Double-toroidal and 1-planar non-commuting graph of a group

J. C. M. Pezzott

Communicated by A. Yu. Olshanskii

Abstract

Let G be a finite non-abelian group and denote by $Z(G)$ its center. The non-commuting graph of G on a transversal of the center is the graph whose vertices are the non-central elements of a transversal of $Z(G)$ in G and two vertices x and y are adjacent whenever $x y \neq y x$. In this work, we classify the finite non-abelian groups whose non-commuting graph on a transversal of the center is double-toroidal or 1-planar.

1. Introduction

In this paper, we consider only finite groups and finite undirected graphs without loops or multiple edges. Let G be a finite non-abelian group and denote the center of G by $Z(G)$. The non-commuting graph of G is the graph whose vertex set is $G \backslash Z(G)$ and two vertices x and y are adjacent whenever $x y \neq y x$. The non-commuting graph of a group has been extensively studied and many papers were published on the topic: see $[1-4,9-11]$. Here, we denote this graph by $\nabla(G)$.

Let T be a transversal of $Z(G)$ in G. The non-commuting graph of G on a transversal of the center is the graph denoted by $\mathbb{T}(G)$ whose vertex set is $T \backslash Z(G)$ and two vertices x and y are adjacent whenever $x y \neq y x$. So, $\mathbb{T}(G)$ has $[G: Z(G)]-1$ vertices and it is a subgraph of $\nabla(G)$. Further, as observed in [9, p. 911], the adjacency relations in $\nabla(G)$

[^0]can be obtained from adjacency relations in $\mathbb{T}(G)$, because two vertices x and y of $\nabla(G)$ are adjacent if and only if there are adjacent vertices x^{\prime} and y^{\prime} in $\mathbb{T}(G)$ such that $x \in x^{\prime} Z(G)$ and $y \in y^{\prime} Z(G)$. We also note that if T^{\prime} is another transversal of $Z(G)$ in G, then the non-commuting graph on a transversal obtained from T^{\prime} is isomorphic to the non-commuting graph obtained from T. Hence, we study the graph $\mathbb{T}(G)$ without mentioning the choice of the transversal.

The non-commuting graph $\mathbb{T}(G)$ was investigated in $[10,12]$ and, in [13], we see results on the complement of graph $\mathbb{T}(G)$. Further, it is worth mentioning that the graph $\mathbb{T}(G)$ was also examined in the studies on the non-commuting graph $\nabla(G)$ in the papers $[3,4,9,11]$. In $[9,10]$, the graph $\mathbb{T}(G)$ was called the underlying graph associated with $\nabla(G)$ and was denoted by $\nabla^{u}(G)$.

Basic concepts and results on graphs can be seen in [17]. Let \mathcal{G} be a graph. An embedding of \mathcal{G} into a surface is a drawing of \mathcal{G} on the surface in such a way no two edges intersect except at a vertex in which both are incident. If \mathcal{G} can be embedded in the plane, we say that \mathcal{G} is planar. Given an integer $n \geqslant 0$, let \mathbb{S}_{n} be the surface obtained from the sphere by attaching n handles. Note that \mathbb{S}_{0} is the sphere. The smallest non-negative integer n such that a graph \mathcal{G} can be embedded in \mathbb{S}_{n} is called the genus of \mathcal{G}. A graph with genus 0 is a planar graph. A graph with genus 1 is called toroidal and, in this case, the graph can be embedded into a torus. A graph with genus 2 is a double-toroidal graph and, here, it is embedded into a double-torus. A classification of the groups whose non-commuting graph on a transversal is planar or toroidal was obtained in [12, Theorems 3.7 and 3.9]. In this paper, we determine the groups with a double-toroidal non-commuting graph on a transversal of the center: see Theorem A.

A graph is said 1-planar if it can be drawn in the plane in such a way that each edge is crossed at most once. We note that every planar graph is a 1-planar graph. Here, in Theorem B, we classify all finite non-abelian groups whose non-commuting graph on a transversal of the center is 1-planar.

2. Results

In this section, we prove the main results of this work (Theorems A and B). We start with some concepts and notation.

Let \mathcal{G} be a graph. The vertex set and the edge set of \mathcal{G} are denoted, respectively, by $V(\mathcal{G})$ and $E(\mathcal{G})$. Given a subset V^{\prime} of $V(\mathcal{G})$, the subgraph of \mathcal{G} induced by V^{\prime} is the graph whose vertex set is V^{\prime} and the edge set
is $\left\{\{u, v\}: u, v \in V^{\prime}, u \neq v,\{u, v\} \in E(\mathcal{G})\right\}$. A graph \mathcal{G}^{\prime} is a spanning subgraph of \mathcal{G} if $V\left(\mathcal{G}^{\prime}\right)=V(\mathcal{G})$ and $E\left(\mathcal{G}^{\prime}\right) \subset E(\mathcal{G})$. As usual, the complete graph on n vertices is denoted by K_{n} and the complete multipartite graph with m partite sets of sizes $n_{1}, n_{2}, \ldots, n_{m}$, with $1 \leqslant n_{1} \leqslant n_{2} \leqslant \cdots \leqslant n_{m}$, is denoted by $K_{n_{1}, n_{2}, \ldots, n_{m}}$.

Given an integer $m \geqslant 3$, the dihedral group of order $2 m$ is denoted by $D_{2 m}$. Let G be a group. Given $x, y \in G$, the commutator $[x, y]$ of x and y is $[x, y]=x y x^{-1} y^{-1}$ and the derived subgroup of G is denoted by G^{\prime}. We see that the commutator map $\alpha_{G}: G / Z(G) \times G / Z(G) \rightarrow G^{\prime}$ given by $\alpha_{G}(x Z(G), y Z(G))=[x, y]$ is well defined. We say that the groups G and H are isoclinic (see [6]) if there is a pair (φ, ψ) such that φ is an isomorphism from $G / Z(G)$ to $H / Z(H), \psi$ is an isomorphism from G^{\prime} to H^{\prime} and $\psi\left(\alpha_{G}(x Z(G), y Z(G))\right)=\alpha_{H}(\varphi(x Z(G)), \varphi(y Z(G)))$, for all $x, y \in G$. The pair (φ, ψ) is an isoclinism from G to H. We know that isomorphic groups are isoclinic (by [8, Lemma 2.3]) and we observe that the dihedral group D_{8} and the quaternion group of order 8 are isoclinic, but they are not isomorphic.

Given a prime number p, we say that a p-group P is extraspecial if $|Z(P)|=p$ and $P^{\prime}=Z(P)=\Phi(P)$, where $\Phi(P)$ is the Frattini subgroup of P. An extraspecial p-group has order $p^{2 n+1}$, for some integer $n \geqslant 1$ (see $[15,5.3 .8])$. Further, every non-abelian group of order p^{3} is extraspecial.

The degree of commutativity $P(G)$ of a finite group G is the probability that two randomly chosen elements commute, that is,

$$
P(G)=\frac{|\{(x, y) \in G \times G: x y=y x\}|}{|G|^{2}}
$$

If G and J are isoclinic groups, then $P(G)=P(J)$ (see [8, Lemma 2.4]). In this paper, we will use the classification of the groups with degree of commutativity greater than or equal to $1 / 2$ obtained in [8].

Theorem 1 ([8, Theorem 3.1]). Let G be a finite non-abelian group. We have $P(G) \geqslant 1 / 2$ if and only if G is isoclinic to D_{6} or it is isoclinic to an extraspecial 2-group.

Some results on the non-commuting graph $\mathbb{T}(G)$ are given below.
Lemma 1. Let G be a finite non-abelian group.
(i) If a group J is isoclinic to G, then $\mathbb{T}(G)$ and $\mathbb{T}(J)$ are isomorphic graphs.
(ii) $2|E(\mathbb{T}(G))|=(1-P(G))(|V(\mathbb{T}(G))|+1)^{2}$.
(iii) If $|V(\mathbb{T}(G))| \leqslant 10$, then $\mathbb{T}(G)$ is isomorphic to one of the following graphs: $K_{3}, K_{1,1,1,2}, K_{7}, K_{1,1,1,1,3}, K_{2,2,2,2}$ or $K_{1,1,1,1,1,4}$.
(iv) The non-commuting graph $\mathbb{T}(G)$ is isomorphic to $K_{2,2,2,2}$ if and only if G is isoclinic to an extraspecial 3-group of order 27 .
(v) The non-commuting graph $\mathbb{T}(G)$ is planar if and only if G is isoclinic to D_{6} or D_{8}.
(vi) The non-commuting graph $\mathbb{T}(G)$ is toroidal if and only if $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,3}, K_{7}$ or $K_{2,2,2,2}$.
(vii) If G is isoclinic to an extraspecial 2 -group of order $2^{2 n+1}$, with $n \geqslant 2$, then $\mathbb{T}(G)$ is a graph with $2^{2 n}-1$ vertices and $\left(2^{2 n}-1\right) 2^{2 n-2}$ edges.

Proof. The proofs of statements (i), (ii), (iv) and (v) can be seen in [12] (respectively, Proposition 3.1, Theorem 3.4, Proposition 3.3 and Theorem 3.7). To prove (iii), we observe that $[G: Z(G)] \neq 11$ (because G is non-abelian) and so $|V(\mathbb{T}(G))| \neq 10$; now, the proof of (iii) follows from [12, Lemma 3.12]. The statement (vi) is a consequence of parts (i) and (iv) and [12, Theorem 3.9 and Lemmas 3.10 and 3.11]. To prove (vii), consider an extraspecial 2 -group E of order $2^{2 n+1}$, with $n \geqslant 2$. We note that the complement graph of $\mathbb{T}(E)$ is a graph with $2^{2 n}-1$ vertices and $\left(2^{2 n}-1\right)\left(2^{2 n-2}-1\right)$ edges (see [13, Proposition 3.2]). So, the graph $\mathbb{T}(E)$ has $2^{2 n}-1$ vertices and $\left(2^{2 n}-1\right) 2^{2 n-2}$ edges. By part (i), if G is isoclinic to E, then $\mathbb{T}(G)$ has $2^{2 n}-1$ vertices and $\left(2^{2 n}-1\right) 2^{2 n-2}$ edges.

In the next result, we describe the structure of $G / Z(G)$ in the case where $[G: Z(G)]=12$.

Proposition 1. If G is a non-abelian group such that $[G: Z(G)]=$ 12, then $G / Z(G)$ is isomorphic to D_{12} or to the alternating group on 4 letters A_{4}. Further, if $G / Z(G)$ is isomorphic to D_{12}, then $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$.

Proof. By [16, p. 85], we know that, up to isomorphism, there are only five groups of order 12 : $\mathbb{Z}_{12}, \mathbb{Z}_{2} \times \mathbb{Z}_{6}, D_{12}, A_{4}$ and the group

$$
\left\langle a, b \mid a^{6}=1, b^{2}=a^{3}=(a b)^{2}\right\rangle
$$

Let G be a non-abelian group such that $[G: Z(G)]=12$. Looking at the list of the groups of order 12 , we get that if $G / Z(G)$ has no cyclic subgroup of order 6 , then $G / Z(G)$ is isomorphic to A_{4}.

Suppose that $G / Z(G)$ has a cyclic subgroup of order 6 . We will show that $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$ and $G / Z(G)$ is isomorphic to D_{12}. Consider the homomorphism $f: G \rightarrow G / Z(G)$ given by $f(x)=x Z(G)$
and let B be the subgroup of G such that $f(B)$ is the cyclic subgroup of order 6 of $G / Z(G)$. It is clear that B is abelian and $[G: B]=2$. So, $|V(\mathbb{T}(G)) \cap B|=5$ and the subgraph induced by $V(\mathbb{T}(G)) \cap B$ has no edges. Given $x \in V(\mathbb{T}(G)) \backslash B$, arguing as in the third paragraph of the proof of [12, Lemma 3.12], we can prove that x is adjacent to all other vertices of $\mathbb{T}(G)$. Thus, $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$. Further, since $f(B)$ is a cyclic subgroup of order 6 of $G / Z(G)$, we get that $f(B)$ has one element of order 2 , two elements of order 3 and two elements of order 6 . We also observe that all elements of $(G / Z(G)) \backslash f(B)$ have order 2 , because each vertex of $V(\mathbb{T}(G)) \backslash B$ is adjacent to all other vertices of $\mathbb{T}(G)$. So, using the classification of the groups of order 12 , we conclude that $G / Z(G)$ is isomorphic to D_{12}. Therefore, if $[G: Z(G)]=12$, then $G / Z(G)$ is isomorphic to D_{12} or A_{4}.

We note that if $G / Z(G)$ is isomorphic to D_{12}, then $G / Z(G)$ has a cyclic subgroup of order 6 . In this case, as shown in the paragraph above, $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$. This proves the second statement of this result.

Now, we classify the finite groups whose non-commuting graph of a transversal of the center is double-toroidal.

Theorem A. Let G be a finite non-abelian group. The non-commuting graph $\mathbb{T}(G)$ is double-toroidal if and only if G is isoclinic to the dihedral group D_{10}.

Proof. First, we observe that $\mathbb{T}\left(D_{10}\right)$ is isomorphic to $\nabla\left(D_{10}\right)$ (because $\left.Z\left(D_{10}\right)=\{1\}\right)$, that is, $\mathbb{T}\left(D_{10}\right)$ is isomorphic to $K_{1,1,1,1,1,4}$. Thus, by [14, Figure 1], we get that $\mathbb{T}\left(D_{10}\right)$ can be embedded on a double-torus. Using Lemma 1 (parts (v) and (vi)), we concluded that $\mathbb{T}\left(D_{10}\right)$ is a doubletoroidal graph. So, by Lemma 1(i), if a group G is isoclinic to D_{10}, then $\mathbb{T}(G)$ is double-toroidal.

Conversely, suppose that $\mathbb{T}(G)$ is a double-toroidal graph. Hence, by [17, Lemma 6.3.24],

$$
\begin{equation*}
|E(\mathbb{T}(G))| \leqslant 3|V(\mathbb{T}(G))|+6 \tag{1}
\end{equation*}
$$

The graphs $\mathbb{T}\left(D_{6}\right)$ and $\mathbb{T}\left(D_{8}\right)$ are planar (see Lemma $1(\mathrm{v})$). By (1) and Lemma 1(vii), we have that G is not isoclinic to an extraspecial 2 -group of order $2^{2 n+1}$, with $n \geqslant 2$. Hence, by Theorem 1, we obtain that $P(G)<1 / 2$. So, using (1) and Lemma 1(ii), we have

$$
|E(\mathbb{T}(G))|=\frac{1}{2}(1-P(G))(|V(\mathbb{T}(G))|+1)^{2} \leqslant 3|V(\mathbb{T}(G))|+6
$$

and thus

$$
1-\frac{6|V(\mathbb{T}(G))|+12}{(|V(\mathbb{T}(G))|+1)^{2}} \leqslant P(G)<\frac{1}{2}
$$

that is,

$$
\frac{(|V(\mathbb{T}(G))|+1)^{2}-12|V(\mathbb{T}(G))|-24}{2(|V(\mathbb{T}(G))|+1)^{2}}<0
$$

which implies $|V(\mathbb{T}(G))| \leqslant 11$.
Let us show that $|V(\mathbb{T}(G))| \neq 11$. To this end, we suppose the contrary, that is, suppose that $|V(\mathbb{T}(G))|=11$, that is, $[G: Z(G)]=12$. So, $G / Z(G)$ is isomorphic to D_{12} or A_{4} (see Proposition 1). If $G / Z(G)$ is isomorphic to D_{12}, then Proposition 1 tells us that $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,1,5}$, which contradicts (1). Thus, we get that $G / Z(G)$ is isomorphic to A_{4}. It is routine to verify that $\mathbb{T}\left(A_{4}\right)$ is isomorphic to $K_{2,2,2,2,3}$. So, $\mathbb{T}(G / Z(G))$ is isomorphic to $K_{2,2,2,2,3}$. We note that $V(\mathbb{T}(G / Z(G)))=\{x Z(G): x \in V(\mathbb{T}(G))\}$, because $|Z(G / Z(G))|=1$. Given $x, y \in V(\mathbb{T}(G))$, with $x \neq y$, it is easy to see that if $x Z(G)$ and $y Z(G)$ are adjacent vertices in $\mathbb{T}(G / Z(G))$, then x and y are adjacent vertices in $\mathbb{T}(G)$. Hence, $\mathbb{T}(G / Z(G))$ is isomorphic to a spanning subgraph of $\mathbb{T}(G)$, that is, $K_{2,2,2,2,3}$ is a subgraph of $\mathbb{T}(G)$, which contradicts (1), because $K_{2,2,2,2,3}$ has 11 vertices and 48 edges. Hence, $|V(\mathbb{T}(G))| \neq 11$ and, therefore, $|V(\mathbb{T}(G))| \leqslant 10$.

It follows from Lemma 1 (iii) that $\mathbb{T}(G)$ is isomorphic to $K_{3}, K_{1,1,1,2}$, $K_{7}, K_{1,1,1,1,3}, K_{2,2,2,2}$ or $K_{1,1,1,1,1,4}$. It is clear that K_{3} and $K_{1,1,1,2}$ are planar graphs and we have that $K_{7}, K_{1,1,1,1,3}$ and $K_{2,2,2,2}$ are toroidal graphs (see Lemma $1(\mathrm{vi})$). Hence, we obtain that $\mathbb{T}(G)$ is isomorphic to $K_{1,1,1,1,1,4}$. Therefore, by [12, Lemma 3.5], G is isoclinic to D_{10}.

The next result gives us the groups with a 1-planar non-commuting graph on a transversal of the center. In view of Lemma 1(v), we can consider only the case where the graph $\mathbb{T}(G)$ is non-planar.

Theorem B. Let G be a finite non-abelian group such that $\mathbb{T}(G)$ is non-planar. The non-commuting graph $\mathbb{T}(G)$ is 1-planar if and only if G is isoclinic to an extraspecial 3 -group of order 27.

Proof. The non-commuting graph on a transversal of the center of an extraspecial 3-group of order 27 is isomorphic to the graph $K_{2,2,2,2}$ (see Lemma 1(iv)). In Figure 1, we see a 1-planar drawing of the graph $K_{2,2,2,2}$
(we consider $K_{2,2,2,2}$ with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ and partition $\left.\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{7}, v_{8}\right\}\right\}\right)$. Hence, if G is isoclinic to an extraspecial 3 -group of order 27 , then $\mathbb{T}(G)$ is 1-planar.

Figure 1. $K_{2,2,2,2}$ is 1-planar
Conversely, let G be a finite non-abelian group such that $\mathbb{T}(G)$ is non-planar and suppose that $\mathbb{T}(G)$ is 1-planar. By [5, Lemma 2.2], we have that

$$
\begin{equation*}
|E(\mathbb{T}(G))| \leqslant 4|V(\mathbb{T}(G))|-8 . \tag{2}
\end{equation*}
$$

Using (2), parts (v) and (vii) of Lemma 1 and Theorem 1, we obtain that $P(G)<1 / 2$. Hence, by (2) and Lemma 1(ii), we have

$$
|E(\mathbb{T}(G))|=\frac{1}{2}(1-P(G))(|V(\mathbb{T}(G))|+1)^{2} \leqslant 4|V(\mathbb{T}(G))|-8
$$

and so

$$
1-\frac{8|V(\mathbb{T}(G))|-16}{(|V(\mathbb{T}(G))|+1)^{2}} \leqslant P(G)<\frac{1}{2} .
$$

Consequently,

$$
\frac{(|V(\mathbb{T}(G))|+1)^{2}-16|V(\mathbb{T}(G))|+32}{2(|V(\mathbb{T}(G))|+1)^{2}}<0
$$

and thus $|V(\mathbb{T}(G))| \leqslant 10$. By Lemma 1(iii), we get that $\mathbb{T}(G)$ is isomorphic to $K_{3}, K_{1,1,1,2}, K_{1,1,1,1,3}, K_{7}, K_{2,2,2,2}$ or $K_{1,1,1,1,1,4}$. We know that K_{3} and $K_{1,1,1,2}$ are planar graphs. By [7, Lemma 7], $K_{1,1,1,1,3}$ is not 1 -planar and, thus, we have that K_{7} and $K_{1,1,1,1,1,4}$ are not 1-planar. We conclude that $\mathbb{T}(G)$ is isomorphic to $K_{2,2,2,2}$. It follows from Lemma 1 (iv) that G is isoclinic to an extraspecial 3 -group of order 27 .

Acknowledgements

I would like to thank the anonymous referee for careful reading of the manuscript and suggestions that improved the paper.

References

[1] A. Abdollahi, S. Akbari and H. R. Maimani. Non-commuting graph of a group. J. Algebra, 298(2) (2006), 468-492.
[2] M. Afkhami, D. G. M. Farrokhi and K. Khashyarmanesh. Planar, toroidal, and projective commuting and noncommuting graphs. Comm. Algebra 43(7) (2015), 2964-2970.
[3] M. Akbari and A. R. Moghaddamfar. Groups for which the noncommuting graph is a split graph. Int. J. Group Theory, 6(1) (2017), 29-35.
[4] M. Akbari and A. R. Moghaddamfar. The existence or nonexistence of noncommuting graphs with particular properties. J. Algebra Appl. 13(1) (2014), 1350064.
[5] I. Fabrici and T. Madaras. The structure of 1-planar graphs. Discrete Math., 307 (2007), 854-865.
[6] P. Hall. The classification of prime-power groups. J. Reine Angew. Math. 182 (1940), 130-141.
[7] V. P. Korzhik. Minimal non-1-planar graphs. Discrete Math., 308(7) (2008), 13191327.
[8] P. Lescot. Isoclinism classes and commutativity degrees of finite groups. J. Algebra, 177(3) (1995), 847-869.
[9] A. R. Moghaddamfar. About noncommuting graphs. Siberian Math. J., 47(6) (2006), 911-914.
[10] A. R. Moghaddamfar. Some results concerning noncommuting graphs associated with finite groups. Southeast Asian Bull. Math., 38(5) (2014), 661-676.
[11] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi. On the noncommuting graph associated with a finite group. Siberian Math. J., 46(2) (2005), 325-332.
[12] J. C. M. Pezzott. Groups whose non-commuting graph on a transversal is planar or toroidal. J. Algebra Appl. (2021). https://doi.org/10.1142/S0219498822501985.
[13] J. C. M. Pezzott and I. N. Nakaoka. On groups whose commuting graph on a transversal is strongly regular. Discrete Math., 342(12) (2019), 111626.
[14] D. Nongsiang and P. K. Saikia. On the non-nilpotent graphs of a group. Int. Electron. J. Algebra, 22 (2017), 78-96.
[15] D. J. Robinson. A Course in the Theory of Groups. Springer-Verlag, New York, 1996.
[16] J. J. Rotman. An Introduction to the Theory of Groups. Fourth edition. SpringerVerlag, New York: 1995.
[17] D. B. West. Introduction to Graph Theory. Second Edition, Prentice Hall, 2001.

Contact information
$\begin{array}{ll}\text { Julio Cesar Moraes } & \text { Departamento de Matemática, } \\ \text { Pezzott } & \text { Universidade Estadual de Maringá, } \\ & \text { Maringá, PR, CEP: 87020-900 } \\ & \text { Brazil } \\ & \text { E-Mail(s): juliopezzott@gmail.com }\end{array}$
Received by the editors: 21.12.2021.

[^0]: 2020 MSC: 05C25, 05C10.
 Key words and phrases: non-commuting graph, double-toroidal graph, 1-planar graph, isoclinism.

