Classical groups as Frobenius complement

M. Darafsheh and H. Saydi

Communicated by L. A. Kurdachenko

Abstract. The Frobenius group G belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that G is a semi-direct product of a normal subgroup K of G called kernel by another non-trivial subgroup H called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.

Introduction and Preliminary results

Frobenius group for the first time was introduced in [3] and up to present time there are research about different aspects of this group. Let us give two equivalent definition for this group.

Definition 1. Let G be a group and H be a non-trivial proper subgroup of G. We say G is a Frobenius group with complement H if for every $g \in G \backslash H$ the equality $H \cap H^{g}=1$ holds.

Definition 2. Let G be a transitive permutation group on a set Ω. If for every $\alpha \in \Omega$, we have $1 \neq H=G_{\alpha} \nRightarrow G$, then G is called a Frobenius group with complement H if $G_{\alpha, \beta}=1$, for all $\alpha, \beta \in \Omega, \alpha \neq \beta$.

Although infinite Frobenius groups exist [1], but in this note we are concerned with finite Frobenius groups. Frobenius has shown that if G is a finite Frobenius group with complement H, then

Key words and phrases: classical group, Frobenius group, Frobenius complement.

$$
K=\left(G \backslash \bigcup_{g \in G} H^{g}\right) \cup\{1\}
$$

is a normal subgroup of G, called Frobenius kernel and $G=K H, K \cap H=1$. But Frobenius used character theory in proving that K is a subgroup of G. A part from Frobenius proof there is no known character free proof for the fact that K is a subgroup of G.

In [6] properties of the Frobenius groups are proved in detail. In particular in page 193 the structure of Frobenius complement is studied that we quote part of it here:

Result 1. Let H be a Frobenius complement and let p, q denote distinct primes. Then

1) H contains no subgroup of type (p, p).
2) Every subgroup of H of order $p q$ is cyclic.
3) If $|H|$ is even, then H contains a unique element of order 2 which is central.
4) Sylow p-subgroups of H are cyclic, if p is odd.
5) Sylow 2-subgroups of H are either cyclic or quaternion.

Also in [6] (page 204) a result of Zassenhaus is given as follows:
Result 2. Let H be a non-solvable Frobenius complement. Then there is a subgroup H_{0} of H such that $\left[H: H_{0}\right] \leqslant 2$, with $H_{0} \cong S L_{2}(5) \times M$, where M is a Z-group of order prime to 2,3 and 5 .

We remark that a finite group all of whose Sylow subgroups are cyclic is called a Z-group.

In fact $H=S L_{2}(5)$ is a Frobenius complement, which is shown in [6](page 202). This is done by constructing a 2-dimensional vector space V over the finite field of characteristic $p \neq 2,3,5$, such that $S L_{2}(5)$ acts on $V-\{0\}$ fixed point freely. Then the semi-direct product $G=V H$ is a Frobenius group with complement H.

Similarly we can show that the group $S L_{2}(3)$ is a Frobenius complement. But there are many groups that can not be Frobenius complement, for example by Result 1 (2), the group \mathbb{S}_{3} is not a Frobenius complement. Therefore the symmetric group \mathbb{S}_{n} is a Frobenius complement if and only if $n=2$. But the alternating group \mathbb{A}_{4} by Result 1 (1) can not be a Frobenius complement, hence the groups $\mathbb{A}_{n}, n \geqslant 4$ are not Frobenius complement. But $\mathbb{A}_{3} \cong \mathbb{Z}_{3}$ is a Frobenius complement.

Motivated by this we consider the special classical finite groups, $S L_{n}(q)$, $S P_{2 n}(q), S U_{n}\left(q^{2}\right), S O_{2 n+1}(q), q$ odd, $S O_{2 n}^{ \pm}(q), q$ even, and ask which one
can be a Frobenius complement. The letter S denotes the group in question consist of matrices with determinant 1 . Our main result is the following:

Theorem 1. Let H denote a special classical group over a finite field. If H is a Frobenius complement, then $H \cong S L_{2}(3), S L_{2}(5), \mathbb{Z}_{q-1}$ or \mathbb{Z}_{q+1}, where q is a prime power.

1. Main results

We start with the special linear group.
Proposition 1. Let $H=S L_{n}(q), n \geqslant 2, q=p^{m}$, p prime. If H is a Frobenius complement, then $H=S L_{2}(3)$ or $S L_{2}(5)$.

Proof. Let $A=\left\{\left.\left[\begin{array}{cccc}1 & \cdots & 0 & a \\ \vdots & \ddots & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & 1\end{array}\right] \right\rvert\, a \in G F(q)\right\}$, then A is a subgroup
of H isomorphism to the additive group of $G F(q)$. But the additive group of $G F(q)$ is elementary abelian of order p^{m}, hence by Result1 (1), $m=1$. Therefore $H=S L_{n}(p), n \geqslant 2$. A Sylow p-subgroup S of H consists of all the upper unitriangular matrices and $|S|=p^{\binom{n}{2}}$. Again by Result 1 (4) and (5), S must be cyclic implying $n=2$. Hence $H=S L_{2}(p)$, p prime.

But now if $p=2$, then $H=S L_{2}(2) \cong \mathbb{S}_{3}$ is not a Frobenius complement and if $p=3, H=S L_{2}(3)$ is known to be a Frobenius complement. If $p \geqslant 5$, then H is a non-solvable group and by Result $2, S L_{2}(5) \unlhd S L_{2}(p)$ implying them $p=5$, and the proposition is proved.

Next we consider the symplectic group $H=S P_{2 n}(q), n \geqslant 1, q=p^{m}$, p prime. It is well-known that $S P_{2}(q) \cong S L_{2}(q)$.

Proposition 2. If $H=S P_{2 n}(q)$ is a Frobenius complement, then $H \cong$ $S P_{2}(3)$ or $S P_{2}(5)$.

Proof. We use a subgroup of the symplectic group constructed in [4] in the course of investigating irreducible characters of the affine symplectic group. The stabilizer of non-zero vector in the natural action of $S P_{2 n}(q)$ on the underlying vector space $V_{2 n}(q)$ is called the affine subgroup of $S P_{2 n}(q)$, and with a suitable choice of the symplectic form it is shown that the affine subgroup of $S P_{2 n}(q)$ contains a subgroup $P(n)=\{[v, a] \mid v \in$ $\left.V_{2 n-2}(q), a \in G F(q)\right\}$ of order $q^{2 n-1}$. If q is even $P(n)$ is an elementary
abelian p-group, otherwise it is a special p-group (a p-group P is called special if $Z(P)=P^{\prime}=\phi(P)$ is elementary abelian).

In any case $P(n)$ has the subgroup $\{[0, a] \mid a \in G F(q)\}$ which is isomorphic to the additive group of $G F(q), q=p^{m}$. Now by Result 1 (1), $m=1$, hence $H=S P_{2 n}(p)$. If $p=2$, then we look at $P(n)$ which is an elementary abelian 2 -group of order $2^{2 n-1}$, that by Result 1 (1), we must have $n=1$. Therefore $H=S P_{2}(2) \cong \mathbb{S}_{3}$ which is not a Frobenius complement.

Hence we assume p an odd prime. A Sylow p-subgroup of $S P_{2 n}(p)$ has order $p^{n^{2}}$ and is not cyclic unless $n=1$. Therefore $H=S P_{2}(p) \cong S L_{2}(p)$ and the result follows by Proposition 1.

Our next step is to consider the finite unitary group. First note that

$$
S U_{2}\left(q^{2}\right) \cong S L_{2}(q)
$$

Proposition 3. If $H=S U_{n}\left(q^{2}\right), n \geqslant 2, q=p^{m}$, p prime, is a Frobenius complement, then $H=S U_{2}\left(3^{2}\right)$ or $S U_{2}\left(5^{2}\right)$.

Proof. By [4] a suitable choice of a Hermitian form, yields the affine subgroup of $G U_{n}\left(q^{2}\right)$ which contains a special p-group of order $q^{2 n-3}$. In fact if f is the Hermitian form defined on $V_{n}\left(q^{2}\right)$ we have

$$
P=\left\{[v, a] \mid v \in V_{n-2}\left(q^{2}\right), a \in G F\left(q^{2}\right), \operatorname{tr}(a)+f(v, v)=0\right\}
$$

where $\operatorname{tr}(a)=a+a^{q}$. In fact, P is a subgroup of $S U_{n}\left(q^{2}\right)$. If we choose $v=0$, then P has a subgroup $Q=\left\{[0, a] \mid a \in G F\left(q^{2}\right), a+a^{q}=0\right\}$ which is isomorphic to the additive group of $G F(q)$. Hence by Result 1 (1), we obtain $m=1, q=p, H=S U_{n}(p)$. But it is known that a Sylow p-subgroup of $S U_{n}(p)$ is already a Sylow p-subgroup of $S L_{n}(p)$. New using the argument in proposition 1 the Result follows.

Finally, we turn to the special orthogonal groups. These groups are defined as the group of isometries of a non-degenerate quadratic form Q over a finite dimensional vector space V over the Galois field $G F(q)$. If the $\operatorname{dim} V=2 n+1$ is odd there is a unique non-degenerate quadratic form Q and its group of isometries with determinant 1 is denoted by $S O_{2 n+1}(q)$. If q is even it is known that $S O_{2 n+1}(q) \cong S P_{2 n}(q)$. Therefore, first we deal with the special orthogonal group in odd dimension over the Galois field of odd characteristic. Note that in this case if

$$
f: V_{2 n+1}(q) \times V_{2 n+1}(q) \longrightarrow G F(q)
$$

is the symmetric bilinear form associated with Q, then $Q(v)=\frac{1}{2} f(v, v)$, for all $v \in V_{2 n+1}(q)$.

Proposition 4. Let $H=S O_{2 n+1}(q), q=p^{f}$, p an odd prime. If H is a Frobenius complement, then $n=1, q=p=3$ or 5 .

Proof. The study of affine subgroups of the orthogonal groups is contained in [2], from which we deduce that the stabilizer of a non-zero isotropic vector contains an abelian subgroup of order $q^{2 n-1}$ which defined as follows:

$$
P(n)=\left\{[v, a] \mid v \in V_{2 n-1}(q), a \in G F(q), 2 a+f(v, v)=0\right\}
$$

The multiplication in $P(n)$ is $[v, a][u, b]=[v+u, a+b-f(v, v)]$.
Using this multiplication it is easy to calculate $[v, a]^{k}=[k v, k a-$ $\left.\binom{k}{2} f(v, v)\right]$, for all v and a. Therefore $[v, a]^{p}=[0,0]=$ The identity element of $P(n)$. Hence $P(n)$ is an elementary abelian p-group of order $q^{2 n-1}$. Now by Result 1 (1), $n=1, q=p$, prime. Therefore $H=S_{3}(p)$ which is known to be isomorphic to $S L_{2}(p)$. Now by the arguments used in previous propositions the result follows.

If the $\operatorname{dim} V=2 n$ is even there are two non-degenerate non-equivalent quadratic forms $Q^{t}, t= \pm$. If there is a totally isotropic subspace of dimension n, the group of isometries of V with respect to Q^{+}and determinant 1 is denoted by $S O_{2 n}^{+}(q)$, otherwise by $S O_{2 n}^{-}(q)$.

Proposition 5. Let $H=S O_{2 n}^{t}(q), t= \pm$, q a prime power. If H is a Frobenius complement, then $n=1$ and $H \cong \mathbb{Z}_{q-1}$ or $H \cong \mathbb{Z}_{q+1}$.

Proof. By [2] in any case the affine subgroup of H contains an abelian subgroup of order $q^{2 n-2}$ denoted by:
$P(n)=\left\{\left[v, \epsilon Q^{\epsilon}(v)\right] \mid v \in V_{2 n-2}(q)\right\}$ where the multiplication in $P(n)$ is as follows:
$\left[v, \epsilon Q^{\epsilon}(v)\right]\left[u, \epsilon Q^{\epsilon}(u)\right]=\left[v+u, \epsilon Q^{\epsilon}(v+u)\right]$, for all $v, u \in V_{2 n-2}(q)$, it is easy to verify that $P(n)$ is an elementary abelian group, hence by 1 (1), $n=1$. In this case we have $H=S O_{2}^{\epsilon}(q)$. But it is well-known that $S O_{2}^{+}(q) \cong \mathbb{Z}_{q-1}$ and $S O_{2}^{-}(q) \cong \mathbb{Z}_{q+1}$.

In the following we show that Frobenius complement isomorphic to \mathbb{Z}_{q-1}, and \mathbb{Z}_{q+1}, q prime power exist.

Example 1. Let F denote the finite field of order q and consider the group

$$
G=\left\{f_{a, b}: F \longrightarrow F \mid f_{a, b}(x)=a x+b, a, b \in F, a \neq 0\right\}
$$

In this case G is a group of order $q(q-1)$ which acts transitively on F. The stabilizer of 0 is the group $H=\left\{f_{a, 0} \mid a \in F^{\times}\right\}$which is isomorphic to \mathbb{Z}_{q-1} and acts fixed point freely on $F-\{0\}$. Therefore G is a Frobenius group with complement isomorphic to \mathbb{Z}_{q-1}.

Example 2. Let F be a finite field with q^{2} elements where q is a prime power. By Example 1, a Frobenius group with kernel K isomorphic to the additive group of F, and complement isomorphic to the multiplicative group of F exists. But $F^{\times} \cong \mathbb{Z}_{q^{2}-1}$, and it has a unique subgroup H_{1} of order $q+1$. Obviously $H_{1} \leqslant N_{G}(K)$, hence by a result in [5], $G_{1}=K H_{1}$ is a Frobenius group with complement $H_{1} \cong \mathbb{Z}_{q+1}$.

References

[1] M. J. Collins, Some infinite Frobenius groups, J. Alg. 131, 1990, 161-165.
[2] M. R. Darafsheh, Affine subgroups the classical groups and their character degrees, J. Sci. I. R. Iran, Vol. 9, no. 2,1998, 181-186.
[3] F. G. Frobenius, Über auflösbare Gruppen IV, S’ber. Akad. Wiss. Berlin, 1901, 1216-1230; Ges, Abh. III, 189-203.
[4] R. Gow, Some characters of affine subgroups of classical groups, J. London Math. Soc., 12(2), 1976, 231-238.
[5] L. C. Grove, Groups and characters, John Wiley and sons, New York, 1997.
[6] D. S. Passman, Permutation groups, W. A. Benjamin, Inc., New York, 1968.

Contact information

Mohammadreza
Darafsheh

Hadiseh Saydi

School of mathematics, statistics and computer science, College of science, University of Tehran, Tehran, Iran E-Mail(s): darafsheh@ut.ac.ir

Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran E-Mail(s): hadisehsaydi90@gmail.com

Received by the editors: 17.12.2021
and in final form 19.03.2023.

