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Classical groups as Frobenius complement
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ABSTRACT. The Frobenius group G belongs to an important
class of groups that more than 100 years ago was defined by F. G.
Frobenius who proved that G is a semi-direct product of a normal
subgroup K of G called kernel by another non-trivial subgroup
H called the complement. In this case we show that a few of the
classical finite groups can be Frobenius complement.

Introduction and Preliminary results

Frobenius group for the first time was introduced in [3] and up to
present time there are research about different aspects of this group. Let
us give two equivalent definition for this group.

Definition 1. Let GG be a group and H be a non-trivial proper subgroup
of G. We say G is a Frobenius group with complement H if for every
g € G\ H the equality H N HY9 =1 holds.

Definition 2. Let G be a transitive permutation group on a set €. If
for every a € 0, we have 1 # H = G, <= G, then G is called a Frobenius
group with complement H if G, 3 =1, for all o, 8 € Q, a # (.

Although infinite Frobenius groups exist [1], but in this note we are
concerned with finite Frobenius groups. Frobenius has shown that if G is
a finite Frobenius group with complement H, then
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K=(G\ UH)U{l}
geG

is a normal subgroup of GG, called Frobenius kernel and G = KH, KNH = 1.
But Frobenius used character theory in proving that K is a subgroup of
G. A part from Frobenius proof there is no known character free proof for
the fact that K is a subgroup of G.

In [6] properties of the Frobenius groups are proved in detail. In
particular in page 193 the structure of Frobenius complement is studied
that we quote part of it here:

Result 1. Let H be a Frobenius complement and let p, ¢ denote distinct
primes. Then

1) H contains no subgroup of type (p,p).

2) Every subgroup of H of order pq is cyclic.

3) If |H| is even, then H contains a unique element of order 2 which is

central.
4) Sylow p-subgroups of H are cyclic, if p is odd.
5) Sylow 2-subgroups of H are either cyclic or quaternion.

Also in [6] (page 204) a result of Zassenhaus is given as follows:

Result 2. Let H be a non-solvable Frobenius complement. Then there
is a subgroup Hy of H such that [H : Hy| < 2, with Hy = SLy(5) x M,
where M is a Z-group of order prime to 2, 3 and 5.

We remark that a finite group all of whose Sylow subgroups are cyclic
is called a Z-group.

In fact H = SLy(5) is a Frobenius complement, which is shown in
[6](page 202). This is done by constructing a 2-dimensional vector space
V over the finite field of characteristic p # 2, 3,5, such that SLy(5) acts
on V — {0} fixed point freely. Then the semi-direct product G = VH is a
Frobenius group with complement H.

Similarly we can show that the group SL2(3) is a Frobenius comple-
ment. But there are many groups that can not be Frobenius complement,
for example by Result 1 (2), the group S5 is not a Frobenius complement.
Therefore the symmetric group S, is a Frobenius complement if and only
if n = 2. But the alternating group A4 by Result 1 (1) can not be a
Frobenius complement, hence the groups A,,, n > 4 are not Frobenius
complement. But Ag = Z3 is a Frobenius complement.

Motivated by this we consider the special classical finite groups, SL,,(q),
SPon(q), SUn(q?), SO2,41(q), ¢ odd, SO, (q), q even, and ask which one
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can be a Frobenius complement. The letter S denotes the group in question
consist of matrices with determinant 1. Our main result is the following:

Theorem 1. Let H denote a special classical group over a finite field. If
H is a Frobenius complement, then H = SLy(3), SLa(5), Zq—1 or Zg+1,
where q is a prime power.

1. Main results

We start with the special linear group.

Proposition 1. Let H = SL,(q), n > 2, ¢ = p™, p prime. If H is a
Frobenius complement, then H = SLy(3) or SLa(5).

1 -« 0 a
Proof. Let A = { h 0 |a € GF(q)}, then A is a subgroup
0 v or 1

of H isomorphism to the additive group of GF(q). But the additive group
of GF(q) is elementary abelian of order p™, hence by Resultl (1), m = 1.
Therefore H = SL,(p), n > 2. A Sylow p-subgroup S of H consists of all

the upper unitriangular matrices and |S| = p(g) Again by Result 1 (4)
and (5), S must be cyclic implying n = 2. Hence H = SLs(p), p prime.
But now if p = 2, then H = SLy(2) = S3 is not a Frobenius complement
and if p = 3, H = SLy(3) is known to be a Frobenius complement. If
p = 5, then H is a non-solvable group and by Result 2, SLy(5) < .SLa(p)
implying them p = 5, and the proposition is proved. O

Next we consider the symplectic group H = SPyy,(q), n > 1, ¢ = p™,
p prime. It is well-known that SPy(q) = SLa(q).

Proposition 2. If H = SPy,(q) is a Frobenius complement, then H =
SP2(3) or SP2(5).

Proof. We use a subgroup of the symplectic group constructed in [4] in
the course of investigating irreducible characters of the affine symplectic
group. The stabilizer of non-zero vector in the natural action of SPa,(q)
on the underlying vector space Va,(q) is called the affine subgroup of
SPy,(q), and with a suitable choice of the symplectic form it is shown that
the affine subgroup of SP,,(q) contains a subgroup P(n) = {[v,a] | v €
Van—2(q),a € GF(q)} of order ¢>*~1. If ¢ is even P(n) is an elementary
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abelian p-group, otherwise it is a special p-group (a p-group P is called
special if Z(P) = P’ = ¢(P) is elementary abelian).

In any case P(n) has the subgroup {[0,a] | a € GF(q)} which is
isomorphic to the additive group of GF(q), ¢ = p™. Now by Result 1
(1), m =1, hence H = SPy,(p). If p =2, then we look at P(n) which is
an elementary abelian 2-group of order 227! that by Result 1 (1), we
must have n = 1. Therefore H = SP5(2) & S3 which is not a Frobenius
complement.

Hence we assume p an odd prime. A Sylow p-subgroup of S Py, (p) has
order p™* and is not cyclic unless n = 1. Therefore H = SPy(p) 2 SLy(p)
and the result follows by Proposition 1. [

Our next step is to consider the finite unitary group. First note that
SUs(¢?) = SLo(q).

Proposition 3. If H = SU,(¢?), n > 2, ¢ = p™, p prime, is a Frobenius
complement, then H = SU(3%) or SUy(52).

Proof. By [4] a suitable choice of a Hermitian form, yields the affine
subgroup of GU,,(¢?) which contains a special p-group of order ¢?"~3. In
fact if f is the Hermitian form defined on V,,(¢?) we have

P ={[v,a] |v € V,_2(q?),a € GF(¢?),tr(a) + f(v,v) = 0}

where t7(a) = a + a?. In fact, P is a subgroup of SU,(¢?). If we choose
v = 0, then P has a subgroup Q = {[0,a] | a € GF(¢*),a + a? = 0}
which is isomorphic to the additive group of GF(q). Hence by Result 1
(1), we obtain m =1, ¢ = p, H = SU,,(p). But it is known that a Sylow
p-subgroup of SU,(p) is already a Sylow p-subgroup of SL,(p). New using
the argument in proposition 1 the Result follows. ]

Finally, we turn to the special orthogonal groups. These groups are
defined as the group of isometries of a non-degenerate quadratic form @
over a finite dimensional vector space V' over the Galois field GF(q). If the
dimV = 2n 4 1 is odd there is a unique non-degenerate quadratic form @
and its group of isometries with determinant 1 is denoted by SO2y,+1(q).
If g is even it is known that SOg2,+1(q) = SP2,(q). Therefore, first we
deal with the special orthogonal group in odd dimension over the Galois
field of odd characteristic. Note that in this case if

[ Vony1(q) x Vapgi(q) — GF(q)
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is the symmetric bilinear form associated with @, then Q(v) = %f(v, v),
for all v € Van41(q).

Proposition 4. Let H = SO9,,1(q), ¢ = p’, p an odd prime. If H is a
Frobenius complement, thenn =1, ¢ =p =3 or 5.

Proof. The study of affine subgroups of the orthogonal groups is contained
in [2], from which we deduce that the stabilizer of a non-zero isotropic
vector contains an abelian subgroup of order ¢>*~! which defined as follows:

P(n)={[v,a] | v € Vap_1(q),a € GF(q),2a+ f(v,v) = 0}.

The multiplication in P(n) is [v, al[u,b] = [v +u,a +b— f(v,v)].

Using this multiplication it is easy to calculate [v,a]* = [kv, ka —
(g)f(v,v)], for all v and a. Therefore [v,a]’ = [0,0] = The identity
element of P(n). Hence P(n) is an elementary abelian p-group of order
"~ 1. Now by Result 1 (1), n = 1, ¢ = p, prime. Therefore H = SO3(p)
which is known to be isomorphic to SLa(p). Now by the arguments used

in previous propositions the result follows. O

If the dim V' = 2n is even there are two non-degenerate non-equivalent
quadratic forms @', t = +. If there is a totally isotropic subspace of dimen-
sion n, the group of isometries of V' with respect to Q" and determinant
1 is denoted by SO, (g), otherwise by SO, (q).

Proposition 5. Let H = SO, (q), t = £, q a prime power. If H is a
Frobenius complement, then n =1 and H = Zq_1 or H = Zgy1.

Proof. By [2]| in any case the affine subgroup of H contains an abelian
subgroup of order ¢?"~? denoted by:

P(n) = {[v,eQ°(v)] | v € Van_a(q)} where the multiplication in P(n)
is as follows:

[v, €Q(V)][u, €Q(u)] = [v + u, eQ(v + u)], for all v,u € Va,_2(q), it
is easy to verify that P(n) is an elementary abelian group, hence by 1
(1), n = 1. In this case we have H = SO$5(q). But it is well-known that
SOF(q) & Zy—1 and SO (q) = Zg1. O

In the following we show that Frobenius complement isomorphic to
ZLg—1, and Zg41, g prime power exist.

Example 1. Let F' denote the finite field of order ¢ and consider the
group

G=A{fap: F — F| fop(x) =ax +b,a,b € F,a#0}.
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In this case G is a group of order ¢(¢ — 1) which acts transitively on F.
The stabilizer of 0 is the group H = {f,0 | @ € F*} which is isomorphic
to Zq—1 and acts fixed point freely on F'—{0}. Therefore G is a Frobenius
group with complement isomorphic to Zg,_1.

Example 2. Let F be a finite field with ¢? elements where ¢ is a prime
power. By Example 1, a Frobenius group with kernel K isomorphic to
the additive group of F', and complement isomorphic to the multiplicative
group of F' exists. But F* = Z_;, and it has a unique subgroup H; of
order g + 1. Obviously H; < Ng(K), hence by a result in 5], G1 = KH;
is a Frobenius group with complement Hy = Zg 1.
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