C Algebra and Discrete Mathematics Volume **34** (2022). Number 1, pp. 132–140 DOI:10.12958/adm1935

Double-toroidal and 1-planar non-commuting graph of a group

J. C. M. Pezzott

Communicated by A. Yu. Olshanskii

ABSTRACT. Let G be a finite non-abelian group and denote by Z(G) its center. The non-commuting graph of G on a transversal of the center is the graph whose vertices are the non-central elements of a transversal of Z(G) in G and two vertices x and y are adjacent whenever $xy \neq yx$. In this work, we classify the finite non-abelian groups whose non-commuting graph on a transversal of the center is double-toroidal or 1-planar.

1. Introduction

In this paper, we consider only finite groups and finite undirected graphs without loops or multiple edges. Let G be a finite non-abelian group and denote the center of G by Z(G). The non-commuting graph of G is the graph whose vertex set is $G \setminus Z(G)$ and two vertices x and y are adjacent whenever $xy \neq yx$. The non-commuting graph of a group has been extensively studied and many papers were published on the topic: see [1-4, 9-11]. Here, we denote this graph by $\nabla(G)$.

Let T be a transversal of Z(G) in G. The non-commuting graph of G on a transversal of the center is the graph denoted by $\mathbb{T}(G)$ whose vertex set is $T \setminus Z(G)$ and two vertices x and y are adjacent whenever $xy \neq yx$. So, $\mathbb{T}(G)$ has [G : Z(G)] - 1 vertices and it is a subgraph of $\nabla(G)$. Further, as observed in [9, p. 911], the adjacency relations in $\nabla(G)$

²⁰²⁰ MSC: 05C25, 05C10.

Key words and phrases: non-commuting graph, double-toroidal graph, 1-planar graph, isoclinism.

can be obtained from adjacency relations in $\mathbb{T}(G)$, because two vertices xand y of $\nabla(G)$ are adjacent if and only if there are adjacent vertices x' and y' in $\mathbb{T}(G)$ such that $x \in x'Z(G)$ and $y \in y'Z(G)$. We also note that if T'is another transversal of Z(G) in G, then the non-commuting graph on a transversal obtained from T' is isomorphic to the non-commuting graph obtained from T. Hence, we study the graph $\mathbb{T}(G)$ without mentioning the choice of the transversal.

The non-commuting graph $\mathbb{T}(G)$ was investigated in [10, 12] and, in [13], we see results on the complement of graph $\mathbb{T}(G)$. Further, it is worth mentioning that the graph $\mathbb{T}(G)$ was also examined in the studies on the non-commuting graph $\nabla(G)$ in the papers [3,4,9,11]. In [9,10], the graph $\mathbb{T}(G)$ was called *the underlying graph* associated with $\nabla(G)$ and was denoted by $\nabla^u(G)$.

Basic concepts and results on graphs can be seen in [17]. Let \mathcal{G} be a graph. An *embedding* of \mathcal{G} into a surface is a drawing of \mathcal{G} on the surface in such a way no two edges intersect except at a vertex in which both are incident. If \mathcal{G} can be embedded in the plane, we say that \mathcal{G} is *planar*. Given an integer $n \ge 0$, let \mathbb{S}_n be the surface obtained from the sphere by attaching n handles. Note that \mathbb{S}_0 is the sphere. The smallest non-negative integer n such that a graph \mathcal{G} can be embedded in \mathbb{S}_n is called the *genus* of \mathcal{G} . A graph with genus 0 is a planar graph. A graph with genus 1 is called *toroidal* and, in this case, the graph can be embedded into a torus. A graph with genus 2 is a *double-toroidal* graph and, here, it is embedded into a double-torus. A classification of the groups whose non-commuting graph on a transversal is planar or toroidal was obtained in [12, Theorems 3.7 and 3.9]. In this paper, we determine the groups with a double-toroidal non-commuting graph on a transversal of the center: see Theorem A.

A graph is said 1-*planar* if it can be drawn in the plane in such a way that each edge is crossed at most once. We note that every planar graph is a 1-planar graph. Here, in Theorem B, we classify all finite non-abelian groups whose non-commuting graph on a transversal of the center is 1-planar.

2. Results

In this section, we prove the main results of this work (Theorems A and B). We start with some concepts and notation.

Let \mathcal{G} be a graph. The vertex set and the edge set of \mathcal{G} are denoted, respectively, by $V(\mathcal{G})$ and $E(\mathcal{G})$. Given a subset V' of $V(\mathcal{G})$, the *subgraph* of \mathcal{G} induced by V' is the graph whose vertex set is V' and the edge set is $\{\{u, v\} : u, v \in V', u \neq v, \{u, v\} \in E(\mathcal{G})\}$. A graph \mathcal{G}' is a spanning subgraph of \mathcal{G} if $V(\mathcal{G}') = V(\mathcal{G})$ and $E(\mathcal{G}') \subset E(\mathcal{G})$. As usual, the complete graph on n vertices is denoted by K_n and the complete multipartite graph with m partite sets of sizes n_1, n_2, \ldots, n_m , with $1 \leq n_1 \leq n_2 \leq \cdots \leq n_m$, is denoted by K_{n_1,n_2,\ldots,n_m} .

Given an integer $m \ge 3$, the dihedral group of order 2m is denoted by D_{2m} . Let G be a group. Given $x, y \in G$, the commutator [x, y] of x and y is $[x, y] = xyx^{-1}y^{-1}$ and the derived subgroup of G is denoted by G'. We see that the commutator map $\alpha_G : G/Z(G) \times G/Z(G) \to G'$ given by $\alpha_G(xZ(G), yZ(G)) = [x, y]$ is well defined. We say that the groups G and H are isoclinic (see [6]) if there is a pair (φ, ψ) such that φ is an isomorphism from G/Z(G) to H/Z(H), ψ is an isomorphism from G/Z(G), $yZ(G)) = \alpha_H(\varphi(xZ(G)), \varphi(yZ(G)))$, for all $x, y \in G$. The pair (φ, ψ) is an isoclinism from G to H. We know that isomorphic groups are isoclinic (by [8, Lemma 2.3]) and we observe that the dihedral group D_8 and the quaternion group of order 8 are isoclinic, but they are not isomorphic.

Given a prime number p, we say that a p-group P is *extraspecial* if |Z(P)| = p and $P' = Z(P) = \Phi(P)$, where $\Phi(P)$ is the Frattini subgroup of P. An extraspecial p-group has order p^{2n+1} , for some integer $n \ge 1$ (see [15, 5.3.8]). Further, every non-abelian group of order p^3 is extraspecial.

The degree of commutativity P(G) of a finite group G is the probability that two randomly chosen elements commute, that is,

$$P(G) = \frac{|\{(x,y) \in G \times G : xy = yx\}|}{|G|^2}.$$

If G and J are isoclinic groups, then P(G) = P(J) (see [8, Lemma 2.4]). In this paper, we will use the classification of the groups with degree of commutativity greater than or equal to 1/2 obtained in [8].

Theorem 1 ([8, Theorem 3.1]). Let G be a finite non-abelian group. We have $P(G) \ge 1/2$ if and only if G is isoclinic to D_6 or it is isoclinic to an extraspecial 2-group.

Some results on the non-commuting graph $\mathbb{T}(G)$ are given below.

Lemma 1. Let G be a finite non-abelian group.

- (i) If a group J is isoclinic to G, then T(G) and T(J) are isomorphic graphs.
- (ii) $2|E(\mathbb{T}(G))| = (1 P(G))(|V(\mathbb{T}(G))| + 1)^2.$

- (iii) If |V(T(G))| ≤ 10, then T(G) is isomorphic to one of the following graphs: K₃, K_{1,1,1,2}, K₇, K_{1,1,1,1,3}, K_{2,2,2,2} or K_{1,1,1,1,1,4}.
- (iv) The non-commuting graph $\mathbb{T}(G)$ is isomorphic to $K_{2,2,2,2}$ if and only if G is isoclinic to an extraspecial 3-group of order 27.
- (v) The non-commuting graph $\mathbb{T}(G)$ is planar if and only if G is isoclinic to D_6 or D_8 .
- (vi) The non-commuting graph $\mathbb{T}(G)$ is toroidal if and only if $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,3}$, K_7 or $K_{2,2,2,2}$.
- (vii) If G is isoclinic to an extraspecial 2-group of order 2^{2n+1} , with $n \ge 2$, then $\mathbb{T}(G)$ is a graph with $2^{2n} - 1$ vertices and $(2^{2n} - 1)2^{2n-2}$ edges.

Proof. The proofs of statements (i), (ii), (iv) and (v) can be seen in [12] (respectively, Proposition 3.1, Theorem 3.4, Proposition 3.3 and Theorem 3.7). To prove (iii), we observe that $[G : Z(G)] \neq 11$ (because G is non-abelian) and so $|V(\mathbb{T}(G))| \neq 10$; now, the proof of (iii) follows from [12, Lemma 3.12]. The statement (vi) is a consequence of parts (i) and (iv) and [12, Theorem 3.9 and Lemmas 3.10 and 3.11]. To prove (vii), consider an extraspecial 2-group E of order 2^{2n+1} , with $n \geq 2$. We note that the complement graph of $\mathbb{T}(E)$ is a graph with $2^{2n} - 1$ vertices and $(2^{2n} - 1)(2^{2n-2} - 1)$ edges (see [13, Proposition 3.2]). So, the graph $\mathbb{T}(E)$ has $2^{2n} - 1$ vertices and $(2^{2n} - 1)2^{2n-2}$ edges. By part (i), if G is isoclinic to E, then $\mathbb{T}(G)$ has $2^{2n} - 1$ vertices and $(2^{2n} - 1)2^{2n-2}$ edges. □

In the next result, we describe the structure of G/Z(G) in the case where [G : Z(G)] = 12.

Proposition 1. If G is a non-abelian group such that [G : Z(G)] = 12, then G/Z(G) is isomorphic to D_{12} or to the alternating group on 4 letters A_4 . Further, if G/Z(G) is isomorphic to D_{12} , then $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,5}$.

Proof. By [16, p. 85], we know that, up to isomorphism, there are only five groups of order 12: \mathbb{Z}_{12} , $\mathbb{Z}_2 \times \mathbb{Z}_6$, D_{12} , A_4 and the group

$$\langle a, b | a^6 = 1, b^2 = a^3 = (ab)^2 \rangle.$$

Let G be a non-abelian group such that [G : Z(G)] = 12. Looking at the list of the groups of order 12, we get that if G/Z(G) has no cyclic subgroup of order 6, then G/Z(G) is isomorphic to A_4 .

Suppose that G/Z(G) has a cyclic subgroup of order 6. We will show that $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$ and G/Z(G) is isomorphic to D_{12} . Consider the homomorphism $f: G \to G/Z(G)$ given by f(x) = xZ(G) and let *B* be the subgroup of *G* such that f(B) is the cyclic subgroup of order 6 of G/Z(G). It is clear that *B* is abelian and [G:B] = 2. So, $|V(\mathbb{T}(G)) \cap B| = 5$ and the subgraph induced by $V(\mathbb{T}(G)) \cap B$ has no edges. Given $x \in V(\mathbb{T}(G)) \setminus B$, arguing as in the third paragraph of the proof of [12, Lemma 3.12], we can prove that *x* is adjacent to all other vertices of $\mathbb{T}(G)$. Thus, $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$. Further, since f(B) is a cyclic subgroup of order 6 of G/Z(G), we get that f(B) has one element of order 2, two elements of order 3 and two elements of order 6. We also observe that all elements of $(G/Z(G)) \setminus f(B)$ have order 2, because each vertex of $V(\mathbb{T}(G)) \setminus B$ is adjacent to all other vertices of $\mathbb{T}(G)$. So, using the classification of the groups of order 12, we conclude that G/Z(G)is isomorphic to D_{12} . Therefore, if [G:Z(G)] = 12, then G/Z(G) is isomorphic to D_{12} or A_4 .

We note that if G/Z(G) is isomorphic to D_{12} , then G/Z(G) has a cyclic subgroup of order 6. In this case, as shown in the paragraph above, $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,5}$. This proves the second statement of this result.

Now, we classify the finite groups whose non-commuting graph of a transversal of the center is double-toroidal.

Theorem A. Let G be a finite non-abelian group. The non-commuting graph $\mathbb{T}(G)$ is double-toroidal if and only if G is isoclinic to the dihedral group D_{10} .

Proof. First, we observe that $\mathbb{T}(D_{10})$ is isomorphic to $\nabla(D_{10})$ (because $Z(D_{10}) = \{1\}$), that is, $\mathbb{T}(D_{10})$ is isomorphic to $K_{1,1,1,1,1,4}$. Thus, by [14, Figure 1], we get that $\mathbb{T}(D_{10})$ can be embedded on a double-torus. Using Lemma 1 (parts (v) and (vi)), we concluded that $\mathbb{T}(D_{10})$ is a double-toroidal graph. So, by Lemma 1(i), if a group G is isoclinic to D_{10} , then $\mathbb{T}(G)$ is double-toroidal.

Conversely, suppose that $\mathbb{T}(G)$ is a double-toroidal graph. Hence, by [17, Lemma 6.3.24],

$$|E(\mathbb{T}(G))| \leq 3|V(\mathbb{T}(G))| + 6.$$

$$\tag{1}$$

The graphs $\mathbb{T}(D_6)$ and $\mathbb{T}(D_8)$ are planar (see Lemma 1(v)). By (1) and Lemma 1(vii), we have that G is not isoclinic to an extraspecial 2-group of order 2^{2n+1} , with $n \ge 2$. Hence, by Theorem 1, we obtain that P(G) < 1/2. So, using (1) and Lemma 1(ii), we have

$$|E(\mathbb{T}(G))| = \frac{1}{2}(1 - P(G))(|V(\mathbb{T}(G))| + 1)^2 \leq 3|V(\mathbb{T}(G))| + 6,$$

and thus

$$1 - \frac{6|V(\mathbb{T}(G))| + 12}{(|V(\mathbb{T}(G))| + 1)^2} \leqslant P(G) < \frac{1}{2},$$

that is,

$$\frac{(|V(\mathbb{T}(G))|+1)^2 - 12|V(\mathbb{T}(G))| - 24}{2(|V(\mathbb{T}(G))|+1)^2} < 0,$$

which implies $|V(\mathbb{T}(G))| \leq 11$.

Let us show that $|V(\mathbb{T}(G))| \neq 11$. To this end, we suppose the contrary, that is, suppose that $|V(\mathbb{T}(G))| = 11$, that is, [G : Z(G)] = 12. So, G/Z(G) is isomorphic to D_{12} or A_4 (see Proposition 1). If G/Z(G)is isomorphic to D_{12} , then Proposition 1 tells us that $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$, which contradicts (1). Thus, we get that G/Z(G)is isomorphic to A_4 . It is routine to verify that $\mathbb{T}(A_4)$ is isomorphic to $K_{2,2,2,2,3}$. So, $\mathbb{T}(G/Z(G))$ is isomorphic to $K_{2,2,2,2,3}$. We note that $V(\mathbb{T}(G/Z(G))) = \{xZ(G) : x \in V(\mathbb{T}(G))\}$, because |Z(G/Z(G))| = 1. Given $x, y \in V(\mathbb{T}(G))$, with $x \neq y$, it is easy to see that if xZ(G) and yZ(G) are adjacent vertices in $\mathbb{T}(G/Z(G))$, then x and y are adjacent vertices in $\mathbb{T}(G)$. Hence, $\mathbb{T}(G/Z(G))$ is isomorphic to a spanning subgraph of $\mathbb{T}(G)$, that is, $K_{2,2,2,2,3}$ is a subgraph of $\mathbb{T}(G)$, which contradicts (1), because $K_{2,2,2,2,3}$ has 11 vertices and 48 edges. Hence, $|V(\mathbb{T}(G))| \neq 11$ and, therefore, $|V(\mathbb{T}(G))| \leq 10$.

It follows from Lemma 1(iii) that $\mathbb{T}(G)$ is isomorphic to K_3 , $K_{1,1,1,2}$, K_7 , $K_{1,1,1,1,3}$, $K_{2,2,2,2}$ or $K_{1,1,1,1,1,4}$. It is clear that K_3 and $K_{1,1,1,2}$ are planar graphs and we have that K_7 , $K_{1,1,1,1,3}$ and $K_{2,2,2,2}$ are toroidal graphs (see Lemma 1(vi)). Hence, we obtain that $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,4}$. Therefore, by [12, Lemma 3.5], G is isoclinic to D_{10} .

The next result gives us the groups with a 1-planar non-commuting graph on a transversal of the center. In view of Lemma 1(v), we can consider only the case where the graph $\mathbb{T}(G)$ is non-planar.

Theorem B. Let G be a finite non-abelian group such that $\mathbb{T}(G)$ is non-planar. The non-commuting graph $\mathbb{T}(G)$ is 1-planar if and only if G is isoclinic to an extraspecial 3-group of order 27.

Proof. The non-commuting graph on a transversal of the center of an extraspecial 3-group of order 27 is isomorphic to the graph $K_{2,2,2,2}$ (see Lemma 1(iv)). In Figure 1, we see a 1-planar drawing of the graph $K_{2,2,2,2}$

(we consider $K_{2,2,2,2}$ with vertex set $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ and partition $\{\{v_1, v_2\}, \{v_3, v_4\}, \{v_5, v_6\}, \{v_7, v_8\}\}$). Hence, if G is isoclinic to an extraspecial 3-group of order 27, then $\mathbb{T}(G)$ is 1-planar.

FIGURE 1. $K_{2,2,2,2}$ is 1-planar

Conversely, let G be a finite non-abelian group such that $\mathbb{T}(G)$ is non-planar and suppose that $\mathbb{T}(G)$ is 1-planar. By [5, Lemma 2.2], we have that

$$|E(\mathbb{T}(G))| \leqslant 4|V(\mathbb{T}(G))| - 8.$$
⁽²⁾

Using (2), parts (v) and (vii) of Lemma 1 and Theorem 1, we obtain that P(G) < 1/2. Hence, by (2) and Lemma 1(ii), we have

$$|E(\mathbb{T}(G))| = \frac{1}{2}(1 - P(G))(|V(\mathbb{T}(G))| + 1)^2 \leq 4|V(\mathbb{T}(G))| - 8$$

and so

$$1 - \frac{8|V(\mathbb{T}(G))| - 16}{(|V(\mathbb{T}(G))| + 1)^2} \leqslant P(G) < \frac{1}{2}.$$

Consequently,

$$\frac{(|V(\mathbb{T}(G))|+1)^2 - 16|V(\mathbb{T}(G))| + 32}{2(|V(\mathbb{T}(G))|+1)^2} < 0$$

and thus $|V(\mathbb{T}(G))| \leq 10$. By Lemma 1(iii), we get that $\mathbb{T}(G)$ is isomorphic to K_3 , $K_{1,1,1,2}$, $K_{1,1,1,1,3}$, K_7 , $K_{2,2,2,2}$ or $K_{1,1,1,1,1,4}$. We know that K_3 and $K_{1,1,1,2}$ are planar graphs. By [7, Lemma 7], $K_{1,1,1,1,3}$ is not 1-planar and, thus, we have that K_7 and $K_{1,1,1,1,1,4}$ are not 1-planar. We conclude that $\mathbb{T}(G)$ is isomorphic to $K_{2,2,2,2}$. It follows from Lemma 1(iv) that G is isoclinic to an extraspecial 3-group of order 27.

Acknowledgements

I would like to thank the anonymous referee for careful reading of the manuscript and suggestions that improved the paper.

References

- A. Abdollahi, S. Akbari and H. R. Maimani. Non-commuting graph of a group. J. Algebra, 298(2) (2006), 468-492.
- [2] M. Afkhami, D. G. M. Farrokhi and K. Khashyarmanesh. Planar, toroidal, and projective commuting and noncommuting graphs. Comm. Algebra 43(7) (2015), 2964–2970.
- [3] M. Akbari and A. R. Moghaddamfar. Groups for which the noncommuting graph is a split graph. Int. J. Group Theory, 6(1) (2017), 29–35.
- [4] M. Akbari and A. R. Moghaddamfar. The existence or nonexistence of noncommuting graphs with particular properties. J. Algebra Appl. 13(1) (2014), 1350064.
- [5] I. Fabrici and T. Madaras. The structure of 1-planar graphs. Discrete Math., 307 (2007), 854-865.
- [6] P. Hall. The classification of prime-power groups. J. Reine Angew. Math. 182 (1940), 130-141.
- [7] V. P. Korzhik. Minimal non-1-planar graphs. Discrete Math., 308(7) (2008), 1319-1327.
- [8] P. Lescot. Isoclinism classes and commutativity degrees of finite groups. J. Algebra, 177(3) (1995), 847-869.
- [9] A. R. Moghaddamfar. About noncommuting graphs. Siberian Math. J., 47(6) (2006), 911–914.
- [10] A. R. Moghaddamfar. Some results concerning noncommuting graphs associated with finite groups. Southeast Asian Bull. Math., 38(5) (2014), 661–676.
- [11] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi. On the noncommuting graph associated with a finite group. Siberian Math. J., 46(2) (2005), 325–332.
- [12] J. C. M. Pezzott. Groups whose non-commuting graph on a transversal is planar or toroidal. J. Algebra Appl. (2021). https://doi.org/10.1142/S0219498822501985.
- [13] J. C. M. Pezzott and I. N. Nakaoka. On groups whose commuting graph on a transversal is strongly regular. Discrete Math., 342(12) (2019), 111626.
- [14] D. Nongsiang and P. K. Saikia. On the non-nilpotent graphs of a group. Int. Electron. J. Algebra, 22 (2017), 78-96.
- [15] D. J. Robinson. A Course in the Theory of Groups. Springer-Verlag, New York, 1996.
- [16] J. J. Rotman. An Introduction to the Theory of Groups. Fourth edition. Springer-Verlag, New York: 1995.
- [17] D. B. West. Introduction to Graph Theory. Second Edition, Prentice Hall, 2001.

CONTACT INFORMATION

Julio Cesar Moraes	Departamento de Matemática,
Pezzott	Universidade Estadual de Maringá,
	Maringá, PR, CEP: 87020-900
	Brazil
	<i>E-Mail</i> (<i>s</i>): juliopezzott@gmail.com

Received by the editors: 21.12.2021.