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Abstract. Let G be a őnite non-abelian group and denote

by Z(G) its center. The non-commuting graph of G on a transversal

of the center is the graph whose vertices are the non-central elements

of a transversal of Z(G) in G and two vertices x and y are adjacent

whenever xy ̸= yx. In this work, we classify the őnite non-abelian

groups whose non-commuting graph on a transversal of the center

is double-toroidal or 1-planar.

1. Introduction

In this paper, we consider only őnite groups and őnite undirected
graphs without loops or multiple edges. Let G be a őnite non-abelian
group and denote the center of G by Z(G). The non-commuting graph of

G is the graph whose vertex set is G \ Z(G) and two vertices x and y are
adjacent whenever xy ≠ yx. The non-commuting graph of a group has
been extensively studied and many papers were published on the topic:
see [1–4,9–11]. Here, we denote this graph by ∇(G).

Let T be a transversal of Z(G) in G. The non-commuting graph of

G on a transversal of the center is the graph denoted by T(G) whose
vertex set is T \ Z(G) and two vertices x and y are adjacent whenever
xy ̸= yx. So, T(G) has [G : Z(G)] − 1 vertices and it is a subgraph of
∇(G). Further, as observed in [9, p. 911], the adjacency relations in ∇(G)
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can be obtained from adjacency relations in T(G), because two vertices x
and y of ∇(G) are adjacent if and only if there are adjacent vertices x′ and
y′ in T(G) such that x ∈ x′Z(G) and y ∈ y′Z(G). We also note that if T ′

is another transversal of Z(G) in G, then the non-commuting graph on
a transversal obtained from T ′ is isomorphic to the non-commuting graph
obtained from T . Hence, we study the graph T(G) without mentioning
the choice of the transversal.

The non-commuting graph T(G) was investigated in [10, 12] and,
in [13], we see results on the complement of graph T(G). Further, it is
worth mentioning that the graph T(G) was also examined in the studies
on the non-commuting graph ∇(G) in the papers [3,4,9,11]. In [9,10], the
graph T(G) was called the underlying graph associated with ∇(G) and
was denoted by ∇u(G).

Basic concepts and results on graphs can be seen in [17]. Let G be
a graph. An embedding of G into a surface is a drawing of G on the surface
in such a way no two edges intersect except at a vertex in which both
are incident. If G can be embedded in the plane, we say that G is planar.
Given an integer n ⩾ 0, let Sn be the surface obtained from the sphere by
attaching n handles. Note that S0 is the sphere. The smallest non-negative
integer n such that a graph G can be embedded in Sn is called the genus

of G. A graph with genus 0 is a planar graph. A graph with genus 1 is
called toroidal and, in this case, the graph can be embedded into a torus.
A graph with genus 2 is a double-toroidal graph and, here, it is embedded
into a double-torus. A classiőcation of the groups whose non-commuting
graph on a transversal is planar or toroidal was obtained in [12, Theorems
3.7 and 3.9]. In this paper, we determine the groups with a double-toroidal
non-commuting graph on a transversal of the center: see Theorem A.

A graph is said 1-planar if it can be drawn in the plane in such a way
that each edge is crossed at most once. We note that every planar graph
is a 1-planar graph. Here, in Theorem B, we classify all őnite non-abelian
groups whose non-commuting graph on a transversal of the center is
1-planar.

2. Results

In this section, we prove the main results of this work (Theorems
A and B). We start with some concepts and notation.

Let G be a graph. The vertex set and the edge set of G are denoted,
respectively, by V (G) and E(G). Given a subset V ′ of V (G), the subgraph

of G induced by V ′ is the graph whose vertex set is V ′ and the edge set
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is {{u, v} : u, v ∈ V ′, u ≠ v, {u, v} ∈ E(G)}. A graph G′ is a spanning

subgraph of G if V (G′) = V (G) and E(G′) ⊂ E(G). As usual, the complete
graph on n vertices is denoted by Kn and the complete multipartite graph
with m partite sets of sizes n1, n2, . . ., nm, with 1 ⩽ n1 ⩽ n2 ⩽ · · · ⩽ nm,
is denoted by Kn1,n2,...,nm

.

Given an integer m ⩾ 3, the dihedral group of order 2m is denoted by
D2m. Let G be a group. Given x, y ∈ G, the commutator [x, y] of x and
y is [x, y] = xyx−1y−1 and the derived subgroup of G is denoted by G′.
We see that the commutator map αG : G/Z(G) × G/Z(G) → G′ given
by αG(xZ(G), yZ(G)) = [x, y] is well deőned. We say that the groups
G and H are isoclinic (see [6]) if there is a pair (φ, ψ) such that φ is
an isomorphism from G/Z(G) to H/Z(H), ψ is an isomorphism from
G′ to H ′ and ψ(αG(xZ(G), yZ(G))) = αH(φ(xZ(G)), φ(yZ(G))), for all
x, y ∈ G. The pair (φ, ψ) is an isoclinism from G to H. We know that
isomorphic groups are isoclinic (by [8, Lemma 2.3]) and we observe that
the dihedral group D8 and the quaternion group of order 8 are isoclinic,
but they are not isomorphic.

Given a prime number p, we say that a p-group P is extraspecial if
|Z(P )| = p and P ′ = Z(P ) = Φ(P ), where Φ(P ) is the Frattini subgroup
of P . An extraspecial p-group has order p2n+1, for some integer n ⩾ 1 (see
[15, 5.3.8]). Further, every non-abelian group of order p3 is extraspecial.

The degree of commutativity P (G) of a őnite group G is the probability
that two randomly chosen elements commute, that is,

P (G) =
|{(x, y) ∈ G×G : xy = yx}|

|G|2
.

If G and J are isoclinic groups, then P (G) = P (J) (see [8, Lemma 2.4]).
In this paper, we will use the classiőcation of the groups with degree of
commutativity greater than or equal to 1/2 obtained in [8].

Theorem 1 ([8, Theorem 3.1]). Let G be a őnite non-abelian group. We

have P (G) ⩾ 1/2 if and only if G is isoclinic to D6 or it is isoclinic to an

extraspecial 2-group.

Some results on the non-commuting graph T(G) are given below.

Lemma 1. Let G be a őnite non-abelian group.

(i) If a group J is isoclinic to G, then T(G) and T(J) are isomorphic

graphs.

(ii) 2|E(T(G))| = (1− P (G))(|V (T(G))|+ 1)2.
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(iii) If |V (T(G))| ⩽ 10, then T(G) is isomorphic to one of the following

graphs: K3, K1,1,1,2, K7, K1,1,1,1,3, K2,2,2,2 or K1,1,1,1,1,4.

(iv) The non-commuting graph T(G) is isomorphic to K2,2,2,2 if and only

if G is isoclinic to an extraspecial 3-group of order 27.
(v) The non-commuting graph T(G) is planar if and only if G is isoclinic

to D6 or D8.

(vi) The non-commuting graph T(G) is toroidal if and only if T(G) is

isomorphic to K1,1,1,1,3, K7 or K2,2,2,2.

(vii) If G is isoclinic to an extraspecial 2-group of order 22n+1, with n ⩾ 2,
then T(G) is a graph with 22n − 1 vertices and (22n − 1)22n−2 edges.

Proof. The proofs of statements (i), (ii), (iv) and (v) can be seen in [12]
(respectively, Proposition 3.1, Theorem 3.4, Proposition 3.3 and Theorem
3.7). To prove (iii), we observe that [G : Z(G)] ̸= 11 (because G is
non-abelian) and so |V (T(G))| ≠ 10; now, the proof of (iii) follows from
[12, Lemma 3.12]. The statement (vi) is a consequence of parts (i) and
(iv) and [12, Theorem 3.9 and Lemmas 3.10 and 3.11]. To prove (vii),
consider an extraspecial 2-group E of order 22n+1, with n ⩾ 2. We note
that the complement graph of T(E) is a graph with 22n − 1 vertices and
(22n − 1)(22n−2 − 1) edges (see [13, Proposition 3.2]). So, the graph T(E)
has 22n − 1 vertices and (22n − 1)22n−2 edges. By part (i), if G is isoclinic
to E, then T(G) has 22n − 1 vertices and (22n − 1)22n−2 edges.

In the next result, we describe the structure of G/Z(G) in the case
where [G : Z(G)] = 12.

Proposition 1. If G is a non-abelian group such that [G : Z(G)] =
12, then G/Z(G) is isomorphic to D12 or to the alternating group on

4 letters A4. Further, if G/Z(G) is isomorphic to D12, then T(G) is

isomorphic to K1,1,1,1,1,1,5.

Proof. By [16, p. 85], we know that, up to isomorphism, there are only
őve groups of order 12: Z12, Z2 × Z6, D12, A4 and the group

⟨a, b | a6 = 1, b2 = a3 = (ab)2⟩.

Let G be a non-abelian group such that [G : Z(G)] = 12. Looking at
the list of the groups of order 12, we get that if G/Z(G) has no cyclic
subgroup of order 6, then G/Z(G) is isomorphic to A4.

Suppose that G/Z(G) has a cyclic subgroup of order 6. We will show
that T(G) is isomorphic to K1,1,1,1,1,1,5 and G/Z(G) is isomorphic to D12.
Consider the homomorphism f : G → G/Z(G) given by f(x) = xZ(G)
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and let B be the subgroup of G such that f(B) is the cyclic subgroup
of order 6 of G/Z(G). It is clear that B is abelian and [G : B] = 2. So,
|V (T(G)) ∩ B| = 5 and the subgraph induced by V (T(G)) ∩ B has no
edges. Given x ∈ V (T(G)) \B, arguing as in the third paragraph of the
proof of [12, Lemma 3.12], we can prove that x is adjacent to all other
vertices of T(G). Thus, T(G) is isomorphic to K1,1,1,1,1,1,5. Further, since
f(B) is a cyclic subgroup of order 6 of G/Z(G), we get that f(B) has one
element of order 2, two elements of order 3 and two elements of order 6. We
also observe that all elements of (G/Z(G)) \ f(B) have order 2, because
each vertex of V (T(G)) \B is adjacent to all other vertices of T(G). So,
using the classiőcation of the groups of order 12, we conclude that G/Z(G)
is isomorphic to D12. Therefore, if [G : Z(G)] = 12, then G/Z(G) is
isomorphic to D12 or A4.

We note that ifG/Z(G) is isomorphic to D12, then G/Z(G) has a cyclic
subgroup of order 6. In this case, as shown in the paragraph above, T(G)
is isomorphic to K1,1,1,1,1,1,5. This proves the second statement of this
result.

Now, we classify the őnite groups whose non-commuting graph of
a transversal of the center is double-toroidal.

Theorem A. Let G be a őnite non-abelian group. The non-commuting
graph T(G) is double-toroidal if and only if G is isoclinic to the dihedral
group D10.

Proof. First, we observe that T(D10) is isomorphic to ∇(D10) (because
Z(D10) = {1}), that is, T(D10) is isomorphic to K1,1,1,1,1,4. Thus, by
[14, Figure 1], we get that T(D10) can be embedded on a double-torus.
Using Lemma 1 (parts (v) and (vi)), we concluded that T(D10) is a double-
toroidal graph. So, by Lemma 1(i), if a group G is isoclinic to D10, then
T(G) is double-toroidal.

Conversely, suppose that T(G) is a double-toroidal graph. Hence, by
[17, Lemma 6.3.24],

|E(T(G))| ⩽ 3|V (T(G))|+ 6. (1)

The graphs T(D6) and T(D8) are planar (see Lemma 1(v)). By (1)
and Lemma 1(vii), we have that G is not isoclinic to an extraspecial
2-group of order 22n+1, with n ⩾ 2. Hence, by Theorem 1, we obtain that
P (G) < 1/2. So, using (1) and Lemma 1(ii), we have

|E(T(G))| =
1

2
(1− P (G))(|V (T(G))|+ 1)2 ⩽ 3|V (T(G))|+ 6,
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and thus

1−
6|V (T(G))|+ 12

(|V (T(G))|+ 1)2
⩽ P (G) <

1

2
,

that is,

(|V (T(G))|+ 1)2 − 12|V (T(G))| − 24

2(|V (T(G))|+ 1)2
< 0,

which implies |V (T(G))| ⩽ 11.

Let us show that |V (T(G))| ≠ 11. To this end, we suppose the con-
trary, that is, suppose that |V (T(G))| = 11, that is, [G : Z(G)] = 12.
So, G/Z(G) is isomorphic to D12 or A4 (see Proposition 1). If G/Z(G)
is isomorphic to D12, then Proposition 1 tells us that T(G) is isomor-
phic to K1,1,1,1,1,1,5, which contradicts (1). Thus, we get that G/Z(G)
is isomorphic to A4. It is routine to verify that T(A4) is isomorphic
to K2,2,2,2,3. So, T(G/Z(G)) is isomorphic to K2,2,2,2,3. We note that
V (T(G/Z(G))) = {xZ(G) : x ∈ V (T(G))}, because |Z(G/Z(G))| = 1.
Given x, y ∈ V (T(G)), with x ≠ y, it is easy to see that if xZ(G) and
yZ(G) are adjacent vertices in T(G/Z(G)), then x and y are adjacent
vertices in T(G). Hence, T(G/Z(G)) is isomorphic to a spanning subgraph
of T(G), that is, K2,2,2,2,3 is a subgraph of T(G), which contradicts (1),
because K2,2,2,2,3 has 11 vertices and 48 edges. Hence, |V (T(G))| ≠ 11
and, therefore, |V (T(G))| ⩽ 10.

It follows from Lemma 1(iii) that T(G) is isomorphic to K3, K1,1,1,2,
K7, K1,1,1,1,3, K2,2,2,2 or K1,1,1,1,1,4. It is clear that K3 and K1,1,1,2 are
planar graphs and we have that K7, K1,1,1,1,3 and K2,2,2,2 are toroidal
graphs (see Lemma 1(vi)). Hence, we obtain that T(G) is isomorphic to
K1,1,1,1,1,4. Therefore, by [12, Lemma 3.5], G is isoclinic to D10.

The next result gives us the groups with a 1-planar non-commuting
graph on a transversal of the center. In view of Lemma 1(v), we can
consider only the case where the graph T(G) is non-planar.

Theorem B. Let G be a őnite non-abelian group such that T(G) is
non-planar. The non-commuting graph T(G) is 1-planar if and only if G
is isoclinic to an extraspecial 3-group of order 27.

Proof. The non-commuting graph on a transversal of the center of an
extraspecial 3-group of order 27 is isomorphic to the graph K2,2,2,2 (see
Lemma 1(iv)). In Figure 1, we see a 1-planar drawing of the graph K2,2,2,2
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(we consider K2,2,2,2 with vertex set {v1, v2, v3, v4, v5, v6, v7, v8} and par-
tition {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}}). Hence, if G is isoclinic to an
extraspecial 3-group of order 27, then T(G) is 1-planar.

v1

v3

v5v7

v2

v6

v4

v8

Figure 1. K2,2,2,2 is 1-planar

Conversely, let G be a őnite non-abelian group such that T(G) is
non-planar and suppose that T(G) is 1-planar. By [5, Lemma 2.2], we
have that

|E(T(G))| ⩽ 4|V (T(G))| − 8. (2)

Using (2), parts (v) and (vii) of Lemma 1 and Theorem 1, we obtain
that P (G) < 1/2. Hence, by (2) and Lemma 1(ii), we have

|E(T(G))| =
1

2
(1− P (G))(|V (T(G))|+ 1)2 ⩽ 4|V (T(G))| − 8

and so

1−
8|V (T(G))| − 16

(|V (T(G))|+ 1)2
⩽ P (G) <

1

2
.

Consequently,

(|V (T(G))|+ 1)2 − 16|V (T(G))|+ 32

2(|V (T(G))|+ 1)2
< 0

and thus |V (T(G))| ⩽ 10. By Lemma 1(iii), we get that T(G) is isomorphic
to K3, K1,1,1,2, K1,1,1,1,3, K7, K2,2,2,2 or K1,1,1,1,1,4. We know that K3 and
K1,1,1,2 are planar graphs. By [7, Lemma 7], K1,1,1,1,3 is not 1-planar and,
thus, we have that K7 and K1,1,1,1,1,4 are not 1-planar. We conclude that
T(G) is isomorphic to K2,2,2,2. It follows from Lemma 1(iv) that G is
isoclinic to an extraspecial 3-group of order 27.
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