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The socle of Leavitt path algebras over

a semiprime ring

K. Wardati

Communicated by D. Simson

Abstract. The Reduction Theorem in Leavitt path algebra

over a commutative unital ring is very important to prove that the

Leavitt path algebra is semiprime if and only if the ring is also

semiprime. Any minimal ideal in the semiprime ring and line point

will construct a left minimal ideal in the Leavitt path algebra. Vice

versa, any left minimal ideal in the semiprime Leavitt path algebra

can be found both minimal ideal in the semiprime ring and line

point that generate it. The socle of semiprime Leavitt path algebra

is constructed by minimal ideals of the semiprime ring and the set

of all line points.

Introduction

In [2] the authors thoroughly discuss Leavitt path algebras over őeld K
on a graph E, denoted LK(E). The Leavitt path algebra is the extension
of the path algebra, which can be studied in detail in [7]. Many pro-perties
of LK(E) have been discussed, among others, the simplicity and primeness.
The necessary and sufficient conditions on a graph have been found so that
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the corresponding Leavitt path algebra LK(E) is simple [2], semisimple [1],
and a prime one [3]. In addition, any LK(E) is non-degenerate. In other
words, the Leavitt path algebra over őeld is always semiprime ([4],[5]).

Tomforde [12] generalized LK(E) to Leavitt path algebras over a com-
mutative unital ring R, that is denoted as LR(E). There is a similarity
of the necessary and sufficient conditions of LR(E), which is basically
simple, with the simplicity of LK(E). Basically simple is more general
than simple. It means that every simple Leavitt path algebra LK(E) is
basically simple, but the basically simple LR(E) is not necessarily simple.
The deőnition of LR(E) can be expanded from the deőnition of the path
algebra over a commutative ring described by [13].

Based on Proposition 1.1 of [5], any Leavitt path algebra over őeld
K, LK(E) is semiprime. We know that any őeld is semiprime, but not
every semiprime ring is a őeld. It is easy to get a counter example of non
semiprime Leavitt path algebra over a commutative unital ring. Consider
the commutative unital ring Z4 and the graph F follows

u4• ← •
u1 → •u2 → •u3

Then Leavitt path algebra LZ4(F ) ∼=M2(Z4)⊕M3(Z4) is not semiprime.
We know that the commutative unital ring Z4 is also not semiprime. The
őrst focus of this paper is to show that LR(E) is semiprime if and only if
R is semiprime. To prove that, it needs the Reduction Theorem on LR(E).

The (left) socle of an algebra A, denoted Soc(A), is the sum of all
its minimal left ideals. Soc(A) is said to be zero in such a case that left
ideals do not exist. The concept of socle can be widely studied in [9]. It
is well known that for the semiprime algebras A, Soc(A) coincides with
the sum of all minimal right ideals of A (or it is zero if there is no right
ideal). The second discussion in this paper is that any minimal ideal ℑ in
the semiprime LR(E) can be found a minimal left ideal I ⊂ R such that
ℑ = LR(E)Iv for a line point v ∈ Pl(E).

It is obviously different construction of a left minimal ideal in the
Leavitt path algebra over őeld having no nontrivial ideal. It implies that
the socle of semiprime LR(E) will be different from the socle of LK(E)
discussed in [6]. Therefore, the őnal topic in this paper will elaborate
on how to determine the socle of Leavitt path algebra over a semiprime
commutative unital ring.
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1. Preliminaries

We start with the basic deőnitions. For further notions on graphs, path
algebras, and Leavitt path algebras over a commutative ring, we refer to
[2], [8], [12], [13], and the references therein.

A directed graph is a 4-tuple E = (E0, E1, rE , sE) consisting of two
disjoint sets E0, E1, and two maps rE , sE : E1 → E0. The elements of
E0 are called the vertices of E, and the elements of E1 the edges of E,
while for e ∈ E1, rE(e) and sE(e) are called the range and the source of
e, respectively. If there is no confusion concerning the graph, we simply
write them as r(e) and s(e).

A path µ in a graph E is a őnite sequence of edges µ = e1 . . . en such
that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(µ) := s(e1) and
r(µ) := r(en) are the source and range of µ, respectively, and n is the
length of µ. We also say that µ is a path from s(e1) to r(en) and denote
by µ0 the set of its vertices, i.e., µ0 := {s(e1), r(e1), . . . , r(en)}. By µ1 we
denote the set of edges appearing in µ, i.e., µ1 := {e1, . . . , en}. We view
the elements of E0 as paths of length 0. The set of all paths of a graph E
is denoted by Path(E).

Given a (directed) graph E and a commutative unital ring R. The
path R-algebra of E, denoted by RE, is deőned as the free-associative
R-algebra generated by the set of paths of E with relations:
(V) vw = δv,wv for all v, w ∈ E0.

(E1) s(e)e = er(e) = e for all e ∈ E1.
If s−1(v) is a őnite set for every v ∈ E0, then the graph is called

row-őnite. If E0 is őnite and E is row-őnite, then E1 must necessarily be
őnite as well; in this case, we say that E is őnite. A vertex that emits no
edges is called a sink. A vertex v is called an inőnite emitter if s−1(v) is
an inőnite set, and a regular vertex if it is neither a sink nor an inőnite
emitter. The set of inőnite emitters will be denoted by E0

inf , while Reg(E)
will denote the set of regular vertices.

The extended graph of E is deőned as the new graph

Ê = (E0, E1 ∪ (E1)∗, r
Ê
, s

Ê
),

where (E1)∗ = {e∗i | ei ∈ E
1} and the functions r

Ê
and s

Ê
are deőned as

r
Ê |

E1
= r, s

Ê |
E1

= s, r
Ê
(e∗i ) = s(ei), and s

Ê
(e∗i ) = r(ei).

The elements of E1 will be called real edges, while for e ∈ E1 we will
call e∗ a ghost edge.

The Leavitt path algebra of E with coefficients in R, denoted LR(E),
is the path algebra RÊ generated by the relations:
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(CK1) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(CK2) v =

∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ Reg(E).

Observe that in RÊ the relations (V) and (E1) remain valid and that
the following is also satisőed:

(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

Based on the relation (V ), every vertex in E is an idempotent element in
LR(E). Moreover, every two vertices are orthogonal idempotents. However,
not every vertex is primitive idempotent because of the relation (CK2).
For example, if we have a vertex v such that s−1(v) = {e, f} then v is
not primitive since v = ee∗ + ff∗(CK2), where both ee∗ and ff∗ are
nonzero orthogonal idempotents. The deőnition of a primitive idempotent
refers to [7], that an idempotent u in algebra A is said to be primitive if
it cannot be written as a sum u = u1 + u2 where u1 and u2 are nonzero
orthogonal idempotents of A.

Note that if E is a őnite graph, then LR(E) is unital with
∑

v∈E0 v =
1LR(E). Otherwise, LR(E) is a ring with a set of local units consisting of
sums of distinct vertices (For a ring A, the assertion A has local units).
It means that each őnite subset of A is contained in a corner of A, that
is, a subring of the form eAe, where e is an idempotent of A). Note that
since every Leavitt path algebra LR(E) has local units, it is the directed
union of its corners.

The Leavitt path algebra LR(E) is a Z-graded R-algebra, spanned as
an R-module by {αβ∗ | α, β ∈ Path(E)}. In particular, for each n ∈ Z,
the degree n component LR(E)n is spanned by the set

{αβ∗ | α, β ∈ Path(E) and length(α)− length(β) = n}.

Denote by h(LR(E)) the set of all homogeneous elements in LR(E), that is,

h(LR(E)) := ∪n∈ZLR(E)n.

If µ is a path in E, and if v = s(µ) = r(µ), then µ is called a closed

path based at v. If s(µ) = r(µ) and s(ei) ̸= s(ej) for every i ̸= j, then µ
is called a cycle. A graph that contains no cycles is called acyclic. For
µ = e1 . . . en ∈ Path(E) we write µ∗ for the element e∗n . . . e

∗
1 of LR(E).

An edge e is an exit for a path µ = e1 . . . en if there exists i in {1, . . . , n}
such that s(e) = s(ei) and e ̸= ei. We denote by Pl(E), the set of all line

points, i.e., the vertices whose tree does not contain neither bifurcations
nor cycles. Based on the relation (CK2), every vertex in Pl(E) is primitive
idempotent.
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It is easy to see that Pl(E) is hereditary subsets, although they are
not necessarily saturated. For any subset X of vertices, X will denote
the hereditary and saturated closure of X, that is, the smallest saturated
hereditary subset of E0 containing X.

In any Leavitt path algebra over a commutative unital ring, LR(E)
we have:

LR(E) = spanR {αβ
∗ | α, β ∈ Path(E), r(α) = r(β)}

and the multiplication is given by the following rule:

(αβ∗)(γδ∗) =





αγ′δ∗ if γ = βγ′

αδ∗ if β = γ
αβ′∗δ∗ if β = γβ′

0 otherwise

2. On minimal left ideals in Leavitt path algebras over

a semiprime ring

It has been said that not every Leavitt path algebra over a commutative
unital ring LR(E) is semiprime. Then, the őrst discussion is the necessary
and sufficient condition of the semiprime LR(E). The important theorem
here is the Reduction Theorem, whose proof needs the following lemma.

Lemma 1. Let E be a graph and R a commutative unital ring. For any

vertex v in a cycle without exits c and any ideal I of R, we have:

vLR(E)Iv =

{
n∑

i=−m

kic
i | ki ∈ I,m, n ∈ N

}
∼= I[x, x−1],

where c0 denotes the vertex v and c−t = (c∗)t for every t ⩾ 1.

Proof. Since the cycle c has no exits, it is easy to see that if u ∈ T (v) and
f, g ∈ E1 are such that s(f) = s(g) = u, then f = g. Write c = e1e2...en,
with ei ∈ E

1. For every µ ∈ Path(E) such that s(µ) = u ∈ T (v) there is
a k ∈ N with 1 ⩽ k ⩽ n and a path µ′ such that µ = ekµ

′ and s(ek) = u.
Now, let x ∈ vLR(E)Iv. We may write x =

∑p
i=1 kiαiβ

∗
i + kv, where

k, ki ∈ I, s(αi) = r(β∗i ) = s(βi) = v. Then, taking into account what we
have explained in the őrst paragraph and following the proof of [6, Lemma
1.5], for any i we have αiβ

∗
i = cdi for some di ∈ Z. Deőne an R-linear

map φ : vLR(E)Iv → R[x, x−1] by setting φ(kv) = k, φ(kc) = kx,
and φ(kc∗) = kx−1. Then φ is a monomorphism with φ(vLR(E)Iv) =
I[x, x−1]. Hence, vLR(E)Iv ∼= I[x, x−1].
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Let E be an arbitrary graph and R a commutative unital ring. Then
the Reduction Theorem in [2, Theorem 2.2.11] is also valid in this context,
that for any non zero element x ∈ LR(E) there exist α, β ∈ Path(E) such
that:

1) 0 ̸= α∗xβ ∈ Rv, for a vertex v ∈ E0, or
2) 0 ̸= α∗xβ = p(c) where c is a cycle without exits and p(c) is a non

zero polynomial in R[x, x−1].

Lemma 1 is used to prove the Reduction Theorem in LR(E). However,
it is not discussed here because the steps of proof can be followed by
[2, Theorem 2.2.11].

Recall that a ring R is said to be semiprime if it has no nonzero ideals
of zero square. For a commutative ring R, this is equivalent to say that R
has no nonzero elements of zero square. Such a ring is also called reduced.

Leavitt path algebras over őelds are semiprime (see, for example, the
Proposition 2.3.1 in [2]). Over commutative unital rings, they are when
the underlying ring is, as we show.

Theorem 1. Let E be an arbitrary graph and R a commutative unital

ring. The Leavitt path algebra LR(E) is semiprime if and only if the ring

R is semiprime.

Proof. Assume LR(E) is semiprime. Suppose that R is not semiprime,
then there is a non zero k ∈ R such that k2 = 0. Since k ̸= 0, then
kv ̸= 0 for any v ∈ E0. Apply that LR(E) is semiprime to get µ ∈ LR(E)
such that 0 ̸= kvµkv. Write µ =

∑m
i=1 kiαiβ

∗
i for some ki ∈ R,αi, βi ∈

Path(E),m ∈ N. Then,

kvµkv = kv

( m∑

i=1

kiαiβ
∗
i

)
kv = v

( m∑

i=1

(kkik)αiβ
∗
i

)
v

= v

( m∑

i=1

(k2ki)αiβ
∗
i

)
v = 0,

which is a contradiction.

Conversely, assume that R is semiprime. Suppose that there is a non
zero ideal ℑ ⊆ LR(E) such that ℑ2 = {0}. Let 0 ̸= x ∈ ℑ; by the
Reduction Theorem there exist α, β ∈ Path(E) such that

1) 0 ̸= α∗xβ = kv, for some k ∈ R and v ∈ E0, or
2) 0 ̸= α∗xβ = p(c), where c is a cycle without exits and p(c) is a non

zero polynomial in R[x, x−1].
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In the őrst case, kv ∈ ℑ. By the semiprimeness of R we have k2 ≠ 0,
hence 0 ̸= k2v = (kv)(kv) ∈ ℑ2 = {0}, a contradiction. In the second
case, 0 ̸= p(c) ∈ ℑ. Since R is semiprime, R[x, x−1] is also semiprime, in
particular p(c)2 ̸= 0. Hence, 0 ̸= p(c)2 ∈ ℑ2 = {0}, a contradiction. In
any case we get a contradiction. Hence, LR(E) must be semiprime.

Lemma 2. Let I be a minimal ideal of a semiprime commutative unital

ring R. Then I = Re for e = e2 ∈ R. Morever, Re is a őeld.

Proof. Since any minimal ideal in a semiprime ring is generated by an
idempotent (see, for example [10, Subsection 3.4]), I = Re = eR where
e = e2 ∈ R. The minimality implies that I = eRe is division ring, hence
it is a őeld, as R is commutative.

The left minimal ideal of LK(E) in [5] is in the form of LK(E)v for
some line point v. It is different from a left minimal ideal in LR(E), which
requires a minimal ideal of the semiprime ring R beside the line point. To
construct the left minimal ideal of LR(E), we need to redeőne preorder
as follows.

Deőnition 1 ([2]). For every u, v ∈ E0, we deőne u ⩾ v if there exists
α ∈ Path(E) such that s(α) = u and r(α) = v. In this case, we say that
α is a path joining u to v.

Lemma 3. Let E be an arbitrary graph and I a minimal ideal of a semi-

prime commutative unital ring R. Let any vertices v, w be such that v ⩾ w.

If the path joining v to w contains no bifurcations then LR(E)Iv ∼=
LR(E)Iw as left LR(E)-modules.

Proof. Let α ∈ Path(E) be the only path such that s(α) = v, r(α) = w.
Deőne the maps

φ : LR(E)Iv → LR(E)Iw

kxv 7→ kxvα

and

ψ : LR(E)Iw → LR(E)Iv

kyw 7→ kywα∗

for every k ∈ I, x, y ∈ LR(E). It is easy to see that φ and ψ are homo-
morphisms of left LR(E)-modules. Now, we see that ψ = φ−1 as follows.
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Take kxv ∈ LR(E)Iv and kyw ∈ LR(E)Iw. Then:

ψ(φ(kxv)) = ψ(kxvα) = ψ(kxvαw) = kxvαwα∗ = kxv

and

φ(ψ(kyw)) = φ(kywα∗) = φ(kywα∗v) = kywα∗vα = kyw.

Hence, ψφ = 1LR(E)Iv and φψ = 1LR(E)Iw , where 1LR(E)Iv and 1LR(E)Iw

denote the identity maps in LR(E)Iv and LR(E)Iw, respectively.

Proposition 1. Let E be an arbitrary graph, R be a commutative unital

ring and I be an ideal of R. Assume that u is a vertex, which is not a sink.

1)
⊕

f∈s−1(u) LR(E)Iff∗ ⊆ LR(E)Iu.
2) If u is not an inőnite emitter then

(a)
⊕

f∈s−1(u) LR(E)Iff∗ = LR(E)Iu.

(b) Denote vf := r(f). If r(f) ̸= r(f ′) for every f ̸= f ′, with f, f ‘
in s−1(u), then LR(E)Iu ∼=

⊕
f∈s−1(u) LR(E)Ivf .

Proof. 1) Follows immediately, taking into account that the sum of the
left ideals LR(E)Ifif

∗
i is direct as f∗i fj = 0 for every i ̸= j.

2) (a) follows from 1) and the (CK2) relation that says

u =
∑

f∈s−1(u)

ff∗.

(b) There is an isomorphism of left LR(E)−module

µ : LR(E)Ivf → LR(E)Iff∗

kxvf 7→ kxff∗

for every k ∈ I, x ∈ LR(E).

Corollary 1. Let w ∈ E0. If T (w) contains some bifurcation, then the

left ideal LR(E)Iw is not minimal.

Lemma 4. If there is some closed path based at u ∈ E0, then the left

ideal LR(E)Iu is not minimal.

Proof. The proof is similar to Proposition 2.5 in [5].

Proposition 2. Let E be an arbitrary graph and I be a minimal ideal of

the semiprime commutative unital ring R denoted by I◁mR. If v ∈ Pl(E)
then LR(E)Iv is a minimal left ideal of LR(E).
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Proof. Take any non zero α ∈ LR(E)Iv with v ∈ E0 then

α =

( m∑

i=1

kiαiβ
∗
i

)
sv =

m∑

i=1

kisαiβ
∗
i v =

m∑

i=1

s′iαiβ
∗
i v

where αi, βi ∈ Path(E), r(αi) = r(βi) and 0 ̸= s′i = kis ∈ I for every
i ∈ {1, 2, ...,m}. By Lemma 2, I is a őeld so that I is semiprime then
LR(E)I is also semiprime (Proposition 1). Based on [10, Proposition 2 in
§ 3.4], it is sufficient to show that vLR(E)Iv is a division ring. Take any
non zero element δ ∈ vLR(E)Iv then

δ = v

( m∑

i=1

kiαiβ
∗
i

)
av =

m∑

i=1

aki(vαiβ
∗
i v)

for a ∈ I, αi, βi ∈ Path(E) such that s(αi) = r(βi) = v. Since v is a line
point, αi and βi must have the same length, so that δ =

∑m
i=1 siv ∈ Iv

where si = aki ∈ I for all i. It means that vLR(E)Iv = Iv ∼= I with I
a őeld (Lemma 2). Hence, LR(E)Iv is a minimal left ideal of LR(E).

Deőnition 2. For every u, v ∈ Pl(E), we deőne u≡v ⇔ ∃I◁mR such that
(Iu) = (Iv) where (Iu) is an ideal of LR(E) generated by Iu.

Let u, v ∈ Pl(E) such that (Iu) = (Iv) then tu ∈ LR(E)vLR(E) for
any t ∈ I. The form of tu is tu =

∑n
i=1 xivyi with xi, yi ∈ LR(E), so that

tu =
n∑

i=1

uxivyiu =
n∑

i=1

u

(∑
kjαjβ

∗
j

)
v

(∑
klλlµ

∗
l

)
u.

Then there exist α, β ∈ Path(E) such that 0 ̸= uαβ∗v. Since u, v are line
points,

αβ∗ =

{
λ, λ ∈ Path(E),

µ∗, µ ∈ Path(E).

It means that (Iu) = (Iv) then there is α ∈ Path(E) such that α = uαv
or α = vαu. Since αα∗ = u and α∗α = v in the őrst case, αα∗ = v and
α∗α = u in the second case, we have (Ju) = (Jv) for every J ◁m R.

Lemma 5. Let [v] is an equivalence class of ≡ in Deőnition 2. Then [v]
is hereditary.

Proof. Let u ∈ [v] and let w ∈ E0 such that there is an edge e with
s(e) = u, r(e) = w. By CK1 and CK2, we have u = e∗we and w = eue∗.
Hence, (Iw) = (Iu) = (Iv) so that w ∈ [v]
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Proposition 3. Let u, v ∈ Pl(E). Then u≡v if and only if LR(E)Iu ∼=
LR(E)Iv as left LR(E)-modules, for every I ◁m R.

Proof. Let u, v ∈ Pl(E) such that u≡v. Then (Iu) = (Iv) for every I ◁mR,
so that there is α ∈ Path(E) such that α = uαv. By Lemma 3, we have
LR(E)Iu ∼= LR(E)Iv as left LR(E)-modules.

Conversely, let any minimal ideal I of R and u, v ∈ Path(E) such that
LR(E)Iu ∼= LR(E)Iv as left LR(E)-modules. By Proposition 2, LR(E)Iu
and LR(E)Iv are minimal left ideals of LR(E). Then Iu, Iv ⊂ Soc(LR(E)).
In fact, they are in the same homogeneous component.

Theorem 2. Let v ∈ E0 and I is a minimal ideal of the semiprime

commutative unital ring R. Then v is a line point if and only if LR(E)Iv
is a minimal left ideal of LR(E).

Proof. Let v ∈ E0 be a line point; by Proposition 2 we have LR(E)Iv
is the minimal left ideal of LR(E). Conversely, assume that LR(E)Iv is
simple, we will show that the vertex v is a line point, that is, no vertex in
T (v) has bifurcations, nor any vertex in T (v) is the base of a cycle. For
any u ∈ T (v) and let µ ∈ Path(E) such that s(µ) = v, r(µ) = u. Then
the map φµ : LR(E)Iv → LR(E)Iu given by αv 7→ αvµ is a non zero
epimorphism of LR(E)-modules, as for every βu ∈ LR(E)Iu we őnd βu =
βµ∗µ = φµ(βµ

∗). Then LR(E)Iu must be simple because of the simplicity
of LR(E)Iv. Suppose there is a vertex w ∈ T (v) having a bifurcation and
take edges e, f ∈ s−1(w) with e ̸= f . Then LR(E)Iw = LR(E)Iee

∗ ⊕ ℑ
where ℑ = {α− αee∗|α ∈ LR(E)I} ≠ {0} because of f = f − fee∗ ∈ ℑ.
It means that LR(E)Iw is not simple, which is a contradiction. In the
second case, suppose there is w ∈ T (v), the base of a cycle c. According
to Lemma 1, we have wLR(E)Iw ∼= I[x, x−1], which is not a division ring.
Then LR(E)Iw is not minimal, there is a contradiction. Hence, the vertex
v must be a line point.

Proposition 4. Let ℑ be any minimal left ideal of LR(E), where R is

a semiprime commutative unital ring. Then there is a minimal ideal I ⊂ R
such that ℑ = LR(E)Iv for v some line point.

Proof. Since R is semiprime, LR(E) is also semiprime (by Proposition 1).
By [10, Proposition 2. in Section 3.4], ℑ = LR(E)µ for a non zero idem-
potent µ ∈ LR(E). Based on the Reduction Theorem, we have two cases.
The őrst case, there exist α, β ∈ Path(E) and a non zero k ∈ R such that
0 ̸= α∗µβ = kv for some v ∈ E0.
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We have LR(E)(α∗µβ) = LR(E)(kv) = LR(E)µ = ℑ for the minimal-
ity of LR(E)µ. Then LR(E)(kv) is a minimal left ideal of LR(E). In other
hand, the form of any non zero x ∈ LR(E)(kv) is

x =

( m∑

i=i

kiαiβ
∗
i

)
kv =

m∑

i=i

kkiαiβ
∗
i v,

where kki ∈ kR ⊊ R,αi, βi ∈ Path(E), r(αi) = r(βi) for every i. By the
minimality of LR(E)(kv), we have LR(E)µ = LR(E)(kv) = LR(E)Iv for
an ideal I = kR = Rk in the semiprime R. We will see that I = Rk
is minimal. Let any non zero rk ∈ Rk. Then rkv ̸= 0 so that 0 ̸=
LR(E)rkv = LR(E)kv for the minimality of LR(E)kv. It implies that
kv = αrkv for some α ∈ LR(E). We have v = rαv for k ̸= 0, where αv
has zero degree. Then αv = lv with l ∈ R, so that kv = krlv and k = krl.
It must be rl = 1. Hence, Rkrl = Rk = I. In other words, the ideal I is
minimal. Since the left ideal LR(E)Iv is minimal in LR(E), the vertex v
is a line point (by Theorem 2).

The second one, suppose there exist paths α, β ∈ Path(E) such that
0 ̸= α∗µβ = p(c) for a cycle without exit c based at v. Then p(c) ∈
vLR(E)v ∼= R[x, x−1]. Since the left ideal LR(E)µ is mi-nimal, we have
LR(E)p(c) = LR(E)α

∗µβ = LR(E)µ, so that LR(E)p(c) is a minimal
left ideal of LR(E). Deőne a map ψ : R[x, x−1] → LR(E) given by
ψ(1) = v, ψ(x) = c, ψ(x−1) = c∗. Then ψ is a monomorphism of R-
algebras with ψ(R[x, x−1]) = vLR(E)v. Consider that vLR(E)p(c) is
a minimal left ideal of vLR(E)v then ψ−1(vLR(E)p(c)) is a minimal left
ideal of R[x, x−1], which is a contradiction. Hence, the second case is not
possible.

Corollary 2. Let v ∈ E0 and I be an ideal of the semiprime commutative

unital ring R. Then LR(E)IvLR(E) = (Iv) is a minimal two-sided ideal

of LR(E) if and only if v ∈ Pl(E), and the ideal I is minimal.

Lemma 6. Let E be an arbitrary graph, R any commutative unital ring

and an ideal I of R. Let H be a hereditary subset of E0. Then, the ideal

(IH) of LR(E) consists of elements of LR(E) of the form

(IH) =

{
n∑

i=1

aiαiβ
∗
i | ai ∈ I, αi, βi ∈ Path(E), r(αi) = r(βi) ∈ H

}
(1)

Morever (IH) = (IH̄), where H̄ is a saturated closure of H.
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Proof. Let J denote the set presented in (1). We will see that J is an ideal
in LR(E), so that we need to show that for every element of the form αβ∗,
where r(α) = r(β) = u ∈ H, and for every x, y ∈ LR(E), a ∈ I we have
axαuβ∗y ∈ J . By Lemma 5 and the multiplication in (1), it is enough to
show that aγδ∗uµη∗ ∈ J for every a ∈ I, γ, δ, µ, η ∈ Path(E) and u ∈ H.

If aγδ∗uµη∗ = 0 then it is őnished. Suppose that aγδ∗uµη∗ ̸= 0.
By the multiplication in (1), we have aγδ∗uµη∗ = aγµ′η∗ if µ = δµ′ or
aγδ∗uµη∗ = aγη∗ if δ = µ or aγδ∗uµη∗ = aγδ′η∗ if δ = µδ′. Note that
u = s(µ) ∈ H and H is hereditary. Then we have r(µ) = r(µ′) ∈ H in the
őrst case, r(µ) = r(δ) ∈ H in the second case, and r(δ) = r(δ′) ∈ H in
the last one for s(µ) = s(δ) = u. Hence, 0 ̸= aγδ∗uµη∗ ∈ J in all cases.

It is clear that (IH) ⊆ (IH̄) for H ⊆ H̄ . Conversely, let any monomial
aαβ∗ ∈ (IH̄), where a ∈ I, α, β ∈ Path(E), r(α) = r(β) ∈ H̄. Based
on [2, Lemma 1.2.4] H̄ =

⋃
n⩾0Hn, where H0 = T (H) = H as H is

hereditary and Hn = {v ∈ Reg(E) | r(s−1(v)) ⊂ Hn−1} ∪Hn−1. We wil
see that aαβ∗ ∈ (IH), by mathematics induction in n. For n = 0, it is clear
that aαβ∗ ∈ (IH), for r(α) = r(β) ∈ H0 = T (H) = H . Suppose it is true
that aαβ∗ ∈ (IH) for r(α) = r(β) ∈ Hn−1. Let u = r(α) = r(β) ∈ Hn

then u ∈ Hn−1 or r(s−1(u) ⊆ Hn−1. By hypothesis, aαβ∗ ∈ (IH) if
u ∈ Hn−1. Otherwise, if r(s−1(u) ⊆ Hn−1 then we have aαβ∗ ∈ (IH) for
u =

∑
e∈s−1(u) ee

∗ =
∑

e∈s−1(u) er(e)e
∗ and r(e) ∈ Hn−1.

Lemma 7. Let E be any graph, R any commutative unital ring and I be

an ideal of R. Let {Hi}i∈Γ be a family of hereditary subsets of E0 such

that Hi ∩Hj = ∅ for every i ̸= j. Then
(
I
⋃

i∈Γ

Hi

)
= I

⋃

i∈Γ

Hi =
⊕

i∈Γ

(IHi) =
⊕

i∈Γ

(IHi).

Proof. Assume that H =
⋃

i∈ΓHi. It is clear that H is hereditary. By
Lemma 6, the őrst and the last equality are obviously fulőlled.

Based on (1), for every x ∈ (IH) can be expressed by x =
∑n

l=1 alαlβ
∗
l ,

where al ∈ I, αl, βl ∈ Path(E) and r(αl) = r(βl) ∈ H. Furthermore,
we separate r(αl) depending on the Hi’s they belong to and we have
x =

∑n
l=1 alαlβ

∗
l ∈

∑
i∈Γ (IHi), so that (IH) ⊆

∑
i∈Γ (IHi). It is clear

that
∑

i∈Γ (IHi) ⊆ (IH) as (IHi) ⊂ (IH) for every i. Hence, (IH) =∑
i∈Γ (IHi).
Suppose there is j ∈ Γ such that (IHj) ∩

∑
j ̸=i∈Γ (IHi) ̸= {0}. Let

0 ̸= y ∈ (IHj) ∩
∑

j ̸=i∈Γ (IHi). By (1), y =
∑t

k=1 skγkδ
∗
k with sk ∈ I,

γk, δk ∈ Path(E), r(γk) = r(δk) ∈ Hj and r(γk) = r(δk) ∈
⋃

j ̸=i∈ΓHi.
Hence, Hj ∩

⋃
j ̸=i∈ΓHi ̸= ∅, which is a contradiction.
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Proposition 5. Let E be an arbitrary graph, R be any commutative unital

ring and I be an ideal of R. Let v ∈ Pl(E) and Λv denote the set of paths

α ∈ Path(E) such that r(α) meets T (v) for the őrst time r(α). Then

(Iv) ∼=Mn(I), where n is the cardinality of Λv.

Proof. Let v ∈ Pl(E) and a sequence T (v) = {v1, v2, ...}, where v = v1 and
for all i ∈ N there exists a unique ei ∈ E

1 such that s(ei) = vi, r(ei) = vi+1.
Consequently, for each pair vi, vj ∈ T (v) with i < j there exists a unique
path pi,j ∈ Path(E) for which s(pi,j) = vi and r(pi,j) = vj . Since v
is a line point then for every i, vi is a line point. By (CK2), we have
pi,jp

∗
i,j = vi for every pair vi, vj ∈ T (v) with i < j. Let I be an ideal

of R and TI = spanI({εi,j}) be an ideal of an R-algebra A, where the
subset {εi,j | i, j ∈ Γ} of TI is called a set of matrix units of TI with
εi,jεk,l = δj,kεi,l for all i, j, k, l. Then TI ∼= M|Γ|(I) as R-algebras via an
isomorphism sending εi,j into ei,j , where ei,j ∈ M|Γ|(I) having all the
entries equal zero except that in row i, column j, where the entry is 1.

We will construct a set of matrix units in (Iv) indexed by |Λv|, where
Λv is the set of paths α ∈ Path(E), such that r(α) meets T (v) for the őrst
time r(α). By Lemma 6, every element in (Iv) is a linear combination of
elements of the form aαxi,jβ

∗, where a ∈ I, α, β ∈ Λv, xi,j = pi,j if i ⩽ j
andxi,j = p∗j,i if j ⩽ i. Denote αxi,jβ

∗ = eα,β and ε = {eα,β | α, β ∈ Λv}.
Since the set {xi,j | i, j ∈ N} has the multiplicative property xi,jxk,l =
δj,kxi,l, then ε is a set of matrix units of (Iv).

Lemma 8. Let E be an arbitrary graph, R be any semiprime commuta-

tive unital ring, and I be a minimal ideal of R. Then, there is a family

{[v]}v∈Pl(E) of hereditary subsets of E0 such that Pl(E) =
∐

v∈Pl(E)
[v].

Furthermore, we have (I[v]) = (Iv) for every v ∈ Pl(E).

Proof. Let v ∈ Pl(E), we proved that [v] is hereditary (Lemma 5). Let
any u /∈ [v] then u ̸≡ v so that [u] ∩ [v] = ∅. Hence, Pl(E) =

∐
v∈Pl(E)

[v].

Furthermore, take any w ∈ [v], then (Iw) = (Iv), so that (I[v]) = (Iv).

3. The Socle of the semiprime Leavitt path algebra LR(E)

According to Theorem 1, the Leavitt path algebras LR(E) is semiprime
if the commutative unital ring R is semiprime. Based on [10] Remark
2.6.6, the two sided ideal Soc(LR(E)) denotes the sum of minimal left
(right) ideals of LR(E).

Proposition 6. For any graph E and minimal ideal I of the semiprime

commutative unital ring R, we have
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1)
∑

u∈Pl(E),I◁mR LR(E)Iu ⊂ Soc(LR(E))

2) (IPl(E)) = (IPl(E)) ∼=
⊕

v∈Pl(E)Mnv
(I), where nv = |Λv| and Λv

is the set of paths α ∈ Path(E) such that r(α) meets T (v) for the

őrst time r(α).

Proof. For the őrst, becaused that every u ∈ Pl(E), I◁mR then LR(E)Iu
is a minimal left ideal of LR(E). The second, (IPl(E)) = (IPl(E)) for
hereditary Pl(E) (Lemma 6). Furthermore, based on Lemma 7, Proposi-
tion 5, and Lemma 8 we have

(IPl(E)) =

(
I

( ∐

v∈Pl(E)

[v]

))
=

⊕

v∈Pl(E)

(Iv) ∼=
⊕

v∈Pl(E)

Mnv
(I).

The following example shows that

Soc(LR(E)) ̸=
∑

u∈Pl(E),I◁mR

LR(E)Iu.

In addition, it gives an overview of the minimal ideals of LR(E) and the
two-sided ideal generated by Iv with I ◁m R, v ∈ Pl(E).

Example 1. Consider the commutative unital ring Z6 and the graph F
that follows

u4• ← •
u1 → •u2 → •u3 .

Then LZ6(F )
∼= M2(Z6)⊕M3(Z6) and Soc(LZ6(F )) = LZ6(F ) since

Soc(M2(Z6) ⊕ M3(Z6)) = M2((2̄)) ⊕ M2((3̄)) ⊕ M3((2̄)) ⊕ M3((3̄)) =
M2(Z6)⊕M3(Z6), where (2̄) = {0̄, 2̄, 4̄} and (3̄) are minimal ideals of Z6.
We have

∑

u∈Pl(E),I◁mZ6

LZ6(F )Iu

= LZ6(F )(2̄)u2 + LZ6(F )(2̄)u3 + LZ6(F )(2̄)u4 + LZ6(F )(3̄)u2

+ LZ6(F )(3̄)u3 + LZ6(F )(3̄)u4

= LZ6(F )((2̄) + (3̄))u2 + LZ6(F )((2̄) + (3̄))u3 + LZ6(F )((2̄) + (3̄))u4

⊊ Soc(LZ6(F )),
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where

LZ6(F )(2̄)u2
∼= 0⊕



0 2̄ 0
0 2̄ 0
0 2̄ 0


 , LZ6(F )(2̄)u3

∼= 0⊕



0 0 2̄
0 0 2̄
0 0 2̄


 ,

LZ6(F )(2̄)u4
∼=

(
0 2̄
0 2̄

)
, LZ6(F )(3̄)u2

∼= 0⊕



0 3̄ 0
0 3̄ 0
0 3̄ 0


 ,

LZ6(F )(3̄)u3
∼= 0⊕



0 0 3̄
0 0 3̄
0 0 3̄


 , LZ6(F )(3̄)u4

∼=

(
0 3̄
0 3̄

)

Note that e∗1 /∈
∑

u∈Pl(F ),I◁mZ6
LZ6(F )Iu.

Suppose that e∗1 ∈
∑

u∈Pl(F ),I◁mZ6
LZ6(F )Iu, then e∗1 = α1u2+α2u3+

α3u4 for some αi ∈ LZ6(F )((2̄) + (3̄)). But e∗1 = e∗1u1 = (α1u2 + α2u3 +
α3u4)u1 = 0 which is a contradiction. Furthermore, based on the deőnition
of the ideal in LR(E) generated by Iu, we have ideals in LZ6(F ):

((2̄)u2) = ((2̄)u3) ∼=M3((2̄)); ((2̄)u4) ∼=M2((2̄)),

((3̄)u2) = ((3̄)u3) ∼=M3((3̄)); ((3̄)u4) ∼=M2((3̄)),

which are minimal.

Theorem 3. Let E be an arbitrary graph and R be a semiprime commuta-

tive unital ring. Then Soc(LR(E)) =
⊕

I◁mR(IPl(E)) =
⊕

I◁mR(IPl(E)).

Proof. It is obvious that
⊕

I◁mR(IPl(E)) =
⊕

I◁mR(IPl(E)) from Propo-
sition 6. Furthermore, we show that Soc(LR(E)) =

⊕
I◁mR(IPl(E)). Let

any minimal left ideal ℑ ∈ LR(E). The Leavitt path algebra LR(E) is
semiprime for the semiprimeness of R (Proposition 1). By [10, Subsec-
tion 3.4. Proposition 2], there is a non zero µ = µ2 ∈ LR(E) such that
ℑ = LR(E)µ. Based on Proposition 4, we have ℑ = LR(E)µ ∼= LR(E)Iv
where I is a minimal ideal of R and v ∈ Pl(E). Assume that ϕ : LR(E)µ→
LR(E)Iv is an LR(E)-module isomorphism and write ϕ(µ) = kxv and
ϕ−1(kv) = k′yµ where k, k′ ∈ I, x, y ∈ LR(E). Then

µ = ϕ−1(ϕ(µ)) = ϕ−1(kxv2) = xvϕ−1(kv) = (xv)(k′yµ) = (k′xv)(yµ)

kv = ϕ(ϕ−1(kv)) = ϕ(k′yµ2) = k′yµϕ(µ) = (k′yµ)(kxv) = k(yµ)(k′xv)

If α = k′xv, β = yµ then α, β ∈ LR(E) such that µ = αβ and kv = kβα.
We őnd that v = βα for kv ̸= 0, k(v−βα) = 0, so that µ = µ2 = α(βα)β =
αvβ = k′xvβ = x(k′v)β. Hence, µ ∈ (Iv) ⊂ (IPl(E)) for x, β ∈ LR(E).
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Conversely, take any minimal ideal I of R and v ∈ Pl(E). By Propo-
sition 6, we have LR(E)Iv ⊂ Soc(LR(E)). Since the socle is always
a two-sided ideal, then LR(E)IvLR(E) ⊂ Soc(LR(E)) so that (IPl(E)) ⊂
Soc(LR(E)). Hence,

⊕
I◁mR(IPl(E)) ⊆ Soc(LR(E)).

Conclusion

The Reduction Theorem in [2, Theorem 2.2.11] can be applied to
the Leavitt path algebra LR(E) over a commutative unital ring R on
a (directed) graphE. It is very important to prove that LR(E) is semiprime
if and only if R is semiprime. Therefore, every Leavitt path Algebra LK(E)
over őeld K is always semiprime, since every őeld is semiprime.

We denote Pl(E) be the set of all line points, i.e., the vertices whose
tree contains neither bifurcations nor cycles. It is quite a role in deter-
mining socle of the semiprime LR(E). For every minimal left ideal ℑ in
the semiprime LR(E), then there is a minimal ideal I in the semiprime
commutative unital R such that ℑ = LR(E)Iv for some v ∈ Pl(E). On
the other hand, for any minimal ideal I in the semiprime commutative
unital R, LR(E)Iv is a minimal left ideal of LR(E) if and only if v ∈ Pl(E).
Furthermore, let E be an arbitrary graph and R a semiprime commutative
unital ring, then we have:

1)
∑

u∈Pl(E),I◁mR LR(E)Iu ⊂ Soc(LR(E))

2) (IPl(E)) = (IPl(E)) ∼=
⊕

v∈Pl(E)Mnv
(I), where nv = |Λv| and Λv

is the set of paths α ∈ Path(E) such that r(α) meets T (v) for the
őrst time r(α).

3) Soc(LR(E)) =
⊕

I◁mR(IPl(E)) =
⊕

I◁mR(IPl(E)).
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