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Abstract. Let G be a őnite group, and let Γ be a subset

of G. The Kazhdan constant of the pair (G,Γ) is deőned to be

the maximum distance we can guarantee that an arbitrary unit

vector in an arbitrary nontrivial irreducible unitary representation

space of G can be moved by some element of Γ. The Kazhdan

constant relates to the expansion properties of the Cayley graph

generated by G and Γ, and has been much studied in this context.

Different pairs (G1,Γ1) and (G2,Γ2) may give rise to isomorphic

Cayley graphs. In this paper, we investigate the question: To what

extent is the Kazhdan constant a graph invariant? In other words,

if the pairs yield isomorphic Cayley graphs, must the corresponding

Kazhdan constants be equal? In our main theorem, we construct

an inőnite family of such pairs where the Kazhdan constants are

unequal. Other relevant results are presented as well.

1. Introduction

Let G be a őnite group, and let Γ be a subset of G. Let ρ be a unitary
representation of G, that is, a homomorphism from G to GL(V ), where V
is a complex vector space with a Hermitian inner product ⟨·, ·⟩, such that
⟨v, w⟩ = ⟨ρ(g)v, ρ(g)w⟩ for all g ∈ G, v, w ∈ V . We deőne κ(G,Γ, ρ) by

κ(G,Γ, ρ) = min
v∈S1(V )

max
γ∈Γ

||ρ(γ)v − v||.
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Here S1(V ) denotes the set of all unit vectors in V . We then deőne the
Kazhdan constant of the pair (G,Γ) by

κ(G,Γ) = min
ρ∈NI(G)

κ(G,Γ, ρ),

where NI(G) denotes the set of nontrivial irreducible unitary representa-
tions of G. We can think of the Kazhdan constant intuitively as follows: it
is the maximum distance we can guarantee that an arbitrary unit vector
in an arbitrary nontrivial irreducible unitary representation space of G can
be moved by some element of Γ. As discussed in [7], for őnite groups this
version of the Kazhdan constant is well-deőned, e.g., the various minima
and maxima are achieved.

We say that a subset Γ of G is symmetric if γ−1 ∈ Γ whenever γ ∈ Γ.
For a symmetric subset Γ of G, we deőne the Cayley graph Cay(G,Γ) to
be the graph whose vertex set is G, where there is an edge from x to y iff
y = xγ for some γ ∈ Γ.

The Kazhdan constant relates to the expansion properties of the
Cayley graph generated by G and Γ and has been much studied in this
contextÐsee, for example, [6] for more on this. Explicitly computing the
Kazhdan constant can be quite difficult; generally, lower bounds suffice.
See [3] and [4] for some of the few cases in which exact values are known.

It may happen that for two different pairs (G1,Γ1) and (G2,Γ2), the
corresponding Cayley graphs Cay(G1,Γ1) and Cay(G2,Γ2) are isomorphic,
which we denote by Cay(G1,Γ1) ∼= Cay(G2,Γ2). We may well ask, is the
following statement always true?

If Cay(G1,Γ1) ∼= Cay(G2,Γ2), then κ(G1,Γ1) = κ(G2,Γ2). (1)

A simple example shows that in full generality, (1) fails. Namely, let
G1 = Z4, the group of integers modulo 4, and let Γ1 = {1,−1}. Let
G2 be the Klein four-group Z2 × Z2, and let Γ2 = {(1, 0), (0, 1)}. Then
Cay(G1,Γ1) andCay(G2,Γ2) are both 4-cycles. However, a straightforward
computation shows that κ(G1,Γ1) =

√
2 but κ(G2,Γ2) = 2.

Finding other examples where (1) fails requires some effort, however.
There is a trivial way to produce two pairs (G1,Γ1) and (G2,Γ2) such
that Cay(G1,Γ1) and Cay(G2,Γ2) are isomorphic: Take G1 and G2 to be
isomorphic groups with an isomorphism ϕ : G1 → G2, and let Γ2 = ϕ(Γ1).
In this case we say that (G1,Γ1) and (G2,Γ2) are GS isomorphic. (Here
łGSž stands for group-subset.) Such pairs produce isomorphic Cayley
graphs; moreover, using standard facts from representation theory, one
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can show that (1) holds whenever (G1,Γ1) and (G2,Γ2) are GS isomorphic.
But (1) holds in many non-trivial instances as well. For example, one can
produce a cycle graph of even length ⩾ 6 as a Cayley graph either on
a cyclic or on a dihedral group, but the corresponding Kazhdan constant
is the same either way, as shown by Bacher and de la Harpe. (In Section 3,
we provide an alternative proof of this fact.) A construction due to Elspas
and Turner (disproving a conjecture of Àdàm) demonstrates the existence
of isomorphic Cayley graphs on cyclic groups arising from Cayley non-
isomorphic pairs. In Section 3, we show that for a natural generalization
of this construction, again the Kazhdan constants are equal.

In Section 2, we state and prove our main theorem, in which we
demonstrate that inőnitely many pairs with isomorphic Cayley graphs but
unequal Kazhdan constants exist. The main idea behind this construction
is to suitably modify the Elspas-Turner graphs.

In Section 3, in addition to the other items mentioned above, we
also remark that in cases where the two Cayley graphs are isomorphic,
the corresponding Kazhdan constants cannot be too far apart from one
another. Explicit upper and lower bounds are given.

We note that one can easily obtain isomorphic Cayley graphs by con-
sidering two őnite groups G1 and G2 of the same order n, then taking
Cay(G1, G1\e1) and Cay(G2, G2\e2), where e1 and e2 are the identity ele-
ments of G1 and G2, respectively; in both cases we get the complete graph
Kn. More generally, for subgroups H1 and H2 of G1 and G2, respectively,
each of order m, we have that Cay(G1, G1 \H1) and Cay(G2, G2 \H2) are
each isomorphic to the complete n/m-partite graph Km,...,m. Such pairs
may well be worthy of future study.

We say a group G has the Cayley isomorphism property to mean that
for all symmetric subsets Γ1,Γ2 of G, if Cay(G1,Γ1) ∼= Cay(G2,Γ2), then
(G1,Γ1) is GS isomorphic to (G2,Γ2). This property has been studied,
for example, in [1], [2], [8]. Groups which lack the Cayley isomorphism
property provide further examples that may warrant future investigation.

2. Examples where the Kazhdan constants are not equal

In this section, we present our main result: an exhibition of an inőnite
family of pairs with isomorphic Cayley graphs but unequal Kazhdan
constants.

Theorem 2.1. Let t be an even integer with t ⩾ 6. Let

Γ1 = {±1,±(2t− 1)} ∪ {±2,±4,±6, . . . ,±t}, and
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Γ2 = {±(t− 1),±(t+ 1)} ∪ {±2,±4,±6, . . . ,±t}.

Let n = 4t. Then Cay(Zn,Γ1) ∼= Cay(Zn,Γ2) but κ(Zn,Γ1) ̸= κ(Zn,Γ2).

Proof. The function f : Zn → Zn given by

f(a) =

{

a if a is even

a − n
4 if a is odd

deőnes a graph isomorphism from Cay(Zn,Γ1) to Cay(Zn,Γ2). The key
point is that f maps odd elements of Γ1 to odd elements of Γ2, while it
őxes the even elements.

For any k ∈ Z, deőne |k|n to be the unique element of {0, 1, 2, . . . , n/2}
congruent to either k or −k modulo n. For any symmetric subset Γ of Zn,
we deőne

α(Zn,Γ) := min
1⩽j⩽n/2

max
γ∈Γ

|γj|n.

It follows that

κ(Zn,Γ2) = 2 sin

(

πα(Zn,Γ2)

n

)

.

To establish that the Kazhdan constants are not equal, we őrst show that

α(Zn,Γ2) = t+ 1.
When j = 1, we have that max

γ∈Γ2

|γj|n = t+1. The maximum is achieved

when γ = t+ 1 = −(3t− 1).
We now show that for all j with 1 ⩽ j ⩽ 2t, we have max

γ∈Γ2

|γj|n ⩾ t+1

by producing, for each j, an element γ ∈ Γ2 such that |jγ|n ⩾ t+ 1.
For j ≡ 1 (mod 4) and j ⩽ t, we have |j(t+ 1)|n = t+ j ⩾ t+ 1.
For j ≡ 1 (mod 4) with t ⩽ j < 2t, we have |j(−t−1)|n = 3t−j ⩾ t+1.
For j ≡ 2 (mod 4), we have |j(2t)|n = 2t ⩾ t+ 1.
For j ≡ 3 (mod 4) and j ⩽ t, we have that |j(−t+1)|n = t+ j ⩾ t+1.
For j ≡ 3 (mod 4) with t ⩽ j < 2t, we have |j(t−1)|n = 3t− j ⩾ t+1.
For j ≡ 0 (mod 4) with 2 ⩽ j ⩽ t/2, let γ = 2⌈ t+1

2j ⌉. Here ⌈x⌉ denotes
the ceiling function of x, that is, the smallest integer greater than or equal
to x. Because j ⩾ 2 and t ⩾ 6, it follows that γ ⩽ t, so γ ∈ Γ2. Moreover,
jγ ⩽ 2t, so |jγ|n = jγ ⩾ t+ 1.

For j ≡ 0 (mod 4) with t/2 < j < 3t/2, we have that |j(2)|n = 2j if
j ⩽ t and |j(2)|n = 4t−2j if j ⩾ 2t. In either case, we have |j(2)|n ⩾ t+1.

For j ≡ 0 (mod 4) with 3t/2 < j ⩽ 2t, we have that |j(t+ 1)|n = j ⩾
t+ 1.
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We now show that α(Zn,Γ1) > t+1. To do so, for all j with 1 ⩽ j ⩽ 2t,
we produce, for each j, an element γ ∈ Γ1 such that |jγ|n > t+ 1.

When j = 1, take γ = 2t− 1.
When 2 ⩽ j < t/2, take γ = 2⌊ t

j ⌋, where ⌊x⌋ denotes the ŕoor function
of x, that is, the largest integer less than or equal to x.

When j = t/2, take γ = 4.
When t/2 < j ⩽ t, take γ = 2.
When j = t+ 1, take γ = 2.
When j > t+ 2, take γ = 1.

As a consequence of Theorem 2.1, it follows that (Zn,Γ1) and (Zn,Γ2)
are not GS isomorphic; for if they were, then their Kazhdan constants
would be equal.

It would be interesting to use examples such as those in Theorem 2.1
to investigate how sharp the inequalities in Theorem 3.3 are.

3. Miscellaneous results

When two Cayley graphs are isomorphic, the two corresponding Kazh-
dan constants cannot be that far apart from one another. In Subsection 3.1,
we make this precise by proving an inequality relating one of the Kazhdan
constants to the other. This inequality follows more or less immediately
from known bounds for the Kazhdan constant in terms of the isoperimetric
constant and the second-largest eigenvalue of the adjacency matrix, both
of which are graph invariants.

In Subsection 3.2, we consider instances in which (1) holds nontrivially.
First, we take the case of even cycle graphs of length ⩾ 6. Up to GS
isomorphism, these can be realized in exactly two ways: as Cay(Z2n, {±1})
or as Cay(Dn, {s, sr}). Here Dn denotes the dihedral group of order 2n
with presentation ⟨r, s | rn = s2 = 1, sr = r−1s⟩. In Theorem 3.4, we show
that κ(Z2n, {±1}) = κ(Dn, {s, sr}), thereby establishing (1) for these
pairs. The computation of κ(Dn, {s, sr}) is due to Bacher and de la Harpe
[3, Proposition 4]; we recover their result with a new proof.

Later in Subsection 3.2, we give an example where G1 and G2 are
both cyclic groups of the same order; the pairs are not GS isomorphic;
but (1) holds anyway. It is far from obvious that one can őnd symmetric
subsets Γ1,Γ2 ⊂ Zn such that Cay(Zn,Γ1) and Cay(Zn,Γ2) are isomorphic
but (Zn,Γ1) and (Zn,Γ2) are not GS isomorphic. Indeed, Àdàm had
conjectured that no such examples exist. Elspas and Turner [5] disproved
Àdàm’s conjecture by őnding just such an example. We generalize the
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construction of Elspas and Turner to produce an inőnite family of such
examples. We then compute the corresponding Kazhdan constants and
őnd that (1) holds for all of them.

3.1. Bounds for Kazhdan constants when the corresponding

Cayley graphs are isomorphic

The Kazhdan constant of (G1,Γ1) relates to various invariants of the
corresponding Cayley graph. For that reason, if two pairs (G1,Γ1) and
(G2,Γ2) produce isomorphic Cayley graphs, we can bound one Kazhdan
constant in terms of the other, by relating both to graph invariants. We
now make this precise.

Let |B| denote the cardinality of a set B. Let X be a graph with vertex
set V . For any subset F ⊂ V , we deőne the boundary of F , denoted ∂F , to
be the set of all edges with one endpoint in F and one endpoint in V \ F .
For a őnite graph X, we deőne the isoperimetric constant of X, denoted
h(X), to be the minimum, over all subsets F of V such that |F | ⩽ |V |/2,
of |∂F |/|F |.

Let A be the adjacency matrix of X. Then A is a symmetric matrix
with real entries, hence all of its eigenvalues are real. Let λ0, λ1, . . . , λn−1

be the eigenvalues of A, arranged so that

λ0 ⩾ λ1 ⩾ · · · ⩾ λn−1.

The second-largest eigenvalue, which we denote λ1(X), plays a signiőcant
role in the theory.

We refer to [7] for more details about these graph invariants. The
following theorem was proved in [10]. It provides an upper bound for h(X)
in terms of λ1(X). This bound is stronger than the one stated in [7].

Theorem 3.1. Let X be a őnite graph. Let ∆ be the maximum degree
of any vertex in X. Then

h(X) ⩽
√

∆2 − λ1(X)2.

We also have inequalities relating the Kazhdan constant to h(X) and
to λ1(X), respectively. Proofs can be found in [7, Props. 8.17 and 8.18];
see also [9].

Theorem 3.2. Let G be a őnite group, and Γ a symmetric subset of
G. Let d = |Γ| and X = Cay(G,Γ). Let h = h(X), λ1 = λ1(X), and
κ = κ(G,Γ). Then:

h(X) ⩾
κ2

4d
and κ ⩾

√

2(d− λ1)

d
.
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Stringing together the inequalities in Theorems 3.1 and 3.2, we imme-
diately obtain the following theorem.

Theorem 3.3. Let G1, G2 be őnite groups, and let Γ1,Γ2 be symmetric
subsets of G1, G2, respectively, such that Cay(G1,Γ1) and Cay(G2,Γ2)
are isomorphic graphs. Let κ1 = κ(G1,Γ1) and κ2 = κ(G2,Γ2). Then:

κ21
4d2

⩽ κ2 ⩽ 2d
√
κ1.

Moreover, if κ1, κ2 ⩽
√
2, then:

√

2−
√

4− κ42
4d4

⩽ κ1 ⩽ d
√
2
(

4− (2− κ22)
2
)1/4

.

3.2. Examples with equality of Kazhdan constants

Cycle graphs. For n ⩾ 3, we have that

Cay(Z2n, {±1}) ∼= Cay(Dn, {s, sr}).

Indeed, both graphs are cycle graphs of length 2n. A straightforward
computation shows that any pair (G,Γ) for which Cay(G,Γ) is an even
cycle graph of length ⩾ 6 must be GS isomorphic to (Z2n, {±1}) or
(Dn, {s, sr}). Our main theorem in this section shows that κ(Z2n, {±1}) =
κ(Dn, {s, sr}) = 2 sin(π/2n). Indeed, then, this implies that κ(G,Γ) =
2 sin(π/2n) whenever Cay(G,Γ) is a cycle graph of length 2n ⩾ 6.

Theorem 3.4. We have that κ(Z2n, {±1}) = κ(Dn, {s, sr}) = 2 sin π
2n .

Remark 3.5. The fact that κ(Dn, {s, sr}) = 2 sin π
2n appears as Proposition

4 in [3]. Here we give an independent proof of this result.

Proof. First we compute κ(Z2n, {±1}). Note that

κ(Z2n, {±1}) = κ(Z2n, {1}),

because adding or deleting inverses has no effect on the Kazhdan constant.
For Z2n, up to rescaling of the inner product (which has no effect on κ), the
nontrivial irreducible unitary representations are of the form ρa(k) = ξk,
where ξ = eπia/n and a = 1, . . . , 2n − 1. Here we identify the nonzero
complex number ξk with its action by multiplication on the complex plane
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with the standard inner product, so that ρa : Z2n → GL(1,C). It follows
that κ(Z2n, {1}, ρa) = 2 sin(aπ/2n). This is minimized when a = 1, so

κ(Z2n, {±1}) = 2 sin
π

2n
.

Next we calculate κ(Dn, {s, sr}). We recall that the irreducible rep-

resentations of the dihedral group are as follows. Let ξ = e
2πi

n . For each
integer j with 1 ⩽ j < n/2, deőne

Rj =

(

ξj 0
0 ξ−j

)

and S =

(

0 1
1 0

)

.

Then deőne ρj : Dn → GL(2,C) by ρj(r
a) = Ra

j and ρj(s) = S. These
give us representations ρj of Dn for each j with 1 ⩽ j < n/2. These
maps ρj are unitary with respect to the usual inner product on C

2. Up
to rescaling of the inner product, these are all of the two-dimensional
irreducible unitary representations of Dn.

We give the one-dimensional irreducible representation of Dn below.
The őrst table gives the nontrivial irreducible representations when n is
even.

χ rk srk

χ2 1 −1

χ3 (−1)k (−1)k

χ4 (−1)k (−1)k+1

The next table gives the nontrivial irreducible representations when n
is odd.

χ rk srk

χ1 1 −1

To őnd κ(Dn, {s, sr}), we őrst őnd the values κ(Dn, {s, sr}, ρj). We
have:

ρj(s) =

(

0 1
1 0

)

and ρj(sr) =

(

0 ξ−j

ξj 0

)

.

Let v = (a, b)T , |a|2 + |b|2 = 1, where a, b ∈ C. Then ||ρj(s)v − v∥ =
∥(b− a, a− b)∥ =

√
2|b− a| and

∥ρj(sr)v − v∥ = ∥(bξj − a, aξ−j − b)∥

=
√

|ξjb− a|2 + |ξ−ja− b|2 =
√
2|ξjb− a|.
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The angle from a to aξ−j is 2jπ/n. We replace a with the image of a
under a rotation of the complex plane such that the positive imaginary
axis bisects the angle formed by the rays from the origin to a and from the
origin to aξ−j . Therefore, the angle from the positive real axis to aξ−j is
π/2− jπ/n = (nπ − 2jπ)/2n. In other words, a = re[(nπ+2jπ)/2n]i, where
1 ⩽ j < n/2 for some positive real number r.

We can now see that if γ ∈ {s, sr}, then

max ∥ρ(γ)v − v∥ =

{√
2|b− ξ−ja| when Re(b) ⩽ 0,√
2|b− a| when Re(b) ⩾ 0.

Without loss of generality we may assume that Re(b) ⩾ 0; if not, simply
reŕect about the imaginary axis throughout the subsequent argument.

We know a = reiθ where θ = nπ+2jπ
2n and 1 ⩽ j < n/2, for some r > 0.

(We trust that there will be no confusion between this real number r and
the element r of Dn.) Let b = x+ iy where x, y ∈ R and x2 + y2 + r2 = 1.
We seek to minimize |a− b|2.

Let f(r, x, y) = |reiθ − (x+ iy)|2 = |a− b|2. Then

f(r, x, y) = |(r cos θ − x) + (r sin θ − y)i|2 = (r cos θ − x)2 + (r sin θ−y)2

= r2 cos2 θ − 2rx cos θ + x2 + r2 sin2 θ − 2ry sin θ + y2

= 1− 2rx cos θ − 2ry sin θ.

Let g(r, x, y) = r2 + x2 + y2 − 1. By invoking the Lagrange multiplier
method we get the following equations, for some real number λ:

x cos θ + y sin θ = −rλ (2)

r cos θ = −xλ (3)

r sin θ = −yλ (4)

Multiplying (2) by r, (3) by −x, and (4) by −y, then adding, we get:

0 = −r2λ+ x2λ+ y2λ.

Adding 2r2λ to both sides and using that g(r, x, y) = 0, we get that

2r2λ = λ. We now have two cases to consider: λ = 0 or r =
√
2
2 .

Case λ = 0: If λ = 0 then r cos θ = 0, so r = 0 or cos θ = 0. Note
that π

2 < θ < π, which means cos θ is never zero. If r = 0 then a = 0 and
|b− a|2 = 1.
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Case r =
√
2
2 : Then from (3) and (4) we get that y = x tan θ. Using

that g(r, x, y) = 0, we get x =
√
2
2 | cos θ|. Then

f(

√
2

2
,

√
2

2
| cos θ|,

√
2

2
| cos θ| tan θ) = 1− | cos θ| cos θ − | cos θ| tan θ sin θ.

We have that cos θ < 0. Therefore the right-hand side reduces to 2.
From the Lagrange multiplier technique, we now know that our mini-

mum is at most 1. We now őnd the minimum on the boundary, that is,
when x = 0.

Let us consider the function f(r, 0, y) = 1−2ry sin θ where r2+y2 = 1.
Let g(r, 0, y) = r2 + y2. Then we get the following equations for some real
number λ:

y sin θ = −rλ (5)

r sin θ = −yλ (6)

Multiplying (5) by r and (6) by y and then adding the two equations

yields r =
√
2
2 . Solving for y gives y = ±

√
2
2 . This shows that our minimum

is min{1− sin θ, 1 + sin θ, 1, 2} = 1− sin θ. Therefore |b− a| =
√
1− sin θ.

We now őnd the minimum amongst all j. Recall θ = π
2 + jπ

n . Since
sin θ is decreasing on the interval (π2 , π) therefore our minimum occurs
when j = 1, that is, when θ = π

2 + π
n . Therefore, the minimum Kazhdan

constant for the two-dimensional representations is

κ(Dn, {s, sr}, ρ1) =
√

2(1− cos
π

n
).

A routine check shows that

κ(Dn, {s, sr}, χk) = 2

for any nontrivial one-dimensional representation χk.
Therefore, κ(Dn, {s, sr}) =

√

2(1− cos π
n) = 2 sin π

2n .

Cyclic groups In this section, we construct a family of examples for
which (1) holds, where both groups are őnite cyclic groups.

Theorem 3.6. Let n be a positive multiple of 8 with n ⩾ 16. Let Γ1 =
{1, 2, n2−1, n2+1, n−2, n−1} and Γ2 = {2, n4−1, n4+1, 3n4 −1, 3n4 +1, n−2}.
Then Cay(Zn,Γ1) ∼= Cay(Zn,Γ2) but (Zn,Γ1) is not GS isomorphic to
(Zn,Γ2). Moreover, κ(Zn,Γ1) = κ(Zn,Γ2).
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We remark that the case n = 16 precisely gives us Elspas and Turner’s
counterexample [5] to Àdàm’s conjecture for undirected graphs. Also, note
that when n = 8 we have that Γ1 = Γ2 and so (Zn,Γ1) is GS isomorphic
to (Zn,Γ2) under the identity mapping in that case; hence we impose the
condition n ⩾ 16.

Proof. The function f : Zn → Zn given by

f(a) =

{

a if a is even

a + n
4 if a is odd

deőnes a graph isomorphism from Cay(Zn,Γ1) to Cay(Zn,Γ2).
To see that (Zn,Γ1) is not GS isomorphic to (Zn,Γ2), suppose otherwise.

So there is a group automorphism of Zn taking Γ1 to Γ2. This must be of
the form a 7→ ca, where c is a őxed integer relatively prime to n. Because
n is even, we have that c is odd, and therefore the even element 2 ∈ Γ1

must map either to 2 or to n− 2. First take the case where 2 7→ 2. Then
c = 1 or c = n/2 + 1. First take the subcase c = 1. Because 1 ∈ Γ1 and Γ1

maps to Γ2, therefore 1 = c · 1 ∈ Γ2. Because 1 is odd, therefore 1 = n
4 − 1

or 1 = n
4 +1 or 1 = 3n

4 − 1 or 1 = 3n
4 +1. However, because n is a positive

multiple of 8 with n ⩾ 16, none of those are possible. One őnds similarly
that every other case also leads to a contradiction.

Finally, we compute the Kazhdan constants. We begin with Γ1. Note
that

κ(Zn,Γ1) = κ
(

Zn, {1, 2,
n

2
− 1}

)

,

because adding or deleting inverses has no effect on the Kazhdan constant.
As we noted earlier, for Zn, up to rescaling of the inner product (which
has no effect on κ), the nontrivial irreducible unitary representations
are of the form ρj(k) = ξk, where ξ = e2πij/n and j = 1, . . . , n − 1. As
before, we identify the nonzero complex number ξk with its action by
multiplication on the complex plane with the standard inner product, so
that ρj : Zn → GL(1,C). So

κ
(

Z2n, {1, 2,
n

2
− 1}, ρj

)

= min
θ∈R

max
γ∈{1,2,n

2
−1}

||ξγe2πiθ/n − e2πiθ/n||

= max
γ∈{1,2,n

2
−1}

||ξγ − 1||

= max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)
∣

∣

∣

∣

,
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from which it follows that

κ(Zn,Γ1) = min
1⩽j⩽n

max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)
∣

∣

∣

∣

= min
1⩽j⩽n/2

max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)∣

∣

∣

∣

.

When j = 1, by taking γ = n
2 − 1 we have that

max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)
∣

∣

∣

∣

⩾ 2 sin

(

4π

n

)

.

When j = 2, we őnd that

max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)∣

∣

∣

∣

= 2 sin

(

4π

n

)

.

When 3 ⩽ j ⩽ n/2− 2, by taking γ = 2 we have that

max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)∣

∣

∣

∣

⩾ 2 sin

(

4π

n

)

.

When j = n/2− 1 or j = n/2, by taking γ = 1 we have that

max
γ∈{1,2,n

2
−1}

2

∣

∣

∣

∣

sin

(

γjπ

n

)∣

∣

∣

∣

⩾ 2 sin

(

4π

n

)

.

Therefore

κ(Zn,Γ1) = 2 sin

(

4π

n

)

.

A similar argument shows that

κ(Zn,Γ2) = 2 sin

(

4π

n

)

.
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