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Classical groups as Frobenius complement
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Abstract. The Frobenius group G belongs to an important

class of groups that more than 100 years ago was deőned by F. G.

Frobenius who proved that G is a semi-direct product of a normal

subgroup K of G called kernel by another non-trivial subgroup

H called the complement. In this case we show that a few of the

classical őnite groups can be Frobenius complement.

Introduction and Preliminary results

Frobenius group for the őrst time was introduced in [3] and up to
present time there are research about different aspects of this group. Let
us give two equivalent deőnition for this group.

Deőnition 1. Let G be a group and H be a non-trivial proper subgroup
of G. We say G is a Frobenius group with complement H if for every
g ∈ G \H the equality H ∩Hg = 1 holds.

Deőnition 2. Let G be a transitive permutation group on a set Ω. If
for every α ∈ Ω, we have 1 ̸= H = Gα ≨ G, then G is called a Frobenius
group with complement H if Gα,β = 1, for all α, β ∈ Ω, α ̸= β.

Although inőnite Frobenius groups exist [1], but in this note we are
concerned with őnite Frobenius groups. Frobenius has shown that if G is
a őnite Frobenius group with complement H, then
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K = (G \
⋃

g∈G

Hg) ∪ {1}

is a normal subgroup of G, called Frobenius kernel and G = KH,K∩H = 1.
But Frobenius used character theory in proving that K is a subgroup of
G. A part from Frobenius proof there is no known character free proof for
the fact that K is a subgroup of G.

In [6] properties of the Frobenius groups are proved in detail. In
particular in page 193 the structure of Frobenius complement is studied
that we quote part of it here:

Result 1. Let H be a Frobenius complement and let p, q denote distinct
primes. Then

1) H contains no subgroup of type (p, p).

2) Every subgroup of H of order pq is cyclic.

3) If |H| is even, then H contains a unique element of order 2 which is
central.

4) Sylow p-subgroups of H are cyclic, if p is odd.

5) Sylow 2-subgroups of H are either cyclic or quaternion.

Also in [6] (page 204) a result of Zassenhaus is given as follows:

Result 2. Let H be a non-solvable Frobenius complement. Then there
is a subgroup H0 of H such that [H : H0] ⩽ 2, with H0

∼= SL2(5)×M ,
where M is a Z-group of order prime to 2, 3 and 5.

We remark that a őnite group all of whose Sylow subgroups are cyclic
is called a Z-group.

In fact H = SL2(5) is a Frobenius complement, which is shown in
[6](page 202). This is done by constructing a 2-dimensional vector space
V over the őnite őeld of characteristic p ̸= 2, 3, 5, such that SL2(5) acts
on V − {0} őxed point freely. Then the semi-direct product G = V H is a
Frobenius group with complement H.

Similarly we can show that the group SL2(3) is a Frobenius comple-
ment. But there are many groups that can not be Frobenius complement,
for example by Result 1 (2), the group S3 is not a Frobenius complement.
Therefore the symmetric group Sn is a Frobenius complement if and only
if n = 2. But the alternating group A4 by Result 1 (1) can not be a
Frobenius complement, hence the groups An, n ⩾ 4 are not Frobenius
complement. But A3

∼= Z3 is a Frobenius complement.
Motivated by this we consider the special classical őnite groups, SLn(q),

SP2n(q), SUn(q
2), SO2n+1(q), q odd, SO±

2n(q), q even, and ask which one
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can be a Frobenius complement. The letter S denotes the group in question
consist of matrices with determinant 1. Our main result is the following:

Theorem 1. Let H denote a special classical group over a őnite őeld. If

H is a Frobenius complement, then H ∼= SL2(3), SL2(5), Zq−1 or Zq+1,

where q is a prime power.

1. Main results

We start with the special linear group.

Proposition 1. Let H = SLn(q), n ⩾ 2, q = pm, p prime. If H is a

Frobenius complement, then H = SL2(3) or SL2(5).

Proof. Let A =

{













1 · · · 0 a
...

. . . 0
...

. . .
...

0 · · · · · · 1













| a ∈ GF (q)

}

, then A is a subgroup

of H isomorphism to the additive group of GF (q). But the additive group
of GF (q) is elementary abelian of order pm, hence by Result1 (1), m = 1.
Therefore H = SLn(p), n ⩾ 2. A Sylow p-subgroup S of H consists of all

the upper unitriangular matrices and |S| = p(
n

2
). Again by Result 1 (4)

and (5), S must be cyclic implying n = 2. Hence H = SL2(p), p prime.

But now if p = 2, then H = SL2(2) ∼= S3 is not a Frobenius complement
and if p = 3, H = SL2(3) is known to be a Frobenius complement. If
p ⩾ 5, then H is a non-solvable group and by Result 2, SL2(5)⊴ SL2(p)
implying them p = 5, and the proposition is proved.

Next we consider the symplectic group H = SP2n(q), n ⩾ 1, q = pm,
p prime. It is well-known that SP2(q) ∼= SL2(q).

Proposition 2. If H = SP2n(q) is a Frobenius complement, then H ∼=
SP2(3) or SP2(5).

Proof. We use a subgroup of the symplectic group constructed in [4] in
the course of investigating irreducible characters of the affine symplectic
group. The stabilizer of non-zero vector in the natural action of SP2n(q)
on the underlying vector space V2n(q) is called the affine subgroup of
SP2n(q), and with a suitable choice of the symplectic form it is shown that
the affine subgroup of SP2n(q) contains a subgroup P (n) = {[v, a] | v ∈
V2n−2(q), a ∈ GF (q)} of order q2n−1. If q is even P (n) is an elementary
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abelian p-group, otherwise it is a special p-group (a p-group P is called
special if Z(P ) = P ′ = ϕ(P ) is elementary abelian).

In any case P (n) has the subgroup {[0, a] | a ∈ GF (q)} which is
isomorphic to the additive group of GF (q), q = pm. Now by Result 1
(1), m = 1, hence H = SP2n(p). If p = 2, then we look at P (n) which is
an elementary abelian 2-group of order 22n−1, that by Result 1 (1), we
must have n = 1. Therefore H = SP2(2) ∼= S3 which is not a Frobenius
complement.

Hence we assume p an odd prime. A Sylow p-subgroup of SP2n(p) has
order pn

2

and is not cyclic unless n = 1. Therefore H = SP2(p) ∼= SL2(p)
and the result follows by Proposition 1.

Our next step is to consider the őnite unitary group. First note that

SU2(q
2) ∼= SL2(q).

Proposition 3. If H = SUn(q
2), n ⩾ 2, q = pm, p prime, is a Frobenius

complement, then H = SU2(3
2) or SU2(5

2).

Proof. By [4] a suitable choice of a Hermitian form, yields the affine
subgroup of GUn(q

2) which contains a special p-group of order q2n−3. In
fact if f is the Hermitian form deőned on Vn(q

2) we have

P = {[v, a] | v ∈ Vn−2(q
2), a ∈ GF (q2), tr(a) + f(v, v) = 0}

where tr(a) = a+ aq. In fact, P is a subgroup of SUn(q
2). If we choose

v = 0, then P has a subgroup Q = {[0, a] | a ∈ GF (q2), a + aq = 0}
which is isomorphic to the additive group of GF (q). Hence by Result 1
(1), we obtain m = 1, q = p, H = SUn(p). But it is known that a Sylow
p-subgroup of SUn(p) is already a Sylow p-subgroup of SLn(p). New using
the argument in proposition 1 the Result follows.

Finally, we turn to the special orthogonal groups. These groups are
deőned as the group of isometries of a non-degenerate quadratic form Q

over a őnite dimensional vector space V over the Galois őeld GF (q). If the
dimV = 2n+1 is odd there is a unique non-degenerate quadratic form Q

and its group of isometries with determinant 1 is denoted by SO2n+1(q).
If q is even it is known that SO2n+1(q) ∼= SP2n(q). Therefore, őrst we
deal with the special orthogonal group in odd dimension over the Galois
őeld of odd characteristic. Note that in this case if

f : V2n+1(q)× V2n+1(q) −→ GF (q)
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is the symmetric bilinear form associated with Q, then Q(v) = 1

2
f(v, v),

for all v ∈ V2n+1(q).

Proposition 4. Let H = SO2n+1(q), q = pf , p an odd prime. If H is a

Frobenius complement, then n = 1, q = p = 3 or 5.

Proof. The study of affine subgroups of the orthogonal groups is contained
in [2], from which we deduce that the stabilizer of a non-zero isotropic
vector contains an abelian subgroup of order q2n−1 which deőned as follows:

P (n) = {[v, a] | v ∈ V2n−1(q), a ∈ GF (q), 2a+ f(v, v) = 0}.

The multiplication in P (n) is [v, a][u, b] = [v + u, a+ b− f(v, v)].
Using this multiplication it is easy to calculate [v, a]k = [kv, ka −

(

k
2

)

f(v, v)], for all v and a. Therefore [v, a]p = [0, 0] = The identity
element of P (n). Hence P (n) is an elementary abelian p-group of order
q2n−1. Now by Result 1 (1), n = 1, q = p, prime. Therefore H = SO3(p)
which is known to be isomorphic to SL2(p). Now by the arguments used
in previous propositions the result follows.

If the dimV = 2n is even there are two non-degenerate non-equivalent
quadratic forms Qt, t = ±. If there is a totally isotropic subspace of dimen-
sion n, the group of isometries of V with respect to Q+ and determinant
1 is denoted by SO+

2n(q), otherwise by SO−

2n(q).

Proposition 5. Let H = SOt
2n(q), t = ±, q a prime power. If H is a

Frobenius complement, then n = 1 and H ∼= Zq−1 or H ∼= Zq+1.

Proof. By [2] in any case the affine subgroup of H contains an abelian
subgroup of order q2n−2 denoted by:

P (n) = {[v, ϵQϵ(v)] | v ∈ V2n−2(q)} where the multiplication in P (n)
is as follows:

[v, ϵQϵ(v)][u, ϵQϵ(u)] = [v + u, ϵQϵ(v + u)], for all v, u ∈ V2n−2(q), it
is easy to verify that P (n) is an elementary abelian group, hence by 1
(1), n = 1. In this case we have H = SOϵ

2(q). But it is well-known that
SO+

2
(q) ∼= Zq−1 and SO−

2
(q) ∼= Zq+1.

In the following we show that Frobenius complement isomorphic to
Zq−1, and Zq+1, q prime power exist.

Example 1. Let F denote the őnite őeld of order q and consider the
group

G = {fa,b : F −→ F | fa,b(x) = ax+ b, a, b ∈ F, a ̸= 0}.
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In this case G is a group of order q(q − 1) which acts transitively on F .
The stabilizer of 0 is the group H = {fa,0 | a ∈ F×} which is isomorphic
to Zq−1 and acts őxed point freely on F −{0}. Therefore G is a Frobenius
group with complement isomorphic to Zq−1.

Example 2. Let F be a őnite őeld with q2 elements where q is a prime
power. By Example 1, a Frobenius group with kernel K isomorphic to
the additive group of F , and complement isomorphic to the multiplicative
group of F exists. But F× ∼= Zq2−1, and it has a unique subgroup H1 of
order q + 1. Obviously H1 ⩽ NG(K), hence by a result in [5], G1 = KH1

is a Frobenius group with complement H1
∼= Zq+1.
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