On the structure of the algebra of derivations of cyclic Leibniz algebras

L. A. Kurdachenko, M. M. Semko, and V. S. Yashchuk

Abstract. We describe the algebra of derivation of finitedimensional cyclic Leibniz algebra.

Introduction

Let L be an algebra over finite field F with the binary operations + and $[\cdot, \cdot]$. Then L is called a left Leibniz algebra if it satisfies the left Leibniz identity

$$
[[a, b], c]=[a,[b, c]]-[b,[a, c]] \text { for all } a, b, c \in L
$$

We will also use another form of this identity:

$$
[a,[b, c]]=[[a, b], c]+[b,[a, c]]
$$

Leibniz algebras were first in the paper of A. Bloh [1], but the term "Leibniz algebra" appears in the book of J.-L. Loday [2] and his article [3]. In [4] J. Loday and T. Pirashvili began the real study of properties of Leibniz algebras. The theory of Leibniz algebras was developed very intensively in many different directions. Some of the results of this theory were presented in the book [5]. Note that Lie algebras are a partial case of Leibniz algebras. Conversely, if L is a Leibniz algebra in which $[a, a]=0$ for every element $a \in L$, then it is a Lie algebra. Thus, Lie algebras can be characterized as anticommutative Leibniz algebras.

2020 MSC: 17A32, 17A60, 17A99.
Key words and phrases: Leibniz algebra, cyclic Leibniz algebra, derivation, ideal.

Like the Lie algebras, the structure of Leibniz algebras is strongly affected by their algebras of derivations.

Denote by $\operatorname{End}_{F}(L)$ the set of all linear transformations of L. Then L is an associative algebra by the operations + and o. As usual, $\operatorname{End}_{F}(L)$ is a Lie algebra by the operations + and $[\cdot, \cdot \cdot]$, where $[f, g]=f \circ g-g \circ f$ for all $f, g \in \operatorname{End}_{F}(L)$.

A linear transformation f of a Leibniz algebra L is called a derivation, if

$$
f([a, b])=[f(a), b]+[a, f(b)] \text { for all } a, b \in L
$$

Let $\operatorname{Der}(L)$ be the subset of all derivations of L. It is possible to prove that $\operatorname{Der}(L)$ is a subalgebra of a Lie algebra $\operatorname{End}_{F}(L) . \operatorname{Der}(L)$ is called the algebra of derivations of a Leibniz algebra L.

For a Leibniz algebra, the following result shows the influence of the algebra of derivations on its structure: if A is an ideal of a Leibniz algebra, then the factor-algebra of L by the annihilator of A is isomorphic to some subalgebra of $\operatorname{Der}(A)$ [6, Proposition 3.2].

Among the Leibniz algebras, it is natural to study the structure of their algebras of derivations for cyclic Leibniz algebras. The structure of cyclic Leibniz algebras was described in [7]. In what follows, we will demonstrate this structure.

Let L be a cyclic Leibniz algebra, $L=\langle a\rangle$, and we suppose that L has a finite dimension over a field F. Then there exists a positive integer n such that L has a basis a_{1}, \ldots, a_{n}, where $a_{1}=a, a_{2}=\left[a_{1}, a_{1}\right], \ldots$, $a_{n}=\left[a_{1}, a_{n-1}\right],\left[a_{1}, a_{n}\right]=\alpha_{2} a_{2}+\ldots+\alpha_{n} a_{n}$ [7]. Moreover, $[L, L]=$ $\operatorname{Leib}(L)=F a_{2}+\ldots+F a_{n}[7]$. We fix these designations.

Here appear the following types of cyclic Leibniz algebras.
First case: $\left[a_{1}, a_{n}\right]=0$. In this case, L is nilpotent, and we say that L is a cyclic algebra of type (I).

The structures of the algebras of derivations of these Leibniz algebras have been described in [7].

The next type of cyclic Leibniz algebras appears in the following way. In this case, $\left[a_{1}, a_{n}\right]=\alpha_{2} a_{2}+\ldots+\alpha_{n} a_{n}$ and $\alpha_{2} \neq 0$. In some sense, it is a basic case. First, we recall some definitions.

The left (respectively right) center $\zeta^{\text {left }}(L)$ (respectively $\zeta^{\text {right }}(L)$) of a Leibniz algebra L is defined by the rule:

$$
\zeta^{l e f t}(L)=\{x \in L \mid[x, y]=0 \text { for each element } y \in L\}
$$

(respectively,

$$
\left.\zeta^{\text {right }}(L)=\{x \in L \mid[y, x]=0 \text { for each element } y \in L\}\right)
$$

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center. Moreover, $\operatorname{Leib}(L) \leqslant \zeta^{\text {left }}(L)$, so that $L / \zeta^{\text {left }}(L)$ is a Lie algebra. The right center is a subalgebra of L, and, in general, the left and right centers are different; they even may have different dimensions (see [6]).

Put $c=\alpha_{2}^{-1}\left(\alpha_{2} a_{1}+\ldots+\alpha_{n} a_{n-1}-a_{n}\right)$, then $[c, c]=0$, moreover, $F c$ is a right center of $L, L=[L, L] \oplus F c$ and $[c, b]=\left[a_{1}, b\right]$ for every element $b \in A[7]$. In particular, $a_{3}=\left[c, a_{2}\right], \ldots, a_{n}=\left[c, a_{n-1}\right]$, $\left[c, a_{n}\right]=\alpha_{2} a_{2}+\ldots+\alpha_{n} a_{n}$. In this case, we say that L is a cyclic algebra of type (II).

Put $A=[L, L]$ and define the mapping $\mathfrak{l}_{c}: L \rightarrow L$ by the rule $\mathfrak{l}_{c}(x)=[c, x]$ for every element $x \in L$. The restriction of a linear transformation \mathfrak{l}_{c} on A has the following matrices in a basis $\left\{a_{2}, \ldots, a_{n}\right\}$:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & \alpha_{2} \\
1 & 0 & 0 & \ldots & 0 & \alpha_{3} \\
0 & 1 & 0 & \ldots & 0 & \alpha_{4} \\
0 & 0 & 1 & \ldots & 0 & \alpha_{5} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & \alpha_{n-1} \\
0 & 0 & 0 & \ldots & 1 & \alpha_{n}
\end{array}\right)
$$

These matrices are non-degenerate. Hence the restriction of \mathfrak{l}_{c} on A is an F-automorphism of a linear space A. The first main result of this paper is following.

Theorem 1. Let L be a cyclic Leibniz algebra of type (II) over a field F, and let D be the annihilator of a subspace $F c$ in algebra $\operatorname{Der}(L)$. Then the following assertions hold:
(i) D is an Abelian ideal having dimension $\operatorname{dim}_{F}(L)-1$; the set $\left\{\mathfrak{i}, \mathfrak{l}_{c}, \mathfrak{l}_{c}^{2}, \ldots, \mathfrak{l}_{c}^{n-2}\right\}$ is a basis of D;
(ii) D has a codimension at most 1 ;
(iii) if $D \neq \operatorname{Der}(L)$, then $\operatorname{char}(F)$ divides $\operatorname{dim}_{F}(L)-1$.

Here \mathfrak{i} is the mapping, defined by the rule: if $x=a+\sigma c, a \in A, \sigma \in F$, is an arbitrary element of L, then put $\mathfrak{i}(x)=a$.
Corollary $\mathbf{A}_{\mathbf{1}}$. Let L be a cyclic Leibniz algebra of type (II) over a field F. If F has a characteristic 0, then algebra $\operatorname{Der}(L)$ is Abelian and has a dimension $\operatorname{dim}_{F}(L)-1$.

Finally, consider the last type of finite-dimensional cyclic Leibniz algebra.

In this case: $\left[a_{1}, a_{n}\right]=\alpha_{2} a_{2}+\ldots+\alpha_{n} a_{n}$, but $\alpha_{2}=0$. Let t be the first index such that $\alpha_{t} \neq 0$. In other words, $\left[a_{1}, a_{n}\right]=\alpha_{t} a_{t}+\ldots+\alpha_{n} a_{n}$. By our condition, $t>2$. Then

$$
\left[a, a_{n}\right]=\alpha_{t}\left[a, a_{t-1}\right]+\ldots+\alpha_{n}\left[a, a_{n-1}\right]=\left[a, \alpha_{t} a_{t-1}+\ldots+\alpha_{n} a_{n-1}\right]
$$

which implies that $\alpha_{t} a_{t-1}+\ldots+\alpha_{n} a_{n-1}-a_{n} \in \operatorname{Ann}_{K}^{\text {right }}\left(a_{1}\right)$. The fact that $\alpha_{t} \neq 0$ implies that $\alpha_{t}^{-1} \neq 0$, and then

$$
\begin{aligned}
& d_{t-1}=\alpha_{t}^{-1}\left(\alpha_{t} a_{t-1}+\ldots+\alpha_{n} a_{n-1}-a_{n}\right)= \\
& =a_{t-1}+\beta_{t} a_{t}+\ldots+\beta_{n} a_{n} \in \operatorname{Ann}_{K}^{\text {right }}\left(a_{1}\right)
\end{aligned}
$$

Put

$$
\begin{gathered}
d_{t-2}=a_{t-2}+\beta_{t} a_{t-1}+\ldots+\beta_{n} a_{n-1}, \\
d_{t-3}=a_{t-3}+\beta_{t} a_{t-2}+\ldots+\beta_{n} a_{n-2}, \ldots, \\
d_{1}=a_{1}+\beta_{t} a_{2}+\ldots+\beta_{n} a_{n-t+1}
\end{gathered}
$$

Then

$$
\begin{gathered}
{\left[d_{1}, d_{1}\right]=\left[a_{1}, d_{1}\right]=d_{2}} \\
{\left[d_{1}, d_{2}\right]=\left[a_{1}, d_{2}\right]=d_{3}, \ldots} \\
{\left[d_{1}, d_{t-2}\right]=\left[a_{1}, d_{t-2}\right]=d_{t-1}} \\
{\left[d_{1}, d_{t-1}\right]=\left[a_{1}, d_{t-1}\right]=0}
\end{gathered}
$$

It follows that the subspace $U=F d_{1} \oplus F d_{2} \oplus \ldots \oplus F d_{t-1}$ is a subalgebra, and, moreover, this subalgebra is nilpotent. Moreover, a subspace $[U, U]=$ $F d_{2} \oplus \ldots \oplus F d_{t-1}$ is an ideal of L. Put further $d_{t}=a_{t}, d_{t+1}=a_{t+1}, \ldots$, $d_{n}=a_{n}$. The following matrix corresponds to this transaction:

$$
\left(\begin{array}{cccccccccc}
1 & \beta_{t} & \beta_{t+1} & \cdots & \beta_{k} & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & \beta_{t} & \cdots & \beta_{k-1} & \beta_{k} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & \beta_{t} & \cdots & \beta_{k-1} & \beta_{k} \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

This matrix is non-singular, which proves that the elements $\left\{d_{1}, \ldots, d_{n}\right\}$ present a new basis. We note that a subspace $V=F d_{t} \oplus \ldots \oplus F d_{n}$ is a subalgebra. Moreover, V is an ideal of D, because $\left[a_{1}, d_{t}\right]=d_{t+1}, \ldots$,
$\left[a_{1}, d_{n-1}\right]=d_{n},\left[a_{1}, d_{n}\right]=\alpha_{t} d_{t}+\ldots+\alpha_{n} d_{n}$. Moreover, $\left[a_{1}, d_{j}\right]=\left[d_{1}, d_{j}\right]$ for all $j \geqslant t[7]$. In this case, we say that L is a cyclic algebra of type (III).

Thus, $L=A \oplus F d_{1}, A=V \oplus[U, U]$ is a direct sum of two ideals, $U=[U, U] \oplus F d_{1}$ is a nilpotent cyclic subalgebra, i.e. is an algebra of type (I), and $V \oplus F d_{1}$ is a cyclic subalgebra of type (II).

The second main result of this paper gives a description of the algebra of derivations of cyclic Leibniz algebras of type (III).

Theorem 2. Let L be a cyclic Leibniz algebra of type (III) over a field F. Then $\operatorname{Der}(L)$ is a subdirect product of the algebras D_{1} and D_{2}, where D_{1} is the algebra of derivations of a cyclic nilpotent Leibniz algebra, D_{2} is the algebra of derivations of a cyclic Leibniz algebra of type (II).

We recall that a structure of the algebra of derivations of nilpotent cyclic Leibniz algebras was described in [8].

1. Algebra of derivation of a cyclic Leibniz algebra of type (II)

We show here some basic elementary properties of derivations, which have been proved in [9].

Lemma 1. Let L be a Leibniz algebra over a field F, and let f be a derivation of L. Then $f\left(\zeta^{\text {left }}(L) \leqslant \zeta^{\text {left }}(L), f\left(\zeta^{\text {right }}(L)\right) \leqslant \zeta^{\text {right }}(L)\right.$ and $f(\zeta(L)) \leqslant \zeta(L)$.

Corollary 1. Let L be a Leibniz algebra over a field F and f be a derivaion of L. Then $f\left(\zeta_{\alpha}(L)\right) \leqslant \zeta_{\alpha}(L)$ for every ordinal α.

Lemma 2. Let L be a Leibniz algebra over a field F, and let f be a derivaion of L. Then $f\left(\gamma_{\alpha}(L)\right) \leqslant \gamma_{\alpha}(L)$ for all ordinals α, in particular, $f\left(\gamma_{\infty}(L)\right) \leqslant \gamma_{\infty}(L)$.

Corollary 2. Let L be a cyclic Leibniz algebra of type (II) over a field $F, L=A \oplus S$, where $A=[L, L]=\operatorname{Leib}(L), S=F c=\zeta^{\text {right }}(L)$. If f is an derivaion of L, then $f(A) \leqslant A, f(S) \leqslant S$, in particular, $f(c)=\sigma c$ for some $\sigma \in F$.

We start from the case of a non-nilpotent cyclic Leibniz algebra L, having dimension 2 . In this case, $L=F a_{1} \oplus F a_{2}$, where $\left[a_{1}, a_{1}\right]=a_{2}$, $\left[a_{2}, a_{2}\right]=\left[a_{2}, a_{1}\right]=0,\left[a_{1}, a_{2}\right]=a_{2}$ (see, e.g., survey [10]). This algebra has an interesting property: every its subalgebra is an ideal. Note that the Leibniz algebras whose subalgebras are ideals were described in [11].

Let f be an arbitrary derivaion of L. We have $f\left(a_{1}\right)=\gamma a_{1}+\alpha a_{2}$ for some elements $\alpha, \gamma \in F$. Then

$$
\begin{gathered}
f\left(a_{2}\right)=f\left(\left[a_{1}, a_{1}\right]\right)=\left[f\left(a_{1}\right), a_{1}\right]+\left[a_{1}, f\left(a_{1}\right)\right]= \\
=\left[\gamma a_{1}+\alpha a_{2}, a_{1}\right]+\left[a_{1}, \gamma a_{1}+\alpha a_{2}\right]= \\
=\gamma a_{2}+\gamma a_{2}+\alpha a_{2}=(2 \gamma+\alpha) a_{2} .
\end{gathered}
$$

Put $c=a_{1}-a_{2}$, then $F c=\zeta^{\text {right }}(L)$. We have

$$
\begin{gathered}
f(c)=f\left(a_{1}-a_{2}\right)=f\left(a_{1}\right)-f\left(a_{2}\right)= \\
=\gamma a_{1}+\alpha a_{2}-(2 \gamma+\alpha) a_{2}=\gamma a_{1}-2 \gamma a_{2} .
\end{gathered}
$$

On the other hand, Lemma 1 shows that $f(c) \in F c$. It is possible, only if $\gamma=0$. In this case, $f\left(a_{1}\right)=\alpha a_{2}$ and $f\left(a_{2}\right)=\alpha a_{2}$. In this case, we can see that $\operatorname{Der}(L) \cong F$, in particular, $\operatorname{Der}(L)$ is Abelian and has a dimension 1.

Now, we suppose that $\operatorname{dim}_{F}(L)>2$.
Lemma 3. Let L be a cyclic Leibniz algebra of type (II) over a field F, and let D be the annihilator of a subspace Fc in algebra $\operatorname{Der}(L)$. Then D is an ideal of $\operatorname{Der}(L)$ and a factor-algebra $\operatorname{Der}(L) / D$ has dimension at most 1 .

Proof. Let f be an arbitrary derivaion of L. Since

$$
f(F c)=f\left(\zeta^{r i g h t}(L)\right) \leqslant \zeta^{r i g h t}(L)
$$

by Lemma 1, we obtain that $f(c)=\alpha c$ for some element $\alpha \in F$.
Clearly, D is a subalgebra of $\operatorname{Der}(L)$. Let f be an arbitrary derivaion, and let g be an element of D. Then

$$
\begin{gathered}
{[f, g](c)=(f \circ g)(c)-(g \circ f)(c)=f(g(c))-g(f(c))=} \\
=f(0)-g(\alpha c)=-\alpha g(c)=0 \\
{[g, f](c)=-[f, g](c)=0}
\end{gathered}
$$

so that D is an ideal of $\operatorname{Der}(L)$.
The factor-algebra of $\operatorname{Der}(L) / \operatorname{Ann}_{\operatorname{Der}(L)}(F c)$ is isomorphic with some subalgebra of the algebra of linear transformations of a vector space $F c$. It follows that this factor-algebra has dimension 0 or 1 .

Lemma 4. Let L be a cyclic Leibniz algebra of type (II) over a field F. If L has a derivaion f such that $f(c) \neq 0$, then $\operatorname{char}(F)$ divides $\operatorname{dim}_{F}(L)-1$.

Proof. By Corollary $2 f(c)=\sigma c$ for some non-zero element σ of a field F. Put $g=\sigma^{-1} f$. Then g is a derivation, and $g(c)=c$. Let x be an arbitrary element of L. Then $x=a+\lambda c$ for some element $\lambda \in F$. We have

$$
[c, x]=[c, a+\lambda c]=[c, a]+[c, \lambda c]=[c, a]
$$

and

$$
\begin{gathered}
g([c, x])=g([c, a])=[g(c), a]+[c, g(a)]= \\
=[c, a]+[c, g(a)]=[c, a+g(a)]=\left[c,\left(g+\operatorname{Id}_{L}\right)(a)\right]
\end{gathered}
$$

(here, Id_{L} is an identity permutation of L).
Thus, we obtain $g\left(\mathfrak{l}_{c}(a)\right)=\mathfrak{l}_{c}\left(\left(g+\operatorname{Id}_{L}\right)(a)\right)$.
If h is a derivaion of L, then Lemma 2 shows that $h(A) \leqslant A$. Define now the mapping $h^{\downarrow}: A \rightarrow A$ by the rule: $f^{\downarrow}(a)=f(a)$ for every $a \in A$. It is not hard to prove that h^{\downarrow} is a linear transformation of a vector space A. Then we obtain

$$
g^{\downarrow} \circ \mathfrak{l}_{c}^{\uparrow}=\mathfrak{l}_{c}^{\uparrow} \circ\left(g^{\uparrow}+\operatorname{Id}_{A}\right)
$$

Denote, by G (respectively, M), the matrix of a linear mapping g^{\uparrow} (respectively, $\boldsymbol{\imath}_{c}^{\uparrow}$) in a basis $\left\{a_{2}, \ldots, a_{n}\right\}$. Then we obtain the matrix equality $G M=M(G+E)$. As we have seen above, the matrix M is not singular. Thus, we obtain $M^{-1} G M=G+E$.

Since $\operatorname{trace}(G)=\operatorname{trace}\left(M^{-1} G M\right)$, we obtain

$$
\operatorname{trace}(G)=\operatorname{trace}(G+E)=\operatorname{trace}(G)+(n-1) 1_{F}
$$

(here, 1_{F} is an identity element of a field $\left.F\right)$. It follows that $(n-1) 1_{F}=0$. In this case, $\operatorname{char}(F)$ divides $n-1$.

Lemma 5. Let L be a cyclic Leibniz algebra of type (II) over a field F, and let D be the annihilator of a subspace $F c$ in algebra $\operatorname{Der}(L)$. Then D is generated as a vector space by the derivations $\mathfrak{i}, \mathfrak{l}_{c}, \mathfrak{l}_{c}^{2}, \ldots, \mathfrak{l}_{c}^{n-2}$. Moreover, the set $\left\{\mathfrak{i}, \mathfrak{l}_{c}, \mathfrak{l}_{c}^{2}, \ldots, \mathfrak{l}_{c}^{n-2}\right\}$ is a basis of D, so that D is Abelian and has a dimension $n-1$.

Proof. We note that the mapping \mathfrak{i} is a derivaion of L. Indeed, if $y=b+\tau c$, $b \in A, \tau \in F$, is another element of L, then put

$$
\begin{gathered}
\mathfrak{i}([x, y])=\mathfrak{i}([a+\sigma c, b+\tau c])=\mathfrak{i}(\sigma[c, b])=\sigma[c, b], \\
{[\mathfrak{i}(x), y]+[x, \mathfrak{i}(y)]=[a, b+\tau c]+[a+\sigma c, b]=\sigma[c, b] .}
\end{gathered}
$$

Let f is an arbitrary derivaion of D. Then

$$
\begin{gathered}
\left(f \circ \mathfrak{l}_{c}\right)(x)=f\left(\mathfrak{l}_{c}(x)\right)=f\left(\mathfrak{l}_{c}(a+\sigma c)\right)= \\
=f([c, a+\sigma c])=f([c, a])=[f(c), a]+[c, f(a)]=[c, f(a)]
\end{gathered}
$$

$$
\left(\mathfrak{l}_{c} \circ f\right)(x)=\mathfrak{l}_{c}(f(x))=\mathfrak{l}_{c}(f(a+\sigma c))=\mathfrak{l}_{c}(f(a))=[c, f(a)] .
$$

Since it is true for every element $x \in L$, we obtain that $f \circ \mathfrak{l}_{c}=\mathfrak{l}_{c} \circ f$. We have

$$
\begin{gathered}
a_{3}=\left[c, a_{2}\right]=\mathfrak{l}_{c}\left(a_{2}\right), \\
a_{4}=\left[c, a_{3}\right]=\mathfrak{l}_{c}\left(a_{3}\right)=\mathfrak{l}_{c}\left(\mathfrak{l}_{c}\left(a_{2}\right)\right)=\mathfrak{l}_{c}^{2}\left(a_{2}\right), \ldots, \\
a_{n}=\left[c, a_{n-1}\right]=\mathfrak{l}_{c}^{n-2}\left(a_{2}\right) .
\end{gathered}
$$

Note that

$$
\mathfrak{l}_{c}^{n-1}\left(a_{2}\right)=\mathfrak{l}_{c}\left(\mathfrak{l}_{c}^{n-2}\left(a_{2}\right)\right)=\mathfrak{l}_{c}\left(a_{n}\right)=\alpha_{2}+\alpha_{3} \mathfrak{l}_{c}\left(a_{2}\right)+\ldots+\alpha_{n} \mathfrak{l}_{c}^{n-2}\left(a_{2}\right),
$$

so that we can define $\mathfrak{l}_{c}^{k}\left(a_{2}\right)$ (and, hence, $\mathfrak{l}_{c}^{k}(a)$ for arbitrary $a \in A$) for each positive integer k.

Let f be an arbitrary element of an ideal D. Let

$$
f\left(a_{2}\right)=\beta_{0} a_{2}+\beta_{1} a_{3}+\ldots+\beta_{n-2} a_{n}
$$

for some elements $\beta_{0}, \ldots, \beta_{n-2} \in F$. Then we obtain the presentation

$$
\begin{aligned}
f\left(a_{2}\right)= & \beta_{0} \mathfrak{i}\left(a_{2}\right)+\beta_{1} \mathfrak{l}_{c}\left(a_{2}\right)+\beta_{2} \mathfrak{l}_{c}^{2}\left(a_{2}\right)+\ldots+\beta_{n-2} \mathfrak{l}_{c}^{n-2}\left(a_{2}\right)= \\
& =\left(\beta_{0} \mathfrak{i}+\beta_{1} \mathfrak{l}_{c}+\beta_{2} \mathfrak{l}_{c}^{2}+\ldots+\beta_{n-2} l_{c}^{n-2}\right)\left(a_{2}\right)
\end{aligned}
$$

Put $\mathfrak{d}_{f}=\beta_{0} \mathfrak{i}+\beta_{1} \mathfrak{l}_{c}+\beta_{2} \mathfrak{l}_{c}^{2}+\ldots+\beta_{n-2} \mathfrak{l}_{c}^{n-2}$, then $f\left(a_{2}\right)=\mathfrak{d}_{f}\left(a_{2}\right)$.
If a is an arbitrary element of A, then $a=\sigma_{0} a_{2}+\sigma_{1} a_{3}+\ldots+\sigma_{n-2} a_{n}$ for some elements $\sigma_{0}, \ldots, \sigma_{n-2} \in F$. We have

$$
f\left(a_{3}\right)=f\left(\mathfrak{l}_{c}\left(a_{2}\right)\right)=\mathfrak{l}_{c}\left(f\left(a_{2}\right)\right)=\mathfrak{l}_{c}\left(\mathfrak{d}_{f}\left(a_{2}\right)\right)=\mathfrak{d}_{f}\left(\mathfrak{l}_{c}\left(a_{2}\right)\right)=\mathfrak{d}_{f}\left(a_{3}\right) .
$$

Similarly, we obtain that $f\left(a_{4}\right)=\mathfrak{d}_{f}\left(a_{4}\right), \ldots, f\left(a_{n}\right)=\mathfrak{d}_{f}\left(a_{n}\right)$. It follows that

$$
\begin{gathered}
f(a)=f\left(\sigma_{0} a_{2}+\sigma_{1} a_{3}+\sigma_{2} a_{4}+\ldots+\sigma_{n-2} a_{n}\right)= \\
=\sigma_{0} f\left(a_{2}\right)+\sigma_{1} f\left(a_{3}\right)+\sigma_{2} f\left(a_{4}\right)+\ldots+\sigma_{n-2} f\left(a_{n}\right)= \\
=\sigma_{0} \mathfrak{d}_{f}\left(a_{2}\right)+\sigma_{1} \mathfrak{d}_{f}\left(a_{3}\right)+\sigma_{2} \mathfrak{d}_{f}\left(a_{4}\right)+\ldots+\sigma_{n-2} \mathfrak{d}_{f}\left(a_{n}\right)= \\
=\mathfrak{d}_{f}\left(\sigma_{0} a_{2}+\sigma_{1} a_{3}+\sigma_{2} a_{4}+\ldots+\sigma_{n-2} a_{n}\right)=\mathfrak{d}_{f}(a) .
\end{gathered}
$$

If $x=a+\sigma c, a \in A, \sigma \in F$, is an arbitrary element of L, then

$$
f(x)=f(a+\sigma c)=f(a)+\sigma f(c)=f(a)
$$

and it implies that $f(x)=\mathfrak{d}_{f}(x)$.

Since it is true for every element $x \in L$, we obtain that $f=\mathfrak{d}_{f}$.
We note that the mappings $\mathfrak{i}, \mathfrak{l}_{c}, \mathfrak{l}_{c}^{2}, \ldots, \mathfrak{l}_{c}^{n-2}$ are linearly independent. Indeed, suppose that $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-2}$ are the elements of F such that

$$
\lambda_{0} \mathfrak{i}+\lambda_{1} \mathfrak{l}_{c}+\lambda_{2} \mathfrak{l}_{c}^{2}+\ldots+\lambda_{n-2} \mathfrak{l}_{c}^{n-2}=0
$$

Then

$$
\left(\lambda_{0} \mathfrak{i}+\lambda_{1} \mathfrak{l}_{c}+\lambda_{2} \mathfrak{l}_{c}^{2}+\ldots+\lambda_{n-2} \mathfrak{l}_{c}^{n-2}\right)\left(a_{2}\right)=0
$$

On the other hand,

$$
\begin{gathered}
\left(\lambda_{0} \mathfrak{i}+\lambda_{1} \mathfrak{l}_{c}+\lambda_{2} \mathfrak{l}_{c}^{2}+\ldots+\lambda_{n-2} \mathfrak{l}_{c}^{n-2}\right)\left(a_{2}\right)= \\
=\lambda_{0} a_{2}+\lambda_{1} l_{c}\left(a_{2}\right)+\lambda_{2} l_{c}^{2}\left(a_{2}\right)+\ldots+\lambda_{n-2} l_{c}^{n-2}\left(a_{2}\right)= \\
=\lambda_{0} a_{2}+\lambda_{1} a_{3}+\lambda_{2} a_{4}+\ldots+\lambda_{n-2} a_{n} .
\end{gathered}
$$

The fact that $\left\{a_{2}, a_{3}, \ldots, a_{n}\right\}$ is a basis of A shows that

$$
\lambda_{0}=\lambda_{1}=\ldots=\lambda_{n-2}=0
$$

2. Proof of Theorem A

Assertion (i) follows from Lemmas 3 and 5. Assertion (ii) follows from Lemma 3. Assertion (iii) follows from Lemma 4.

The following natural question appears from Lemma 4.
Let L be a cyclic Leibniz algebra of type (ii). Is $f(c)=0$ for an arbitrary derivaion f of L ?

The following example gives a negative answer on this question.
Example 1. Let $L=F c \oplus F a_{2} \oplus F a_{3} \oplus F a_{4}$ be a cyclic Leibniz algebra of type (II), having dimension 4 over a field \mathbb{F}_{3} of order 3. Let

$$
\left[c, a_{2}\right]=a_{3}, \quad\left[c, a_{3}\right]=a_{4}, \quad\left[c, a_{4}\right]=a_{2}
$$

Consider a linear transformation f of L, defined by the rule

$$
\begin{gathered}
f(c)=c \\
f\left(a_{2}\right)=2 a_{3}+a_{4} \\
f\left(a_{3}\right)=a_{2}+a_{3}+2 a_{4} \\
f\left(a_{4}\right)=2 a_{2}+a_{3}+2 a_{4}
\end{gathered}
$$

Let $x=\gamma c+\gamma_{2} a_{2}+\gamma_{3} a_{3}+\gamma_{4} a_{4}, y=\lambda c+\lambda_{2} a_{2}+\lambda_{3} a_{3}+\lambda_{4} a_{4}$ be the arbitrary elements of L. We have

$$
\begin{aligned}
& {[x, y]=\left[\gamma c+\gamma_{2} a_{2}+\gamma_{3} a_{3}+\gamma_{4} a_{4}, \lambda c+\lambda_{2} a_{2}+\lambda_{3} a_{3}+\lambda_{4} a_{4}\right]=} \\
& =\left[\gamma c, \lambda c+\lambda_{2} a_{2}+\lambda_{3} a_{3}+\lambda_{4} a_{4}\right]= \\
& =\gamma \lambda_{2} a_{3}+\gamma \lambda_{3} a_{4}+\gamma \lambda_{4} a_{2} ; \\
& f([x, y])=f\left(\gamma \lambda_{4} a_{2}+\gamma \lambda_{3} a_{4}+\gamma \lambda_{2} a_{3}\right)= \\
& =\gamma \lambda_{4} f\left(a_{2}\right)+\gamma \lambda_{3} f\left(a_{4}\right)+\gamma \lambda_{2} f\left(a_{3}\right)= \\
& =\gamma \lambda_{4}\left(2 a_{3}+a_{4}\right)+\gamma \lambda_{3}\left(2 a_{2}+a_{3}+2 a_{4}\right)+\gamma \lambda_{2}\left(a_{2}+a_{3}+2 a_{4}\right)= \\
& =\left(\gamma \lambda_{2}+2 \gamma \lambda_{3}\right) a_{2}+\left(\gamma \lambda_{2}+\gamma \lambda_{3}+2 \gamma \lambda_{4}\right) a_{3}+\left(2 \gamma \lambda_{2}+2 \gamma \lambda_{3}+\gamma \lambda_{4}\right) a_{4} \text {; } \\
& f(x)=f\left(\gamma c+\gamma_{2} a_{2}+\gamma_{3} a_{3}+\gamma_{4} a_{4}\right)= \\
& =\gamma f(c)+\gamma_{2} f\left(a_{2}\right)+\gamma_{3} f\left(a_{3}\right)+\gamma_{4} f\left(a_{4}\right)= \\
& =\gamma c+\gamma_{2}\left(2 a_{3}+a_{4}\right)+\gamma_{3}\left(a_{2}+a_{3}+2 a_{4}\right)+\gamma_{4}\left(2 a_{2}+a_{3}+2 a_{4}\right)= \\
& =\gamma c+\left(2 \gamma_{4}+\gamma_{3}\right) a_{2}+\left(2 \gamma_{2}+\gamma_{3}+\gamma_{4}\right) a_{3}+\left(\gamma_{2}+2 \gamma_{3}+2 \gamma_{4}\right) a_{4} \text {; } \\
& f(y)=\lambda c+\left(2 \lambda_{4}+\lambda_{3}\right) a_{2}+\left(2 \lambda_{2}+\lambda_{3}+\lambda_{4}\right) a_{3}+\left(\lambda_{2}+2 \lambda_{3}+2 \lambda_{4}\right) a_{4} ; \\
& {[f(x), y]=\left[\gamma c+\left(2 \gamma_{4}+\gamma_{3}\right) a_{2}+\left(2 \gamma_{2}+\gamma_{3}+\gamma_{4}\right) a_{3}+\left(\gamma_{2}+2 \gamma_{3}+2 \gamma_{4}\right) a_{4}\right. \text {, }} \\
& \left.\lambda c+\lambda_{2} a_{2}+\lambda_{3} a_{3}+\lambda_{4} a_{4}\right]=\left[\gamma c, \lambda c+\lambda_{2} a_{2}+\lambda_{3} a_{3}+\lambda_{4} a_{4}\right]= \\
& =\gamma \lambda_{2} a_{3}+\gamma \lambda_{3} a_{4}+\gamma \lambda_{4} a_{2} ; \\
& {[x, f(y)]=\left[\gamma c+\gamma_{2} a_{2}+\gamma_{3} a_{3}+\gamma_{4} a_{4},\right.} \\
& \left.\lambda c+\left(2 \lambda_{4}+\lambda_{3}\right) a_{2}+\left(2 \lambda_{2}+\lambda_{3}+\lambda_{4}\right) a_{3}+\left(\lambda_{2}+2 \lambda_{3}+2 \lambda_{4}\right) a_{4}\right]= \\
& =\left[\gamma c, \lambda c+\left(2 \lambda_{4}+\lambda_{3}\right) a_{2}+\left(2 \lambda_{2}+\lambda_{3}+\lambda_{4}\right) a_{3}+\left(\lambda_{2}+2 \lambda_{3}+2 \lambda_{4}\right) a_{4}\right]= \\
& =\left(2 \gamma \lambda_{4}+\gamma \lambda_{3}\right) a_{3}+\left(2 \gamma \lambda_{2}+\gamma \lambda_{3}+\gamma \lambda_{4}\right) a_{4}+\left(\gamma \lambda_{2}+2 \gamma \lambda_{3}+2 \gamma \lambda_{4}\right) a_{2} \text {; } \\
& {[f(x), y]+[x, f(y)]=\gamma \lambda_{2} a_{3}+\gamma \lambda_{3} a_{4}+\gamma \lambda_{4} a_{2}+\left(2 \gamma \lambda_{4}+\gamma \lambda_{3}\right) a_{3}+} \\
& +\left(2 \gamma \lambda_{2}+\gamma \lambda_{3}+\gamma \lambda_{4}\right) a_{4}+\left(\gamma \lambda_{2}+2 \gamma \lambda_{3}+2 \gamma \lambda_{4}\right) a_{2}= \\
& =\left(\gamma \lambda_{2}+2 \gamma \lambda_{4}+\gamma \lambda_{3}\right) a_{3}+\left(\gamma \lambda_{3}+2 \gamma \lambda_{2}+\gamma \lambda_{3}+\gamma \lambda_{4}\right) a_{4}+ \\
& +\left(\gamma \lambda_{4}+\gamma \lambda_{2}+2 \gamma \lambda_{3}+2 \gamma \lambda_{4}\right) a_{2}= \\
& =\left(\gamma \lambda_{2}+2 \gamma \lambda_{3}\right) a_{2}+\left(\gamma \lambda_{2}+2 \gamma \lambda_{4}+\gamma \lambda_{3}\right) a_{3}+\left(2 \gamma \lambda_{3}+2 \gamma \lambda_{2}+\gamma \lambda_{4}\right) a_{4}= \\
& =[f(x), f(y)] \text {. }
\end{aligned}
$$

These equalities show that f is a derivaion of L.

3. Algebra of derivations of a cyclic Leibniz algebra of type (III). Proof of Theorem B

We have $L=A \oplus F d_{1}, A=V \oplus[U, U], U=F d_{1} \oplus F d_{2} \oplus \ldots \oplus F d_{t-1}$ is a nilpotent cyclic subalgebra, i.e. is an algebra of type (I). Moreover, a subspace $[U, U]=F d_{2} \oplus \ldots \oplus F d_{t-1}$ is an ideal of L. Furthermore, $V=F d_{t} \oplus \ldots \oplus F d_{n}$ is an ideal of L, and $\left[a_{1}, d_{j}\right]=\left[d_{1}, d_{j}\right]$ for all $j \geqslant t$. In other words, $V \oplus F d_{1}$ is a cyclic subalgebra of type (II).

Since $L / V \cong U$ is a cyclic nilpotent Leibniz algebra,

$$
\operatorname{Der}(L) / \operatorname{Ann}_{\operatorname{Der}(L)}(L / V)=D_{1}
$$

is an algebra of derivations of a cyclic nilpotent Leibniz algebra. Since $L /[U, U] \cong V \oplus F d_{1}$ is a cyclic Leibniz algebra of the second type, $\operatorname{Der}(L) / \operatorname{Ann}_{\operatorname{Der}(L)}(L /[U, U])=D_{2}$ is the algebra of derivations of a cyclic Leibniz algebra of type (II).

Let $f \in \operatorname{Ann}_{\operatorname{Der}(L)}(L / V) \cap \operatorname{Ann}_{\operatorname{Der}(L)}(L /[U, U])$, and let x be an arbitrary element of L. Then $f(x) \in V$, and, on the other hand, $f(x) \in[U, U]$. It follows that

$$
f(x) \in V \cap[U, U]=\langle 0\rangle, \text { so that } f(x)=x
$$

Thus $\operatorname{Ann}_{\operatorname{Der}(L)}(L / V) \cap \operatorname{Ann}_{\operatorname{Der}(L)}(L /[U, U])=\langle 0\rangle$, and Remak's theorem yields the embedding of algebra $\operatorname{Der}(L)$ into the direct product $D_{1} \times D_{2}$.

References

[1] Bloh A.M., On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165 (1965), no. 3, pp. 471-473.
[2] Loday J.-L., Cyclic homology. Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer, Verlag, Berlin, 1992.
[3] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbras de Leibniz, L'Enseignement Mathèmatique 39 (1993), pp. 269-293.
[4] Loday J.-L., Pirashvili T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Annalen 296 (1993), pp. 139-158.
[5] Ayupov Sh.A., Omirov B.A., Rakhimov I.S., Leibniz Algebras: Structure and Classification, CRC Press, Taylor \& Francis Group, (2020).
[6] Kurdachenko L.A., Otal J., Pypka A.A., Relationships between factors of canonical central series of Leibniz algebras, European Journal of Mathematics, 2 (2016), pp. 565-577.
[7] Chupordya V.A., Kurdachenko L.A., Subbotin I.Ya., On some "minimal" Leibniz algebras, J. Algebra Appl., 16 (2017), no. 2, 1750082 (16 pages).
[8] Semko M.M., Skaskiv L.V., Yarovaya O.A. On the derivations of cyclic nilpotent Leibniz algebras. The 13 algebraic conference in Ukraine, book of abstract, July 6-9, (2021), Taras Shevchenko National University of Kyiv, p. 73
[9] Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S. On the endomorphisms and derivations of some Leibniz algebras. ArXiv, ArXiv: math. RA/2104.05922 (2021).
[10] Kirichenko V.V., Kurdachenko L.A., Pypka A.A., Subbotin I.Ya., Some aspects of Leibniz algebra theory, Algebra and Discrete Mathematics, 24 (2017), no. 1, pp. 113-145.
[11] Kurdachenko L.A., Semko N.N., Subbotin I.Ya., The Leibniz algebras whose subalgebras are ideals, Open Mathematics, 15 (2017), pp. 92-100.

Contact information

Leonid
 A. Kurdachenko, Viktoriia S. Yashchuk

Mykola M. Semko

University of the State Fiscal Service of Ukraine, 31 Universytetskaya str., Irpin, 08205, Ukraine
E-Mail(s): dr.mykola.semko@gmail.com
Received by the editors: 12.10.2021.

