Considering the diagram

Λ(v − cei)i,0
p1
←− Λ(v, c, i)

p2
−→ Λ(v)i,c, (5)

where p1(M,N,φ) = N and p2(M,N,φ) =M . It is shown in [7, Lemma
5.2.3] that the map p2 is a principal Gv-bundle and the map p1 is a
smooth map whose őbres are connected varieties. Standard algebraic
geometry arguments then show (for Λ(v)i,c ̸= ∅) that there is a oneśtośone
correspondence between the set of irreducible components of Λ(v − cei)i,0
and the set of irreducible components of Λ(v)i,c, i.e.

Irr Λ(v − cei)i,0 ∼= IrrΛ(v)i,c. (6)

Let X ∈ Irr Λ(v) and deőne for i ∈ I the integer εi(X) := minM∈X εi(M).
The function εi given in (4) is upper semi-continuous, i.e.

{M ∈ X : εi(M) ⩾ εi(X) + 1}

is a closed subset. So there is an open dense subset of X such that εi is
constant (namely the value of εi on this subset is εi(X)). Let

IΛ(v)i,c := {X ∈ Irr Λ(v) | εi(X) = c}.

So if X ∈ IΛ(v)i,c, we obtain from the prior considerations that there is
an open dense subset UX of X such that UX ⊆ Λ(v)i,c. Since Λ(v) and
Λ(v)i,c have pure dimension 1

2 dimRepV (Q) (see [11, Theorem 12.3]), we
get a bijection

IΛ(v)i,c → IΛ(v − cei)i,0, X 7→ p1p
−1
2 (UX). (7)

Suppose that X̄ ∈ IΛ(v−cei)i,0 corresponds to the componentX ∈ IΛ(v)i,c
und the bijection 7. We deőne maps

f̃ ci : IΛ(v − cei)i,0 → IΛ(v)i,c, X̄ 7→ X

ẽci : IΛ(v)i,c → IΛ(v − cei)i,0, X 7→ X̄
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The data of these maps yields a crystal structure on Bg(∞) :=
⊔

v Irr Λ(v)
together with the following maps for X ∈ IΛ(v)i,c ⊆ B

g(∞):

f̃i(X) := f̃ c+1
i ẽci (X), ẽi(X) :=

{
f̃ c−1
i ẽci (X), if c > 0

0, otherwise

wt(X) := −
∑

i∈I

viαi for X ∈ Irr Λ(v), φi(X) := εi(X) + wt(X)(hi).

It is shown in [7, Theorem 5.3.2] that Bg(∞) is isomorphic to the crystal
B(∞) of U−

q .
Recall the involution ∗ on B(∞) from Section 1.5. Following [7, Section

5.3.] this involution may be expressed in terms of Bg(∞) as follows. Take
M = (V, x) ∈ Π(Q) − mod and apply the standard duality functor
D = HomC(−,C) to it. Choosing an isomorphism between V and V ∗, we
obtain (V, tx) ∼= DM leading to an automorphism

∗ : Λ(v)→ Λ(v)

x 7→ tx

Since Λ(v) is Gv-invariant the involution does not depend on the choice of
isomorphism V ∼= V ∗. Moreover, ∗ preserves Bg(∞). For M ∈ CQ-mod,
we have

X∗
M = XD(M)

by Lemma 2.1.

Example. We continue with Example 2.1. We have that D(M1) ∈ CQ∗−
mod is given by

(HomC(C,C)
0
←− HomC(C,C)) ∼= (C

0
←− C)

and D(M2) ∈ CQ∗ −mod coincides with

(HomC(C,C)
id
←− HomC(C,C)) ∼= (C

1
←− C).

Hence X∗
M1

= XM2
= XD(M1) and X∗

M2
= XM1

= XD(M2).

2.3. In [14], Saito gave a realization of the crystal B(λ) via Nakajima’s
quiver varieties. In this section we recall the deőnition of those spaces. To
deőne them we consider a framing on the double quiver Q by adding an
extra vertex i′ and an extra arrow ti : i→ i′ for all i ∈ I.
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Example. The framed double quiver for the Dynkin graph of type A3 is
given as follows.

1
h1 //

t1
��

2
h1

oo

t2
��

h2 // 3
h2

oo

t3
��

1′ 2′ 3′

For v, λ ∈ Z|I|
⩾0, we choose I-graded vector spaces V and W of graded

dimension v, λ, respectively and deőne

Λ(v, λ) := Λ(v)×
⊕

i∈I

Hom(Vi,Wi).

The action of the group Gv can be extended on Λ(v, λ) via

g(x, t) := (gi)i∈I ((xh)h∈H , (ti)i∈I) =
(
(gin(h)xhg

−1
out(h))h∈H , (tig

−1
i )i∈I

)
.

We consider the subset Λ(v, λ)st of stable points in Λ deőned as

Λ(v, λ)st := {(x, t) ∈ Λ(v, λ) :
⋂

out(h)=i

(kerxh ∩ ker ti) = 0 ∀i ∈ I}.

Remark. This deőnition is equivalent to the one given in [12] stating that
there is no non-trivial x-stable subspace of V contained in the kernel of t,
see [2, Lemma 3.4]. Moreover, this is a stability condition in the sense of
Mumford with respect to the character θ = (θi) ∈ Z|I| of Gv with θi = −1
for all i ∈ I (see [12, Section 3.2]).

The subset Λ(v, λ)st is open in Λ(v, λ) and we clearly have an induced
action of the group Gv on Λ(v, λ)st. We further have the following.

Lemma ([12, Lemma 3.1]). The action of Gv on Λ(v, λ)st is free and
Λ(v, λ)st is a non-singular subvariety of Λ(v, λ).

The Nakajima quiver variety is deőned to be the geometric quotient
of Λ(v, λ)st by Gv

L(v, λ) := Λ(v, λ)st/Gv.

We denote by IrrL(v, λ) the set of irreducible components of L(v, λ). Now
using Lemma 2.3 we can make the following observations. We have

IrrL(v, λ) =
{
Y λ
M :M ∈ CQ-mod and Y λ

M ̸= ∅
}

(8)
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where

Y λ
M :=

((
XM ×

⊕

i∈I

Hom(Vi,Wi)

)
∩ Λ(v, λ)st

)
/Gv.

Moreover, we have the following identiőcation

IrrL(v, λ) ∼= {Y ∈ Irr Λ(v, λ) : Y ∩ Λ(v, λ)st ̸= ∅}. (9)

We conclude that the irreducible components of L(v, λ) are in one-to-
one correspondence to the irreducible components of Λ(v, λ) that contain
a stable point. In [14] Saito describes a crystal structure on IrrL(v, λ)
using similar arguments as in [7]. The key point for our approach is the
following theorem.

Theorem 2 ([14, Theorem 4.6.4, Lemma 4.6.3]). The map

i : IrrL(v, λ)→ Bg(∞), Y λ
M 7→ XM

is an embedding of crystals which commutes with the operators ẽi, i ∈ I.
Moreover, IrrL(v, λ) is isomorphic to the crystal Bg(λ) and hence Bg(λ)
is the full subgraph of Bg(∞) with vertices

{XM ∈ B
g(∞) : Y λ

M ̸= ∅}.

A description of the irreducible components (8) in purely combinatorial
terms using the Auslander-Reiten quiver ΓQ is given in Theorem 3.

3. Crystals via the combinatorics of Auslander-Reiten

quivers

3.1. In this subsection we recall some fundamental deőnitions from [13]
which arise in the context of an explicit crystal structure on certain Lusztig
PBW basis.

We deőne the posets

Pi(Q) := {M ∈ CQ-mod :M is indecomposable and

dimHomCQ(M,S(i)) ̸= 0}

P∨

i (Q) := {M ∈ CQ-mod :M is indecomposable and

dimHomCQ(S(i),M) ̸= 0}
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together with the relation ⪯ given by

N ⪯M ⇐⇒ HomCQ(N,M) ̸= 0.

Furthermore we deőne the poset

Si(Q) :=



V =

k⊕

j=1

Mj : {M1, . . . ,Mk} forms an antichain in Pi(Q)





together with the relation ⊴ given by

V ⊴ V ′ ⇐⇒ dimHomkQ(B, V
′) ̸= 0

for each indecomposable direct summand B of V . In the same way we
can deőne S∨i (Q) with the relation ⊴∨ given by

V ⊴
∨ V ′ ⇐⇒ dimHomkQ(V,B) ̸= 0

for each indecomposable direct summand B of V ′.

Example. Let Q be the following quiver

2

1 3oo

OO

4.oo

The poset P∨

1 (Q) is the union of all framed modules:

0
1 0 0

��

1
0 1 0

��

τ
oo 0

1 1 1

��

τ
oo

1
0 0 0

!!

0
1 1 0

!!

τ
oo 1

0 1 1

  

τ
oo

1
1 1 0

��

==

FF

1
1 2 1

��

==

FF

τ
oo 0

0 1 1

��

τ
oo

1
1 1 1

CC

0
0 1 0

CC

τ
oo 0

0 0 1τ
oo

τ
oo

τ
oo

τ
oo

We have
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S∨

1 (Q) =

{
0

1 0 0,
1

1 1 0,
1

1 1 1,
0

1 1 0,
0

1 1 0
⊕

1
1 1 1,

1
1 2 1,

0
1 1 1

}
.

We have two chains of maximal length in S∨

i (Q):

0
1 0 0

⊴∨
1

1 1 0
⊴∨

0
1 1 0

⊕
1

1 1 1
⊴∨

0
1 1 0

⊴∨
1

1 2 1
⊴∨

0
1 1 1

and

0
1 0 0

⊴∨
1

1 1 0
⊴∨

0
1 1 0

⊕
1

1 1 1
⊴∨

1
1 1 1

⊴∨
1

1 2 1
⊴∨

0
1 1 1

Fix i ∈ I. For a kQśmodule M and an element V ∈ Si(Q) and
V ∈ S∨

i (Q) respectively deőne

Fi(M,V ) :=
∑

B∈Pi(Q); B⊴V

µB(M)− µτB(M). (10)

F ∨

i (M,V ) :=
∑

B∈P∨

i (Q); V ⊴∨B

µB(M)− µτ−1B(M). (11)

where µB(M) denotes the multiplicity of B in M . For a CQ-module M ,
let VM be a ⊴-maximal element of Si(Q) such that

max
V ∈Si(Q)

Fi(M,V ) = Fi(M,VM )

and let UM be the direct sum of all τB such that B is an element of Pi(Q)
with B ⋬ VM and B is minimal with this property. We deőne Bh(∞) to
be the set of all isomorphism classes of CQ-modules.

Deőnition. A quiver Q is called cospecial if dimHomCQ(S(i),M) ⩽ 1
for all i ∈ I and all indecomposable CQ-modules M . Equivalently, this
means that each sink i ∈ I corrspond to a miniscule weight of the Lie
algebra of Q (see [16, Corollary 2.22]). We call Q special if Q∗ is cospecial.
This is equivalent to the fact that no thick vertex is a source of Q, where
a vertex i ∈ I is called thick if there exists an indecomposable CQ-module
M = (V, x) such that dimVi ⩾ 2.

For a special quiver Q it has been shown in [13, Proposition 6.1] that
the module UM is a direct summand of M and the following deőnes a
crystal structure on Bh(∞) isomorphic to B(∞):

f̃i(M) = (N ⊕ VM ), where M = N ⊕ UM

εi(M) = Fi(M,VM ), φi(M) = εi(M) + wt(M)(hi) (12)

wt(M) = −
∑

j∈I

(dimM)jαj
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Remark. 1) The explicit description of ẽi can be found in [16, Propo-
sition 2.19].

2) The isomorphism between Bh(∞) andB(∞) implies that the module
VM is unique. An alternative proof of this fact can be given as in
[16, Lemma 3.15].

Moreover, if we set

ε∗i (M) = max
V ∈S∨

i (Q)
F∨
i (M,V ),

and assume that Q is cospecial and special, then the embedding of the
crystal graph of Bh(λ) ∼= B(λ) into Bh(∞) can be described as (see
[13, Proposition 7.4]):

Bh(λ) = {M ∈ Bh(∞) : ε∗i (M) ⩽ λ(hi) for all i ∈ I}.

3.2. The remainder of this section develops combinatorics on the ge-
ometric construction of crystal bases recalled in Section 2 in terms of
Auslander-Reiten quivers. Recall the embedding of irreducible components
of Nakajima’s quiver variety into the irreducible components of Lusztig’s
quiver variety from (9). We decribe the image of this embedding. Namely
the following result gives a criterion for the irreducible components of
Λ(v, λ) to contain a stable point.

Theorem 3. Let Q be cospecial, M ∈ CQ-mod. The following statements
are equivalent.

(i) Y λ
M ∈ IrrL(v, λ), i.e. Y λ

M ̸= ∅.

(ii) F ∨

i (M,V ) ⩽ λ(hi) for all V ∈ S∨

i (Q) and for all i ∈ I.
Moreover we have the equality

ε∗i (M) = min
x∈XM

dim(
⋂

out(h)=i

kerxh) (13)

Proof. By (9) we have that Y λ
M ∈ IrrL(v, λ) if and only if Y λ

M contains a
stable point. Note that stability for a point (x, t) ∈ Λ(v, λ) means that

( ⋂

out(h)=i

kerxh

)
∩ ker ti = 0 ∀i ∈ I.

This is equivalent to the fact that the restriction of ti to
⋂

out(h)=i kerxh
is injective for all i ∈ I. Hence

Y λ
M ̸= ∅⇔ ∃x ∈ XM with dim(

⋂

out(h)=i

kerxh) ⩽ λ(hi) ∀i ∈ I.
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Let X∗
M the closure of the conormal bundle to the Gv-orbit to D(M)

in RepV (Q
∗) (recall the deőnition of D(M) from Section 1.3).

By Lemma 2.1 we have that X∗
M ∈ B

g(∞). Note that

min
x∈XM

dim(
⋂

out(h)=i

kerxh) = εi(X
∗
M ).

Hence we obtain

εi(X
∗
M ) ⩽ λ(hi) for all i ∈ I ⇔ εi(XD(M)) ⩽ λ(hi) for all i ∈ I

⇔ Fi(D(M), V ) ⩽ λ(hi) for all V ∈ Si(Q
∗) and i ∈ I,

where the last equivalence follows from [16, Proposition 4.7] and the
fact that Q is cospecial if and only if Q∗ is special. We can identify
the elements of S∨

i (Q) canonically with the elements of Si(Q
∗) via the

standard duality D(M), since the Auslander-Reiten quiver of CQ∗ can be
obtained by reversing each arrow in the Auslander-Reiten quiver of CQ
and interchanging the roles of τ and τ−1 In particular,

D(V ) ∈ S∨

i (Q)⇔ V ∈ Si(Q
∗)

Moreover, for V and V ′ in S∨

i (Q), we have

V ⊴ V ′ if and only if D(V ′)⊴∨ D(V ).

This shows that

Y λ
M ̸= ∅⇔ F ∨

i (M,V ) ⩽ λ(hi) for all V ∈ S∨

i (Q) and i ∈ I

since for all V ∈ S∨i (Q) we have Fi(D(M),D(V )) = F ∨

i (M,V ). This
őnishes the proof.

3.3. In this section we shall give a direct proof of the following theorem
(c.f. Remark 3.3).

Theorem 4. Let Q be special and cospecial. The map Bg(λ)→ Bh(λ),
Y λ
M 7→ M is well-deőned and an isomorphism of crystals. We have a

commutative diagram

Bg(∞) // Bh(∞)

Bg(λ)

i

OO

// Bh(λ)

OO
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Before we are able to prove Theorem 4, we need some preparatory
work to show that the crystal operators are well-deőned.

Lemma. Let M be in Bh(∞) (hence M ∈ CQ-mod). Then we have

ε∗i (f̃j(M)) =





ε∗i (M), i ̸= j

ε∗i (M) + 1 if i = j, VM = S(i)

and max
V ∈S∨

i (Q)
F ∨

i (M,V ) = F ∨

i (M,S(i))

ε∗i (M) else.

Proof. The case i ≠ j is clear by (13) and the deőnition of f̃i (see Sec-
tion 2.2). Let i = j. We consider two cases.

Case 1: Assume that f̃i(M) = (M ⊕ S(i)). Hence

F ∨

i (M,V ) = F ∨

i (M ⊕ S(i), V ) for all V ∈ S∨

i (Q)\{S(i)}

and we get
F ∨

i (M,S(i)) = F ∨

i (M ⊕ S(i), S(i))− 1,

since Hom(S(i), τS(i)) = 0 for Q Dynkin. We conclude for this case

ε∗i (f̃i(M)) =




ε∗i (M) + 1 if max

V ∈S∨

i (Q)
F ∨

i (M,V ) = F ∨

i (M,S(i))

ε∗i (M) else.

Case 2: In this case we suppose that f̃i(M) = N with N ≇M ⊕ S(i).
Then N ∼=M ′⊕VM where M =M ′⊕UM with UM and VM as in Section
3.1. In particular VM ≇ S(i) and we need to show that ε∗i (f̃j(M)) =
ε∗i ((M)) to prove our claim. Note that, for V ∈ S∨

i (Q),

F ∨

i (f̃j(M), V ) =F ∨

i (M,V ) +
∑

V ⊴∨B

µB(VM )−

∑

V ⊴∨B

µτ−1B(VM )−
∑

V ⊴∨B

µB(UM ) +
∑

V ⊴∨B

µτ−1B(UM ),

where we sum up over all elements B ∈ S∨

i (Q). We show that all summands
in the second row are all equal to zero. Let B be an indecomposable CQ-
module in Pi(Q) ∩ P∨

i (Q). Then we have the following homomorphisms:

B ↠ S(i) →֒ B
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which implies Pi(Q) ∩ P∨

i (Q) = {S(i)}. So there is no indecomposable di-
rect summand of VM in P∨

i (Q) which shows
∑

V ⊴∨B µB(VM ) = 0. Assume
that there is a B ∈ P∨

i (Q) such that τ−1B is an indecomposable direct sum-
mand of UM . Then, by the deőnition of UM , we have τ−1(τ−1B) ∈ Pi(Q).
Thus we have found a non-trivial directed path in ΓQ starting at S(i),
passing τ−1B and τ−1(τ−1B) and ending at S(i). A contradiction since
Q is Dynkin. We have found

∑
V ⊴∨B µτ−1B(UM ) = 0. Assume now that

there is an indecomposable direct summand C of UM in P∨

i (Q). Then,
from the deőnition of UM , there is a B ∈ Pi(Q) such that C = τB and
we have homomorphisms

B ↠ S(i) →֒ C = τB.

Hence HomCQ(B, τB) ̸= 0, which is a contradiction since Q is Dynkin.
Therefore we have

∑
V ⊴∨B µB(UM ) = 0. Last we assume that there is an

indecomposable direct summand B of VM such that τB ∈ P∨

i (Q). Thus
we have again homomorphisms

B ↠ S(i) →֒ τB

leading to a contradiction and we őnd
∑

V ⊴∨B µτ−1B(VM ) = 0. Summa-
rized we have shown

ε∗i (f̃i(M)) = ε∗i (M).

Proposition. Let λ ∈ P+ and M be an element of Bh(λ). Then for all
i ∈ I:

∃j ∈ I : ε∗j (f̃i(M)) > λ(hj)⇐⇒ φi(XM ) = 0.

Proof. Since ε∗i (M) ⩽ λ(hi) for all i ∈ I, it follows from Lemma 3.3 that
we only need to show the equivalence

ε∗i (f̃i(M)) > λ(hi)⇐⇒ φi(XM ) = 0.

In the case of ε∗i (f̃i(M)) > λ(hi) ⩾ ε∗i (M) we obtain with Lemma 3.3 and
(12) that

ε∗i (M) = λ(hi), εi(M) = Fi(M,VM ) = Fi(M,S(i)).
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Since Q is special and cospecial, we have

dimHomCQ(M,S(i)) =
∑

B∈Pi(Q)

µB(M) dimHomCQ(B,S(i)) =
∑

B∈Pi(Q)

µB(M).

dimHomCQ(S(i),M) =
∑

B∈P∨

i (Q)

µB(M) dimHomCQ(S(i), B) =
∑

B∈P∨

i (Q)

µB(M).

This implies

Fi(M,S(i)) + F∨
i (M,S(i)) =

dimHomCQ(M,S(i))− dimHomCQ(τ
−1M,S(i))

+ dimHomCQ(S(i),M)− dimHomCQ(S(i), τM)

= ⟨M,S(i)⟩R + ⟨S(i),M⟩R,

where the last equation follow from the Auslander-Reiten formulas (see
[1, Corollary 2.14]). Hence we have

φi(XM ) = εi(XM ) + wt(XM )(hi)

= Fi(M,S(i)) + λ(hi)− (M,S(i))R

= Fi(M,S(i)) + λ(hi)− ⟨M,S(i)⟩R − ⟨S(i),M⟩R

= Fi(M,S(i)) + λ(hi)− Fi(M,S(i))− F ∨

i (M,S(i)) = 0.

where the second equality follows from the crystal isomorphism in [16,
Theorem 3.26]. Conversely, assume that φi(XM ) = 0, i.e.

0 = εi(XM )+wt(XM )(hi) = εi(XM )+λ(hi)−Fi(M,S(i))−F ∨

i (M,S(i)).

Since M ∈ Bh(λ) we have F ∨

i (M,S(i)) ⩽ λ(hi) and Fi(M,S(i)) ⩽

εi(XM ). Thus

εi(XM ) = Fi(M,S(i)), λ(hi) = F ∨

i (M,S(i)) = ε∗i (M).

Using Lemma 3.3, we get ε∗i (f̃i(M)) > ε∗i (M) = λ(hi).

Proof of Theorem 4: From Proposition 3.3 we obtain that the restriction
of the crystal isomorphism Bg(∞)→ Bh(∞), XM 7→M (see [16, Theorem
3.26]) induces an isomorphism of crystals Bg(λ)→ Bh(λ).
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Remark. We could have proved Theorem 4 by using the crystal isomor-
phism [16, Theorem 3.26] and Theorem 3. Both results combined imply
that the restriction map gives a bijective morphism of crystals. However,
we found it more illuminating to give a direct proof of the fact that the
restriction map remains a strict morphism of crystals, i.e.

f̃iM = 0 in Bh(λ)⇔ f̃iXM = 0 in Bg(λ)

which is exactly the statement of Proposition 3.3.

4. Applications to affine crystals and the promotion

operator

In this section we consider the type An quiver Q with index set
I = {1, . . . , n} and orientation

nn−1
oo

n−2
oo. . . oo

2
oo

1
oo

4.1. Our aim is to describe the promotion operator on the crystal Bh(λ)
and hence on Bg(λ) for a őxed rectangular weight λ = mϖj , j ∈ I.
This will allow us to realize Kirillov-Reshetikhin crystals geometrically by
translating the well-known cunstructions under the above identiőcation.
It remains an open and interesting problem to extend the geometric
realization for any orientation of the quiver. Details will appear alsewhere.

For an indecomposable module M(r, s) (corresponding to the root
αr + · · ·+ αs) we abbreviate the multiplicity of M(r, s) in a CQ-module
M simply by µr,s(M). We őx for the rest of this section an element
M ∈ Bh(λ). Note that the choice of the orientation gives

F∨
i (M,M(i, s)) =

n∑

k=s

µi,k(M)−

n−1∑

k=s

µi+1,k+1(M). (14)

Since F∨
i (M,V ) ⩽ λ(hi) for all i ∈ I and V ∈ S∨i (Q) we get that

ki := m− dimHomCQ(S(i),M) ⩾ 0.

Moreover, since λ is rectangular, we have

µr,s(M) = 0, for all r > j or (r ⩽ j and s > n− j + r).

So we can think of an element M ∈ Bh(λ) as an array M = (µr,s(M))
with 1 ⩽ r ⩽ j and r ⩽ s ⩽ n− j + r in the Auslander-Reiten quiver ΓQ.
We associate to such an array its extended array

M ext = (µr,s(M
ext)), 1 ⩽ r ⩽ j, r ⩽ s ⩽ n+ 1− j + r
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deőned by

µr,s(M
ext) =

{
µr,s−1(M), if r ̸= s

kr, if r = s

and view M ext as a CQ̃-module, where Q̃ is the An+1 quiver with same
standard orientation.

Example. Let n = 3 and j = 2. Below is the array of M ext and the array
of M is highlighted in blue (we abbreviate µr,s(M) = µr,s).

µ1,2 µ2,3

µ1,1 µ2,2

k1 k2

where we have k1 = m− µ1,1 − µ1,2 and k2 = m− µ2,2 − µ2,3.

4.2. Fix an arbitrary CQ̃-moduleN and letWN the ⊴∨-maximal element
of S∨i (Q̃) such that

max
V ∈S∨

i (Q̃)
F∨
i (N,V ) = F∨

i (N,WN )

and let EN = τ−1B where B is an element of P∨
i (Q̃) with WN ⋬∨ B

and B is maximal with this property. Since S∨i (Q̃) = {M(i, i),M(i, i +
1), . . . ,M(i, n+ 1)} we have that WN and EN are indecomposable (if the
latter exists). With other words

WN =M(i, s0), EN =M(i+ 1, s0),

where

s0 = max{i ⩽ s ⩽ n+ 1 : F∨
i (M,M(i, s)) is maximal}.

Deőnition. 1) Let N be a CQ̃-module. We deőne operators Ti for
i < j and shj in order to obtain another CQ̃-module as follows. Let
Ti(N) = N (resp. shj(N) = N) if WN (resp. M(j, n+ 1)) is not a
summand of N and otherwise we set

Ti(N) = N ′ ⊕ EN , where N = N ′ ⊕WN ,

shj(N) = N ′′, where N = N ′′ ⊕M(j, n+ 1).

We deőne further

p̃r(N) = (T1 ◦ · · · ◦ Tj−1 ◦ shj)
µj,n+1(N)(N).
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2) We let pr(M) to be the CQ-module determined by the array

µr,s(pr(M)) = µr,s(p̃r(M
ext)) 1 ⩽ r ⩽ j, r ⩽ s ⩽ n− j + r.

Example. Let n = m = j = 3 and consider the element M ∈ Bh(λ) with
array

M = 1 1 2

0 1 0

1 1 1

We get by applying our operators

M ext = 1 1 2

0 1 0

1 1 1

1 0 0

T2◦sh3−−−−→ 1 1 1

0 0 0

1 1 2

1 0 0

T1−→ 1 1 1

0 0 0

1 1 2

0 0 0

sh3−−→ 1 1 0

0 0 0

1 1 2

0 0 0

T2−→ 1 0 0

0 0 1

1 1 2

0 0 0

T1−→ 0 0 0

0 1 1

1 1 2

0 0 0

Hence we get
pr(M) = 0 1 1

1 1 2

0 0 0

4.3. The promotion operator (see [17] for details) is the analogue of
the cyclic Dynkin diagram automorphism on the level of crystals. On the
set of all semi-standard Young tableaux SSYT(λ) of shape λ over the
alphabet 1 ≺ 2 · · · ≺ n+ 1 the promotion operator can be described as
follows. Let T be a Young tableaux, then we get pr(T ) by removing all
letters (n+ 1), adding 1 to each letter in the remaining tableaux, using
jeu-de-taquin to slide all letters up and őnally őlling the holes with 1’s.
Combining [15, Theorem 6.4] and Theorem 4 we get a classical crystal
isomorphism (which is known explicitly only for the standard orientation)

φ : Bh(λ)→ SSYT(λ), M 7→ φ(M)
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where the semi-standard tableaux φ(M) for M ∈ Bh(λ) is determined by

µr,s(M) = # (s+1) in row r of φ(M), 1 ⩽ r ⩽ j, r ⩽ s ⩽ n−j+r. (15)

We claim that pr from Deőnition 4.2 is the promotion operator on Bh(λ)
and our strategy is to show that it commutes with the promotion operator
on SSYT(λ) under the isomorphism φ. It is possible to deőne a tableau
φ(M ′) using (15) for any CQ-module M ′. Obviously we have

M ′ ∈ Bh(λ)⇐⇒ φ(M ′) ∈ SSYT(λ) (16)

Theorem 5. Let λ = mϖj be a rectangular weight of type An. Then we
have a commutative diagram

Bh(λ)

pr

��

φ // SSYT(λ)

pr

��
Bh(λ)

φ // SSYT(λ)

Proof. Let M ∈ Bh(λ) and let pr(M) the CQ-module as described in
Deőnition 4.2. If we can show that pr(φ(M)) = φ(pr(M)) we get at once
pr(M) ∈ Bh(λ) and the commutativity by (16). Note that M ext also
encodes the tableaux φ(M) via

µr,s(M
ext) = # s in row r’s of φ(M), 1 ⩽ r ⩽ j, r ⩽ s ⩽ n− j + r.

In the remaining part of the proof we will show that p̃r(M ext) encodes
the skew-tableaux of shape λ\µ, µ = (µj,n(M), 0, . . . ), which is obtained
from φ(M) as follows: remove all letters n + 1 and slide the boxes up
using jeu-de-taquin. This would őnish the proof by construction (see
Deőnition 4.2(2)). So assume that the last two rows of φ(M) are given by

a1 a2 · · · am−1 am

b1 b2 · · · bm−1 bm

with bm = bm−1 = · · · = bm−µj,n(M)+1 = n + 1. So the tableaux corre-
sponding to shj(M

ext) is given by

a1 a2 · · · am−1 am

b1 b2 · · · bm−1



270 Quiver varieties, crystals and combinatorics

If we slide the empty box to the (j − 1)-th row we have to move an entry
ap to the j-th row. In order to őgure out what p is we have to consider
the sums:

Ar :=
n+1∑

k=r

µj,k(M
ext)−

n∑

k=r−1

µj−1,k(M
ext) ⩾ 0 j ⩽ r ⩽ n+ 1.

Then we have p = max{j ⩽ r ⩽ n + 1 : −Ar is maximal}. By the
deőnition of Tj−1 this exactly means that the tableaux corresponding to
Tj−1shj(M

ext) is given by

a1 a2 · · · ap−1 ap+1 · · · am

b1 b2 · · · bp−1 ap bp · · · bm−1

Hence Tj−1 slides the empty box in row j to the (j − 1)-th row following
the rules of jeu-de-taquin. Now it is clear that sliding the empty box in
row (j − 1)-th to the top means to apply the operators Tj−2, . . . , T1 to
Tj−1shj(M

ext). Repeating the above steps yields the claim.

Example. We consider the same situation as in Example 4.2. Then M
corresponds to the Young tableaux

φ(M) = 1 2 4

3 4 5

4 6 6

−→ pr(φ(M)) = 1 1 3

2 4 5

5 5 6

By the calculations in Example 4.2 we see that pr(φ(M)) coincides with
φ(pr(M)).

4.4. Combinatorial descriptions of Kirillov-Reshetikhin crystals of type

A
(1)
n were provided for example in [9] and [18], where the affine crystal

structure in the latter work is given without using the promotion operator.
The affine Kashiwara operators are given by

f̃0 := prn ◦ f̃1 ◦ pr, and ẽ0 := prn ◦ ẽ1 ◦ pr. (17)

Corollary. Let λ = mϖj be a rectangular weight of type An. The following
operation gives Bg(λ) the structure of an affine crystal isomorphic to the
Kirillov-Reshetikhin crystal

f̃0Y
λ
[M ] =

{
Y λ
[pr(M)n◦f̃1◦pr(M)]

, if k1 < µj,n(M) + µ1,1(pr(M))

0, otherwise.
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Proof. We only have to check that f̃1 acts on pr(M) if and only if k1 <
µj,n(M) + µ1,1(pr(M)). The rest follows from Theorem 5 and Theorem 4.
Clearly f̃1 acts if and only if

dimHomCQ(S(1), pr(M)) < dimHomCQ(S(2), pr(M)).

Obviously in the process of obtaining pr(M) we subtract µj,n(M) entries
in the őrst column of M (viewed in the array of M as in Example 4.2),
i.e. dimHomCQ(S(1), pr(M)) = m− µj,n(M). Similarly we get a

dimHomCQ(S(2), pr(M)) = m− µj,n(M) + w,

where w is the number of times we add an entry to the second column in
the process of obtaining pr(M). Since w = µj,n(M) + µ1,1(pr(M)) − k1
we get the desired result.
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