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Abstract. Let Xn be the őnite set {1, 2, 3 · · · , n} and On

deőned by On = {α ∈ Tn : (∀x, y ∈ Xn), x ⩽ y → xα ⩽ yα} be the

semigroup of full order-preserving mapping on Xn. A transformation

α in On is called quasi-idempotent if α ̸= α2 = α4. We characterise

quasi-idempotent in On and show that the semigroup On is quasi-

idempotent generated. Moreover, we obtained an upper bound for

quasi-idempotents rank of On, that is, we showed that the cardinality

of a minimum quasi-idempotents generating set for On is less than

or equal to ⌈ 3(n−2)
2 ⌉ where ⌈x⌉ denotes the least positive integer m

such that x ⩽ m < x+ 1.

1. Introduction

Let Tn be the semigroup of full transformations of a őnite set Xn =
{1, 2, · · · , n}. It is well known that every őnite semigroup is realizable
as a subsemigroup of Tn. Hence, the importance of Tn to the theory of
semigroups is similar to that of Sn to group theory. Since the work of
Howie [8], establishing that every singular map in Tn is expressible as
a product (that is composition) of idempotent singular maps (α ∈ Tn \ Sn
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satisfying α2 = α), there have been many articles concerned with this
idea in Tn (see for example, [3, 6, 9ś12,14,17]).

Idempotent elements have a signiőcant role in semigroup theory, yet
there are still some kinds of semigroups (such as inverse semigroups) where
this role is of little or no signiőcance. The set of idempotents cannot be
a generating set in an inverse semigroup because it forms a subsemigroup
(see [13]). Garba and Imam [5] used a special type of semigroup elements
known as a łquasi-idempotents" (non-idempotent elements whose squares
are idempotents) to generate the inverse semigroup of all partial one-to-one
mappings ofXn. An element a in a semigroup S is called a quasi-idempotent

if a ̸= a2 = a4.
The őrst appearance of quasi-idempotent elements was in [18] where

it was shown that the semigroup of all decreasing partial injections is
quasi-idempotents generated and that the size of its minimal generating
set is equal to n(n+1)

2 . Madu and Garba [16] proved that each element
in the semigroup IOn, of all order-preserving partial injections of Xn, is
expressible as a product of quasi-idempotents of height n− 1, and that
the minimal size of such generating set is 2(n − 1). In [4] the authors
proved that Singn, the semigroup of singular full transformations of Xn is
quasi-idempotent generated and that the minimal size of such generating
set is n(n−1)

2 . A more recent combinatorial study of quasi-idempotent
generating elements is carried out in [15] for Singn. Sizes of minimal
generating sets of quasi-idempotents in the semigroups In and its ideals
were obtained by Bugay [1, 2].

In this paper, we generate the semigroup of all order-preserving full
transformations of Xn using quasi-idempotents. We also obtain an upper
bound for the minimum number of such quasi-idempotents required to
generate the semigroup. Throughout the paper statements like 1 ⩽ i ⩽ n
should be understood as ‘all integer i from 1 to n’.

2. Preliminaries

For n ⩾ 2, we denote by Singn = Tn \ Sn the semigroup of all singular
mappings in Tn, that is

Singn = {α ∈ Tn : |imα| ⩽ n− 1}.

The subsemigroup of Singn consisting of all order-preserving maps will
be denoted by On, that is

On = {α ∈ Singn : (∀x, y ∈ Xn) x ⩽ y =⇒ xα ⩽ yα}.
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The structure of On was described by Gomes and Howie [7] as follows:
The semigroup On is easily seen to be a regular semigroup (i.e for all
α ∈ On, there is β ∈ On such that αβα = α). Hence, by [13, Proposition
1.4.11], the Green’s L, R and J relations on On are deőned as follows:

αLβ if and only if im(α) = im(β),

αRβ if and only if ker(α) = ker(β),

αJ β if and only if |im(α)| = |im(β)|.

The Grean’s H-relation in On is the identity relation, for once an im(α)
and ker(α) are őxed, there is precisely one and only one order-preserving
mapping α ∈ On having the given image and kernel. Also, for α ∈ On,
the ker(α)-classes are convex subsets of Xn, in the sense that

∀x, y ∈ C (x ⩽ z ⩽ y =⇒ z ∈ C).

Thus, each α ∈ On, with image set im(α) = {b1 < b2 < · · · < br}, can be
written, in array notation, as

α =

(

A1 A2 · · · Ar

b1 b2 · · · br

)

where the ker(α)-classes Xn/ker(α) = {A1, A2, · · ·Ar} are convex subsets
of Xn satisfying A1 < A2 < · · · < Ar. Here, we write Ai < Aj to mean
ai < aj for all ai ∈ Ai and aj ∈ Aj . Each ker(α)-class Ai is called a block

of α.

Deőnition 1. For the map α ∈ On, a block Ai of α is called stationary

if Aiα = bi ∈ Ai otherwise it is called non-stationary.

If the equivalence on Xn = {1, 2, · · · , n} whose sole non singleton
class is {i, j} is denoted by |i, j|, we see that the R-classes within the
J -class Jn−1 = {α ∈ On : |im(α)| = n− 1} are indexed by the n− 1 such
equivalences

|n− 1, n|, |n− 2, n− 1|, . . . , |1, 2|.

The L-classes within the Jn−1 correspond to the n possible subsets of Xn

of cardinality (n− 1)

Xn \ {n}, Xn \ {n− 1}, . . . , Xn \ {1}.

The unique element α ∈ On in the H-class determined by the equivalence
Ker(α) = |i, i+1| and the subset im(α) = Xn\{k} will be called increasing
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if k ⩽ i and decreasing if k ⩾ i + 1. The element α is an idempotent if
and only if k = i or k = i+ 1. There are (n− 1) increasing idempotents
of the form
(

i

i+ 1

)

=

(

1 2 · · · i− 1 i, i+ 1 i+ 2 · · · n
1 2 · · · i− 1 i+ 1 i+ 2 · · · n

)

(1 ⩽ i ⩽ n− 1)

and (n− 1) decreasing idempotents of the form
(

i+ 1

i

)

=

(

1 2 · · · i− 1 i, i+ 1 i+ 2 · · · n
1 2 · · · i− 1 i i+ 2 · · · n

)

(1 ⩽ i ⩽ n−1).

Thus, if E1 = {α ∈ On : |im(α)| = n− 1, α2 = α}, then |E1| = 2(n− 1).
We denote the increasing idempotents in Jn−1 by ei =

(

i
i+1

)

(1 ⩽

i ⩽ n − 1), and the decreasing idempotents in Jn−1 by fi =
(

i
i+1

)

(1 ⩽ i ⩽ n − 1). From Howie [9] it is known that On = ⟨E1⟩ and in
Gomes and Howie [7] we have rank(On) = n and idrank(On) = 2(n− 1)
(where rank(On) denotes the minimum number of generators for On and
idrank(On) denotes the minimum number of idempotent generators for
On). Also, On = ⟨e1, . . . , en−1, γ⟩ where ei =

(

i
i+1

)

(i = 1, 2, . . . n−1) and

γ =

(

1 2 3 · · · n
1 1 2 · · · n− 1

)

. Thus, for any subset A ⊆ Jn−1 we have

On = ⟨A⟩ if and only if {e1, . . . , en−1, γ} ⊆ ⟨A⟩. (1)

Our őrst result is a characterization of quasi-idempotent elements
in On.

Theorem 1. An element α ∈ On is a quasi-idempotent if and only if the

image of each non-stationary block of α is contained in a stationary block

of α.

Proof. If α ∈ On contains no non-stationary blocks, then the argument is
trivial. Suppose α ∈ On contains both stationary block A1, . . . , As and
non-stationary blocks B1, . . . , Bt in which every non-stationary block is
mapped into a stationary block. Let 1 ⩽ i ⩽ s and 1 ⩽ j ⩽ t be indices such
that Bjα ∈ Ai. If i < j, then, for each index k satisfying Ai < Bk < Bj ,
we have Bkα ∈ Ai, for otherwise α will fail to be order-preserving. Similar
conclusion is made for each index k satisfying Bj < Bk < Ai if i > j.

Now, for each 1 ⩽ i ⩽ s, denote by l(i) = l, the number of non-
stationary blocks Bj of α for which Bjα ∈ Ai. Then the union Ãi =
Ai∪Bj1 ∪· · ·∪Bjl is a stationary block of α2. In this case, Ker(α2)-classes
are Ã1, . . . , Ãs and all are stationary. Therefore α2 is an idempotent.
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Conversely, suppose α is a quasi-idempotent. Then α must contain
atleast one stationary block and one non-stationary block. Let B be an
arbitrary non-stationary block of α. If Bα is not contained in a stationary
block, it must then be contained in a non-stationary block of α say C.
And so, the block of α2 containing C will not be őxed by α2, contradicting
the choice of α as a quasi-idempotent. Thus, every non-stationary block
of α must be mapped into a stationary block of α.

Example 1. Let α =

(

{1, 2} {3, 4} {5, 6} {7, 8} {9, 10} {11}
1 2 5 6 9 10

)

∈

O11. Then α is a quasi-idempotent in O11 since all its non-stationary
blocks are mapped into its stationary blocks. In fact

α2 =

(

{1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11}
1 5 9

)

On the other, the map β=

(

{1, 2} {3, 4} {5, 6} {7, 8} {9, 10}
1 2 3 5 9

)

∈O10

is not a quasi-idempotent as its non-stationary blocks {5, 6}, {7, 8} are
mapped into non-stationary blocks. Here

β2 =

(

{1, 2, 3, 4} {5, 6} {7, 8} {9, 10}
1 2 3 9

)

.

An immediate consequence of Theorem 1 is the following.

Corollary 1. An element α ∈ On of height n− 1 is a quasi-idempotent

if and only if s(α) = 2, where s(α) = |{x ∈ Xn : xα ̸= x}|.

3. Products of quasi-idempotents

From Corollary 1 it is clear that, in On, an element α ∈ Jn−1 with
ker(α) = |i, i+1| and im(α) = Xn \ {k} is a quasi-idempotent if and only
if k = i− 1 or k = i+ 2. In the former α is increasing and in the latter α
is decreasing.

For each i = 2, 3, . . . , n− 1 we denote the increasing quasi-idempotent
elements in Jn−1 by

δi =

(

i− 1 i
i i+ 1

)

,

and the decreasing quasi-idempotent elements in Jn−1 by

µi =

(

i i+ 1
i− 1 i

)

.
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Then, it is clear that ker(δi) = |i, i+ 1|, ker(µi) = |i− 1, i|, im(δi) = Xn \
{i−1}, im(µi) = Xn \{i+1}. Also, the set QE1 = {δi, µi : 2 ⩽ i ⩽ n−1},
of all quasi-idempotents in Jn−1, is of cardinality

|QE1| = 2(n− 2). (2)

Theorem 2. For n ⩾ 4, the semigroup On is generated by quasi-idempo-

tents of height n− 1, that is On = ⟨QE1⟩.

Proof. According to (1), to prove this theorem it is enough to show that
for each i = 1, 2, . . . , n − 1, ϵi, γ ∈ ⟨QE1⟩. But then one quickly veriőes
that ϵi = µi+1δi+1 (i = 1, 2, . . . , n − 2), ϵn−1 = δn−1µn−2 and γ =
µ2µ3 · · ·µn−1.

We end this section with the following observation on product of
elements in Jn−1.

Lemma 1. For n ⩾ 4, let α ∈ Jn−1 \ (QE1 ∪ E1) and β ∈ QE1 ∪ E1 be

such that αβ ∈ Jn−1. Then α and αβ are either both decreasing or both

increasing.

Proof. Let im(α) = Xn \ {i} and ker(α) = |j, j+1|. Suppose α is decreas-
ing, then 4 ⩽ i ⩽ n and j + 1 ⩽ i. Thus we may write

α =

(

1 2 · · · j, j + 1 j + 2 · · · i i+ 1 · · · n
1 2 · · · j j + 1 · · · i− 1 i+ 1 · · · n

)

.

Note that since αβ ∈ Jn−1, we must have

ker(β) =

{

|i− 1, i| or |i, i+ 1| for i = 4, 5, . . . , n− 1;

|n− 1, n| for i = n.

If i = n, then β ∈ {fn−1, en−1, δn−1} and

αβ =































































(

1 2 · · · j, j + 1 j + 2 · · · n

1 2 · · · j j + 1 · · · n− 1

)

if β = fn−1,

(

1 2 · · · j, j + 1 j + 2 · · · n− 1 n

1 2 · · · j j + 1 · · · n− 2 n

)

if β = en−1,

(

1 2 · · · j, j + 1 j + 2 · · · n− 2 n− 1 n

1 2 · · · j j + 1 · · · n− 3 n− 1 n

)

if β = δn−1,

which are decreasing maps in Jn−1.
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If 4 ⩽ i ⩽ n − 1, then β ∈ {fi−1, fi, ei−1, ei, δi−1, δi, µi, µi+1} (with the
exception of µi+1 when i = n− 1). Thus,

αβ =



















































































































































































































(

1 2 · · · j, j + 1 j + 2 · · · i− 1 i · · · n

1 2 · · · j j + 1 · · · i− 2 i− 1 · · · n

)

if β = fi−1,

(

1 2 · · · j, j + 1 j + 2 · · · i+ 1 i+ 2 · · · n

1 2 · · · j j + 1 · · · i i+ 2 · · · n

)

if β = fi,

(

1 2 · · · j, j + 1 j + 2 · · · i− 1 i · · · n

1 2 · · · j j + 1 · · · i− 2 i · · · n

)

if β = ei−1,

(

1 2 · · · j, j + 1 j + 2 · · · i− 1 i · · · n

1 2 · · · j j + 1 · · · i− 2 i− 1 · · · n

)

if β = ei,

(

1 2 · · · j, j + 1 j + 2 · · · i− 2 i− 1 · · · n

1 2 · · · j j + 1 · · · i− 3 i− 1 · · · n

)

if β = δi−1,

(

1 2 · · · j, j + 1 j + 2 · · · i− 1 i · · · n

1 2 · · · j j + 1 · · · i− 2 i · · · n

)

if β = δi,

(

1 2 · · · j, j + 1 j + 2 · · · i+ 1 i+ 2 · · · n

1 2 · · · j j + 1 · · · i i+ 2 · · · n

)

if β = µi,

(

1 2 · · · j, j + 1 j + 2 · · · i+ 2 i+ 3 · · · n

1 2 · · · j j + 1 · · · i+ 1 i+ 3 · · · n

)

if β = µi+1

(i ̸= n− 1),

which are clearly decreasing maps in Jn−1.
Similarly, if α is increasing, then 1 ⩽ i ⩽ n − 3 and j ⩾ i. Thus we

may write

α =

(

1 2 · · · i− 1 i · · · j, j + 1 j + 2 · · · n
1 2 · · · i− 1 i+ 1 · · · j + 1 j + 2 · · · n

)

.

Note that since αβ ∈ Jn−1, we must have

ker(β) =

{

|1, 2| for i = 1,

|i− 1, i| or |i, i+ 1| for i = 2, 3, . . . , n− 3.
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If i = 1, then β ∈ {f1, e1, µ2} and

αβ =































































(

1 2 3 · · · j − 1 j, j + 1 j + 2 · · · n

1 3 4 · · · j j + 1 j + 2 · · · n

)

if β = f1,

(

1 2 3 · · · j − 1 j, j + 1 j + 2 · · · n

2 3 4 · · · j j + 1 j + 2 · · · n

)

if β = e1,

(

1 2 3 · · · j − 1 j, j + 1 j + 2 · · · n

1 2 4 · · · j j + 1 j + 2 · · · n

)

if β = µ2,

which are increasing maps in Jn−1. If 2 ⩽ i ⩽ n − 3, then β ∈ {δi−1, δi,
µi, µi+1} (with the exception of δi−1 when i = 2). Thus,

αβ =



























































































(

1 2 · · · i− 3 i− 2 · · · j, j + 1 j + 2 · · · n

1 2 · · · i− 3 i− 1 · · · j + 1 j + 2 · · · n

)

if β = δi−1

(i ̸= 2),

(

1 2 · · · i− 2 i− 1 · · · j, j + 1 j + 2 · · · n

1 2 · · · i− 2 i · · · j + 1 j + 2 · · · n

)

if β = δi,

(

1 2 · · · i i+ 1 · · · j, j + 1 j + 2 · · · n

1 2 · · · i i+ 2 · · · j + 1 j + 2 · · · n

)

if β = µi,

(

1 2 · · · i+ 1 i+ 2 · · · j, j + 1 j + 2 · · · n

1 2 · · · i+ 1 i+ 3 · · · j + 1 j + 2 · · · n

)

if β = µi+1,

which are all increasing maps in Jn−1.

4. Upper Bound for Quasi-Idempotents Rank of On

In this section, we attempt to őnd the minimum size of a subset of
QE1 generating On. This is known as the quasi-idempotent rank of On

denoted by qrank(On). That is

qrank(On) = min{|A| : A ⊆ QE1 and ⟨A⟩ = On}.

We őrst note that any generating set for On must cover both the L-classes
and the R-classes in Jn−1. Also, since On has n L-classes and n − 1
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R-classes, it follows from (2) that

n ⩽ qrank(On) ⩽ 2(n− 2). (3)

Theorem 3. For n = 4 or 5; we have

qrank(On) =

{

4 if n = 4;

6 if n = 5.

Proof. In O4, QE1 = {µ2, µ3, δ2, δ3} Therefore, it follows from (3) that
qrank(O4) = 4. In O5, QE1 = {µ2, µ3, µ4, δ2, δ3, δ4} and since, in this
case, no proper subset of QE1 covers both the L-classes and the R-classes
in Jn−1 we have qrank(O5) = 6.

Theorem 4. Let n ⩾ 6. Then

qrank(On) ⩽ ⌈
3

2
(n− 2)⌉

Proof. For n ⩾ 6, any subset of QE1 that generates On must contain the
six quasi-idempotents

µ2, µn−2, µn−1, δ2, δ3, δn−1,

since each of these is alone in either one of its L-class or R-class.
Now, for n = 6, 8, 10, . . ., let

A = {δ2, δ3, . . . , δn−3, δn−1, µ2, µ4, . . . , µn−4, µn−2, µn−1}

a set of quasi-idempotents in QE1(On) with

|A| = (n− 3) + (
n

2
− 1) + 1 =

3

2
(n− 2).

To show that ⟨A⟩ = On it suffices, by Theorem 2, to show that

QE1(On) \A = {δn−2, µ3, µ5, . . . , µn−3} ⊆ ⟨A⟩.

But then it is easy to see that

δn−2 = µn−1δn−1δn−3µn−4

µi = δi−1µi−1µi+1δi+2 (i = 2, 4, . . . , n− 4).

Thus, ⟨A⟩ = On and so

qrank(On) ⩽
3

2
(n− 2) = ⌈

3

2
(n− 2)⌉.
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Also, for n = 7, 9, 11, . . ., let

B = {δ2, δ3, . . . , δn−4, δn−2, δn−1, µ2, µ4, . . . , µn−3, µn−2, µn−1}

a set of quasi-idempotents in QE1(On) with

|B| = (n− 3) +

(

n− 1

2

)

+ 1 =
1

2
(3n− 5).

To show that ⟨B⟩ = On it suffices, by Theorem 2, to show that

QE1(On) \B = {δn−3, µ3, µ5, . . . , µn−4} ⊆ ⟨B⟩.

But then again it is easy to see that

δn−3 = µn−2δn−2δn−4µn−5

µi = δi−1µi−1µi+1δi+2 (i = 2, 4, . . . , n− 3).

Thus, ⟨B⟩ = On and so

qrank(On) ⩽
1

2
(3n− 5) =

3

2
(n− 2) +

1

2
= ⌈

3

2
(n− 2)⌉.

Remark 1. We suspect that the upper bound for qrank(On) found in
Theorem 4 is best possible, that is, no fewer quasi-idempotents will suffice
in generating On. Currently, we are unable to provide proof that this is
the case.
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