Classical groups as Frobenius complement

M. Darafsheh and H. Saydi

Communicated by L. A. Kurdachenko

ABSTRACT. The Frobenius group G belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that G is a semi-direct product of a normal subgroup K of G called kernel by another non-trivial subgroup H called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.

Introduction and Preliminary results

Frobenius group for the first time was introduced in [3] and up to present time there are research about different aspects of this group. Let us give two equivalent definition for this group.

Definition 1. Let G be a group and H be a non-trivial proper subgroup of G. We say G is a Frobenius group with complement H if for every $g \in G \setminus H$ the equality $H \cap H^g = 1$ holds.

Definition 2. Let G be a transitive permutation group on a set Ω . If for every $\alpha \in \Omega$, we have $1 \neq H = G_{\alpha} \lneq G$, then G is called a Frobenius group with complement H if $G_{\alpha,\beta} = 1$, for all $\alpha, \beta \in \Omega, \alpha \neq \beta$.

Although infinite Frobenius groups exist [1], but in this note we are concerned with finite Frobenius groups. Frobenius has shown that if G is a finite Frobenius group with complement H, then

²⁰²⁰ MSC: 20H20, 20F50.

Key words and phrases: classical group, Frobenius group, Frobenius complement.

$$K = (G \setminus \bigcup_{g \in G} H^g) \cup \{1\}$$

is a normal subgroup of G, called Frobenius kernel and $G = KH, K \cap H = 1$. But Frobenius used character theory in proving that K is a subgroup of G. A part from Frobenius proof there is no known character free proof for the fact that K is a subgroup of G.

In [6] properties of the Frobenius groups are proved in detail. In particular in page 193 the structure of Frobenius complement is studied that we quote part of it here:

Result 1. Let H be a Frobenius complement and let p, q denote distinct primes. Then

- 1) H contains no subgroup of type (p, p).
- 2) Every subgroup of H of order pq is cyclic.
- 3) If |H| is even, then H contains a unique element of order 2 which is central.
- 4) Sylow p-subgroups of H are cyclic, if p is odd.
- 5) Sylow 2-subgroups of H are either cyclic or quaternion.

Also in [6] (page 204) a result of Zassenhaus is given as follows:

Result 2. Let H be a non-solvable Frobenius complement. Then there is a subgroup H_0 of H such that $[H : H_0] \leq 2$, with $H_0 \cong SL_2(5) \times M$, where M is a Z-group of order prime to 2, 3 and 5.

We remark that a finite group all of whose Sylow subgroups are cyclic is called a Z-group.

In fact $H = SL_2(5)$ is a Frobenius complement, which is shown in [6](page 202). This is done by constructing a 2-dimensional vector space V over the finite field of characteristic $p \neq 2, 3, 5$, such that $SL_2(5)$ acts on $V - \{0\}$ fixed point freely. Then the semi-direct product G = VH is a Frobenius group with complement H.

Similarly we can show that the group $SL_2(3)$ is a Frobenius complement. But there are many groups that can not be Frobenius complement, for example by Result 1 (2), the group S_3 is not a Frobenius complement. Therefore the symmetric group S_n is a Frobenius complement if and only if n = 2. But the alternating group \mathbb{A}_4 by Result 1 (1) can not be a Frobenius complement, hence the groups \mathbb{A}_n , $n \ge 4$ are not Frobenius complement. But $\mathbb{A}_3 \cong \mathbb{Z}_3$ is a Frobenius complement.

Motivated by this we consider the special classical finite groups, $SL_n(q)$, $SP_{2n}(q)$, $SU_n(q^2)$, $SO_{2n+1}(q)$, q odd, $SO_{2n}^{\pm}(q)$, q even, and ask which one

can be a Frobenius complement. The letter S denotes the group in question consist of matrices with determinant 1. Our main result is the following:

Theorem 1. Let H denote a special classical group over a finite field. If H is a Frobenius complement, then $H \cong SL_2(3)$, $SL_2(5)$, \mathbb{Z}_{q-1} or \mathbb{Z}_{q+1} , where q is a prime power.

1. Main results

We start with the special linear group.

Proposition 1. Let $H = SL_n(q)$, $n \ge 2$, $q = p^m$, p prime. If H is a Frobenius complement, then $H = SL_2(3)$ or $SL_2(5)$.

Proof. Let
$$A = \left\{ \begin{bmatrix} 1 & \cdots & 0 & a \\ \vdots & \ddots & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \end{bmatrix} \mid a \in GF(q) \right\}$$
, then A is a subgroup

of H isomorphism to the additive group of GF(q). But the additive group of GF(q) is elementary abelian of order p^m , hence by Result1 (1), m = 1. Therefore $H = SL_n(p)$, $n \ge 2$. A Sylow *p*-subgroup S of H consists of all the upper unitriangular matrices and $|S| = p^{\binom{n}{2}}$. Again by Result 1 (4) and (5), S must be cyclic implying n = 2. Hence $H = SL_2(p)$, p prime.

But now if p = 2, then $H = SL_2(2) \cong S_3$ is not a Frobenius complement and if p = 3, $H = SL_2(3)$ is known to be a Frobenius complement. If $p \ge 5$, then H is a non-solvable group and by Result 2, $SL_2(5) \le SL_2(p)$ implying them p = 5, and the proposition is proved. \Box

Next we consider the symplectic group $H = SP_{2n}(q), n \ge 1, q = p^m$, p prime. It is well-known that $SP_2(q) \cong SL_2(q)$.

Proposition 2. If $H = SP_{2n}(q)$ is a Frobenius complement, then $H \cong SP_2(3)$ or $SP_2(5)$.

Proof. We use a subgroup of the symplectic group constructed in [4] in the course of investigating irreducible characters of the affine symplectic group. The stabilizer of non-zero vector in the natural action of $SP_{2n}(q)$ on the underlying vector space $V_{2n}(q)$ is called the affine subgroup of $SP_{2n}(q)$, and with a suitable choice of the symplectic form it is shown that the affine subgroup of $SP_{2n}(q)$ contains a subgroup $P(n) = \{[v, a] \mid v \in$ $V_{2n-2}(q), a \in GF(q)\}$ of order q^{2n-1} . If q is even P(n) is an elementary abelian *p*-group, otherwise it is a special *p*-group (a *p*-group *P* is called special if $Z(P) = P' = \phi(P)$ is elementary abelian).

In any case P(n) has the subgroup $\{[0, a] \mid a \in GF(q)\}$ which is isomorphic to the additive group of GF(q), $q = p^m$. Now by Result 1 (1), m = 1, hence $H = SP_{2n}(p)$. If p = 2, then we look at P(n) which is an elementary abelian 2-group of order 2^{2n-1} , that by Result 1 (1), we must have n = 1. Therefore $H = SP_2(2) \cong \mathbb{S}_3$ which is not a Frobenius complement.

Hence we assume p an odd prime. A Sylow p-subgroup of $SP_{2n}(p)$ has order p^{n^2} and is not cyclic unless n = 1. Therefore $H = SP_2(p) \cong SL_2(p)$ and the result follows by Proposition 1.

Our next step is to consider the finite unitary group. First note that

$$SU_2(q^2) \cong SL_2(q).$$

Proposition 3. If $H = SU_n(q^2)$, $n \ge 2$, $q = p^m$, p prime, is a Frobenius complement, then $H = SU_2(3^2)$ or $SU_2(5^2)$.

Proof. By [4] a suitable choice of a Hermitian form, yields the affine subgroup of $GU_n(q^2)$ which contains a special *p*-group of order q^{2n-3} . In fact if f is the Hermitian form defined on $V_n(q^2)$ we have

$$P = \{ [v, a] \mid v \in V_{n-2}(q^2), a \in GF(q^2), tr(a) + f(v, v) = 0 \}$$

where $tr(a) = a + a^q$. In fact, P is a subgroup of $SU_n(q^2)$. If we choose v = 0, then P has a subgroup $Q = \{[0, a] \mid a \in GF(q^2), a + a^q = 0\}$ which is isomorphic to the additive group of GF(q). Hence by Result 1 (1), we obtain $m = 1, q = p, H = SU_n(p)$. But it is known that a Sylow *p*-subgroup of $SU_n(p)$ is already a Sylow *p*-subgroup of $SL_n(p)$. New using the argument in proposition 1 the Result follows.

Finally, we turn to the special orthogonal groups. These groups are defined as the group of isometries of a non-degenerate quadratic form Q over a finite dimensional vector space V over the Galois field GF(q). If the dim V = 2n + 1 is odd there is a unique non-degenerate quadratic form Q and its group of isometries with determinant 1 is denoted by $SO_{2n+1}(q)$. If q is even it is known that $SO_{2n+1}(q) \cong SP_{2n}(q)$. Therefore, first we deal with the special orthogonal group in odd dimension over the Galois field of odd characteristic. Note that in this case if

$$f: V_{2n+1}(q) \times V_{2n+1}(q) \longrightarrow GF(q)$$

is the symmetric bilinear form associated with Q, then $Q(v) = \frac{1}{2}f(v, v)$, for all $v \in V_{2n+1}(q)$.

Proposition 4. Let $H = SO_{2n+1}(q)$, $q = p^f$, p an odd prime. If H is a Frobenius complement, then n = 1, q = p = 3 or 5.

Proof. The study of affine subgroups of the orthogonal groups is contained in [2], from which we deduce that the stabilizer of a non-zero isotropic vector contains an abelian subgroup of order q^{2n-1} which defined as follows:

$$P(n) = \{ [v, a] \mid v \in V_{2n-1}(q), a \in GF(q), 2a + f(v, v) = 0 \}.$$

The multiplication in P(n) is [v, a][u, b] = [v + u, a + b - f(v, v)].

Using this multiplication it is easy to calculate $[v, a]^k = [kv, ka - \binom{k}{2}f(v, v)]$, for all v and a. Therefore $[v, a]^p = [0, 0]$ = The identity element of P(n). Hence P(n) is an elementary abelian p-group of order q^{2n-1} . Now by Result 1 (1), n = 1, q = p, prime. Therefore $H = SO_3(p)$ which is known to be isomorphic to $SL_2(p)$. Now by the arguments used in previous propositions the result follows.

If the dim V = 2n is even there are two non-degenerate non-equivalent quadratic forms Q^t , $t = \pm$. If there is a totally isotropic subspace of dimension n, the group of isometries of V with respect to Q^+ and determinant 1 is denoted by $SO_{2n}^+(q)$, otherwise by $SO_{2n}^-(q)$.

Proposition 5. Let $H = SO_{2n}^t(q)$, $t = \pm$, q a prime power. If H is a Frobenius complement, then n = 1 and $H \cong \mathbb{Z}_{q-1}$ or $H \cong \mathbb{Z}_{q+1}$.

Proof. By [2] in any case the affine subgroup of H contains an abelian subgroup of order q^{2n-2} denoted by:

 $P(n) = \{ [v, \epsilon Q^{\epsilon}(v)] \mid v \in V_{2n-2}(q) \}$ where the multiplication in P(n) is as follows:

 $[v, \epsilon Q^{\epsilon}(v)][u, \epsilon Q^{\epsilon}(u)] = [v + u, \epsilon Q^{\epsilon}(v + u)], \text{ for all } v, u \in V_{2n-2}(q), \text{ it}$ is easy to verify that P(n) is an elementary abelian group, hence by 1 (1), n = 1. In this case we have $H = SO_2^{\epsilon}(q)$. But it is well-known that $SO_2^+(q) \cong \mathbb{Z}_{q-1}$ and $SO_2^-(q) \cong \mathbb{Z}_{q+1}.$

In the following we show that Frobenius complement isomorphic to \mathbb{Z}_{q-1} , and \mathbb{Z}_{q+1} , q prime power exist.

Example 1. Let F denote the finite field of order q and consider the group

$$G = \{ f_{a,b} : F \longrightarrow F \mid f_{a,b}(x) = ax + b, a, b \in F, a \neq 0 \}.$$

In this case G is a group of order q(q-1) which acts transitively on F. The stabilizer of 0 is the group $H = \{f_{a,0} \mid a \in F^{\times}\}$ which is isomorphic to \mathbb{Z}_{q-1} and acts fixed point freely on $F - \{0\}$. Therefore G is a Frobenius group with complement isomorphic to \mathbb{Z}_{q-1} .

Example 2. Let F be a finite field with q^2 elements where q is a prime power. By Example 1, a Frobenius group with kernel K isomorphic to the additive group of F, and complement isomorphic to the multiplicative group of F exists. But $F^{\times} \cong \mathbb{Z}_{q^2-1}$, and it has a unique subgroup H_1 of order q + 1. Obviously $H_1 \leq N_G(K)$, hence by a result in [5], $G_1 = KH_1$ is a Frobenius group with complement $H_1 \cong \mathbb{Z}_{q+1}$.

References

- [1] M. J. Collins, Some infinite Frobenius groups, J. Alg. 131, 1990, 161-165.
- M. R. Darafsheh, Affine subgroups the classical groups and their character degrees, J. Sci. I. R. Iran, Vol. 9, no. 2,1998, 181-186.
- [3] F. G. Frobenius, Über auflösbare Gruppen IV, S'ber. Akad. Wiss. Berlin, 1901, 1216-1230; Ges, Abh. III, 189-203.
- [4] R. Gow, Some characters of affine subgroups of classical groups, J. London Math. Soc., 12(2), 1976, 231-238.
- [5] L. C. Grove, *Groups and characters*, John Wiley and sons, New York, 1997.
- [6] D. S. Passman, Permutation groups, W. A. Benjamin, Inc., New York, 1968.

CONTACT INFORMATION

Mohammadreza Darafsheh	School of mathematics, statistics and computer science, College of science, University of Tehran, Tehran, Iran $E-Mail(s)$: darafsheh@ut.ac.ir
Hadiseh Saydi	Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran <i>E-Mail(s)</i> : hadisehsaydi90@gmail.com

Received by the editors: 17.12.2021 and in final form 19.03.2023.