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Orbit isomorphic skeleton groups∗
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Communicated by I. Ya. Subbotin

Abstract. Recent development in the classiőcation of p-
groups often concentrate on the coclass graph G(p, r) associated

with the őnite p-groups coclass r, specially on periodicity results on

these graphs. In particular, the structure of the subgraph induced

by ‘skeleton groups’ is of notable interest. Given their importance,

in this paper, we investigate periodicity results of skeleton groups.

Our results concentrate on the skeleton groups in G(p, 1). We őnd

a family of skeleton groups in G(7, 1) whose 6-step parent is not a

periodic parent. This shows that the periodicity results available in

the current literature for primes p ≡ 5 mod 6 do not hold for the

primes p ≡ 1 mod 6. We also improve a known periodicity result in

a special case of skeleton groups.

1. Introduction

Classiőcation of p-groups is one of the main themes in group theory.
Since a classiőcation of p-groups by order pn seems out of reach for large
n, other invariants of groups have been used to attempt a classiőcation; a
particularly intriguing invariant is coclass. A őnite p-group of order pn and
nilpotency class c has coclass r = n− c. The investigation of p-groups by
coclass has been initiated by Leedham-Green & Newman [14] and recent
work in coclass theory is often concerned with the study of the coclass
graph G(p, r) associated with the őnite p-groups of coclass r. The vertices
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of the coclass graph G(p, r) are (isomorphism type representatives of) the
őnite p-groups of coclass r, and there is an edge G→ H if and only if G
is isomorphic to H/Γ(H) where Γ(H) is the last non-trivial term of the
lower central series of H. One beauty of recent developments in coclass
theory is the interplay between the intricate structure of p-groups and
graphical visualisations in the form of coclass graphs G(p, r). The explicit
computations of parts of these graphs have revealed surprising patterns,
which in some cases have been proved on a group-theoretic level. For
example, it is known that G(p, r) can be partitioned into őnitely many
groups and őnitely many inőnite trees (coclass trees), each having exactly
one inőnite path (mainline) starting at its root. It is a deep result that there
is a one-to-one correspondence between the mainlines in G(p, r) and the
isomorphism types of inőnite pro-p-groups of coclass r, a brief discussion
on these groups is given in Section 2.2. Since coclass trees are building
blocks of a coclass graph, one aim of coclass theory is to study these trees.
Many computer experiments suggest that signiőcant parts of these trees
exhibit periodic patterns; a good deal of current research, for example
[1ś3], is now concentrated on studying periodicity results. The őrst major
periodicity result (known as periodicity of type I) was independently
proved by du Sautoy [6] and Eick & Leedham-Green [8]. According to this,
if T is a coclass tree with branches B1,B2, . . . then for any őxed k and all
large enough n, there is a graph isomorphism Bn[k] → Bn+d[k] where d is
the dimension of inőnite prop-p-group associated with T and Bn[k] is the
shaved subtree of Bn induced by the all groups at a distance at most k
from the root of Bn. However, [8, Remark 4] explains why, in addition to
periodicity of type I, it is necessary to consider unbounded growth of the
branches. Recently it has become apparent that a feasible approach is to
őrst focus on so-called skeleton groups since almost every group in a class
tree T has bounded (in terms of p and r) distance to a skeleton group, a
detailed description can be found in [4]. Below we brieŕy elaborate this
and explain why skeleton groups are important. The content of the next
section is based on [4, Section 1.1].

1.1. Why skeleton groups?

For a őxed coclass tree, the inőnitely many groups on its mainline can
be recognised as the nilpotent quotients of an associated inőnite pro-p
group of coclass r; see Section 2.2. In a special case these pro-p-groups are
split extensions, that is they have the form S = P ⋉ T where T ∼= Zdp is a
free p-adic Zp-module of rank d and P is a őnite p-group acting uniserially
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on T . The central conjecture in coclass theory is that the graph G(p, r)
can be described by a őnite subgraph and certain graph periodicities. This
conjecture is a theorem for p = 2, but it remains open for odd primes;
the main reason is that the coclass trees in G(p, r) grow drastically in
width, something the results for p = 2 are not able to cover. It is therefore
necessary to investigate this growth in more detail, and it turns out that
skeleton groups provide a meaningful approach for that. For odd p, let
S be an inőnite pro-p group deőning the mainline of a coclass tree T in
G(p, r); for simplicity suppose S = P ⋉T as above. Unlike other groups in
T , skeleton groups can informally be described as twisted őnite quotients
of S, where the twisting is induced by a ZpP -module homomorphism
from T ∧ T into T ; more precisely, every skeleton group for S has the
form P ⋉ Tγ,m where γ : T ∧ T → T is a ZpP -module homomorphism
and Tγ,m is a őnite quotient of T whose group operation is deőned via
γ; we give more details in Section 2.3. Importantly, every group in T has
bounded distance to such a skeleton group, see [4]. This shows that the
broad structure of each coclass tree T , and hence the broad structure
of G(p, r), is determined by the subtree(s) induced by all these groups.
These make skeleton groups interesting and important to study. It is
therefore desirable to understand skeleton groups in more detail, and to
be able to construct them up to isomorphism. Ideally the isomorphisms
between skeleton groups corresponding to an inőnite pro-p-group S can
be expected to be induced by the automorphisms of S but unfortunately
there are many exceptions [7], see Remark 2.3. Isomorphism between two
skeleton groups which is induced by an automorphism of the pro-p-group
associated with the coclass tree is called an orbit isomorphism in [7].

1.2. Main results

Coming back to the periodicity results, it is shown in [8] that a shaved
subtree of Bn of depth approximately n/6d can be embedded into Bn+d.
However, this bound is signiőcantly improved in the case of coclass 1
by Dietrich [2]. In this paper we demonstrate a similar improvement
for a special class of skeleton groups where any isomorphism between
two skeleton groups is induced by an automorphism of the pro-p-group
associated with the coclass tree; such an isomorphism is called orbit
isomorphism in [7]. We prove the following in Section 4.1.

Theorem 1.1. Let G be an inőnite pro-p-group of coclass r corresponding
to the coclass tree TG in G(p, r) such that G is split and if two skeleton
groups in TG are isomorphic, then they are also orbit isomorphic. Then
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there exists an integer d = d(TG) such that for all large enough j, we have
Sj ∼= Sj+d[j − d] as rooted trees.

In order to investigate the periodicities deep in the branches of a
coclass tree, one considers periodic parents, see [1, 3] for details. Let k
be an integer and deőne the k-step descendant tree Dk(K) of a group
K in the branch Bn of a coclass tree T as the subtree of Bn induced by
the descendants of distance at most k from K. Computer experiments [1]
suggest that for r = 1 and p = 5, 11, almost always the unique ancestor H
at distance p−1 from K satisőes Dp−1(K) ∼= Dp−1(H). In [1], such a group
H is called a periodic parent of G and a result of this ŕavour is proved
in [1, Theorem 1.2] for p ≡ 5 mod 6. However, computer experiments for
p ⩾ 7 also suggest that there are inőnitely many groups (deep within
the branches) for which the (p− 1)-step parent is not a periodic parent.
We őnd such an inőnite family of groups in G(7, 1) which shows that the
statement [1, Theorem 1.2] can not be extended to the case p ≡ 1 mod 6.
In particular, we prove the following in Section 4.2.

Theorem 1.2. In G(7, 1), there is an inőnite family of pairs of skeleton
groups at different depths, one being the 6-step parent of the other, where
both groups have a 7-group as automorphism group, but non-isomorphic
descendent trees.

In general, the common observation is that for groups deep enough in
a branch, the (p− 1)-step parent often is a period parent, [1, Theorem 1.2]
is one such example. But computer experiments also show that there are
cases where this is not true, and the question is whether this is a general
fact or only an anomaly. Theorem 1.2 shows that this is not an anomaly
by relaxing the condition p ≡ 5 mod 6. Throughout this paper, r ⩾ 1 is
an integer, p denotes an odd prime, Qp is the őeld of p-adic rationals, and
Zp is the ring of p-adic integers.

2. Preliminaries

In this section, we introduce the notation and results required for the
rest of the paper.

2.1. Number theory

The results of this section are from [15, Section II, Chapters 5 & 7].
Let θ be a primitive ps-th root of unity over Qp for some s ⩾ 1. The
ps-th local cyclotomic őeld Qp(θ) has degree ds = (p− 1)ps−1 over Qp, a
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Qp-basis {1, θ, . . . , θds−1}, and a cyclic Galois group of order ds generated
by an automorphism σk : θ 7→ θk for some 1 < k < ps with p ∤ k and k
is a primitive root modulo ps. The ring of integers Zp[θ] is a principal
ideal domain with unique maximal ideal p = (κ), where κ = θ − 1. For
z ∈ N deőne pz = (κz); note that each [pz : pz+1] = p. The group of units
Ups = (Zp[θ]

⋆, ·) can be decomposed as Ups = ⟨ω⟩ × (1 + p) where ω ∈ Zp
is a primitive (p− 1)-th root of unity. For j ⩾ 1 write Ups,j = 1 + pj .

2.2. Inőnite pro-p-groups of coclass r

The results mentioned in this section are from [5, Section 10] and [11,
Sections 7 & 10]. A pro-p-group G with nilpotent quotients Gj = G/γj(G)
has coclass cc(G) = r if there is an integer t such that Gj is a őnite
p-group of coclass r for all j ⩾ t. Every inőnite pro-p-group G of coclass
r yields an inőnite path in the coclass graph G(p, r); in the following,
the label of the branch Bn of the corresponding coclass tree is usually
chosen such that Bn has root Gn. The structure of such a pro-p-group G
is well-understood, and in particular if G has trivial centre, then G is a
uniserial p-adic space group of dimension d for some d ⩾ 1, that is, G is
an extension of a characteristic subgroup T = (Zdp,+) by a őnite p-group
P which acts faithfully and uniserially on T . Recall that the action is
uniserial if the series T = T0 > T1 > T2 . . . deőned by Ti+1 = [Ti, P ]
satisőes [T : Ti] = pi for all i.

2.3. Skeleton groups

Unless mentioned otherwise, deőnitions and results mentioned in this
section are from [4]. In this paper we only consider skeleton groups
associated with an inőnite pro-p-group G = P.T which is split and has
dimension d. These skeleton groups are often called split skeleton groups.
Following [4, Section 3.1], we consider T ∧T as a ZpP -module. Every ZpP -
homomorphism γ : T ∧T → T has P -invariant image, hence γ(T ∧T ) = Tj
for some j ⩾ 0. Thus, if m satisőes j ⩽ m ⩽ 2j − d, then γ induces a
well-deőned surjective P -homomorphism (T/Tj)∧ (T/Tj) → Tj/Tm which
maps (a+Tj∧b+Tj) to γ(a∧b)+Tm. We can use γ to deőne a new binary
operation on T/Tm via (a+Tm)◦γ (b+Tm) = a+ b+ 1

2γ(a∧ b)+Tm. The
group Tγ,m = (T/Tm, ◦γ) is of order pm with central derived subgroup
Tj/Tm.

Deőnition 2.1. Let γ : T ∧ T → Tj be a surjective ZpP -homomorphism
and choose m such that 6d < j ⩽ m ⩽ 2j − d. The split skeleton group
deőned by γ and m is Gγ,m = P ⋉ Tγ,m.
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Since skeleton groups are abstractly deőned via homomorphism, it is
natural to ask when two such homomorphisms yield isomorphic skeleton
groups. The following is [4, Lemma 4.1].

Lemma 2.2. Let Gγ,m and Gγ′,m be two skeleton groups, and α ∈ Aut(G)
such that α(γ(t ∧ s)) − γ′(α(t) ∧ α(s)) ∈ Tm for all s, t ∈ T . Then
Gγ,m ∼= Gγ′,m.

Remark 2.3. Isomorphisms between skeleton groups arising from auto-
morphisms of G are called orbit isomorphisms in [7]. If there exists an
orbit isomorphism between any two isomorphic skeleton groups, then the
subgraph induced by the skeleton groups is essentially completely determined
by the structure of the associated pro-p-group G, which is a favourable
situation. In [4], two instances of such G have been exhibited where this
holds. Unfortunately other isomorphisms (exceptional isomorphisms) can
exist, see [7, p. 1249 & 1269]. However this can not happen if G is split
and P is cyclic, see [4]. We use this result later in this paper.

For the rest of this paper, we consider a split pro-p-group G = P ⋉T of
dimension d and coclass r. Let TG be the coclass tree in G(p, r) deőned by
G. The shaved branch Bj [k] is the subgraph of Bj consisting of the groups
of depth at most k in Bj . For any j ⩾ 1, we write Hj = HomP (T ∧ T, Tj)
and Lj = {γ ∈ Hj | γ is surjective}. Whenever considering a skeleton
group Gγ,m for γ ∈ Lj , we implicitly assume that all parameters are chosen
appropriately, that is, if γ(T ∧ T ) = Tj then j ⩽ m ⩽ 2j − d. Recall from
[4] that Gγ,m lies at depth m − j in Bj , thus the skeleton groups in Bj
induce a subgraph Sj of depth 2j − d. By Sj [k] we denote the subgraph
of Sj consisting of all skeleton groups in depth at most k for k ⩽ 2j − d.
For the rest of this paper, a “skeleton groupž we will always denote a split
skeleton group.

3. Skeleton groups with cyclic point group

Motivated by the skeleton groups of maximal class, see [3], we consider
p-adic uniserial space groups with cyclic point groups. It follows from
[9, Lemma 11] that every such space group is split and uniquely determined,
up to isomorphism, by the size of its point group; thus, the following
convention covers the general case of space groups with cyclic point
groups.

Notation 1. For Section 3, we assume that G = P ⋉ T is a split space
group whose point group P is cyclic of order ps, generated by g. If θ is
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a primitive ps-th root of unity over Qp, then we can assume that T =
(Zp[θ],+) whose uniserial series has terms Ti = (θ − 1)iT = pi.

The space group associated with the coclass tree of G(p, 1) is obtained
by taking s = 1. This case has been investigated in [1ś3]. The content of
this section is motivated by the results in [1, 3] and we generalise some of
these results for s ⩾ 1 by following the methods used in [1, 3].

3.1. Homomorphisms from T ∧ T

To get a better understanding of skeleton groups it is important to
study the set of parametrising homomorphisms. Let K = Qp(θ) and recall
from Section 2.1 that σa ∈ Aut(K) is deőned by θ 7→ θa, see Section 2.1.
The following is [11, Theorem 11.4.1].

Theorem 3.1. For a ̸≡ 0, 1 mod p deőne νa : K ∧ K → K by νa(x ∧
y) = σa(x)σ1−a(y) − σa(y)σ1−a(x). Then {νa | 2 ⩽ a ⩽

1
2(p

s − 1), a ̸≡
0, 1 mod p} is a K-basis of HomQpP (K ∧K,K).

The image of T ∧ T under νa lies inside T , hence we can consider the
restriction νa : T ∧T → T without any ambiguity. We now concentrate on
the structure of the ZpP -module homomorphisms from T ∧ T to T . The
following theorem is from [11, Proposition 8.3.5]. For any integer s ⩾ 1
we write ms =

1
2(p

s − 2ps−1 − 1).

Theorem 3.2. The ZpP -module T ∧ T is the direct sum of a free ZpP -
module of rank ms

Lemma 3.3. The element z =
∑

0⩽i<k<(ps−1) θ
i ∧ θk is őxed under the

action of P .

Proof. Using Theorem 3.2 we can write zg =
∑

0⩽i<k<(ps−1) θ
i+1 ∧ θk+1

where g generates P . Now the result follows from a straightforward
calculation using θ + . . .+ θp

s−1 = −1.

As both T ∧ T and T are Zp-modules of őnite rank, it follows from
[5, Chapter 1] that every homomorphism T ∧ T → T and T ∧ T → T/Te
(for any e) is a Zp-module homomorphism. Since the only őxed point of
T under the action of P is 0, we deőne the following using Theorem 3.2
and Lemma 3.3. This follows an analogous deőnition in [11, Chapter 8].
We denote by δi,k the Kronecker delta with δi,k = 1 if i = k and δi,k = 0
otherwise.
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Deőnition 3.4. For i, k ∈ {ps−1 + 1, . . . , (ps − 1)/2} and any e > 0, the
P -homomorphisms fk : T ∧ T → T and f̃k : T ∧ T → T/Te are deőned
by fk(1 ∧ θ

i) = δi,k and fk(z) = 0, and f̃k = π ◦ fk, where π : T → T/Te
is the projection. Let f̃1 : T ∧T → T/Te be the P -homomorphism deőned
by f̃1(1 ∧ θ

i) = 0 and f̃1(z) = ẑe.

Since Zp[θ] is abelian, HomP (T ∧T, T ) is a Zp[θ]-module via (f c)(x) =
cf(x) for all c ∈ Zp[θ], x ∈ T ∧ T and f ∈ HomP (T ∧ T, T ). The next
result is an immediate corollary to Theorem 3.2.

Corollary 3.5. As Zp[θ]-module, H0 is generated by {fk | ps−1 + 1 ⩽

k ⩽ (ps − 1)/2}.

Corollary 3.6. HomP (T ∧ T, T/Te) is a direct sum of ms summands
isomorphic to T/Te, generated by f̃k for ps−1 + 1 ⩽ k ⩽ (ps − 1)/2, and a
summand of order p generated by f̃1.

Proof. The image of z under any homomorphism in HomP (T ∧ T, T/Te)
must be in the subgroup generated by ẑe = (θ − 1)e−1 + Te. Thus using
Theorem 3.5 we őnd that HomP (T ∧ T, T/Te) is the direct sum of the
summands generated by f̃k for ps−1 +1 ⩽ k ⩽ (ps− 1)/2 and a summand
generated by f̃1. Finally, each of the subgroups generated by f̃k is isomor-
phic to T/Te for k ≠ 2 and the subgroup generated by f̃1 is isomorphic to
Te−1/Te ∼= Cp.

Consider Jp,s = [ps−1 + 1, (ps − 1)/2]∩Z and Ip,s = {a ∈ Z | 2 ⩽ a ⩽

(ps − 1)/2, a ̸≡ 0, 1 mod p}. From Theorem 3.4 and Deőnition 3.1 we can
see that there are two different bases of H0 which are indexed over different
sets of same size ms, namely these bases are explicitly {νk | k ∈ Ip,s}
and {fk | k ∈ Jp,s}. The presence of two bases poses some notational
difficulties; in order to reduce these technicalities, we relabel the ordered
bases (νk)k∈Ip,s and (fk)k∈Jp,s

as (νk)
ms

k=1 and (fk)
ms

k=1 respectively. The
next result follows from Corollary 3.5 and Theorem 3.1. This is motivated
by [3, Lemma 4.1].

Lemma 3.7. If γ ∈ HomP (T ∧ T, T ) then

a) there exists a unique (c1, . . . , cms) ∈ Tms such that γ =
∑ms

a=1 cafa,

b) there exists a unique (b1, . . . , bms) ∈ Kms such that γ =
∑ms

a=1 baνa.

Remark 3.8. It is shown in Lemma 3.7 that there exists an invertible
matrix B ∈ GLms(K) which represents the change of bases for HomP (T ∧
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T, T ) from (fk)
ms

k=1 to (νk)
ms

k=1. For example if s = 1, then [3, Section 4.1]
shows that B = (βij)m1×m1 is given by

βi,j =
(

θi−2 − θ3−i
) ((

θi−2 − 1
) (

θ3−i − 1
))j−1

.

Recall that the isomorphism problem of skeleton groups can be solved
via the action of Aut(G) on the set of homomorphisms. Our next aim is
to investigate the automorphism group of the space group G.

3.2. The automorphism group

To determine the automorphism group of G, it is useful to exploit
the extension structure of G. For this a cohomological argument can be
used. For any group H and an H-module N , the corresponding groups of
1-cocycles, 1-coboundaries, and the őrst cohomology group are denoted
by Z1(H,N), B1(H,N) and H1(H,N) respectively; these are standard
and can be found in [10,16]. The next lemma describes the structure of
Z1(P, T ).

Lemma 3.9. Z1(P, T ) = {αt | t ∈ T} where αt : P → T is deőned as

αt(g
i) = θi−1

θ−1 t for i ⩾ 0.

Proof. Suppose α ∈ Z1(P, T ) maps g to t ∈ T . By deőnition α(uv) =
α(u)v + α(v) for u, v ∈ P . Then inductively we can show that α maps gi

to (1 + θ + . . .+ θi−1)t = θi−1
θ−1 t for all i ⩾ 0. Hence α = αt. Conversely

take t ∈ T and consider αt. Then an easy calculation, using the deőnition
of αt, shows αt(g

b)g
a

+ αt(g
a) = αt(g

a+b) for all 1 ⩽ a, b ⩽ ps − 1.

The proof of the following theorem is motivated by [7, Lemma 5.4].
Recall from Section 2.1 that the Galois group Gθ of Qp(θ)|Qp is cyclic of
order ds and is generated by σk for a primitive root k modulo ps.

Theorem 3.10. The automorphisms of G are ϕ(k, u, s) : G→ G deőned
by

(gi, t) 7→ (gik, uσk(t) + uiks), (0 ⩽ i ⩽ ps − 1, t ∈ T ) (3.1)

where k ∈ {1, . . . , ds} with p ∤ k, s ∈ T, u ∈ Ups and uj = θj−1
θ−1 for all

j ⩾ 0.

Proof. Since G/T ∼= P and T is characteristic in G, we can deőne a
homomorphism λ : Aut(G) → Aut(P ) mapping ϕ 7→ ϕ|G/T . Now σk
induces an automorphism ηk ofGmapping (gi, t) 7→ (gki, σk(t)). Hence the
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subgroup ⟨ηk⟩ (of Aut(G)) maps onto Aut(P ) under λ. We now determine
the kernel of λ. Consider a restriction map ζ : Aut(G) → Aut(T ) mapping
ϕ 7→ ϕ|T . If ϕ ∈ ker(λ) then ϕ|T is a P -module automorphism of T .
Now T acts on T by natural ring multiplication. So ϕ|T is a T -module
automorphism of T . But the group of T -module automorphisms of T is
isomorphic to Ups . Thus ζ maps ker(λ) onto Ups ; the surjectivity follows
from the fact that multiplication by a unit induces an automorphism of
G which lies in ker(λ). If ϕ ∈ ker(ζ) ∩ ker(λ) then ϕ(gi, 0) = (gi, ϕ2(g))
for some ϕ2 ∈ Z1(P, T ). Thus by Lemma 3.9 there is s ∈ T such that

ϕ2(g
i) = θi−1

θ−1 s for all i ⩾ 0. Each x ∈ T induces an automorphism of G

mapping (gi, t) 7→ (gi, t + (θi−1)
θ−1 x). Finally the result follows since P is

cyclic and every automorphism of P maps gi 7→ gik for some 1 ⩽ k ⩽ ds
such that p ∤ k.

The following lemma is immediate from the proof of Theorem 3.10.
This result is analogous to [3, Lemma 3.2 (a)].

Lemma 3.11. Let ρ : Aut(G) → Aut(T ) be the natural restriction. Then
the kernel of ρ is isomorphic to Z1(P, T ) and the image of ρ is isomorphic
to Gθ ⋉ Ups ; a preimage of (σz, u) ∈ Gθ ⋉ Ups under ρ is ϕ(z, u, 0).

3.3. Descendants of a skeleton group

In this section we describe the descendants of a skeleton group up to
isomorphism. This is needed in order to investigate periodic parents in
Section 4.2. We start with the following lemma; this follows directly from
Lemma 2.2.

Lemma 3.12. Every ϕ ∈ Aut(G) acts on γ ∈ Hj via γ 7→ γϕ, deőned by
γϕ(t ∧ s) = ϕ−1(γ(ϕ(t) ∧ ϕ(s))). If γ is surjective, then so is γϕ.

The action deőned in Lemma 3.12 induces an action of Aut(G) on Lj .
For V ⩽ Aut(G), we write StabV (γ +Hm) = {α ∈ V | γα ≡ γ mod Hm}.
Recall that G is split and the point group of G is cyclic. In this case, it is
shown in [4, Proposition 5.2] that the condition given in Lemma 2.2 is a
necessary sufficient condition and thus any isomorphism between skeleton
groups in TG is an orbit isomorphism. Now Lemma 2.2 can be rephrased
as follows.

Lemma 3.13. Let γ, γ′ ∈ Lj . Then Gγ,m ∼= Gγ′,m if and only if there
exists β ∈ Aut(G) such that γβ ≡ γ′ mod Hm.
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The skeleton subgraph (in the coclass tree associated with G) in this
case is completely determined by the structure of G: the ingredients for
constructing skeleton groups are P , T , and homomorphisms T ∧ T → T ,
and their isomorphism problem can be solved by considering the action of
Aut(G). Since the parent of Gγ,m+1 is Gγ,m for γ ∈ Lj , the following is
easy to see from Lemma 3.13.

Lemma 3.14. Given γ ∈ Lj and j ⩽ m ⩽ 2j − ds − 1, a skeleton group
Gγ′,m+1 is an immediate descendant of Gγ,m if and only if there exists an
automorphism α ∈ Aut(G) such that γα ≡ γ′ mod Hm.

Noting that if γ ∈ Lj then there is s, t ∈ T such that γ(t∧s) ∈ Tj\Tj+1,
it follows from discussion in Section 2.3 that if γ ∈ Lj and δ ∈ Hk for
k > j then γ + δ ∈ Lj . The next lemma describes the descendants of a
skeleton group.

Lemma 3.15. Let j ⩾ 0 and γ ∈ Lj . Suppose j < m ⩽ 2j − ds − 1 and
1 ⩽ k ⩽ 2j−ds−m. Consider the skeleton group Gγ,m at depth e = m−j
in Bj . Then

a) A skeleton group H is a descendant of Gγ,m of distance k if and only
if H ∼= Gγ+δ,m+k for some δ ∈ Hj+e.

b) For δ1, δ2 ∈ Hj+e, two skeleton groups Gγ+δ1,j+e+k and Gγ+δ2,j+e+k
are isomorphic if and only if there exists α ∈ StabAut(G)(γ +Hj+e)
such that δα1 + γα − γ ≡ δ2 mod Hj+e+k.

Proof. a) Note that m = e + j. Consider δ ∈ Hm and then γ + δ ∈ Lj .
Now (γ + δ) ≡ γ mod Hm since δ ∈ Lm. Thus (γ + δ)id ≡ γ mod Hm. So
by Lemma 3.14, we conclude that Gγ+δ,m+k is a k-step descendant of Gγ,m.
Conversely let Gη,m+k be a k-step descendant of Gγ,m for some η ∈ Lj .
Then by Lemma 3.14, there is α ∈ Aut(G) such that ηα ≡ γ mod Tm.
Thus by Lemma 3.13 we have Gη,m+k

∼= Gηα,m+k and hence Gη,m+k
∼=

Gγ+δ,m+k.

b) Consider Gγ+δ1,m+k
∼= Gγ+δ2,m+k. Now by Lemma 3.13 there is α ∈

Aut(G) such that (γ+ δ1)
α ≡ γ+ δ2 mod Hm+k and hence δα1 + γα− γ ≡

δ2 mod Hj+e+k. Now δ1, δ2 ∈ Lm and Tm+k ⩽ Tm. So γα ≡ γ mod
Hm which is same as saying α ∈ StabAut(G)(γ + Hm). The converse is
straightforward by using Lemma 3.13.

Remark 3.16. Each γ ∈ Lj can uniquely be written as γ = (θ − 1)jF
where F ∈ L0. Hence every F ∈ L0 induces a skeleton group G(θ−1)jF,m

at depth e = m− j in the branch Bj where j ⩽ m ⩽ 2j − ds. Also note
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that multiplication by any unit induces an automorphism of G. Hence
StabUps

(γ +Hm) = StabUps
(F +Hm−j).

Motivated by Lemma 3.15 and [2] we deőne the following.

Deőnition 3.17. For α ∈ Aut(G), F ∈ H0, g ∈ Hn and e ⩾ n ⩾ 0 we
write

(g +He)α = gα + (Fα − F ) +He. (3.2)

Note that (3.2) deőnes an affine action; it is a group action if and
only if Fα ≡ F mod He. However, we have (g +He)(α◦β) = ((g +He)α)β
and (g +He)id = (g +He).

Lemma 3.18. Suppose γ ∈ Lj . Choose m and k such that j < m ⩽ 2j −
ds−1 and 1 ⩽ k ⩽ 2j−ds−m. Let Mγ,m,k be the set of StabAut(G)(γ+Hm)-
representative of {g +Hm+k | g ∈ Hm} under the affine action as in the
Deőnition 3.17. Then the k-step descendants of Gγ,m, up to isomorphism,
are given by {Gγ+η,m+k | η ∈ Mγ,m,k}.

Proof. By Lemma 3.15, the list of k-step descendants of Gγ,m is given
by {Gγ+δ,m+k | δ ∈ Hm} and for δ1, δ2 ∈ Hm, two skeleton groups
Gγ+δ1,m+k and Gγ+δ2,m+k from this list are isomorphic if and only if there
exists α ∈ StabAut(G)(γ +Hm) such that δα1 + γα − γ ≡ δ2 mod Hj+e+k.
By assumption γ = (θ − 1)jF where F ∈ L0 and hence Gγ+δ1,m+k and
Gγ+δ2,m+k are isomorphic if and only if there exists α ∈ StabAut(G)(γ+Hm)
such that (δ2 +Hm) ≡ δα1 + γα − γ mod Hm+k which is equivalent saying
(δ2 +Hm)α ≡ δ1 under the action deőned in (3.2) for γ ∈ Lj . The claim
follows.

3.4. Orbit isomorphisms

In this section we introduce few results involving orbit isomorphic
skeleton groups. The results of this section will be used to prove Lemma 4.8.
Recall thatms =

1
2(p

s−2ps−1−1) and the skeleton subgraph of the branch
Bj is denoted by Sj . Let B be the base change matrix as given in Remark
3.8. Now Lemma 3.7 allows us to deőne the following. Here K = Qp and
recall that Ip,s = {a ∈ Z | 2 ⩽ a ⩽ (ps − 1)/2, a ̸≡ 0, 1 mod p}

Deőnition 3.19. If c = (c1, . . . , cms) ∈ Kms and γ =
∑ms

a=1 caνa ∈ Lj ,
then the skeleton group Gγ,m deőned by γ and m is denoted by Sm(c).
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Deőnition 3.19 shows that one can parametrise the skeleton groups
by the elements of Kms . For j ⩾ 1, we deőne Θj = {c ∈ Kms |
Sm(c) ∈ Sj for some m with j ⩽ m ⩽ 2j − ds} and the write Ωj =
{(c1, . . . , cms)B

−1 | ci ∈ pj for 1 ⩽ i ⩽ ms}. Next we consider the follow-
ing homomorphisms deőned for all a ∈ Ip,s

ρa : Ups → Ups , u 7→ u−1σa(u)σ1−a(u). (3.3)

In the following we rewrite this action in terms of the parameters from
Θj . This is [3, Lemma 4.3].

An element (σn, u) ∈ Gθ ⋉ Ups acts on c = (c1, . . . , cms) ∈ Θj via

c(σn,u) = (ρ1(u
−1)σn(c1), . . . , ρms(u

−1)σn(cms)) (3.4)

This induces an action on Ωj and hence on the set of cosets Ωj/Ωj+e for
all e ⩾ 1. Now [4, Proposition 5.2] can be rephrased in terms of Θj and
(3.4).

Theorem 3.20. Let j > ds and choose m such that j ⩽ m ⩽ 2j − ds.
Suppose c, b ∈ Θj . Then Sm(c) and Sm(b) are isomorphic if and only if
c+Ωm and b+Ωm lie in the same orbit under the action of Gθ ⋉ Ups on
Ωj/Ωm.

Proof. Let c = (c1, . . . , cms) and b = (b1, . . . , bms). Using Lemma 3.7,
consider γ =

∑ms

a=1 caνa and γ′ =
∑ms

a=1 baνa. Lemma 3.13 shows that
Sm(c) and Sm(b) are isomorphic if and only if there exists some auto-
morphism ψ of G such that (γ′)ψ ≡ γ mod Hm. Now by Lemma 3.11
we can assume ψ = ϕ(n, u, 0) for some n with p ∤ n and u ∈ Ups . The
action of ϕ(n, u, 0) corresponds to the action of (σn, u) ∈ Gθ ⋉ Ups on Θj .
Hence two skeleton groups Sm(c) and Sm(b) are isomorphic if and only
if for all t, s ∈ T we have that

∑ms

a=1(ba − σn(ca)ρa(u
−1))νa(t ∧ s) ∈ Tm.

Let αa = ba − σn(ca)ρa(u
−1) for 1 ⩽ a ⩽ ms and (α1, . . . , αms)B

−1 =
(β1, . . . , βms). Now using Remark 3.8, the skeleton groups are isomor-
phic if and only if for all t, s ∈ T we have

∑ms

a=1 βafa(t ∧ s) ∈ Tm.
Note that (α1, . . . , αms)B

−1 = bB−1 − c(σn,u)B−1. Thus from Deőni-
tion 3.4 we conclude that the skeleton groups are isomorphic if and only
if (bB−1 − c(σn,u)B−1) ∈ Tm and the claim follows.

4. Periodicities in skeleton graph

4.1. Periodicity of type I

In this section we study how Lemma 3.13 improves some known
periodicity results. We continue with an inőnite pro-p-group G which
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corresponds to a coclass tree TG in G(p, r). For Section 4.1, we assume
that G is chosen such that if two skeleton groups (deőned in TG) are
isomorphic, then they are also orbit isomorphic. It is proved in [4] this
holds whenever G has a cyclic point group; this includes the prominent
example G(p, 1). Recall from Section 1 that the periodicity of type I was
improved by Dietrich [2] for G(p, 1). This motivated us to establish the
following which is a re-statement of Theorem 1.1.

Theorem 4.1. Under the assumption mentioned above, the following
holds. For all large enough j, we have Sj ∼= Sj+d[j − d] as rooted trees;
here d is the dimension of the associated space group.

Proof. From Deőnition 2.1 we őnd that for 6d < j ⩽ m ⩽ 2j − d,
a complete list of skeleton groups at depth m − j in Bj is given by
Sj,m = {Gγ,m | γ ∈ Lj}. Multiplication by p deőnes a bijection Lj → Lj+d
and thus Sj+d,m+d = {Gpγ,m+d | γ ∈ Lj}. Clearly (pγ)α = p(γα) for
α ∈ Aut(G). In view of our assumption, we have Gγ,m ∼= Gγ′,m if and
only if Gpγ,m+d

∼= Gpγ′,m+d using Lemmas 2.2 and 3.13. This proves the
existence of a bijection between the isomorphism types of the skeleton
groups at depth e in Bj and at depth e in Bj+d, respectively, for all e ⩽ j−d.
The parent of Gγ,m in Bj is Gγ,m−1 for m > j; this also implies that the
above bijection induces a graph isomorphism from Sj to Sj+d[j−d]; recall
that Sj has depth j − d.

We now describe why Theorem 4.1 is a signiőcant improvement over
the periodicity of type I as described in [8]: it is shown in [8] that, for
large enough j, one can embed Bj [ej ] into Bj+d where ej is approximately
j/6d. In contrast, Theorem 4.1 shows one can embed the whole skeleton
tree Sj (of depth j − d) into Bj+d, such that Sj ∼= Sj+d[j − d].

4.2. Periodicity of type II

For this section we will continue with Notation 1, that is G = P ⋉ T
is a split space group whose point group P is cyclic of order ps with s = 1
for G(p, 1). This is studied in detail in [1ś3, 11ś13]. We are particularly
interested in the descendants of a skeleton group. The case p ≡ 5 mod 6
is discussed in [1]. We here consider other primes. In view of Notation 1,
here θ is a primitive p-th root of unity. Then T = (Zp[θ],+) has Zp-rank
d = ds = p− 1. The associated space group with the coclass tree of G(p, 1)
has point group P which is cyclic of order p, see [2]. Let Ip,1 = {2, . . . , d/2}
as in Section 3.1 and denote I = Ip,1. It is also known from [1, section
5.1] that for i ⩾ 2, there exists Zp-module isomorphisms between Ti and
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Up,i which are deőned by the usual power series of the exponential and
logarithm mapping exp : Ti → Up,i and log : Up,i → Ti with exp−1 = log.
For simplicity when the prime p is clear from the context, we denote
Up = U and Up,i = U (i) for all i ⩾ 0. Considering the homomorphism ρa
from (3.3), we use log on the restriction of ρa to U (2) = 1 + T2 to induce
the Qp(θ)-linear map τa : T2 → T2, z 7→ −z + σa(z) + σ1−a(z). We take
ω ∈ Zp to be a primitive (p − 1)-th root of unity. The following can be
found in [1, 11].

Lemma 4.2. There exist v3, . . . , vp+1 ∈ T1 with vk ∈ Tk−1 \ Tk for all
k such that, for all a ∈ I, the following holds. If a ≡ ωi mod p and
1− a ≡ ωj mod p, then vk is an eigenvector of τa with eigenvalue ωa,k =
ωik +ωjk − 1. The images of v3, . . . , vp+1 under exp map generate U (2) as
a Zp-module. If p ≡ 5 mod 6, then ωa,k ̸= 0 for all a and k. If p ≡ 1 mod 6,
then ωa,k = 0 for some a and k.

So, for integers a and k, if ωa,k ≠ 0 then there exists a largest integer
pa,k with ωa,k ≡ 0 mod ppa,k . Let e ⩾ 0, then from [3, Section 5] we deőne
va,k,e = max{⌈(e− k+ 1)/d⌉ − pa,k, 0}. Now suppose a ∈ I and we deőne
N(a) = {k ∈ Z | 3 ⩽ k ⩽ p + 1, ωa,k ≠ 0}. We relax the condition
p ≡ 5 mod 6 from [1, Lemma 5.3] and obtain the following.

Lemma 4.3. Let a ∈ I. Suppose u ∈ U (2) is such that

u =
∏

k∈N(a)

exp(vk)
ak ,

then ρa(u) ∈ U (e) if and only if pva,k,e divides ak for all k ∈ N(a).

Proof. Recall that ωa,k is the eigenvalue of τa corresponding to vk. Then
using log and exp, it is easy to observe that ρa(u) =

∏

k∈N(a) exp(vk)
akωa,k .

Note that ωa,k ̸= 0 and vk ∈ Tk−1 \ Tk for all k ∈ N(a). Hence from the
deőnition of ωa,k, we őnd that ρa(u) ∈ U (e) if and only if exp(vk)

akωa,k ∈
U (e) for all k ∈ N(a). Using log, this is equivalent to saying akωa,kvk ∈ Te
for all k ∈ N(a). As pTi = Ti+d we see akωa,kvk ∈ Te if and only if
akωa,k ∈ Te−k+1 which is equivalent to saying ak ∈ Te−k+1−dpa,k for all
k ∈ N(a) since ppa,k is the highest power of p which divides ωa,k. This is
true if and only if pva,k,e divides ak since pTi = Ti+d.

Recall the deőnition of νa from Theorem 3.1. The following result, from
Lemma 3.7, describes the structure of HomP (T ∧ T ). See also [1, Lemma
4.4].
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Lemma 4.4. Every P -homomorphism f : T ∧ T → T can be written
uniquely as f = c2ν2 + . . .+ cd/2νd/2 with c2, . . . , cd/2 ∈ T−(p−3)2/4. If f
is surjective, then ca ̸∈ T for at least one a ∈ I.

Periodic parents of skeleton groups in G(7, 1) Consider the coclass
graph G(p, 1). We recall from Section 1, that for any integer k, the k-step
descendant tree of any group H in G(p, 1) is denoted by Dk(H). The
following conjecture states one of the possibly ways describe these trees,
see [1]. For any n ⩾ 0, let ep(n) = n−2p+8 if p ⩾ 7 and e5(n) = n−4. For
any group K in G(p, 1) at depth ep(n) in Bn+p−1 if the unique ancestor H
at distance p− 1 from K satisőes Dp−1(K) ∼= Dp−1(H) then H is called
a periodic parent of K. In the interest of őnding such periodic parents,
the following is proved in [1, Theorem 1.2].

Theorem 4.5. Let p ≡ 5 mod 6. There is an integer n0 = n0(p) such
that, for all n ⩾ n0, the following holds. Let K be a group at depth ep(n)
in Bn+p−1 having immediate descendants and let H be the (p− 1)-step
parent of K. If the automorphism group of H is a p-group, then H is a
periodic parent of K.

Our results in the this section show that Theorem 4.5 can not be
extended for the case p ≡ 1 mod 6.

In the remainder of this section, let p = 7, that is, θ is a primitive
7-th root of unity and T is a Z7-module of dimension d = 6. The point
group P is cyclic of order 7. Retaining the notation of Section 4.2, we take
I = {2, 3} and ω is a 6-th root of unity; we choose ω ≡ 5 mod 7. Then for
a = 2 we have a ≡ ω4 mod 7 and 1− a ≡ ω3 mod 7. Similarly for a = 3
we get a ≡ ω5 mod 7 and 1− a ≡ ω mod 7. Recall from Lemma 4.2 that
if a ≡ ωi mod p and 1 − a ≡ ωj mod p, then vk is an eigenvector of τa
with eigenvalue ωa,k = ωik + ωjk − 1 for k ∈ {3, . . . , 8}. A straightforward
computation shows that τ2 has no zero eigenvalue whereas τ3 has two
zero eigenvalues for k = 5, 7. It is also easy to see that p2,k = 0 if k ≠ 7
and p2,7 = 1. Also p3,k = 0 for k ̸= 5, 7. We exploit the above facts in
the following results. Recall from Section 2.1 that the group of units U
can be decomposed as U = ⟨ω⟩ × ⟨θ⟩ × U (2) and each u ∈ U acts on
f =

∑

a∈I caνa ∈ H0 via fu =
∑

a∈I ρa(u
−1)caνa. Note that if a ∈ I then

ρa(θ) = 1 and ρa(ω) = ω.

Notation 2. Let n ⩾ 1 and m ⩾ 0. For the rest of this section we write
hn = (θ − 1)nν2 + (θ − 1)−1ν3 and S(n,m) = StabU(2)(hn +Hm).

We show that certain skeleton groups (parametrised by hn) and their
6-step parents have non-isomorphic descendant trees. We őrst investigate
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the action of U (2) on the homomorphisms from H0 and prove the following
which shows that [1, Theorem 5.1] is not true for p = 7. For any group A,
we denote the group of p-th power by A[p].

Lemma 4.6. If n ⩾ 1 then hn ∈ L0 and S(n, n+ 2)[p] ≠ S(n, n+ 2 + d).

Proof. By Lemma 4.4 we see that hn ∈ L0. It is thus enough to őnd
u ∈ S(n, n + 2 + d) such that there does not exist any v ∈ U (2) with
u = vp. We őnd integers x and y such that u = exp(v7)

x exp(v5)
y is such

an element of S(n, n + 2 + d). Now hun − h = (ρ2(u) − 1)(θ − 1)nν2 as
ρ3(u) = 1. By Lemma 4.4, if (ρ2(u) − 1) ∈ T4 then u ∈ S(n, n+ 2 + d).
Lemma 4.3 gives ρ2(u) ∈ U (4) if and only if pv2,7,4 divides x and pv2,5,4

divides y. Recall that v2,7,4 = v2,5,4 = 0. So we choose x, y such that
7 ∤ x, y. The images of v3, . . . , v8 under exp map generate U (2) as a Z7-
module. So if there is v ∈ U (2) such that vp = exp(v7)

x exp(v5)
y then p

must divide both x and y. Hence by our choice of x and y, there does not
exist any v ∈ U (2) with u = vp. This completes the proof.

Corollary 4.7. Let n ⩾ 1 and e = n+ 2. Then there exist g ∈ He+d and
v ∈ S(n, e+ d) \ S(n, e)[p] such that (g +He+d+1)v ≠ (g +He+d+1)up for
all u ∈ S(n, e+ d).

Proof. Take g = (θ − 1)e+dhn. By the proof of Lemma 4.6, we can choose
the element v = exp(v7)

y exp(v5)
x with integers x, y ⩾ 1 not divisible by

7. Then (g+He+d+1)v = (θ−1)n(αρ2(v
−1)−1)+(θ−1)−1(αρ3(v

−1)−1)
by (3.2) where α = ((θ − 1)e+d + 1). Suppose, for a contradiction that
(g+He+d+1)v is equal to (g+He+d+1)up for some u ∈ S(n, e+d). Then we
őnd that α((θ− 1)n(ρ2(v

−1)−ρ2(u
−p))+ (θ− 1)−1(ρ3(v

−1)−ρ3(u
−p))) ∈

He+d+1. Now Lemma 4.4 shows that (θ − 1)−9(ρ2(v
−1)− ρ2(u

−p)) ∈ T−4

as α is a unit. Hence ρ2(vu
−p) ∈ U (5). Write u =

∏8
k=3 exp(vk)

ak . Now
v2,5,5 = 1 and thus Lemma 4.3 shows that 7 divides x − 7a5 which is a
contradiction.

We now őnd a family of skeleton groups in G(7, 1) whose automorphism
groups are 7-groups.

Lemma 4.8. Let n = 3 + 6z with z ⩾ 1.Then the automorphism group
of G(θ−1)jhn,j+n+2 is a 7-group for j ∈ (18 + 6Z) \ (15 + 42Z).

Proof. Recall the base change matrix B = (βij)2×2 from Remark 3.8. In
particular β1,2 = (θ3 − 1)u1 and β2,2 = (θ3 − 1)u2 where u1 = θ + 2θ2 +
2θ3 + 2θ4 + θ5 and u2 = θ + 3θ2 + 4θ3 + 3θ4 + θ5 are both units. We now
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take c1 = (θ − 1)n, c2 = (θ − 1)−1, q1 = (θ − 1)jc1, q2 = (θ − 1)jc2. So if
f = q1ν2 + q2ν3 then H = Gf,j+e is a skeleton group at depth e in branch
Bj . Note that the Galois group of Q7(θ) is generated by σ3 which has
order 6. Also note that σ23 = σ2 has order 3 and σ33 = σ6 has order 2. Using
[3, Section 5] we conclude that Aut(H) is a p-group if and only if there
does not exist wi ∈ U such that (q1, q2)

(σi,wi) ≡ (q1, q2) mod Ωj+e for all
i = 2, 3, 6 where the action is as deőned in (3.4). This is true if and only
if ((q1, q2)

(σi,w) − (q1, q2))B ̸∈ Tj+e × Tj+e for all w ∈ U and i = 2, 3, 6;
this can be observed using (3.4). Now we take e = n+ 2 and note that
(θi − 1) = (θ − 1)zi for i = 2, 3, 6 where z2 = 1 + θ, z3 = 1 + θ + θ2 and
z6 = −θ6. Following the deőnition of B, a straightforward computation
shows that if ((q1, q2)

(σi,wi) − (q1, q2))B ∈ Tj+e × Tj+e for some wi ∈ U
then

(θ − 1)nθ2(1− θ4)(zj+ni ρ2(w
−1
i )− 1)

+ (θ − 1)−1θ3(1− θ2)(zj−1
i ρ3(w

−1
i )− 1) ∈ Tn+2

for i = 2, 3, 6. This shows (zj−1
i ρ3(w

−1
i )−1) ∈ Tn+1. If ρ3(w

−1
i ) ∈ U1 then

zj−1
i −1 = t′− tzj−1 ∈ T1 for some t′ ∈ Tn+1. Note that z18+6z−1

i −1 ̸∈ T1
for all z ⩾ 1 and i = 2, 3; this can be seen via binomial theorem. Further
zj−1
6 − 1 ̸∈ T1 unless j = 15 + 42k for some k ⩾ 1 as in such cases

zj−1
6 − 1 = 0. Thus wi ̸∈ U1 for all i = 2, 3, 6 for j ∈ (18+6Z) \ (15+42Z).

Finally if ρ3(w
−1
i ) = 1 + s for s ∈ T \ T1 then z18+6z−1

i (1 + s) − 1 ̸∈ T1
which shows there is no wi ∈ U such that (zj−1

i ρ3(w
−1
i )− 1) ∈ Tn+1 and

hence Aut(Gf,j+e) is a p-group for j ∈ (18 + 6Z) \ (15 + 42Z).

We őnally őnd a family of skeleton groups in G(7, 1) whose 6-step
parents are not periodic parents. Let F18+6z = (θ − 1)18+6zh3+6z and
e(18 + 6z) = 5 + 6z for z ⩾ 0.

Theorem 4.9. Using the notation of the above paragraph, for any j =
18 + 6z with z ⩾ 0, the skeleton groups GFj ,j+e(j) and GFj ,j+e(j)+6 have
different number of immediate descendants if j ∈ (18 + 6Z) \ (15 + 42Z).

Proof. Let j = 18 + 6z and take e = n + 2 where n = 3 + 6z. Take
γ = F18+6z and m = j+e. Suppose Mhn,m,1 be the set of StabAut(G)((θ−
1)jhn+Hm)-orbit representatives of {g+Hm+1 | g ∈ Hm} under the action
as in Deőnition 3.17. Then by Lemma 3.18, the immediate descendants,
up to isomorphism, of the skeleton group Gγ,j+e are described by the set
{Gγ+η,j+e+1 | η ∈ Mhn,m,1}. By Lemma 4.8 we see that Aut(Gγ,j+e) is a p-
group unless j ∈ (15+42Z). Hence by Remark 3.16, the immediate descen-
dants, up to isomorphism, of the skeleton groups Gγ,j+e and Gγ,j+e+6 are
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in one-one correspondence with M′
hn,e,1

and M′
hn,e+6,1 respectively where

M′
hn,e,1

is the set of S(n, e)-orbit representative of {g +He+1 | g ∈ He}.
Now take v = exp(v7)

y exp(v5)
x for some integers x, y ⩾ 1 such that

7 ∤ x, y. Let g = (θ− 1)e+dhn. Suppose for a contradiction, (p−1g +He+1)
and (p−1g +He+1)v are in same orbit under the action of S(n, e). Then
using (3.2) we have (p−1g+He+1)u = (p−1g+He+1)v for some u ∈ S(n, e).
A straightforward computation shows that gu− gv ∈ He+d+1 which yields
(θ − 1)n−1(ρ2(u

−1)− ρ2(v
−1))ν2 + (θ − 1)−2(ρ3(u

−1)− ρ3(v
−1))ν3 ∈ H0.

Now Lemma 4.4 shows that (ρ2(u
−1)− ρ2(v

−1)) ∈ T−3+n and (ρ3(u
−1)−

ρ3(v
−1)) ∈ T−2. By choosing large p-power of u−1, we can have (with abuse

of notation) (ρ2(u
−p)− ρ2(v

−1)) ∈ T−3+n and (ρ3(u
−p)− ρ3(v

−1)) ∈ T−2.
Hence we have (θ − 1)n−1(ρ2(u

−p) − ρ2(v
−1)) ∈ T−4 and also we have

(θ − 1)−2(ρ3(u
−p) − ρ3(v

−1)) ∈ T−4. So by Lemma 4.4 we őnd that,
(θ − 1)n−1(ρ2(u

−p)− ρ2(v
−1))ν2 + (θ − 1)−2(ρ3(u

−p)− ρ3(v
−1))ν3 ∈ H0.

This means (g + He+d+1)up = (g + He+d+1)v which is not possible by
Corollary 4.7. This shows that (p−1g + He+1) and (p−1g + He+1)

v are
never in the same orbit under the action of S(n, e) whereas (g +He+d+1)
and (g +He+d+1)

v are in same orbit under the action of S(n, e+ d) as
v ∈ S(n, e+ d). Hence |M′

hn,e,1
| ≠ |M′

hn,e+d,1
|. The result follows.

The proof of Theorem 1.2 now follows from Lemma 4.8 and Theo-
rem 4.9. Theorem 1.2 shows that, in general, one cannot expect that the
d-step parent of a group in G(p, 1) always has an isomorphic descendant
tree. Note from [1, Theorem 1.1], if n = 18 + 6z for some z ⩾ 1 then
the depth of Sn is 12 + 6z. The examples given in Theorem 4.9 are the
skeleton groups at depth 11 + 6z in the branch B18+6z for z ⩾ 1. This
shows that these examples are occurring deep in the branches.
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