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ABSTRACT. Let G be a finite non-abelian group and denote
by Z(QG) its center. The non-commuting graph of G on a transversal
of the center is the graph whose vertices are the non-central elements
of a transversal of Z(G) in G and two vertices x and y are adjacent
whenever xy # yx. In this work, we classify the finite non-abelian
groups whose non-commuting graph on a transversal of the center
is double-toroidal or 1-planar.

1. Introduction

In this paper, we consider only finite groups and finite undirected
graphs without loops or multiple edges. Let G be a finite non-abelian
group and denote the center of G by Z(G). The non-commuting graph of
G is the graph whose vertex set is G\ Z(G) and two vertices = and y are
adjacent whenever xy # yx. The non-commuting graph of a group has
been extensively studied and many papers were published on the topic:
see [1-4,9-11|. Here, we denote this graph by V(G).

Let T be a transversal of Z(G) in G. The non-commuting graph of
G on a transversal of the center is the graph denoted by T(G) whose
vertex set is 7'\ Z(G) and two vertices x and y are adjacent whenever
xy # yx. So, T(G) has [G : Z(G)] — 1 vertices and it is a subgraph of
V(G). Further, as observed in |9, p. 911], the adjacency relations in V(G)
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can be obtained from adjacency relations in T(G), because two vertices x
and y of V(G) are adjacent if and only if there are adjacent vertices 2’ and
y' in T(G) such that x € 2’ Z(G) and y € ¢y Z(G). We also note that if 7"
is another transversal of Z(G) in G, then the non-commuting graph on
a transversal obtained from 7" is isomorphic to the non-commuting graph
obtained from T'. Hence, we study the graph T(G) without mentioning
the choice of the transversal.

The non-commuting graph T(G) was investigated in [10, 12] and,
in [13], we see results on the complement of graph T(G). Further, it is
worth mentioning that the graph T(G) was also examined in the studies
on the non-commuting graph V(G) in the papers [3,4,9,11]. In [9,10], the
graph T(G) was called the underlying graph associated with V(G) and
was denoted by V*(G).

Basic concepts and results on graphs can be seen in [17]. Let G be
a graph. An embedding of G into a surface is a drawing of G on the surface
in such a way no two edges intersect except at a vertex in which both
are incident. If G can be embedded in the plane, we say that G is planar.
Given an integer n > 0, let S,, be the surface obtained from the sphere by
attaching n handles. Note that Sy is the sphere. The smallest non-negative
integer n such that a graph G can be embedded in S,, is called the genus
of G. A graph with genus 0 is a planar graph. A graph with genus 1 is
called toroidal and, in this case, the graph can be embedded into a torus.
A graph with genus 2 is a double-toroidal graph and, here, it is embedded
into a double-torus. A classification of the groups whose non-commuting
graph on a transversal is planar or toroidal was obtained in |12, Theorems
3.7 and 3.9]. In this paper, we determine the groups with a double-toroidal
non-commuting graph on a transversal of the center: see Theorem A.

A graph is said 1-planar if it can be drawn in the plane in such a way
that each edge is crossed at most once. We note that every planar graph
is a 1-planar graph. Here, in Theorem B, we classify all finite non-abelian
groups whose non-commuting graph on a transversal of the center is
1-planar.

2. Results

In this section, we prove the main results of this work (Theorems
A and B). We start with some concepts and notation.

Let G be a graph. The vertex set and the edge set of G are denoted,
respectively, by V(G) and E(G). Given a subset V' of V(G), the subgraph
of G induced by V' is the graph whose vertex set is V/ and the edge set
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is {{u,v} : u,v € V', u # v, {u,v} € E(G)}. A graph G’ is a spanning
subgraph of G if V(G') = V(G) and E(G') C E(G). As usual, the complete
graph on n vertices is denoted by K, and the complete multipartite graph
with m partite sets of sizes ni, na, ..., Ny, with 1 <nqy <ng < -+ < Ny,
is denoted by Ky, ny.....1um -

Given an integer m > 3, the dihedral group of order 2m is denoted by
Dyy,. Let G be a group. Given z,y € G, the commutator [z,y] of z and
y is [z,y] = zyx~'y~! and the derived subgroup of G is denoted by G’.
We see that the commutator map ag : G/Z(G) x G/Z(G) — G’ given
by aq(zZ(G),yZ(G)) = [x,y] is well defined. We say that the groups
G and H are isoclinic (see [6]) if there is a pair (¢,) such that ¢ is
an isomorphism from G/Z(G) to H/Z(H), ¢ is an isomorphism from
G’ to H and Y(ag(zZ(G),yZ(Q))) = ap(e(xZ(G)), p(yZ(G))), for all
x,y € G. The pair (p, 1) is an isoclinism from G to H. We know that
isomorphic groups are isoclinic (by |8, Lemma 2.3|) and we observe that
the dihedral group Dg and the quaternion group of order 8 are isoclinic,
but they are not isomorphic.

Given a prime number p, we say that a p-group P is extraspecial if
|Z(P)| = p and P' = Z(P) = ®(P), where ®(P) is the Frattini subgroup
of P. An extraspecial p-group has order p?"*1, for some integer n > 1 (see
[15, 5.3.8]). Further, every non-abelian group of order p? is extraspecial.

The degree of commutativity P(G) of a finite group G is the probability
that two randomly chosen elements commute, that is,

_ H@y) e GG ay =ya}|

P(G) G

If G and J are isoclinic groups, then P(G) = P(J) (see |8, Lemma 2.4]).
In this paper, we will use the classification of the groups with degree of
commutativity greater than or equal to 1/2 obtained in [§].

Theorem 1 (|8, Theorem 3.1]). Let G be a finite non-abelian group. We
have P(G) > 1/2 if and only if G is isoclinic to Dg or it is isoclinic to an
extraspecial 2-group.

Some results on the non-commuting graph T(G) are given below.

Lemma 1. Let G be a finite non-abelian group.

(i) If a group J is isoclinic to G, then T(G) and T(J) are isomorphic
graphs.

(ii) 2|E(T(G))| = (1 - P(G)(IV(T(G))| + 1),
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(iii) If [V(T(QG))| < 10, then T(G) is isomorphic to one of the following
graphs: K3, K112, K7, Ki1,11,3, K2222 or Ki1,1,1,1,4-

(iv) The non-commuting graph T(G) is isomorphic to K322 if and only
if G is isoclinic to an extraspecial 3-group of order 27.

(v) The non-commuting graph T(QG) is planar if and only if G is isoclinic
to Dg or Dsg.

(vi) The non-commuting graph T(G) is toroidal if and only if T(G) is
isomorphic to K1111,3, K7 or K22229.

(vii) If G is isoclinic to an extraspecial 2-group of order 22"*1 withn > 2,
then T(G) is a graph with 22" — 1 vertices and (22" — 1)2?"~2 edges.

Proof. The proofs of statements (i), (ii), (iv) and (v) can be seen in [12]
(respectively, Proposition 3.1, Theorem 3.4, Proposition 3.3 and Theorem
3.7). To prove (iii), we observe that [G : Z(G)] # 11 (because G is
non-abelian) and so |V (T(G))| # 10; now, the proof of (iii) follows from
[12, Lemma 3.12|. The statement (vi) is a consequence of parts (i) and
(iv) and [12, Theorem 3.9 and Lemmas 3.10 and 3.11]. To prove (vii),
consider an extraspecial 2-group E of order 22"*! with n > 2. We note
that the complement graph of T(E) is a graph with 22" — 1 vertices and
(22" — 1)(22"=2 — 1) edges (see [13, Proposition 3.2]). So, the graph T(E)
has 22" — 1 vertices and (22" — 1)227=2 edges. By part (i), if G is isoclinic
to E, then T(G) has 2" — 1 vertices and (22" — 1)22"~2 edges. O

In the next result, we describe the structure of G/Z(G) in the case
where [G : Z(G)] = 12.

Proposition 1. If G is a non-abelian group such that [G : Z(G)] =
12, then G/Z(G) is isomorphic to D1y or to the alternating group on
4 letters As. Further, if G/Z(G) is isomorphic to Dia, then T(G) is
isomorphic to K1 111115

yhstytydydy

Proof. By [16, p. 85|, we know that, up to isomorphism, there are only
five groups of order 12: Zis, Zo X Zg, D12, A4 and the group

(a,b]a® =1, b* = a® = (ab)?).

Let G be a non-abelian group such that [G : Z(G)] = 12. Looking at
the list of the groups of order 12, we get that if G/Z(G) has no cyclic
subgroup of order 6, then G/Z(G) is isomorphic to Aj4.

Suppose that G/Z(G) has a cyclic subgroup of order 6. We will show
that T(G) is isomorphic to K11,1,1,1,1,5 and G/Z(G) is isomorphic to Dys.
Consider the homomorphism f : G — G/Z(G) given by f(z) = 2Z(G)
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and let B be the subgroup of G such that f(B) is the cyclic subgroup
of order 6 of G/Z(G). It is clear that B is abelian and [G : B] = 2. So,
|[V(T(G)) N B| = 5 and the subgraph induced by V(T(G)) N B has no
edges. Given z € V(T(G)) \ B, arguing as in the third paragraph of the
proof of [12, Lemma 3.12|, we can prove that z is adjacent to all other
vertices of T(G). Thus, T(G) is isomorphic to K11,1,1,1,1,5. Further, since
f(B) is a cyclic subgroup of order 6 of G/Z(G), we get that f(B) has one
element of order 2, two elements of order 3 and two elements of order 6. We
also observe that all elements of (G/Z(G)) \ f(B) have order 2, because
each vertex of V(T(G)) \ B is adjacent to all other vertices of T(G). So,
using the classification of the groups of order 12, we conclude that G/Z(G)
is isomorphic to Djs. Therefore, if [G : Z(G)] = 12, then G/Z(G) is
isomorphic to Do or Ay.

We note that if G/Z(G) is isomorphic to D2, then G/Z(G) has a cyclic
subgroup of order 6. In this case, as shown in the paragraph above, T(G)
is isomorphic to K1111.1.15. This proves the second statement of this

sbstytylydy

result. O

Now, we classify the finite groups whose non-commuting graph of
a transversal of the center is double-toroidal.

Theorem A. Let G be a finite non-abelian group. The non-commuting
graph T(G) is double-toroidal if and only if G is isoclinic to the dihedral
group Djg.

Proof. First, we observe that T(D;g) is isomorphic to V(D1g) (because
Z(D1p) = {1}), that is, T(Dig) is isomorphic to K1 1,1,1,1,4. Thus, by
[14, Figure 1], we get that T(Dg) can be embedded on a double-torus.
Using Lemma 1 (parts (v) and (vi)), we concluded that T(D1p) is a double-
toroidal graph. So, by Lemma 1(i), if a group G is isoclinic to Djg, then
T(G) is double-toroidal.

Conversely, suppose that T(G) is a double-toroidal graph. Hence, by
[17, Lemma 6.3.24],

[E(T(G))] < 3[V(T(G))] + 6. (1)

The graphs T(Dg) and T(Dg) are planar (see Lemma 1(v)). By (1)
and Lemma 1(vii), we have that G is not isoclinic to an extraspecial
2-group of order 22"+ with n > 2. Hence, by Theorem 1, we obtain that
P(G) < 1/2. So, using (1) and Lemma 1(ii), we have

1

[B(T(@))] = 5 (1= P@)(IV(T(G)] + 1)* < 3[V(T(G))| + 6,
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and thus

6|V(T(G))| +12 1
St ST <y

1

that is,

(IV(T(G)| + 1) = 12]V(T(G))| — 24
2(|V(T(G))] + 1)

which implies |V(T(G))| < 11.

Let us show that |V (T(G))| # 11. To this end, we suppose the con-
trary, that is, suppose that |V(T(G))| = 11, that is, [G : Z(G)] = 12.
So, G/Z(G) is isomorphic to Dyy or Ay (see Proposition 1). If G/Z(G)
is isomorphic to Dj9, then Proposition 1 tells us that T(G) is isomor-
phic to K 11,1,1,1,5, which contradicts (1). Thus, we get that G/Z(G)
is isomorphic to A4. It is routine to verify that T(A4) is isomorphic
to K22223. So, T(G/Z(G)) is isomorphic to K32223. We note that
V(T(G/Z(G))) = {=Z(G) : = € V(T(G))}, because |Z(G/Z(@G))| = 1.
Given z,y € V(T(Q)), with = # y, it is easy to see that if 2Z(G) and
yZ(G) are adjacent vertices in T(G/Z(G)), then x and y are adjacent
vertices in T(G). Hence, T(G/Z(G)) is isomorphic to a spanning subgraph
of T(G), that is, K292923 is a subgraph of T(G), which contradicts (1),
because K929293 has 11 vertices and 48 edges. Hence, |V (T(G))| # 11
and, therefore, |V (T(G))| < 10.

It follows from Lemma 1(iii) that T(G) is isomorphic to K3, Kj 112,

ybyty

K7, Kl 1.1.1,3, K2’272’2 or Kl 1.1.1.1.4- It is clear that Kg and KLLLQ are

Lyt sty tytyty

planar graphs and we have that K7, K 1,113 and K2222 are toroidal

bty

graphs (see Lemma 1(vi)). Hence, we obtain that T(G) is isomorphic to
K1 1.1,1,1,4. Therefore, by [12, Lemma 3.5], G is isoclinic to Djo. O

PRkt ]

<0,

The next result gives us the groups with a 1-planar non-commuting
graph on a transversal of the center. In view of Lemma 1(v), we can
consider only the case where the graph T(G) is non-planar.

Theorem B. Let G be a finite non-abelian group such that T(G) is
non-planar. The non-commuting graph T(G) is 1-planar if and only if G
is isoclinic to an extraspecial 3-group of order 27.

Proof. The non-commuting graph on a transversal of the center of an
extraspecial 3-group of order 27 is isomorphic to the graph Ka 222 (see
Lemma 1(iv)). In Figure 1, we see a 1-planar drawing of the graph K322 2
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(we consider Kj 222 with vertex set {v1,v2,v3, v4, 5, U6, v7, U3} and par-
tition {{v1,v2},{vs,va},{vs,v6},{v7,vs}}). Hence, if G is isoclinic to an
extraspecial 3-group of order 27, then T(G) is 1-planar.

FIGURE 1. K392 is 1-planar

Conversely, let G be a finite non-abelian group such that T(G) is
non-planar and suppose that T(G) is 1-planar. By [5, Lemma 2.2|, we
have that

[E(T(G))| < 4[V(T(G))| - 8. (2)

Using (2), parts (v) and (vii) of Lemma 1 and Theorem 1, we obtain
that P(G) < 1/2. Hence, by (2) and Lemma 1(ii), we have

|E(T(G))| = %(1 = P(G))(IV(T(G))| +1)* < 4[V(T(G))| - 8

and so
B 8|V(T(@))| — 16 < P(G) <

G EOEDNR

Consequently,

(IV(T(G)] + 1)* — 16V (T(G))| + 32

2([V(T(@))] + 1)? <0

and thus |V(T(G))| < 10. By Lemma 1(iii), we get that T(G) is isomorphic
to K3, K111,2, K11,1,1,3, K7, K222 or Kq11,1,1,4. We know that K3 and

K1.1,1,2 are planar graphs. By [7, Lemma 7], K1.11,1,3 is not 1-planar and,
thus, we have that K7 and K7,1,1,1,1,4 are not 1-planar. We conclude that

T(G) is isomorphic to K39299. It follows from Lemma 1(iv) that G is
isoclinic to an extraspecial 3-group of order 27. 0J
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