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ABSTRACT. Recent development in the classification of p-
groups often concentrate on the coclass graph G(p,r) associated
with the finite p-groups coclass r, specially on periodicity results on
these graphs. In particular, the structure of the subgraph induced
by ‘skeleton groups’ is of notable interest. Given their importance,
in this paper, we investigate periodicity results of skeleton groups.
Our results concentrate on the skeleton groups in G(p,1). We find
a family of skeleton groups in G(7,1) whose 6-step parent is not a
periodic parent. This shows that the periodicity results available in
the current literature for primes p = 5 mod 6 do not hold for the
primes p = 1 mod 6. We also improve a known periodicity result in
a special case of skeleton groups.

1. Introduction

Classification of p-groups is one of the main themes in group theory.
Since a classification of p-groups by order p™ seems out of reach for large
n, other invariants of groups have been used to attempt a classification; a
particularly intriguing invariant is coclass. A finite p-group of order p™ and
nilpotency class ¢ has coclass r = n — ¢. The investigation of p-groups by
coclass has been initiated by Leedham-Green & Newman [14] and recent
work in coclass theory is often concerned with the study of the coclass
graph G(p,r) associated with the finite p-groups of coclass r. The vertices
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of the coclass graph G(p,r) are (isomorphism type representatives of) the
finite p-groups of coclass r, and there is an edge G — H if and only if G
is isomorphic to H/T'(H) where I'(H) is the last non-trivial term of the
lower central series of H. One beauty of recent developments in coclass
theory is the interplay between the intricate structure of p-groups and
graphical visualisations in the form of coclass graphs G(p,r). The explicit
computations of parts of these graphs have revealed surprising patterns,
which in some cases have been proved on a group-theoretic level. For
example, it is known that G(p,r) can be partitioned into finitely many
groups and finitely many infinite trees (coclass trees), each having exactly
one infinite path (mainline) starting at its root. It is a deep result that there
is a one-to-one correspondence between the mainlines in G(p,r) and the
isomorphism types of infinite pro-p-groups of coclass r, a brief discussion
on these groups is given in Section 2.2. Since coclass trees are building
blocks of a coclass graph, one aim of coclass theory is to study these trees.
Many computer experiments suggest that significant parts of these trees
exhibit periodic patterns; a good deal of current research, for example
[1-3], is now concentrated on studying periodicity results. The first major
periodicity result (known as periodicity of type I) was independently
proved by du Sautoy [6] and Eick & Leedham-Green [8]. According to this,
if 7 is a coclass tree with branches By, Bs, ... then for any fixed k and all
large enough n, there is a graph isomorphism By, [k] — B,,1q[k] where d is
the dimension of infinite prop-p-group associated with 7 and B, [k] is the
shaved subtree of B,, induced by the all groups at a distance at most k
from the root of B,,. However, [8, Remark 4| explains why, in addition to
periodicity of type I, it is necessary to consider unbounded growth of the
branches. Recently it has become apparent that a feasible approach is to
first focus on so-called skeleton groups since almost every group in a class
tree 7 has bounded (in terms of p and r) distance to a skeleton group, a
detailed description can be found in [4|. Below we briefly elaborate this
and explain why skeleton groups are important. The content of the next
section is based on [4, Section 1.1].

1.1. Why skeleton groups?

For a fixed coclass tree, the infinitely many groups on its mainline can
be recognised as the nilpotent quotients of an associated infinite pro-p
group of coclass r; see Section 2.2. In a special case these pro-p-groups are
split extensions, that is they have the form S = P x T" where T' = Zg is a
free p-adic Z,-module of rank d and P is a finite p-group acting uniserially
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on T. The central conjecture in coclass theory is that the graph G(p, )
can be described by a finite subgraph and certain graph periodicities. This
conjecture is a theorem for p = 2, but it remains open for odd primes;
the main reason is that the coclass trees in G(p,r) grow drastically in
width, something the results for p = 2 are not able to cover. It is therefore
necessary to investigate this growth in more detail, and it turns out that
skeleton groups provide a meaningful approach for that. For odd p, let
S be an infinite pro-p group defining the mainline of a coclass tree T in
G(p,r); for simplicity suppose S = P x T as above. Unlike other groups in
T, skeleton groups can informally be described as twisted finite quotients
of S, where the twisting is induced by a Z,P-module homomorphism
from T'A T into T'; more precisely, every skeleton group for S has the
form P x T, ,, where v: T'ANT — T is a Z,P-module homomorphism
and T, ,, is a finite quotient of T whose group operation is defined via
~; we give more details in Section 2.3. Importantly, every group in 7 has
bounded distance to such a skeleton group, see [4|. This shows that the
broad structure of each coclass tree 7, and hence the broad structure
of G(p, ), is determined by the subtree(s) induced by all these groups.
These make skeleton groups interesting and important to study. It is
therefore desirable to understand skeleton groups in more detail, and to
be able to construct them up to isomorphism. Ideally the isomorphisms
between skeleton groups corresponding to an infinite pro-p-group S can
be expected to be induced by the automorphisms of S but unfortunately
there are many exceptions |7], see Remark 2.3. Isomorphism between two
skeleton groups which is induced by an automorphism of the pro-p-group
associated with the coclass tree is called an orbit isomorphism in [7].

1.2. Main results

Coming back to the periodicity results, it is shown in [8] that a shaved
subtree of B,, of depth approximately n/6d can be embedded into B, 4.
However, this bound is significantly improved in the case of coclass 1
by Dietrich [2]. In this paper we demonstrate a similar improvement
for a special class of skeleton groups where any isomorphism between
two skeleton groups is induced by an automorphism of the pro-p-group
associated with the coclass tree; such an isomorphism is called orbit
isomorphism in [7]. We prove the following in Section 4.1.

Theorem 1.1. Let G be an infinite pro-p-group of coclass r corresponding
to the coclass tree T in G(p,r) such that G is split and if two skeleton
groups in 7g are isomorphic, then they are also orbit isomorphic. Then
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there exists an integer d = d(7¢) such that for all large enough j, we have
Sj =2 Sj14lj — d] as rooted trees.

In order to investigate the periodicities deep in the branches of a
coclass tree, one considers periodic parents, see [1,3] for details. Let k
be an integer and define the k-step descendant tree Dy (K) of a group
K in the branch B,, of a coclass tree T as the subtree of B,, induced by
the descendants of distance at most k from K. Computer experiments [1]
suggest that for r =1 and p = 5,11, almost always the unique ancestor H
at distance p—1 from K satisfies D)1 (K) = Dp_1(H). In [1], such a group
H is called a periodic parent of G and a result of this flavour is proved
in [1, Theorem 1.2] for p = 5 mod 6. However, computer experiments for
p > 7 also suggest that there are infinitely many groups (deep within
the branches) for which the (p — 1)-step parent is not a periodic parent.
We find such an infinite family of groups in G(7,1) which shows that the
statement |1, Theorem 1.2] can not be extended to the case p = 1 mod 6.
In particular, we prove the following in Section 4.2.

Theorem 1.2. In G(7,1), there is an infinite family of pairs of skeleton
groups at different depths, one being the 6-step parent of the other, where
both groups have a 7-group as automorphism group, but non-isomorphic
descendent trees.

In general, the common observation is that for groups deep enough in
a branch, the (p — 1)-step parent often is a period parent, |1, Theorem 1.2]
is one such example. But computer experiments also show that there are
cases where this is not true, and the question is whether this is a general
fact or only an anomaly. Theorem 1.2 shows that this is not an anomaly
by relaxing the condition p = 5 mod 6. Throughout this paper, r > 1 is
an integer, p denotes an odd prime, Q, is the field of p-adic rationals, and
Zy, is the ring of p-adic integers.

2. Preliminaries

In this section, we introduce the notation and results required for the
rest of the paper.

2.1. Number theory

The results of this section are from [15, Section II, Chapters 5 & 7].
Let 6 be a primitive p®-th root of unity over Q, for some s > 1. The
p°-th local cyclotomic field Q,(6) has degree ds = (p — 1)p*~! over Q,, a
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Qp-basis {1,0, ... ,0%~11 "and a cyclic Galois group of order dy generated
by an automorphism oy, : 8 — 6% for some 1 < k < p® with p 1k and k
is a primitive root modulo p®. The ring of integers Z,[f] is a principal
ideal domain with unique maximal ideal p = (), where Kk = 6 — 1. For
z € N define p* = (k?); note that each [p* : p**t1] = p. The group of units
Ups = (Zp[0]*,-) can be decomposed as Ups = (w) x (1 4+ p) where w € Z,,
is a primitive (p — 1)-th root of unity. For j > 1 write Uy j = 1 + p/.

2.2. Infinite pro-p-groups of coclass r

The results mentioned in this section are from [5, Section 10] and [11,
Sections 7 & 10]. A pro-p-group G with nilpotent quotients G; = G/v;(G)
has coclass cc(G) = r if there is an integer ¢ such that G is a finite
p-group of coclass r for all j > t. Every infinite pro-p-group G of coclass
r yields an infinite path in the coclass graph G(p,r); in the following,
the label of the branch B,, of the corresponding coclass tree is usually
chosen such that B, has root GG,,. The structure of such a pro-p-group G
is well-understood, and in particular if G' has trivial centre, then G is a
uniserial p-adic space group of dimension d for some d > 1, that is, G is
an extension of a characteristic subgroup 17" = (Zg, +) by a finite p-group
P which acts faithfully and uniserially on 7. Recall that the action is
uniserial if the series ' = Ty > T > Ty ... defined by T;41 = [T;, P]
satisfies [T : T;] = p* for all i.

2.3. Skeleton groups

Unless mentioned otherwise, definitions and results mentioned in this
section are from [4]. In this paper we only consider skeleton groups
associated with an infinite pro-p-group G = P.T which is split and has
dimension d. These skeleton groups are often called split skeleton groups.
Following [4, Section 3.1|, we consider T'AT as a Z,P-module. Every Z, P-
homomorphism v: T'AT — T has P-invariant image, hence v(T'AT) = T}
for some j > 0. Thus, if m satisfies 7 < m < 25 — d, then v induces a
well-defined surjective P-homomorphism (T'/T;) A (T/T;) — T /Ty, which
maps (a+T; Nb+Tj) to y(aAb)+T,,. We can use v to define a new binary
operation on T'/T;, via (a+Tpn) oy (b+T) = a+ b+ 3v(aAb) +T,,. The
group T, = (T/Tp,0,) is of order p™ with central derived subgroup
T}/ T

Definition 2.1. Let v: T'AT — T} be a surjective Z;, P-homomorphism
and choose m such that 6d < 7 < m < 2j — d. The split skeleton group
defined by v and m is G = P X T} 4.
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Since skeleton groups are abstractly defined via homomorphism, it is
natural to ask when two such homomorphisms yield isomorphic skeleton
groups. The following is [4, Lemma 4.1].

Lemma 2.2. Let G, and G/, be two skeleton groups, and a € Aut(G)
such that a(y(t A s)) — +'(a(t) A a(s)) € Ty, for all s,t € T. Then
G'yam = G’Ylvm'

Remark 2.3. Isomorphisms between skeleton groups arising from auto-
morphisms of G are called orbit isomorphisms in [7]. If there exists an
orbit isomorphism between any two isomorphic skeleton groups, then the
subgraph induced by the skeleton groups is essentially completely determined
by the structure of the associated pro-p-group G, which is a favourable
situation. In [4], two instances of such G have been exhibited where this
holds. Unfortunately other isomorphisms (exceptional isomorphisms) can
exist, see [7, p. 1249 & 1269]. However this can not happen if G is split
and P is cyclic, see [}]. We use this result later in this paper.

For the rest of this paper, we consider a split pro-p-group G = P x T of
dimension d and coclass 7. Let T be the coclass tree in G(p, r) defined by
G. The shaved branch B;[k] is the subgraph of B; consisting of the groups
of depth at most k in B;. For any j > 1, we write H; = Homp(T' AT, T})
and L; = {y € Hj | 7 is surjective}. Whenever considering a skeleton
group G, for v € Lj, we implicitly assume that all parameters are chosen
appropriately, that is, if y(T'AT') = T} then j < m < 2j — d. Recall from
[4] that G, lies at depth m — j in B;, thus the skeleton groups in B;
induce a subgraph S; of depth 2j — d. By S;[k] we denote the subgraph
of §; consisting of all skeleton groups in depth at most k for k < 25 —d.
For the rest of this paper, a “skeleton group” we will always denote a split
skeleton group.

3. Skeleton groups with cyclic point group

Motivated by the skeleton groups of maximal class, see [3], we consider
p-adic uniserial space groups with cyclic point groups. It follows from
|9, Lemma 11| that every such space group is split and uniquely determined,
up to isomorphism, by the size of its point group; thus, the following
convention covers the general case of space groups with cyclic point
groups.

Notation 1. For Section 3, we assume that G = P x T is a split space
group whose point group P is cyclic of order p®, generated by g. If 6 is
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a primitive p*-th root of unity over Qp, then we can assume that T =
(Zpl0],+) whose uniserial series has terms T; = (0 — 1)'T = p".

The space group associated with the coclass tree of G(p, 1) is obtained
by taking s = 1. This case has been investigated in [1-3|. The content of
this section is motivated by the results in [1,3] and we generalise some of
these results for s > 1 by following the methods used in |1, 3].

3.1. Homomorphisms from T'A T

To get a better understanding of skeleton groups it is important to
study the set of parametrising homomorphisms. Let K = Q,(#) and recall
from Section 2.1 that o, € Aut(K) is defined by 6 — 6%, see Section 2.1.
The following is [11, Theorem 11.4.1].

Theorem 3.1. For a # 0,1 mod p define v, : K A K — K by vq(z A

y) - Ua(x)ol—a(y) - O'a(y)o'l—a(x)' Then {Va ’ 2<a< %(ps - 1),CL =
0,1 mod p} is a K-basis of Homg,p(K A K, K).

The image of T AT under v, lies inside T', hence we can consider the
restriction v, : T'ANT — T without any ambiguity. We now concentrate on
the structure of the Z,P-module homomorphisms from 7"A T to T". The
following theorem is from [11, Proposition 8.3.5]. For any integer s > 1
we write mg = 3(p® — 2p*~1 — 1).

Theorem 3.2. The Z,P-module T'A T is the direct sum of a free Z, P-
module of rank my

Lemma 3.3. The element z = Zo<i<k<(p5—1) 0 A 6% is fixed under the
action of P.

Proof. Using Theorem 3.2 we can write 29 = ZOSZ’</€<(;DS*1) Pt A g1
where ¢ generates P. Now the result follows from a straightforward
calculation using 6 4 ... + 67"~ = —1. O

As both T'AT and T are Z,-modules of finite rank, it follows from
[5, Chapter 1] that every homomorphism T'AT — T and T AT — T/T.
(for any e) is a Z,-module homomorphism. Since the only fixed point of
T under the action of P is 0, we define the following using Theorem 3.2
and Lemma 3.3. This follows an analogous definition in [11, Chapter §].
We denote by d; . the Kronecker delta with 6;, = 1if i = k and ;1 = 0
otherwise.
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Definition 3.4. For i,k € {p*" ' +1,...,(p® — 1)/2} and any e > 0, the
P-homomorphisms fr: T'A T — T and fk :TANT — T/T, are defined
by fe(LA60) =6; and fir(z) =0, and fe=mo fy, where 7 : T — T/T,
is the projection. Let fl : TANT — T/T, be the P-homomorphism defined
by fi(LA6) =0 and fi(z) = 7.

Since Z, 0] is abelian, Homp(T'AT, T) is a Zy[f]-module via (f¢)(x) =
cf(z) for all ¢ € Zy[0], 2 € T AT and f € Homp(T AT, T). The next
result is an immediate corollary to Theorem 3.2.

Corollary 3.5. As Z,[f]-module, Hy is generated by {fx | p* 1 +1 <
k<(p®—1)/2}.

Corollary 3.6. Homp(T' A T,T/T.) is a direct sum of m; summands
isomorphic to T'/Te, generated by fj, for P lH1<k<(pP—1)/2,and a
summand of order p generated by fi.

Proof. The image of z under any homomorphism in Homp(T AT, T/T)
must be in the subgroup generated by 7z, = (§ — 1)¢~! + T,. Thus using
Theorem 3.5 we find that Homp(T' A T,T/T,) is the direct sum of the
summands generated by fj, for p> 1 +1 < k < (p°* — 1)/2 and a summand
generated by fl. Finally, each of the subgroups generated by fk is isomor-
phic to T'/T, for k # 2 and the subgroup generated by fl is isomorphic to
T, 1/T, = C,. 0

Consider Jps = [p* 1+ 1,(p* —1)/2lNZ and Z,s ={a € Z |2 < a <
(p*—1)/2,a # 0,1 mod p}. From Theorem 3.4 and Definition 3.1 we can
see that there are two different bases of Hy which are indexed over different
sets of same size m,, namely these bases are explicitly {v; | k € I, s}
and {fi | k € Jps}. The presence of two bases poses some notational
difficulties; in order to reduce these technicalities, we relabel the ordered
bases (Vk)kez, ., and (fr)reg,. as (Vg)psy and (f;)j, respectively. The
next result follows from Corollary 3.5 and Theorem 3.1. This is motivated
by |3, Lemma 4.1].

Lemma 3.7. If vy € Homp(T' AT, T) then
a) there exists a unique (cy,...,cm,) € T™= such that v = Y% o fq,
b) there exists a unique (b1, ..., by, ) € K™ such that v = > " ba,.

Remark 3.8. [t is shown in Lemma 5.7 that there exists an invertible
matriz B € GLy,, (K) which represents the change of bases for Homp(T A
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T,T) from (fj)i=, to (Uk)je,. For example if s =1, then [3, Section 4.1]
shows that B = (Bij)m,xm. 1S given by

B = (072 ) (070 )

Recall that the isomorphism problem of skeleton groups can be solved
via the action of Aut(G) on the set of homomorphisms. Our next aim is
to investigate the automorphism group of the space group G.

3.2. The automorphism group

To determine the automorphism group of G, it is useful to exploit
the extension structure of GG. For this a cohomological argument can be
used. For any group H and an H-module N, the corresponding groups of
1-cocycles, 1-coboundaries, and the first cohomology group are denoted
by ZY(H,N),B'(H,N) and H'(H, N) respectively; these are standard
and can be found in [10,16]. The next lemma describes the structure of
ZYP,T).

Lemma 3.9. Z'(P,T) = {a; | t € T} where a; : P — T is defined as
ay(g') = G=Lt for i > 0.

Proof. Suppose o € Z'(P,T) maps g to t € T. By definition a(uv) =
a(u)? + a(v) for u,v € P. Then inductively we can show that a maps g
to(1+0+...+0"Ht = 99:—_1115 for all i > 0. Hence o = a¢. Conversely
take t € T and consider az. Then an easy calculation, using the definition
of ay, shows ay(g?)9" + ay(g?) = ay(g2*?) for all 1 < a,b < p* — 1. O

The proof of the following theorem is motivated by [7, Lemma 5.4].
Recall from Section 2.1 that the Galois group Gy of Q,(0)|Q, is cyclic of
order dy and is generated by oy, for a primitive root k& modulo p®.

Theorem 3.10. The automorphisms of G are ¢(k,u,s) : G — G defined
by
ik

(gzvt) = (g ,UO’k(t) + UikS), (O <1< ps - 17 le T) (31)

where k € {1,...,ds} with p{ k, s € T,u € Uys and u; = (g_;f for all
j=0.

Proof. Since G/T = P and T is characteristic in G, we can define a
homomorphism A : Aut(G) — Aut(P) mapping ¢ — ¢|g/r. Now oy,
induces an automorphism 7, of G mapping (¢°, ) + (", o%(t)). Hence the
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subgroup (ng) (of Aut(G)) maps onto Aut(P) under A\. We now determine
the kernel of X\. Consider a restriction map ¢ : Aut(G) — Aut(7") mapping
¢ — o|lp. If ¢ € ker(\) then ¢|p is a P-module automorphism of 7.
Now T" acts on T' by natural ring multiplication. So ¢|r is a T-module
automorphism of T'. But the group of T-module automorphisms of 1" is
isomorphic to Up,s. Thus ¢ maps ker(A) onto U,s; the surjectivity follows
from the fact that multiplication by a unit induces an automorphism of
G which lies in ker()). If ¢ € ker(¢) Nker()\) then ¢(g%,0) = (¢°, ¢2(9))
for some ¢g € Z'(P,T). Thus by Lemma 3.9 there is s € T such that
P2(g') = %s for all ¢ > 0. Each « € T induces an automorphism of G

mapping (¢°,t) — (g%, + (0(;:11 )x). Finally the result follows since P is

cyclic and every automorphism of P maps g — ¢** for some 1 < k < d
such that pt k. O

The following lemma is immediate from the proof of Theorem 3.10.
This result is analogous to [3, Lemma 3.2 (a)].

Lemma 3.11. Let p: Aut(G) — Aut(T') be the natural restriction. Then
the kernel of p is isomorphic to Z!(P,T) and the image of p is isomorphic
to Gg X Ups; a preimage of (0., u) € Gy x Uy,s under p is ¢(z,u,0).

3.3. Descendants of a skeleton group

In this section we describe the descendants of a skeleton group up to
isomorphism. This is needed in order to investigate periodic parents in
Section 4.2. We start with the following lemma; this follows directly from
Lemma 2.2.

Lemma 3.12. Every ¢ € Aut(G) acts on v € Hj via v +— v?, defined by
YOt A s) = ¢~y (d(t) A B(s))). If 7 is surjective, then so is y¥.

The action defined in Lemma 3.12 induces an action of Aut(G) on Lj.
For V' < Aut(G), we write Staby (v + Hy,) = {a € V | v* = v mod H,,}.
Recall that G is split and the point group of G is cyclic. In this case, it is
shown in [4, Proposition 5.2| that the condition given in Lemma 2.2 is a
necessary sufficient condition and thus any isomorphism between skeleton
groups in 7¢ is an orbit isomorphism. Now Lemma 2.2 can be rephrased
as follows.

Lemma 3.13. Let 7,7 € L;. Then G, = Gy, if and only if there
exists 3 € Aut(G) such that 4% =+ mod H,y,.
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The skeleton subgraph (in the coclass tree associated with G) in this
case is completely determined by the structure of G: the ingredients for
constructing skeleton groups are P, T', and homomorphisms T'ANT — T,
and their isomorphism problem can be solved by considering the action of
Aut(G). Since the parent of G ;1 is G, for v € Lj, the following is
easy to see from Lemma 3.13.

Lemma 3.14. Given v € L;j and j < m < 2j — dy — 1, a skeleton group
G+ m+1 18 an immediate descendant of G, if and only if there exists an
automorphism a € Aut(G) such that v* =+ mod H,,.

Noting that if y € L; then there is s,¢ € T such that y(tAs) € Tj\Tj41,
it follows from discussion in Section 2.3 that if v € L; and § € Hj, for
k > j then v+ 6 € L;. The next lemma describes the descendants of a
skeleton group.

Lemma 3.15. Let j > 0 and v € L;. Suppose j < m < 2j —ds — 1 and

1 <k <2j—ds—m. Consider the skeleton group G, at depth e =m —j

in B;. Then

a) A skeleton group H is a descendant of G, of distance k if and only
if H= Gyys5mykr for some 6 € Hj ..

b) For 01,92 € Hjye, two skeleton groups G5, jtetr and Gois, jretk
are isomorphic if and only if there exists a € Stabayi(a) (7 + Hjte)
such that 6% +~* — v = d2 mod Hjcyp.

Proof. a) Note that m = e + j. Consider 6 € H,, and then v+ € L;.
Now (v + &) =~ mod H,, since § € L,,. Thus (y + ) =~ mod H,,. So
by Lemma 3.14, we conclude that G5 4 is a k-step descendant of G, .
Conversely let G ;41 be a k-step descendant of G, for some n € L;.
Then by Lemma 3.14, there is a € Aut(G) such that n® = v mod T),,.
Thus by Lemma 3.13 we have Gy, 4k = Gpo mar and hence Gy =
Goyt6mtk

b) Consider G45, m+k = Grtsy,m+k- Now by Lemma 3.13 there is a €
Aut(G) such that (v 4 1)* = v+ 62 mod H,, 4 and hence 6 ++* —v =
09 mod Hj+e+k~ Now 51,52 € L, and Tm+k < Ty So ¥ = fymod
Hy,, which is same as saying a € Stabayyq)(y + Hm). The converse is
straightforward by using Lemma 3.13. O

Remark 3.16. Each v € L; can uniquely be written as v = (§ — 1)JF
where F' € Lg. Hence every F' € Lg induces a skeleton group G g_1)irm
at depth e = m — j in the branch B; where j < m < 2j — d,. Also note
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that multiplication by any unit induces an automorphism of G. Hence
Staby (v + Hm) = Staby,. (F + Hp—j).

Motivated by Lemma 3.15 and [2| we define the following.

Definition 3.17. For a € Aut(G), F € Hy, g € H, and e > n > 0 we
write

(g+ H)o =g“ + (F*—F) + H.. (3.2)

Note that (3.2) defines an affine action; it is a group action if and
only if F* = F mod H.. However, we have (g + He)(aop) = ((9 + He)a)s
and (g + He)id = (g + He)'

Lemma 3.18. Suppose v € L;. Choose m and k such that j < m < 2j —
ds—land 1 <k < 2j—ds—m. Let M, , 1. be the set of Stabayy(q) (v+Hum)-
representative of {g + Hy, 1 | g € H,,} under the affine action as in the
Definition 3.17. Then the k-step descendants of G ., up to isomorphism,

are given by {Gypm+k | 1€ My m i}

Proof. By Lemma 3.15, the list of k-step descendants of G, is given
by {Gy4s5m+r | 6 € Hy} and for 61,00 € Hpy,, two skeleton groups
Gry461,m+k and G4 5, 4k from this list are isomorphic if and only if there
exists a € Stabauy(q) (7 + Hm) such that 67 +7* — v = 0> mod Hjj ey
By assumption v = (0 — 1)/ F' where F' € Lo and hence G5, m+r and
Gy 165,m+k are isomorphic if and only if there exists a € Stab () (Y+Him)
such that (02 + Hy,) = 0f +~% — v mod H,, 4+ which is equivalent saying
(02 + Hp,)a = 01 under the action defined in (3.2) for v € L;. The claim
follows. [

3.4. Orbit isomorphisms

In this section we introduce few results involving orbit isomorphic
skeleton groups. The results of this section will be used to prove Lemma 4.8.
Recall that mg = %(pS —2p*~1—1) and the skeleton subgraph of the branch
Bj is denoted by §;. Let B be the base change matrix as given in Remark
3.8. Now Lemma 3.7 allows us to define the following. Here K = Q, and
recall that Z, s = {a € Z |2 <a < (p® —1)/2,a # 0,1 mod p}

Definition 3.19. If ¢ = (c1,...,¢m,) € K™ and v = Y "%, ¢V, € Lj,
then the skeleton group G ,, defined by v and m is denoted by S, (c).
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Definition 3.19 shows that one can parametrise the skeleton groups
by the elements of K™s. For j > 1, we define ©; = {¢ € K™ |
Sm(c) € S; for some m with j < m < 2j — dg} and the write Q; =
{(c1, .- em)B71 | ¢; € p? for 1 < i < myg}. Next we consider the follow-
ing homomorphisms defined for all a € 7,

Pa Ups — Ups, s u o (u)or—q(u). (3.3)

In the following we rewrite this action in terms of the parameters from
©;. This is |3, Lemma 4.3].
An element (0, u) € Gg X Ups acts on ¢ = (c1,...,¢m,) € O via

7 = (pr(uau(er)s s o, (w0 )owlem,) (34)

This induces an action on €2; and hence on the set of cosets /€. for
all e > 1. Now |4, Proposition 5.2| can be rephrased in terms of ©; and
(3.4).

Theorem 3.20. Let j > ds and choose m such that j < m < 2j — ds.
Suppose ¢, b € ©;. Then S,,(c) and S,,(b) are isomorphic if and only if
c + €, and b+ Q,, lie in the same orbit under the action of Gy x Uy,s on
Qi /.

Proof. Let ¢ = (¢1,...,¢m,) and b = (b1,...,by,). Using Lemma 3.7,
consider v = Y ", ¢,Uq and 7 = Y 1"*, bsV,. Lemma 3.13 shows that
Sm(e) and S,,(b) are isomorphic if and only if there exists some auto-
morphism 1 of G such that (y')¥ = v mod H,,. Now by Lemma 3.11
we can assume ¢ = ¢(n,u,0) for some n with p t n and u € U,s. The
action of ¢(n,u,0) corresponds to the action of (o,,u) € Gg X Ups on O;.
Hence two skeleton groups Sp,(¢) and Sy, (b) are isomorphic if and only
if for all ¢,s € T we have that Y%, (by — 05 (ca)pa(u™))a(t A 8) € Tpy,.
Let ag = by — 0n(ca)pa(u™) for 1 < a < mg and (aq,...,q,,)B7! =
(B1y ...y Pm.). Now using Remark 3.8, the skeleton groups are isomor-
phic if and only if for all ¢,s € T we have Y 1) B, f,(t A s) € Tp.
Note that (aq,...,am,)B~" = bB~! — " B~1 Thus from Defini-
tion 3.4 we conclude that the skeleton groups are isomorphic if and only
if (bB~! — clo»®B~1) € T}, and the claim follows. O

c(

4. Periodicities in skeleton graph
4.1. Periodicity of type I

In this section we study how Lemma 3.13 improves some known
periodicity results. We continue with an infinite pro-p-group G which
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corresponds to a coclass tree T in G(p,r). For Section j.1, we assume
that G is chosen such that if two skeleton groups (defined in Tg) are
isomorphic, then they are also orbit isomorphic. It is proved in [4] this
holds whenever GG has a cyclic point group; this includes the prominent
example G(p, 1). Recall from Section 1 that the periodicity of type I was
improved by Dietrich [2]| for G(p, 1). This motivated us to establish the
following which is a re-statement of Theorem 1.1.

Theorem 4.1. Under the assumption mentioned above, the following
holds. For all large enough j, we have S; = Sj;4[j — d] as rooted trees;
here d is the dimension of the associated space group.

Proof. From Definition 2.1 we find that for 6d < 7 < m < 25 — d,
a complete list of skeleton groups at depth m — j in B; is given by
Sjm = {G~m | v € L;}. Multiplication by p defines a bijection L; — L4
and thus Sjtamid = {Gpymta | v € Lj}. Clearly (py)® = p(v*) for
a € Aut(G). In view of our assumption, we have G, = Gy, if and
only if Gpymtd = Gpy m+a using Lemmas 2.2 and 3.13. This proves the
existence of a bijection between the isomorphism types of the skeleton
groups at depth e in B; and at depth e in B, 4, respectively, for all e < j—d.
The parent of G, in B; is G ;m—1 for m > j; this also implies that the
above bijection induces a graph isomorphism from S; to S 4[j — dJ; recall
that S; has depth j — d. O

We now describe why Theorem 4.1 is a significant improvement over
the periodicity of type I as described in [8]: it is shown in [8] that, for
large enough j, one can embed B;[e;] into Bj4 where e; is approximately
j/6d. In contrast, Theorem 4.1 shows one can embed the whole skeleton
tree S; (of depth j — d) into Bj 4, such that S; = S;4[j — d].

4.2. Periodicity of type II

For this section we will continue with Notation 1, that is G = P x T
is a split space group whose point group P is cyclic of order p* with s = 1
for G(p,1). This is studied in detail in [1-3,11-13]. We are particularly
interested in the descendants of a skeleton group. The case p = 5 mod 6
is discussed in [1|. We here consider other primes. In view of Notation 1,
here 6 is a primitive p-th root of unity. Then T' = (Z,[f], +) has Z,-rank
d = ds = p—1. The associated space group with the coclass tree of G(p, 1)
has point group P which is cyclic of order p, see |2|. Let Z,; = {2,...,d/2}
as in Section 3.1 and denote Z = 7, ;. It is also known from [I, section
5.1| that for i > 2, there exists Zy-module isomorphisms between T; and
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U, ; which are defined by the usual power series of the exponential and
logarithm mapping exp : T; — U, ; and log : U, ; — T; with exp~! = log.
For simplicity when the prime p is clear from the context, we denote
U,=Uand U,; =U (@ for all i > 0. Considering the homomorphism pq
from (3.3), we use log on the restriction of p, to U =1 + Ty to induce
the Qp(0)-linear map 7, : To — To, 2+ —z+ 04(2) + 01-4(2). We take
w € Z, to be a primitive (p — 1)-th root of unity. The following can be
found in [1,11].

Lemma 4.2. There exist vs,...,vp41 € T1 with vy, € Tj—1 \ T}, for all
k such that, for all @ € Z, the following holds. If ¢ = w’ mod p and
1 —a = w’ mod p, then vy, is an eigenvector of 7, with eigenvalue Wa k =
w™* +wI* — 1. The images of vs, ... , Up+1 under exp map generate U as
a Zp-module. If p = 5 mod 6, then w, 5, # 0 for all @ and k. If p = 1 mod 6,
then w, = 0 for some a and k.

So, for integers a and k, if w, 1 # 0 then there exists a largest integer
Da,k With wg ; = 0 mod pPek. Let e > 0, then from [3, Section 5] we define
Vg ke = max{[(e—k+1)/d] — pa,0}. Now suppose a € Z and we define
N(a) ={k € Z |3 <k <p+ 1w, # 0} We relax the condition
p =5 mod 6 from |1, Lemma 5.3] and obtain the following.

Lemma 4.3. Let a € Z. Suppose u € U@ is such that

U= H exp(vg)*,

keN(a)
then p,(u) € U if and only if p'eke divides ay for all k € N(a).

Proof. Recall that w,j is the eigenvalue of 7, corresponding to vj. Then
using log and exp, it is easy to observe that p,(u) = erN(a) exp(vy ) HhWark
Note that wgj # 0 and vy, € Tj—1 \ T}, for all kK € N(a). Hence from the
definition of w, x, we find that p,(u) € U if and only if exp(vy ) “er €
U for all k € N(a). Using log, this is equivalent to saying ajwg xvr € Te
for all k € N(a). As pT; = Tij1q we see apwqrvr € T, if and only if
arWq,k € Te_p4+1 which is equivalent to saying ar € Te—py1—ap, , for all
k € N(a) since pPak is the highest power of p which divides Wa,k; This is
true if and only if p¥e*r.e divides ay, since pT; = T;14. O

Recall the definition of v, from Theorem 3.1. The following result, from
Lemma 3.7, describes the structure of Homp (T A T'). See also |1, Lemma
4.4].
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Lemma 4.4. Every P-homomorphism f :T'AT — T can be written
uniquely as f = covo + ...+ ¢cqpovgse with co, ... cqp € T, _gy2/4. It f
is surjective, then ¢, € T for at least one a € 7.

Periodic parents of skeleton groups in G(7,1) Consider the coclass
graph G(p,1). We recall from Section 1, that for any integer k, the k-step
descendant tree of any group H in G(p,1) is denoted by Dy(H). The
following conjecture states one of the possibly ways describe these trees,
see [1]. For any n > 0, let e)(n) = n—2p+8if p > 7 and e5(n) = n—4. For
any group K in G(p,1) at depth e,(n) in By4,—1 if the unique ancestor H
at distance p — 1 from K satisfies D, (K) = D, (H) then H is called
a periodic parent of K. In the interest of finding such periodic parents,
the following is proved in [1, Theorem 1.2].

Theorem 4.5. Let p = 5 mod 6. There is an integer ny = ng(p) such
that, for all n > ng, the following holds. Let K be a group at depth e,(n)
in By, 4+p—1 having immediate descendants and let H be the (p — 1)-step
parent of K. If the automorphism group of H is a p-group, then H is a
periodic parent of K.

Our results in the this section show that Theorem 4.5 can not be
extended for the case p = 1 mod 6.

In the remainder of this section, let p = 7, that is, 6 is a primitive
7-th root of unity and 7' is a Zy-module of dimension d = 6. The point
group P is cyclic of order 7. Retaining the notation of Section 4.2, we take
Z = {2,3} and w is a 6-th root of unity; we choose w = 5 mod 7. Then for
a =2 we have a = w* mod 7 and 1 — a = w? mod 7. Similarly for a = 3
we get @ = w® mod 7 and 1 — a = w mod 7. Recall from Lemma 4.2 that
if @ = w' mod p and 1 — a = w’ mod p, then v, is an eigenvector of 7,
with eigenvalue w, ; = w* +w/* — 1 for k € {3,...,8}. A straightforward
computation shows that 7o has no zero eigenvalue whereas 73 has two
zero eigenvalues for k = 5,7. It is also easy to see that po, =0if bk # 7
and pa7 = 1. Also p3 ), = 0 for k # 5,7. We exploit the above facts in
the following results. Recall from Section 2.1 that the group of units U
can be decomposed as U = (w) x (#) x U?) and each u € U acts on
[ =72 gerCaVa € Hovia f* =3%" 7 pa(u~1)cav,. Note that if a € 7 then
pa(0) = 1 and pq(w) = w.

Notation 2. Let n > 1 and m > 0. For the rest of this section we write
hn = (0 —1)"v2 + (0 — 1)~ tvs and S(n,m) = Stabye) (hy + Hp).

We show that certain skeleton groups (parametrised by h,) and their
6-step parents have non-isomorphic descendant trees. We first investigate
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the action of ? on the homomorphisms from Hy and prove the following
which shows that [1, Theorem 5.1] is not true for p = 7. For any group A,
we denote the group of p-th power by AP,

Lemma 4.6. If n > 1 then h, € Ly and S(n,n + 2)P) # S(n,n + 2+ d).

Proof. By Lemma 4.4 we see that h, € Lg. It is thus enough to find
u € S(n,n + 2+ d) such that there does not exist any v € U? with
u = vP. We find integers x and y such that u = exp(v7)* exp(vs)Y is such
an element of S(n,n + 2+ d). Now ht —h = (p2(u) — 1)(0 — 1)1 as
p3(u) = 1. By Lemma 4.4, if (p2(u) — 1) € Ty then u € S(n,n + 2+ d).
Lemma 4.3 gives po(u) € UW if and only if p*>74+ divides z and p?25+
divides y. Recall that vo74 = v254 = 0. So we choose z,y such that
7 1 z,y. The images of vs,...,vg under exp map generate U2 as a Zr-
module. So if there is v € U?) such that v” = exp(v7)® exp(vs)? then p
must divide both x and y. Hence by our choice of z and y, there does not
exist any v € U?) with u = vP. This completes the proof. O

Corollary 4.7. Let n > 1 and e = n + 2. Then there exist g € H.14 and
ve Sn,e+d)\ S(n,e)lP! such that (¢4 Hergi1)o # (9 + Herdir)ur for
all u € S(n,e +d).

Proof. Take g = (6 — 1)*T?h,,. By the proof of Lemma 4.6, we can choose
the element v = exp(v7)Y exp(vs)* with integers z,y > 1 not divisible by
7. Then (g+ Hysas1)o = (60— 1) (apa(o) — 1)+ (8— 1) (aps(v) 1)
by (3.2) where a = ((§ — 1)**¢ 4+ 1). Suppose, for a contradiction that
(9+Hetd+1)v is equal to (g+ Heqgt1)ur for some u € S(n, e+d). Then we
find that a((6— 1) (pa(v™ 1) — pa(u ) + (0 — 1) (ps(v™ 1) — py(uP))) €
H,.\ 4+1. Now Lemma 4.4 shows that (8 — 1)™?(p2(v™1) — p2(u™P)) € T4
as « is a unit. Hence pa(vu~?) € UO). Write u = Hi:g exp(vg ). Now
v255 = 1 and thus Lemma 4.3 shows that 7 divides  — 7as which is a
contradiction. ]

We now find a family of skeleton groups in G(7, 1) whose automorphism
groups are 7-groups.

Lemma 4.8. Let n = 3 4+ 62 with z > 1.Then the automorphism group
of G(9—1)ih, jin+2 18 @ T-group for j € (18 + 6Z) \ (15 + 42Z).

Proof. Recall the base change matrix B = (f;;)2x2 from Remark 3.8. In
particular 39 = (62 — 1)uy and P22 = (62 — 1)uy where ug = 0 + 26% +
202 +20* + 6° and ug = 0 + 3602 + 403 + 30* + 0° are both units. We now
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takec; = (0 —1)" co=0—1)"1, ¢t = (0 —1)c1, @ = (0 — 1)Ica. So if
[ = qv2 +qov3 then H = Gy ;. is a skeleton group at depth e in branch
B;. Note that the Galois group of Q7(f) is generated by o3 which has
order 6. Also note that 03 = o9 has order 3 and o3 = 0g has order 2. Using
[3, Section 5| we conclude that Aut(H) is a p-group if and only if there
does not exist w; € U such that (g, qg)(‘”’“’i) = (q1,¢2) mod Q. for all
i = 2,3,6 where the action is as defined in (3.4). This is true if and only
if ((q1,02)%™) — (q1,q2))B ¢ Tjte X Tjie for all w € U and @ = 2,3, 6;
this can be observed using (3.4). Now we take e = n 4 2 and note that
(0" —1) = (0 — 1)z for i =2,3,6 where 20 =1 +0, 23 = 1+ 6 + 6% and
26 = —05. Following the definition of B, a straightforward computation
shows that if ((g1,q2) ") — (q1,q2))B € Tjye x Tj4e for some w; € U
then

(0= 1)"*(1 = 04)(z " pa(w; ) = 1)
+(0 - 1)1 = 62) (2] pa(wh) = 1) € Thpo

for i = 2, 3, 6. This shows (szlpg(wifl) —1) € Tppr. If p3(w; ') € Uy then
zg_l —1=1t"—tz7=1 € Ty for some t' € T}, 1. Note that 27;18+62_1 —-1¢T
for all z> 1 and ¢ = 2, 3; this can be seen via binomial theorem. Further
zé_l — 1 ¢ Ty unless j = 15 + 42k for some k > 1 as in such cases
207 =1 =0. Thus w; & U for all i = 2,3,6 for j € (18+6Z)\ (15+427).
Finally if p3(w; ') = 1 + s for s € T\ Ty then z®t%* (1 4+5) - 1¢ Ty
which shows there is no w; € U such that (ng1p3 (w; ') = 1) € Tp41 and
hence Aut(Gy ji.) is a p-group for j € (18 + 62) \ (15 + 427Z). O

We finally find a family of skeleton groups in G(7,1) whose 6-step
parents are not periodic parents. Let Figyg, = (6 — 1)1¥75%h3,4, and
e(18 4+ 6z) =5+ 6z for z > 0.

Theorem 4.9. Using the notation of the above paragraph, for any j =
18 + 6z with z > 0, the skeleton groups G, jic(j) and G, jie(j)+6 have
different number of immediate descendants if j € (18 4+ 6Z) \ (15 + 42Z).

Proof. Let j = 18 4+ 6z and take e = n + 2 where n = 3 + 6z. Take
v = Fist¢: and m = j+e. Suppose My, 1,1 be the set of Staby e (6 —
1)7 hy,+ Hyy, )-orbit representatives of {g+ Hp+1 | g € Hp,} under the action
as in Definition 3.17. Then by Lemma 3.18, the immediate descendants,
up to isomorphism, of the skeleton group G, ;1. are described by the set
{Gyinjtet1 | 1€ My, 1} By Lemma 4.8 we see that Aut(G, j4e) is a p-
group unless j € (15442Z). Hence by Remark 3.16, the immediate descen-
dants, up to isomorphism, of the skeleton groups G ji. and G, jict6 are
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in one-one correspondence with fm’hn e and zm’hn e+6,1 Tespectively where

hn .1 18 the set of S(n, e)-orbit representative of {g + He+1 | g € He}.
Now take v = exp(v7)¥ exp(vs)* for some integers x,y > 1 such that
71z,y. Let g = (6 — 1)¢*?h,,. Suppose for a contradiction, (p~ g + Hey1)
and (p~'g + Hey1), are in same orbit under the action of S(n,e). Then
using (3.2) we have (p7g+Het1)y = (P71 g+ Het1)y for some u € S(n,e).
A straightforward computation shows that ¢* — g” € Heyq41 which yields
(0 —1)" (p2(u™") = p2(v™))va + (0 = 1) 2(ps(u") — p3(v"))v3 € Ho.
Now Lemma 4.4 shows that (p2(u~!) — pa(v™1)) € T 34, and (p3(u=?t) —
p3(v™1)) € T_5. By choosing large p-power of u =1, we can have (with abuse
of notation) (p2(u=?) — pa(v=1)) € T34, and (p3(u=P) — p3(v=1)) € T_s.
Hence we have (6 — 1)”*1(,0 (u™P) — p2(v71)) € T_4 and also we have
(0 — 1)"2(p3(u™P) — p3(v™ ) € T 4. So by Lemma 4.4 we find that,
(0 =1)" (p2(u?) = pa(v™1))ra + (0 = 1) (p3(uP) — ps(v"))vs € Ho.
This means (g + He+d+1)up (g + H.\4:+1)y which is not possible by
Corollary 4.7. This shows that (p~'g + H.y1) and (p~'g + Heyq1)Y are
never in the same orbit under the action of S(n,e) whereas (g + Hetd+1)
and (g + Heqa41)" are in same orbit under the action of S(n,e + d) as
v € S(n,e+d). Hence |. The result follows. O

[\

II'

n,e+d,1

The proof of Theorem 1.2 now follows from Lemma 4.8 and Theo-
rem 4.9. Theorem 1.2 shows that, in general, one cannot expect that the
d-step parent of a group in G(p, 1) always has an isomorphic descendant
tree. Note from |1, Theorem 1.1|, if n = 18 + 6z for some z > 1 then
the depth of S, is 12 + 6z. The examples given in Theorem 4.9 are the
skeleton groups at depth 11 + 6z in the branch Big ¢, for z > 1. This
shows that these examples are occurring deep in the branches.
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