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Abstract. The study of modules by properties of their

endomorphisms has long been of interest. In this paper we introduce

a proper generalization of that of Hopőan modules, called Jacobson

Hopőan modules. A right R-module M is said to be Jacobson

Hopőan, if any surjective endomorphism of M has a Jacobson-

small kernel. We characterize the rings R for which every őnitely

generated free R-module is Jacobson Hopőan. We prove that a ring

R is semisimple if and only if every R-module is Jacobson Hopőan.

Some other properties and characterizations of Jacobson Hopőan

modules are also obtained with examples. Further, we prove that the

Jacobson Hopőan property is preserved under Morita equivalences.

1. Introduction

Throughout this paper, R denotes an associative ring with identity
and modules M are unitary right R-modules. We use the notations ⊆, ⩽
and ⩽⊕ to denote inclusion, submodule and direct summand, respectively,
and Rad(M), Soc(M), End(M) will denote the radical, the socle and the
ring of endomorphisms of a module M . A submodule N of M is called
a small submodule of M if whenever N +K = M for some submodule
K of M , we have M = K, and in this case we write N ≪ M . A nonzero
module M is called hollow, if every proper submodule of M is small in M .
The study of modules by properties of their endomorphisms is a classical
research subject. Hopőan and co-Hopőan groups, rings and modules have
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been studied by many authors since 1963 ([3], [4], [7], [8], [9], [11]). Recall
that a module M is called co-Hopőan (resp. Hopőan) if any injective
(resp. surjective) endomorphism of M is an isomorphism. Note that any
Artinian module is co-Hopőan, and any Noetherian module is Hopőan,
but the converse is not true in general. The additive group Q of rational
numbers is a non-Noetherian non-Artinian Z-module, which is Hopőan
and co-Hopőan. In [7], a proper generalization of Hopőan modules, called
generalized Hopőan modules, was given. A right R-module M is called
generalized Hopőan, if any surjective endomorphism of M has a small
kernel. Recall that the module M is called Dedekind őnite if fg = 1 implies
gf = 1 for each f, g ∈ End(M). Consequently, M is Dedekind őnite if and
only if M is not isomorphic to any proper direct summand of itself. In
[7, Corollary 1.4], it is shown that the concepts of Dedekind őnite modules,
Hopőan modules and generalized Hopőan modules equivalent for every
(quasi-)projective module. The socle of M is deőned as the sum of all its
simple submodules and can be shown to coincide with the intersection of all
the essential submodules of M . It is a fully invariant submodule of M . Note
that M is semisimple precisely when M = Soc(M) (see [1]). The radical
of an R-module M deőned as a dual of the socle of M , is the intersection
of all maximal submodules of M , taking Rad(M) = M when M has no
maximal submodules. A submodule K of M is said to be Jacobson-small
in M (K ≪J M), in case M = K + L with Rad(M/L) = M/L, implies
M = L (see [10]). It is clear that if A is a small submodule of M , then
A is a Jacobson-small submodule of M , but the converse is not true in
general. By [10], if Rad(M) = M and K ⩽ M , then K is small in M if
and only if K is Jacobson-small in M .

In [5], Ebrahimi, Khoramdel and Dolati introduced and studied the
concept of δ-Hopőan modules. A right R-module M is called δ-Hopőan if
any surjective endomorphism of M has a δ-small kernel. In [5, Theorem 3],
it is shown that a ring R is semisimple if and only if every R-module is δ-
Hopőan. In [6], El Moussaouy and Ziane introduced and studied the concept
of µ-Hopőan modules. A right R-module M is called µ-Hopőan if any
surjective endomorphism of M has a µ-small kernel. In [6, Theorem 2.10],
it is shown that a ring R is semisimple if and only if every R-module is
µ-Hopőan.

Motivated by the above-mentioned works, we are interested in intro-
ducing a new generalization of Hopőan modules namely Jacobson Hopőan
modules. We call a module Jacobson Hopőan if any its surjective endo-
morphism has a Jacobson-small kernel. In Theorem 5 we prove that a ring
R is semisimple if and only if every R-module is Jacobson Hopőan. Then
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for a semisimple ring, the properties δ-Hopőan, µ-Hopőan and Jacobson
Hopőan are all equivalent.

The notion of Jacobson Hopőan modules form a proper generalization
of that of Hopőan modules (Example 1), and in particular Noetherian
modules. It is clear that every generalized Hopőan module is Jacobson
Hopőan. Example 2 shows that the converse is not true, in general. Also,
it shows that a Jacobson Hopőan module need not be Dedekind őnite.

We discuss the following questions:

1) When does a module have the property that every of its surjective
endomorphisms has a Jacobson-small kernel?

2) How can Jacobson Hopőan modules be used to characterize the
base ring itself?

We present some equivalent properties of these modules (Theorem 1),
and provide a characterization of semisimple rings in terms of Jacobson
Hopőan modules by proving that a ring R is semisimple if and only if
every R-module is Jacobson Hopőan (Theorem 5). Also we prove that the
Jacobson Hopőan property is Morita invariant (Theorem 3).

In [7], Ghorbani and Haghany proved that if ACC holds on nonsmall
submodules of M , then M is generalized Hopőan. In [6], El Moussaouy and
Ziane proved that if ACC holds on non µ-small submodules of M , then M
is µ-Hopőan. Also we know that Noetherian modules are Hopőan modules.
Thus it is natural to show that if ACC or DCC holds on non Jacobson-
small submodules of M , then M is Jacobson Hopőan (Proposition 2 and
Proposition 3).

Finally, we characterize the rings R for which every őnitely generated
free R-module is Jacobson Hopőan. We prove that every őnitely generated
free R-module is Jacobson Hopőan if and only if every őnitely generated
projective R-module is Jacobson Hopőan if and only if Mn(R) is Jacobson
Hopőan as an Mn(R)-module for each n ⩾ 1 (Corollary 3).

We list some properties of Jacobson-small submodules that will be
used in the paper.

Lemma 1. [10]. Let M be an R-module.

(1) Let A ⩽ B ⩽ M . Then B ≪J M if and only if A ≪J M and
B/A ≪J M/A.

(2) Let A, B be submodules of M , then A + B ≪J M if and only if
A ≪J M and B ≪J M .

(3) Let A1, A2, ...,An are submodules of M. Then Ai ≪J M , ∀ i =
1, ..., n if and only if

∑n
i=1Ai ≪J M .

(4) Let A, B be submodules of M with A ⩽ B, if A ≪J B, then A ≪J M .
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(5) Let f : M → N be a homomorphism such that A ≪J M , then
f(A) ≪J N .

(6) Let M = M1 ⊕M2 be an R-module and let A1 ⩽ M1 and A2 ⩽ M2.
Then A1⊕A2 ≪J M1⊕M2 if and only if A1 ≪J M1 and A2 ≪J M2.

2. Jacobson Hopőan modules

Motivated by the concept of Hopőan modules and the notion of gener-
alized Hopőan modules, we deőne a Jacobson Hopőan module as follows.

Deőnition 1. Let M be an R-module. We say that M is Jacobson Hopőan
(JH for short) if any surjective endomorphism of M has a Jacobson-small
kernel.

The next result gives several equivalent conditions for a Jacobson
Hopőan module.

Theorem 1. Let M be an R-module. The following are equivalent:
(1) M is JH.
(2) For any surjective endomorphism f of M , if K ≪J M , then

f−1(K) ≪J M .
(3) For any epimorphism f : M/K → M , we have K ≪J M .
(4) If M/K is nonzero and Rad(M/K) = M/K for some K ⩽ M and

if f is a surjective endomorphism of M then f(K) ̸= M .

Proof. (1) ⇒ (2) Assume that f : M → M is a surjective endomor-
phism and K ≪J M . Let f−1(K) + N = M for some N ⩽ M , where
Rad(M/N) = M/N . Hence K + f(N) = M . As Rad(M/N) = M/N
and f(Rad(M/N)) ⊆ Rad(M/f(N)). Hence f(M/N) = M/f(N) ⊆
Rad(M/f(N)). Then Rad(M/f(N)) = M/f(N). Hence K + f(N) = M
and K ≪J M , giving f(N) = M . So N +Ker(f) = M . Since M is JH,
Ker(f) ≪J M . Hence Rad(M/N) = M/N implies that N = M . Thus
f−1(K) ≪J M .

(2) ⇒ (3) Let f : M/K → M be an epimorphism. It is clear that
K ⩽ Ker(fπ), where π : M → M/K is the canonical epimorphism. By
(2), Ker(fπ) = (fπ)−1(0) ≪J M . Hence by Lemma 1, K ≪J M .

(3) ⇒ (4) Let K be a proper submodule of M such that Rad(M/K) =
M/K and f : M → M a surjective endomorphism with f(K) = M . Then
M = Ker(f) + K, moreover g : M/Ker(f) → M is an epimorphism,
hence Ker(f) ≪J M by (3). Thus M = K, contradiction.

(4) ⇒ (1) Let f : M → M be an epimorphism. If M = K +Ker(f),
with Rad(M/K) = M/K, hence M = f(M) = f(K). Then K = M
by (4). Therefore Ker(f) ≪J M .
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Corollary 1. Let M be a JH module, h ∈ End(M) a surjective endomor-
phism and N ⩽ M . Then N ≪J M if and only if h(N) ≪J M if and
only if h−1(N) ≪J M .

The following example shows that Hopőan modules form a proper
subclass of Jacobson Hopőan modules.

Example 1. Let M = Zp∞ . As any submodule of M is Jacobson-small in
M , it is clear M is JH while M is not Hopőan. Note that multiplication
by p induces an Z-epimorphism of M which is not an isomorphism.

Remark 1. According to the deőnitions, any hollow module is JH, but
the converse is not true in general. Note that M = Z6 is a semisimple
Z-module which is not hollow. Since for any semisimple module M we
have Rad(M) = 0, so any proper submodule is Jacobson-small in M while
M has non nonzero small submodule.

Lemma 2. Let M be an R-module and K ⩽ M . The following are
equivalent.

(1) K ≪J M .
(2) If X + K = M , then M = X ⊕ L for a semisimple submodule L

of M .

Proof. (1) ⇒ (2) Let L ⩽ M such that Rad(M/L) = M/L. Then by
[10, Proposition (2.2)] Rad(M/(X⊕L)) = M/(X⊕L). Since X+L+K =
M and K ≪J M , hence X ⊕ L = M . To prove that L is semisimple, let
A be a submodule of L . Then X +A+K = M . Arguing as above with
X +A replacing X, we have that X +A = X ⊕A is a direct summand of
M , thus A is a direct summand of L, hence L is semisimple.

(2) ⇒ (1) Let N ⩽ M such that N+K = M and Rad(M/N) = M/N .
By (2) M/N is semisimple, hence Rad(M/N) = 0. Therefore M/N = 0.
Thus M = N and K ≪J M .

Theorem 2. The following are equivalent for an R-module M :
(1) M is JH.
(2) For any right module L, if there is an epimorphism M → M ⊕ L,

then L is semisimple.

Proof. (1) ⇒ (2) Let f : M → M⊕L be an epimorphism, and π : M⊕L →
M the natural projection. It is clear that Ker(πf) = f−1(0⊕ L). Since
M is JH, Ker(πf) ≪J M . By Lemma 1, 0 ⊕ L = f [f−1(0 ⊕ L)] =
f(Ker(πf)) ≪J M⊕L. Therefore L ≪J L by Lemma 1. So, by Lemma 2,
L is semisimple.
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(2) ⇒ (1) Let f : M → M be a surjective endomorphism and Ker(f)+
T = M for some T ⩽ M , where Rad(M/T ) = M/T . Since

M
Ker(f)∩T = Ker(f)

Ker(f)∩T ⊕ T
Ker(f)∩T

∼= M
T
⊕ M

Ker(f)
∼= M

T
⊕M , the epimor-

phism M → M⊕M
T

exists. By (6), M/T is semisimple, then Rad(M/T ) =
0. Therefore M/T = 0. Thus M = T and Ker(f) ≪J M .

The following result shows JH property is preserved under Morita
equivalences.

Theorem 3. JH is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings with inverse category
equivalences

α : Mod-R → Mod-S, β : Mod-S → Mod-R.

Suppose M ∈ Mod-R is JH. To show that α(M) is JH in Mod-S, let f :
α(M) → α(M)⊕X be an S-module epimorphism where X is an S-module.
Since any category equivalence preserves direct sums and epimorphisms,
we obtain β(f) : βα(M) → βα(M)⊕β(X), as an epimorphism in Mod-R.

Since βα(M) ∼= M , we obtain an epimorphism M → M ⊕ β(X) in
Mod-R, which by Theorem 2 implies that β(X) is semisimple as an R-
module. Since any category equivalence preserves semisimple properties,
X is semisimple as an S-module. Thus by Theorem 2, α(M) is JH.

Corollary 2. Let R be a ring and n ⩾ 2. Then the following are equivalent:

(1) Every n-generated R-module is JH.

(2) Every cyclic Mn(R)-module is JH.

Proof. Let L = Rn and S = End(L). Then, it is known that

HomR(L, .) : NR → Hom(SLR, NR)

deőnes a Morita equivalence between Mod-R and Mod-S with the inverse
equivalence.

−⊗S L : MS → M ⊗ L.

Moreover, if N is an n-generated R-module, then HomR(L,N) is a cyclic
S-module and for any cyclic S-module M , M ⊗S L is an n-generated
R-module. By Theorem 3, a Morita equivalence preserves the JH property
of modules. Therefore, every cyclic S-module is JH if and only if every
n-generated R-module is JH.
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Theorem 4. Let M be a quasi-projective R-module. Then the following
conditions are equivalent:

(1) M is JH.
(2) Ker(f) is semisimple for every surjective endomorphism f of M .

Proof. (1) ⇒ (2) Let f ∈ End(M) be a surjective endomorphism. Then
by (1), Ker(f) ≪J M . Since M is quasi-projective, there exists g :
M → M , such that fg = 1. It is clear that Ker(f) = (1 − gf)M and
M = Ker(f)⊕ (gf)M . So, by Lemma 2, Ker(f) is semisimple.

(2) ⇒ (1) Let f ∈ End(M) be a surjective endomorphism. Then by (2),
Ker(f) is a semisimple. We show that Ker(f) ≪J M . Let Ker(f) +L =
M for some L ⩽ M . Since Ker(f) is semisimple, (Ker(f) ∩ L) ⊕ T =
Ker(f) for some T ⩽ Ker(f). Therefore T ⊕L = M . As T is semisimple,
Ker(f) ≪J M , by Lemma 2.

Next, we characterize the class of rings R for which every (free) R-
module is JH.

Theorem 5. Let R be a ring. Then the following conditions are equivalent:

(1) Every R-module is JH.
(2) Every projective R-module is JH.
(3) Every free R-module is JH.
(4) R is semisimple.

Proof. (1) ⇒ (2) ⇒ (3) Evident.

(3) ⇒ (4) By (3), R(N) is JH. As R(N) ∼= R(N) ⊕R(N), by Theorem 2,
R(N) is semisimple. Hence R is semisimple.

(4) ⇒ (1) Let R be a semisimple ring and M be an R-module. Hence
M is projective and for each surjective endomorphism f of M , Ker(f) is
semisimple. Hence by Theorem 4, M is JH.

It is clear that every generalized Hopőan module is JH. The following
example shows that the converse is not true, in general. Also, it shows
that a JH module need not be Dedekind őnite.

Example 2. Let R be a semisimple ring. Hence by Theorem 5, M = R(N)

is a JH R-module. As M ∼= M ⊕M and M ≠ 0, M is not a generalized
Hopőan module and not a Dedekind őnite module by [7, Corollary 1.4].

Theorem 6. Let M be an R-module. The following statements are equiv-
alent:

(1) M is JH.
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(2) There exists a fully invariant Jacobson-small submodule K of M
such that M/K is JH.

Proof. (1) ⇒ (2) Clear, just take K = 0.
(2) ⇒ (1) Assume that K is a fully invariant Jacobson-small submodule

of M such that M/K is JH. Let f : M → M be a surjective endomorphism.
Then g : M/K → M/K given by g(m + K) = f(m) + K is a well-
deőned epimorphism. Since M/K is JH then Ker(g) ≪J M/K. Suppose
Ker(g) = L/K for some appropriate submodule L of M . Then L/K ≪J

M/K and since K ≪J M , then by Lemma 1, L ≪J M . Since Ker(f) is
a submodule of L, we obtain Ker(f) ≪J M and M is JH.

Proposition 1. Let M be an R-module and let N be a JH fully invariant
submodule of M such that M/N is Hopőan. Then M is JH.

Proof. Let f : M → M be a surjective endomorphism. Since the induced
map g : M/N → M/N is surjective, it must be an isomorphism, thus
N = f−1(N). Therefore f |N : N → N is an epimorphism. Now if N is
Jacobson Hopőan, Ker(f) ∩N ≪J N . Since Ker(f) is a submodule of
N , then Ker(f) ≪J N ⩽ M . Hence by Lemma 1, Ker(f) ≪J M and M
is JH.

Lemma 3. Let P be a property of modules preserved under isomorphism.
If a module M has the property P and satisőes ACC on non Jacobson-small
submodules N such that M/N has the property P , then M is JH.

Proof. Suppose M is not JH. Then there exists a submodule N1 with N1

not Jacobson-small in M and M/N1 ≃ M . Thus M/N1 is not JH but
satisőes P . Hence there exists a submodule N2 ⊇ N1 with N2/N1 not
Jacobson-small in M/N1 and M/N2 ≃ M/N1. So we get N1 ⊆ N2 and
both non Jacobson-small in M with M/Ni ≃ M for i = 1, 2. Repeating
the process yields a chain of submodules of the type that contradicts our
hypothesis. Hence M is JH.

Proposition 2. Let M be an R-module with ACC on non Jacobson-small
submodules. Then M is JH.

Proof. We may assume M is nonzero with ACC on non Jacobson-small
submodules and that P is the property of being nonzero. By Lemma 3,
M is JH.

Proposition 3. Let M be an R-module. If M satisőes DCC on non
Jacobson-small submodules, then M is JH.
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Proof. Assume that M satisőes DCC on non Jacobson-small submodules
and M is not JH. Hence there exists an epimorphism f : M → M such
that K = Ker(f) is not a Jacobson-small submodule of M . Therefore each
submodule L of M , which contains K, is not a Jacobson-small submodule
of M . As M is not JH, then it is not generalized Hopőan and it is not
Artinian by [7, Remarks 1.19(i)]. Hence M/K ∼= M is not Artinian and
there is a descending chain L1/K ⊃ L2/K ⊃ L3/K ⊃ ... of submodules
of M/K. Thus L1 ⊃ L2 ⊃ L3 ⊃ ... is a descending chain of non Jacobson-
small submodule of M , a contradiction.

Deőnition 2. [2]. An R-module M is said to be a Fitting module if for
any endomorphism f of M , there exists a positive integer n ⩾ 1 such that
M = Kerfn ⊕ Imfn.

Remark 2. The following facts are well known:

(1) Every Artinian and Noetherian R-module is Fitting. [1]
(2) Every Fitting R-module is Hopőan and co-Hopőan. [1]
(3) An R-module M is Fitting if and only if End(M) is strongly π-

regular. (i.e., for every f ∈ End(M) there exists g ∈ End(M) and
an integer n such that fn = gfn+1 = fn+1g). [2]

Proposition 4. Let M be an R-module with the property that for any
endomorphism f of M there exists an integer n ⩾ 1 such that Kerfn ∩
Imfn ≪J M . Then M is JH.

Proof. Let f : M → M be an endomorphism. There exists n ⩾ 1 such that
Kerfn ∩ Imfn ≪J M . If f is surjective then so is fn, i.e., Imfn = M ,
so we get that Kerfn ≪J M . But Kerf is a submodule of Kerfn, so by
Lemma 1 Kerf ≪J M , and M is JH.

Example 3. (1) Every proper submodule of semisimple module M is
Jacobson-small, then for any endomorphism f of M there exists an
integer n ⩾ 1 such that Kerfn ∩ Imfn ≪J M . Hence M is JH.

(2) If M is Noetherian, then for any endomorphism f of M there exists
an integer n ⩾ 1 such that Kerfn ∩ Imfn = 0. Hence M is JH.

Proposition 5. Any direct summand of a JH module M is JH.

Proof. Let L be a direct summand of M . Then there is a submodule N of
M such that M = L⊕N . Let f : L → L be a surjective endomorphism
of L, then f induces a surjective endomorphism of M , f ⊕ 1N : M → M
with (f ⊕ 1N )(l + n) = f(l) + n, where l ∈ L and n ∈ N . Since M is



A. El Moussaouy, A. Moniri Hamzekolaee, M. Ziane 125

JH, then Ker(f ⊕ 1N ) ≪J M , hence Kerf ≪J L by Lemma 1, and L
is JH.

Proposition 6. Let M = M1 ⊕M2. If for every i ∈ {1, 2}, Mi is a fully
invariant submodule of M , then M is JH if and only if Mi is JH for each
i ∈ {1, 2}.

Proof. ⇒) Clear from Proposition 5.
⇐) Let f = (fij) be a surjective endomorphism of M , where fij ∈

Hom(Mi,Mj) and i, j ∈ {1, 2}. As Mi is a fully invariant submodule of
M , then Hom(Mi,Mj) = 0 for every i, j ∈ {1, 2} with i ̸= j. Since f is
a surjective endomorphism, fii is a surjective endomorphism of Mi for
each i ∈ {1, 2}. As Mi is JH for each i ∈ {1, 2}, Ker(fii) ≪J Mi. Then
Ker(f) = Ker(f11)⊕Ker(f22) ≪J M1 ⊕M2 = M by Lemma 1. Hence
M is JH.

Deőnition 3. Let M and N be two R-modules. M is called Jacobson Hop-
őan relative to N , if for each epimorphism f : M → N , Ker(f) ≪J M .

By the above deőnition, an R-module M is Jacobson Hopőan if and
only if M is Jacobson Hopőan relative to M .

In the following Proposition, we characterize the Jacobson Hopőan
modules in terms of their direct summands and factor modules.

Proposition 7. Let M and N be two R-modules. Then the following are
equivalent:

(1) M is Jacobson Hopőan relative to N .
(2) For each L ⩽⊕ M , L is Jacobson Hopőan relative to N .
(3) For each L ⩽ M , M/L is Jacobson Hopőan relative to N .

Proof. (1) ⇒ (2) Let L ⩽⊕ M say M = L ⊕ K, where K ⩽ M and
f : L → N an epimorphism. Let π : M → L be the natural projection.
Then fπ : M → N is an epimorphism and so Ker(fπ) ≪J M by (1).
It is clear that Ker(fπ) = Ker(f) ⊕K. Thus Ker(f) ⊕K ≪J M . By
Lemma 1, Ker(f) ≪J L.

(2) ⇒ (1) Take L = M .
(1) ⇒ (3) Let L ⩽ M and f : M/L → N be an epimorphism. Then

fπ : M → N is an epimorphism, where π : M → M/L is the natu-
ral homomorphism. As Ker(fπ) = π−1(Ker(f)) and Ker(fπ) ≪J M ,
π(Ker(fπ)) = Ker(f) ≪J M/L by Lemma 1. Therefore M/L is Jacobson
Hopőan relative to N .

(3) ⇒ (1) Take L = 0.
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In the following Corollary, we characterize the rings R for which every
őnitely generated free R-module is JH.

Corollary 3. Let R be a ring. Then the following statements are equiva-
lent:

(1) Every őnitely generated free R-module is JH.
(2) Every őnitely generated projective R-module is JH.
(3) Mn(R) is JH as an Mn(R)-module for each n ⩾ 1.

Proof. (1) ⇒ (2) It is clear from Proposition 5.

(2) ⇒ (1) It is clear.

(1) ⇔ (3) Let n be a positive integer and S = Mn(R). By the proof of
Corollary 2 and Theorem 3, if Rn is JH, then HomR(R

n, Rn) is JH as an
S-module. Conversely, if S is JH as an S-module, then S ⊗S Rn is JH as
an R-module.

Deőnition 4. [3]. A module M is called semi Hopőan if any surjective
endomorphism of M has a direct summand kernel, i.e. any surjective
endomorphism of M splits.

Example 4. [3].

(1) Every semisimple module is semi Hopőan.
(2) By [8, Theorem 16(ii)], a vector space V over a őeld F is Hopőan

if and only if it is őnite dimensional. Thus an inőnite-dimensional
vector space over a őeld is semi Hopőan, but it is not Hopőan.

(3) Every module with D2 is semi Hopőan. (Recall that a module M
has D2 if any submodule N such that M/N is isomorphic to a direct
summand of M is a direct summand of M).

(4) Every quasi-projective module is semi Hopőan.

Proposition 8. Every semi Hopőan co-Hopőan R-module is JH.

Proof. Let M be a semi Hopőan co-Hopőan R-module and let f : M → M
be a surjective endomorphism. Since M is semi Hopőan, there exists
g : M → M , such that fg = 1, then g is a injective endomorphism,
since M is co-Hopőan, so g is automorphism, which shows that f is an
automorphism, then M is JH.
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