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On certain semigroups of contraction mappings
of a finite chain

A. Umar and M. M. Zubairu*
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ABSTRACT. Let[n] ={1,2,...,n} be a finite chain and let P,
(resp., T,) be the semigroup of partial transformations on [n] (resp.,
full transformations on [n]). Let CP,, = {a € P, : (for all z,y €
Dom «) |za —ya| < |z —y|} (resp., CT,, ={a €T, : (for all z,y €
[n]) |ra—ya| < |z—y|} ) be the subsemigroup of partial contraction
mappings on [n] (resp., subsemigroup of full contraction mappings
on [n]). We characterize all the starred Green’s relations on CP,,
and it subsemigroup of order preserving and/or order reversing
and subsemigroup of order preserving partial contractions on [n],
respectively. We show that the semigroups CP,, and CT,,, and some
of their subsemigroups are left abundant semigroups for all n but
not right abundant for n > 4. We further show that the set of
regular elements of the semigroup C7,, and its subsemigroup of
order preserving or order reversing full contractions on [n], each forms
a regular subsemigroup and an orthodox semigroup, respectively.

1. Introduction and preliminaries

Let [n] = {1,2,...,n} be a finite chain, a map « which has domain and
image both subsets of [n] is said to be a transformation. A transformation
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a whose domain is a subset of [n] (i.e., Doma C [n]) is said to be
partial, and it is said to be full if its domain is [n]. The collection of
all partial transformations of [n] (resp., full transformations of [n]) is
known as the partial transformation semigroup (resp., full transformation
semigroup), usually denoted by P, (resp., T,). A map « € P, is said
to be order preserving (resp., order reversing) if (for all z,y € Dom «)
x < y implies za < ya (resp., za > ya); is order decreasing if (for all
x € Doma) za < x; an isometry (i.e., distance preserving) if (for all
z,y € Doma) |za — ya| = |z — y|; a contraction if (for all z,y € Dom «)
[z —yal < |z —yl.

The full transformation semigroup 7, is known to be a regular semi-
group (see [[3], p.33. Ex.1]|). The idempotents in 7, do not form a sub-
semigroup for n > 2, however the semigroup generated by idempotents in
T, was investigated by Howie [22] in 1996.

Let

CP, ={a € Py: (forall z,y € Doma) |za — ya| < |z —y|}
and
OCP,, ={a € CP,, : (for all z,y € Doma) x < y implies za < ya}

be the subsemigroups of partial contractions and of order preserving partial
contractions of [n], respectively.

Further, notice that the collection of all order preserving or order
reversing partial contractions denoted by ORCP,, is a subsemigroup of
ORP,, (where ORP,, denotes the semigroup of order preserving or order
reversing partial transformations of [n]).

Moreover, let

CTn={a€eT,: (foral z,y € [n]) |za —ya| < |z —y|}, (1)

OCT, ={aeCT,: (for all z,y € [n]) x <y implies za < ya}, (2)

and

ORCT,, = OCT,U{a €CTy: (for all z,y€[n]) x <y implies za >ya}

(3)
be the subsemigroups of full contractions, of order preserving full con-
tractions and of order preserving or reversing full contractions on [n],
respectively. A general study of these semigroups was proposed in a 2013
research proposal by Umar and Alkharousi |9] supported by a grant from
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The Research Council of Oman (TRC). In the proposal 9], notations for
the semigroups and their subsemigroups were given, as such we maintain
the same notations in this paper. The earliest reference to contraction
mappings in the context of algebraic semigroup theory is in [28]. Later in
2012, Zhao and Yang [31] characterized the Green’s relations on the sub-
semigroup OCP,,. Recently, Adeshola and Umar [11] studied combinatorial
properties of certain subsemigroups of CT,, while Ali et al. [12,13] obtained
a necessary and sufficient condition for an element in CP,, and CT, to
be regular and also described all their Green’s equivalences. Most of the
results concerning regularity and Green’s relations for some subsemigroups
of CP,, can be deduced from the results obtained in Ali et al. [12,13]. Zhao
and Yang [31] have shown that the semigroup OCP,, is nonregular for
n > 2. Similarly, Ali et al. [12,13] have shown that the semigroups CP,,
and ORCP,, are nonregular for n > 2. Thus, there is a need to identify the
class of semigroups to which they belong, for example, whether they are
abundant semigroups [18] and/or idempotent-generated semigroups [22].
Therefore, this paper is a natural sequel to Ali et al. [12,13].

This section includes a brief introduction giving some basic definitions
and introducing some new concepts. In section 2, we characterize all the
starred Green’s relations on the semigroups CP,,, ORCP,, and OCP,, and
show that D* = J* (see [18]). We also show that the semigroups CP,,
ORCP,, and OCP,, (resp., the semigroups CT,, ORCT,, and OCT,),
are left abundant for all n» but not right abundant for n > 4. In section
3, we give a characterization of idempotent elements in C7T, and show
that product of two idempotents in C7, is not necessarily an idempotent.
Moreover, we show that the regular elements in CT,, forms a subsemigroup.
In section 4, we show that the semigroups ORCT, and OCT,, are left
quasi-adequate. In section 5, we explore some orthodox subsemigroups of
CT, and its Rees factor semigroups. For standard concepts in semigroup
theory, we refer the reader to Howie [19], Higgins [27] and Ganyushkin
and Mazorchuk [26].

Let a be an element of CP,, and let Dom «, Ima, h(a) and F(«)
denote, the domain of «, image of «, |[Imal and {x € Doma : za =
x} (i.e., the set of fixed points of «), respectively. For a, 5 € CP,,, the
composition of a and S is defined as z(ao ) = ((z)a)p for any x in
Dom af3 = (Im o N Dom B)a~!. Without ambiguity, we shall be using the
notation af to denote « o 3.

Next, given any transformation « in ORCP,, the domain of « is
partitioned into p — blocks by the relation kera = {(z,y) € Doma X
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Doma : za = ya} and so as in [21], o can be expressed as

a=<A1 A2 . AP) (1<p<n), (4)

Ty X2 ... Tp

where, 1 <21 <22 <...<xp<norl>x>x9>...>x, >n,and 4;
(1 < i < p) are equivalence classes under the relation ker o, i.e., A; = z;0~!
(1 <@ < p). Thus for the rest of the content of the paper we shall consider
a to be as expressed in equation (4) unless otherwise specified. Next, let
kerao = {41, Aa, ..., Ay} be the partition of Dom a.. Observe that in this
case, ker « is ordered under the usual ordering, i.e., A; < A; if and only if
i<jforalli,je{l,...,n}. Assuch 4; < Ay <... < A,. A subset T,
of Dom «v is said to be a transversal of the partition ker o if [A; N T =1
(1 <i < p). A transversal T, is said to be conver (resp., relatively convex)
if for all x,y € T,, with z < y and if z < z < y (2 € [n])(resp., z € Dom «),
then z € T,. Notice that every convex transversal is necessarily relatively
convex but not vice-versa. A transversal T, is said to be admissible if and
only if the map A; — t; ({ti} = AiNT,, i € {1,2,...,p}) is a contraction,
see [12]. Notice that every (relatively) convex transversal is admissible
but not wvice-versa.

An element a in a semigroup S is said to be an idempotent if and only
if a®> = a. It is well known that an element o € P,, is an idempotent if
and only if Ina = F(«a) = {x € Dom« : za = x}. Equivalently, « is an
idempotent if and only if z; € A; for 1 < i < p, that is to say the blocks
A; are stationary |21]. As usual E(S) denotes the set of all idempotents
in S. An element a € S is said to be regular if there exists b € S such
that a = aba.

The following lemmas from [11-13] would be useful in what follows:

Lemma 1 (|12, Lemma 1.3 and 13|, Lemma 1.4). Forn >4, let « € CP),
be such that there exists k € {2,...,p —1} (3 < p < n) and |Ax| > 2.
Suppose A; < Aj if and only if i < j for all i,j € {1,2,...,p}. Then
the partition ker a = {Ay, Aa, ..., Ap} of Doma has no relatively convex
transversal and hence has no admissible transversal.

Lemma 2 ([12], Lemma 1.8 and [13], Lemma 1.5). Let o € CP,, and let
A be a convex subset of Dom «. Then Aa is conver.

Lemma 3 (|11, Lemma 1.2). Let o € CT,,. Then Ima is convex.
Lemma 4 ([10], Corollary 1.15 and [13], Corollary 5.17). Let o« € ORCT .
Then « is regular if and only if min A, — z, = maxA; — 21 = d and
A ={x;i+d} ormin A, —x; =max A —x, =d and A; = {zp_it1 +d},
fori=2,...,p—1.
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2. Starred Green’s relations

Let S be a semigroup. The relation £* defined as (for all a,b € 5)
al*b if and only if a, b are related by the Green’s L relation in some
oversemigroup of 5, is known as the starred Green’s L relation. The
relation R* is defined dually, while the relation D* is defined as the join
of the relations £* and R*. The intersection of £L* and R* is denoted by
H*. A semigroup S is said to be left abundant (resp., right abundant) if
each L£*—class (resp., R*—class) contains an idempotent, and it is called
abundant if each L£*—class and each R*—class of S contains an idempotent.
An abundant semigroup S in which the set E(S), of its idempotents is
a subsemigroup of S is called quasi-adequate and if E(S) is commutative
then S is called adequate [2,17,18|. In the 1980s and 1990s, Fountain
and his students introduced and studied various classes of abundant and
adequate semigroups, for example see [1,2,24,25,33,34,37].

The class of abundant semigroups include in particular the class of
cancellative monoids, and any subsemigroup of a regular semigroup S
that contains E(S) is abundant [27]. The starred Green’s relations play
a role in the theory of abundant semigroups analogue to that of Green’s
relations in the theory of regular semigroups.

Many nonregular classes of transformation semigroups were shown
to be either abundant or adequate, for example see [4-7, 16,23, 30, 32].
Recently, AlKharousi et al. have shown that the semigroup OCZ,,, of
all order preserving one to one contraction maps of a finite chain is
adequate [14]. In this section we are going to show that the semigroups
CPyn, OCP,, CT,, and OCT,, are all left abundant (for all n) but not right
abundant for n > 4.

We shall use the following notation from ([19], Chapter 2). If U is
a subsemigroup of a semigroup S then a£Ub means that there exist
u,v € Ul such that ua = b and vb = a, while a£°b means that there
exist z,y € S! such that za = b and yb = a. Similarly, for the relation
R. Furthermore, We shall write 14 to denote a partial identity mapping
defined on A C [n].

Some of the earlier results concerning starred Green’s relations on
a transformation semigroup were obtained by Umar [4-7], where he de-
scribed all the starred relations on the semigroups of order decreasing full
and of order decreasing partial one-one transformations of a chain, these
papers marked the beginning of the study of these relations on a trans-
formation semigroup. Recently, Garba et al. characterized these relations
on the semigroup of full contraction maps and of order preserving full
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contraction maps of a finite chain: CT,, and OCT,, respectively [15]. In
this section, we characterize these relations on the more general semigroup
of partial contractions CP,, and its subsemigroups of order preserving or
order reversing partial contraction maps of a finite chain ORCP,,, and of
order preserving partial contraction maps of a finite chain OCP,,, respec-
tively. We equally show that the relations D* and J* coincide on these
semigroups.

To begin our investigation let us start with the following. The relations
L* and R* have the following characterizations as described in ([19],
Exercise 2.6.7-9) or as described in [17].

L£* = {(a,b) : (for all z,y € S*) azx = ay < bz = by} (5)

and
R* = {(a,b) : (for all z,y € S*) za = ya < xb = yb} (6)

It is worth noting that the relations £* and R* do not commute, in general.
Also, for regular semigroups, £ = £L* and R = R*.

Denote
az(Al Ay ... Ap> o B:<Bl By ... Bp>(1<p<n)7
xry T2 ... Tp Y1 Y2 .. Yp

(7)

We next give the characterizations of these relations on the semi-

groups CP,, ORCP, and OCP,, as follows: Let S be a semigroup in
{CP,,ORCP,,OCP,}.

Theorem 1. Let o, 5 € S be as expressed in equation (7). Then
(i) aL*B if and only if Ima = Im 3.
(il) aR*B if and only if ker o = ker 3.
(iii) aH*B if and only if Ima = Im B and ker o = ker 3.
(iv) aD*pB if and only if | Im o) = | Im B].
Proof. (i) Let «, 5 be elements in S € {CP,, ORCP,,, OCP,} such that
al*f and Im o = {z1,29,...,2p}. Further, let v = (ZEl T2 $p).

xr1T Ty ... a:p
Then clearly v € .S and

xry T2 ... Ip
« O = (X O 1[n]
ry T2 ... Tp

o 8o (:m T ... xp) = folp (by equation (5))

xry T2 ... Ip
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which implies that Imf5 C {z1,29,...,2,} = Ima or Imfg = & C
{z1,29,...,2p} = Ima. Similarly, in the same manner we can show
that Ima C Im 8. Thus, Ima = Im .

Conversely, suppose that Im ov = Im 8. Then by ([19], Exercise 2.6.17)
alLPr 3, and it follows from definition that a£*/3. Thus, the result follows.

(i) Suppose that «, 5 € S and «R*f. Now if (z,y) € ker a then there
are 3 instances. i.e., either z,y € Dom 8 or z,y ¢ Dom 8 or z € Dom 3
and y ¢ Dom . If z,y € Dom . Then (z,y) € ker « if and only if

(Dom a) (Dom a)
oa= o
T Y
=3 (DO;H oz) 0B = <D0;n a> o (by equation (6)).
S af=yp
< (x,y) € ker S.

If z,y ¢ Dom /3. Then

Dom« Dom«
(r2)e-a-(5).
& <D0m a) ca=0= (Dom a) oa (by equation (6)).

€T Y
< z,y ¢ Doma.

Finally if € Dom 8 and y ¢ Dom /3. Then (z,y) ¢ ker 5 if and only
if

<D0;na> 0f = <Do;na> Lo (Do;na) o
e () () ()

< 2z € Doma and y ¢ Dom a.
& (z,y) ¢ kera.

Hence ker oo = ker f3.

Conversely, suppose that ker o = ker 5. Then by ([19], Exercise 2.6.17)
aRPr B3, and it follows from definition that aR* 5.

(iii) This follows directly from (i) and (ii) above.

(iv) Suppose that aD*3. Then by (|19], Proposition 1.5.11) there exist
elements vi,7v2,...,%2n—1 € S such that al*y;, 1R y2, 12L*ys,. ..

)
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Yon—1R*B for some n € N. Thus, by (i) and (ii) we have Im o = Im ~q,
kery; = kervys, Im~s = Im~s..., kervs, 1 = ker 5. This implies
that |Ima| = [Im~y| = |Dom~;/kery| = |[Dom~s/kerys| = ... =
| Dom yo,,—1/ ker y2,,—1| = | Dom 3/ ker 8| = | Im f3.

Conversely, suppose |Im a| = | Im 3| where
o <A1 Ay ... Ap> and = <31 By ... Bp> (p<n) (8)
T Tz ... T Yi Y2 .- Yp

where we may without loss of generality assume that 1 <1 <xo < ... <
zp<nand 1<y <y2<...<yp<n Nowlet {x+1,2+2,...,2+p}
be an arbitrary convex subset of [n]. Notice that Im v and Im 3 are ordered.
Now consider

(A 4, _( Bi ... B,
m= <:U+1 x+p> and 7 = <x+1 . xA+Dp € CPn.
Then by Theorem 1 (i) and (ii), it follows that aR*y1 L*y9R*S which
imply aR*oL*oR*B. On the other hand suppose aR*oL*oR*3. This
means there exist v1,7 € CP, such that aR*y L *vR*B. It follows
that |Im«| = | Doma/ ker o] = |[Dom~;/kervi| = [Im~v;| = |Im~s| =

| Dom 2/ ker 2| = | Dom 3/ ker 5| = | Im 3|. This means by ([19], Propo-
sition 1.5.11) that aD*f, as required. O

In the last paragraph of the proof above, we have proved the following
lemma.

Lemma 5. Let S be a semigroup in {CP,, ORCP,, OCPy}. Then D* =
RroL*oR*.

The following theorem gives characterizations of starred Green’s rela-
tions for a semigroup S € {CT,, OCT,} from [15].

Theorem 2 (|15], Theorem 4.1). Let o, 5 be elements in S €{CT, OCT ,}
be as expressed in (7). Then we have the following:
(i) (o, B) € L* if and only if Ima = Im f3;
(i) (o, ) € R* if and only if ker a = ker f3;
(iii) (e, B) € H* if and only if Ima = Im 8 and ker o = ker 3;
(iv) (e, B) € D* if and only if |Im«| = | Im j].

)

Remark 1. (i) The statements of Theorems 1 and 2 are the same. However
the proofs are different since S € {CP,,, ORCP,,, OCP,,} contains partial
maps. In our proof of Theorem 2.1(i), we have to consider where Im
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could be empty, and in (ii) we have to consider the cases where either
z,y € Domp or x,y ¢ Dom 8 or x € Dom 8 and y ¢ Dom (3.

(ii) The starred Green’s relations characterizations in Theorem 2 also
hold in ORCT,,.

Proposition 1. Let S be a semigroup in {CP,, ORCPy}. Then forn > 5,
D* = R*oL*oR* # L*oR*oL*.

1 2 4 5 1 3
Proof. Let a = <1 9 4 5) and § = <1 3
Define

1 2 4 5 1 3 4 5
%:Q,239amwzg2zaa'
Then it is clear that aR*y1 L*yR*5. However, if alL*y1R*voL*S then
Imvy; = Ima = {1,2,4,5} and Im~, = Im 8 = {1,3,4,5}, but it is
impossible to find Dom~; = Dom~, C {1,2,3,4,5} that will admit the
two possible image sets and, for 77 and 5 to be contractions. Hence
D* £ L*OR*oL*. O

NGNS

g) be elements in S.

Proposition 2. On the semigroup OCP,, (n > 4), D* = R*oL*oR* #
L*oR*oL*.

1 2 4 1 3 4
Proof. Leta—<1 9 4> andﬂ-(l 3 4>.Deﬁne

1 2 4 1 3 4
%‘Q_QQaMW‘Q_QQ-
Then it is clear that aR*y1 L*yR*5. However, if alL*y1R*voL*5 then
Im~y; =Ima ={1,2,4} and Im~ye = Im 8 = {1, 3,4}, but it is impossible
to find Dom~y; = Dom~y C {1,2,3,4} that will admit the two possible
image sets and, for v, and 79 to be order preserving contractions. In fact

. 1 3 4 1 3 4
for 1 and =9 to be contractions, they must be <4 9 1) and <1 3 4>,

tivel 1 2 4 q 1 2 4 pectivelv. Notice that i
respectively or { |, ,)and |, o | respectively. Notice that in
the former 7 is a contraction but not order preserving, i.e., v1 ¢ OCP,,

and also in the latter v, is a contraction but not order preserving, i.e.,
Yo & OCP,,. Hence D* # L*oR*oL*. O

Fountain [18] introduced the notion of *—ideal to study the starred
Green’s relation J*. A left (resp., right) x—ideal of a semigroup S is
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defined as the left (resp., right) ideal of S for which L} C I (resp., R} C I)
for all @ € I. A subset I of a semigroup S is a x—ideal if it is both left
and right x—ideal of S. The principal x—ideal, J*(a), generated by a € S
is the intersection of all x—ideal of S containing a, where the relation J*
is defined as: aJ*b if and only if J*(a) = J*(b) for all a,b € S. We now
recognize the following lemma from Fountain [18].

Lemma 6 (|18], Lemma 1.7(3)). Let a, b be elements of a semigroup S.
Then b € J*(a) if and only if there are elements ag,ai,...,a, € S,
L1, L2, o Ty Y1 Y2, - Yn € ST such that a = ag, b = a, and
(ai,zia;—1y;) € D* fori=1,2,...,n.

As in [5], we immediately have:

Lemma 7. Let S be in {CP,,, ORCP,, OCP,}. Then for a,3 € S, a €
J*(B) implies | Im | < |Im S].

Proof. Let a € J*(f). Then by Lemma 6, there exist ng,m1...,1n, € S,
Ply--os Pl -, Tn € ST such that 8 = no, a = n,, and (9, pini—17) € D*
fori =1,2,...,n. Thus, by Theorem 1(iv), it implies that

| Tm ;| = | Im pni—17| < |Imn;| for i =1,2,... n,
which implies that |[Ima| < [Im j|. O
Notice that, D* C J* and together with Lemma 7 we have:

Corollary 1. On the semigroups CP,, ORCP, or OCP, we have
D* = TJ*.

We now are going to show in the next lemma that if S € {CP,,
OCP,,, ORCP,} then S is left abundant.

Lemma 8. Let S € {CP,, OCP,,,ORCP,}. Then S is left abundant.

Proof. Let @ € S and L}, be an L* — class of o in S, where o =
(A1 Ay ... Ap> (1 < p < n). Define v = (ﬂm To ... xp>‘

T xr2 ... Ip xry T2 ... Ip
Clearly 72 = v € S and Ima = Im+, therefore by Theorem 1(i), aL*y,
which means that v € L},. Thus, S is left abundant, as required. O

Theorem 3. Let S € {CP,,, ORCP,,, OCP,}. Then forn >4, S is not
right abundant.
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Proof. Let n =4 and consider o = (i {2’23} g) It is clear that « is
in S and
R C 1 {2,3} 4 1 {2,3} 4 1 {2,3} 4 1 {2,3} 4
@ = 12 3)’\3 2 1)’\2 3 4)'\4 3 2/}’
which has no idempotent element. [

Remark 2. Let S € {CP,,, ORCP,,, OCP,}. Then for 1 < n < 3, S is
right abundant.

The starred Green’s relations for the semigroups C7,, and OCT,, were
characterized by Garba et al. [15] and curiously they did not show whether
they are abundant or not. We are now going to show that the semigroup
CTy and its subsemigroups ORCT ,, and OCT,, are left abundant but not
right abundant, in general.

One of the essential differences between the usual Green’s relations
and their starred analogues is that £* and R* may not commute in an
arbitrary semigroup. However, in the case of CT,, ORCT, and OCT,,
they do commute as shown in the proposition below.

Proposition 3. Let S be a semigroup in {CT n, ORCT ,, OCT,}. Then
D* = L*oR*" = R*oL*.

Proof. Suppose aD*. Then by Theorem 2 (iv), | Im «| = | Im 3|. Notice
that Im a and Im § are convex by Lemma 3. Thus we can write o and /3
as:

Ar .0 A By ... B,
= = <
@ <x+1 x+p) and <y+1 y+p> (p<n) ()

where we may without loss of generality assume that 1 <z +1<z+4+2<
oo<zH+p<nand 1 <y+1l<y+2<...<y+p<n. Itisnow easy to
r+1 x+2 ... x+p

see that the map defined as
y+1 y+2 ... y+p

) is an isometry.

Therefore the maps defined as

. Ay Ao L Ap and . By B S Bp
ne y+1 y+2 ... y+p 2 z+1 =2+2 ... z+p
are also contractions in S. Thus by Theorem 2 (i) and (ii), it follows that
al*~y and 9 R* B which imply aL*oR*S. Similarly by Theorem 2 (i) and
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(ii), it is easy to see that aR*v; and v1£*S, which imply aR*oL*S. Tt
follows that:

D* C L*oR* C D" and D* C R*oL* C D*.
The result now follows. OJ

The following result is the version of a well known result about regular
semigroups that applies to the semigroup C7T,, and some of its subsemi-
groups. A similar version of this result about a nonregular semigroup was
recorded in (|4], Lemma 3.1).

Lemma 9. Let o, € S, where S € {CT,,,OCT,,, ORCT .}. If (o, B) €
D* and (o, af) € D*, then (a,a8) € R* and (a8, B) € L*.

Proof. Let (o, B) € D* and (o, af) € D*. Then by Theorem 2 (iv)
|Ima| = |[Im 5| = | Imaf|.

It follows that Im a8 = Im 3 and ker a8 = ker «v, which respectively implies
(ap,B) € L* and (o, af) € R* by Theorem 2 (i) and (ii), respectively. []

We now prove the following theorem:
Theorem 4. Let S € {CT,,OCT,,, ORCT n}. Then S is left abundant.

Proof. Let L}, be an L* — class of o in S. First notice that by Lemma 3
an arbitrary o € S can be expressed as

Ay Ay ... A
— <p<n).
@ <x+1 r+2 ... z+p (Isp<n)
Now consider
{1,2,...,2+1} x2+2 ... z+p—1 {x+p,x+p+1,...,n}
fy: GS.
z+1 z+2 ... x+p—1 T+0p

It is clear that ~ is an idempotent with Im o = Im+ so that v € L}, by
Theorem 1(i). This completes the proof. O

Now similarly, as in Theorem 3 we deduce the following remark.

Remark 3. Let S € {CT,,ORCT,,,OCT,}. Then
(i) for n >4, S is not right abundant;
(i) for 1 < n < 3, S is right abundant.
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3. Regular elements of CT,

A regular semigroup S is said to be orthodoz if E(S) is a subsemigroup
of S. An orthodox semigroup is said to be R-unipotent (resp., L-unipotent)
if every R-class (resp., every L-class) has a unique idempotent (see [27],
Exercise 1.2.19). If an orthodox semigroup S is both R and L-unipotent
then S is an inverse semigroup. For detailed account on regular semi-
groups, we refer the reader to [20,29, 36]. Regular elements in CT,, were
characterized in [12] and [13]|. Furthermore, we denote by Reg(S) to be
the collection of all regular elements of S. If A is a subset of S then (A)
denotes the semigroup generated by A. Moreover, (A) = A if and only if A
is a subsemigroup of S and if (4) = S then A is said to generate S. Recall
from section one that an element o € CT, is an idempotent if and only
if z; € A; for 1 < < p, that is to say the blocks A; are stationary [21].
We begin by recalling the following known characterization of regular
elements in CT,, from [10].

Theorem 5 ([10], Corollary 1.13 and [13], Theorem 5.15). Let o € CT .
Then « 1s reqular if and only if ker a has a convex transversal, T,.

We now have the following lemma.

Lemma 10. Let o € CT,, be as expressed in equation (4). Then o is
an idempotent if and only if Ima = T,,, where T, = {t +1,...,t + p}
(t+i1€ A, 1 <i<p)isa conver transversal of ker .

Proof. The result follows from the definition of an idempotent and the
fact that Im o and the transversal {t +1,...,t+ p} are necessarily convex
by Lemma 3 and Theorem 5, respectively. ]

Remark 4. It is worth noting that product of two idempotents in CT
is not necessarily an idempotent. For example, consider the idempotents

=3 O (049 )

in CT 4. The product €165 = <{1f} {3534}) is not an idempotent.

1 {2,3} 4
1 2 3
be expressed as a product of idempotents in CT 4. Notice that the only
idempotent in CT 4 with rank greater than 3 is the identity map which is

Moreover, the non-regular element o = € CT4 cannot
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not useful in product of idempotents. Furthermore the collection of all
idempotents in C7T 4 of rank 3 is

(G355 D)5 )08 )b

It is easy to verify that no products of idempotents from this collection
gives a. This shows that CT,, (n > 4) is not generated by idempotents.
We thus conclude from the above remark that (E(CT,,)) # E(CT»)
and (E(CT,)) #CTy (n > 4). The next result is from [35].
Proposition 4 ([35], Proposition 1). Let S be an arbitrary semigroup.
Then the following are equivalent:
(i) For all idempotents e and f of S, the element ef is reqular;
(ii) Reg(S) is a regular subsemigroup;
(iii) (E(S)) is a reqular semigroup.
Then we have the following lemma.
Lemma 11. Lete,7 € E(CTy). Then et is reqular.

Proof. Let e,7 € E(CTy). Then by Lemma 10 we may denote

A Ay LA B By ... By
€= and 7= / /
t41 t+2 ... t4p £ 41 £ +2 ..t +s
for some p, s € [n], where T, = {t+1,...,t+p} (t+i € A;,; 1 < i< p)and
T, ={t +1,...,t + s} (t+je Bj, 1 < j < s) are convex transversals of
Ker € and Ker 7, respectively. Now since T, = {t + 1,t + 2,...,t + p} is
convex, Teer = {(t + 1)er, (t +2)er, ..., (t + p)eT} whose elements are not
necessarily distinct but is nevertheless convex. Moreover, it is not difficult

to see that it is a convex transversal of Ker er. Hence by Theorem 5 et
is regular. O

As a consequence of Proposition 4 and Lemma 11 we have the following:

Corollary 2. Let CT,, be as defined in equation (1). Then we have
(i) Reg(CTn) is a regular subsemigroup of CT y;
(ii) (E(CTy)) is a reqular subsemigroup of CTp,.

Remark 5. It is worth noting that Reg(CT,) # (E(CT.)) (n > 2).
; ?) € Reg(CT32). Notice that E(CT2) =

1 2 1 2 1 2 o
{(1 1>,<2 2> , <1 2)}.However,ltlseasytoseethatfora1161,626

E(CT3), €162 # .

To see this, consider a =
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4. Semigroup of order preserving or order reversing full
contractions: ORCT,,

A semigroup S is said to be left quasi-adequate (resp., right quasi-
adequate) when it is left abundant (resp., right abundant) and its set of
idempotents forms a subsemigroup, and it is said to be quasi-adequate
when it is both left and right quasi-adequate. For a detailed account of
the structure theory and examples of quasi-adequate semigroups, we refer
the reader to [2] and [8], respectively. Now let Reg(ORCT ) denote the
set of all regular elements in ORCP,,. Then we have the following lemma:

Lemma 12. Let o € ORCT, be as expressed in equation (4). Then o is
reqular if and only if o is of the form

o {1,...,a+1} a+2 ... a+p—1 {a+p,...,n}
N x+1 r+2 ... z+p—1 T+p
or
o {1,...;0a+1} a+2 ... a+p—1 {a+p,...,n}
N x+p r+p—1 ... x+2 x+1 ’

Proof. Let a € ORCT p, be as expressed in equation (4). Now suppose « is
a regular element in ORCT,,. Then by the contrapositive of Lemma 1 we
see that kera = {A1,{a+2},...,{a+p—1}, Ap} (where A; < {a+2} <

- <{a+p—-1} < Ap). Now since « is regular, T,, = {max A, {a +
2},...,{a+p—1},min A} is convex. Therefore max A; = a + 1 and
min A, = a + p. The fact that « is a full map and ker « is ordered implies
Ay ={1,...,a+ 1} and 4, = {a + p,...,n}. Moreover, by Lemma 3,

Tooo =Imais convex say Ima = {x+ 1,2+ 2,..., 2+ p} and hence since
« is order preserving or reversing, we have:
o {1,...,a+1} a+2 ... a+p—1 {a+p,...,n}
N x+1 r+2 ... z+p—1 T+p
or
o {1,...,a+1} a—+2 . a+p—1 {a+p,...,n}
- T+ p r+p—1 ... x+2 z+1 ’

as required.
Conversely, if

o {1,...;a+1} a+2 a+3 ... a+p—1 {a+p,...,n}
a z+1 r+2 z+3 ... z+p-—1 x+p
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or

o {1,...;a+1} a+2 a+3 ...a+p—1{a+p,...,n}
a T +p r+p—1lax+p—2... x+2 x+1 ’

Notice that in either case, a + 1 = max{l,...,a + 1} and a + p =
min{a + p,...,n} and also both T, = {a + l,a + 2,...,a + p} and
Ima={z+1,2+2,...,2+p} are convex. It is easy to see from Lemma 4
that « is regular in either of the cases. O

Theorem 6. Reg(ORCT,,) is a reqular subsemigroup of ORCT,.

Proof. The proof follows from Corollary 2(i) coupled with the fact that
Reg(ORCT,,) = Reg(CT 1) NORCT . O

Now, we have the following lemma.

Lemma 13. Let € be an idempotent element in Reg(ORCT,,). Then €
can be expressed as

{1,...,a+1} a+2 a+3 ... a+p—1 {a+p,...,n}
a+1 a+2 a+3 ... a+p—1 a+p '

Proof. Let € € Reg(ORCT,,) be of height p. Then by Lemma 12 € can be
expressed as

. {1,...;a+1} a+2 a+3 ... a+p—1 {a+p,...,n}
n x+1 r+2 z+3 ... z+p-—1 T+p ’

However, since € is an idempotent, the blocks of kere are stationary
ie,z+1e{l,....a+1},z+pe€{a+p,...,n},andx+i=a+1i
(i =2,...,p—1). Notice also that T, = {a+ 1,...,a+ p} and Ime =
{z+1,...,2 4 p} are both convex, this means that a + 1 = z + 1 and
a+p=x+p Thus,x+i=a+i (i=1,...,p), which implies z = a, as
required. [

Theorem 7. Let ORCT, be as defined in equation (3). Then
Reg(ORCT,,) is orthodoz.

Proof. Let €,7 € E(Reg(ORCT,,)). Thus by Lemma 13 we may suppose

C_ {1,...;a+1} a+2 ... a+p—1 {a+p,...,n}
a a+1 a+2 ... a+p—1 a+p
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and

o ({1,...,b+1} b+2 ... b+s—1 {b+s,...,n}>
b+1 b+2 ... b+s—1 b+s
with p,s € {1,2,...,n}.

Let ¢ = max{a+1,b+ 1} and d = min{a + p, b+ s} and let the blocks
of the product er be Dy, Do, ..., Dy, where k < min{p, s}. It is worth
noting that F(e) N F(1) # @, since € and 7 are full maps, and therefore
¢ < dandso F(er) ={c,...,d}. We shall consider four subcases:

(i) fa+l1=canda+p=dthenb+1<a+1and a+p < b+s. Using
convexity, it is now not difficult to see that D1 = {1,...,a + 1},
D;={a+i} (i=2,...,k—1) and Dy = {a+p,...,n}. Moreover,
Dier = a+1=maxD; and Dyer = a + p = min Dy,. Hence €7 is
an idempotent;

(ii) If a+1 = c and b+ s = d. Using convexity, it is now not difficult to
see that D1 ={1,...,a+ 1}, D; ={a+i} (i =2,...,k—1) and
Dy C [b+s,a+p|U{a+p,...,n}. Moreover, DieT = a+1 = max D,
and Dyer = b+ s = min Dy. Hence e7 is an idempotent;

(iii) Ifb+1=cand a+p=d. If a+1 = c and b+ s = d. Using convexity,
it is now not difficult to see that D; C {1,...,a+1}U[a+p,b+ 1],
D;={a+i} (i=2,...,k—1) and Dy = {a+p,...,n}. Moreover,
Dier = b+ 1 =max Dy and Dier = a + p = min Dj.. Hence €7 is
an idempotent;

(iv) If b4+ 1 = ¢ and b+ s = d. Using convexity, it is now not difficult
to see that Dy C {1,...,a+ 1} Ufa + p,b+ 1], D; = {a + i}
(1=2,...,k—1) and Dk [b+ s, a+p]U{a+p,...,n}. Moreover,
Dier = b+ 1 =max Dy and Drer = b+ s = min D;.. Hence €7 is
an idempotent.

Therefore, in either eventuality er € E(Reg(ORCT,,)).

Notice that Reg(ORCT,,) is a subsemigroup of ORCT,, by Theorem 6.
Thus Reg(ORCT,,) is orthodox, as required. O

We verify case 1 of the above proof with the following example:

Example 1. Choose n =8, a = 3, b =1 so that ¢ = 4. Let p = 4 and
s=7. Then a +p < b+ s. Now

:<{1,2;13,4} 5 6 {7,8}) and = ({1 .2}

3 4 5 {6,7,8}
56 7 2 345 '

6
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Thus Dy ={1,2,3,4}, Dy = {5} and D3 = {6,7,8}. Furthermore, D; =
{1,2,3,4}er = 4, Dy = {5}er = 5 and D3 = {6,7,8}er = 6. Hence the

product
__ ({1234 5 {6,7,8}
N 4 5 6

is an idempotent and it is easy to verify that £ < min{4,5} and also
F(er) ={4,5,6}.

Next, we are now going to show that Reg(ORCT,,) is indeed a special
orthodox semigroup. However, first we establish the following lemmas:

Lemma 14. Reg(ORCT,,) is an L-unipotent semigroup.

Proof. Let

Ar a+2 ... a+p-1 A,
o =
r+1 =z4+2 ... x4+p—1 x+p

be an arbitrary element of Reg(ORCT,,). It is enough to show that every
L, contains a unique idempotent. However, the map

. {1,...,2+1} z+2 ... z+p—-1 {z+p,...,n}
a x+1 r+2 ... z+p—1 x+p
is obviously the unique idempotent in L, as required. O

We now have as a consequence of Theorems 4 and 7 the following
result:

Theorem 8. Let S be a semigroup in {ORCT,,, OCT,}. Then S is left
quasi-adequate.

Notice that Reg(ORCT,,) is not an R-unipotent semigroup for n > 2.
To see this, consider o = <[Z]) and o = (Zﬂ) where z',z € [n] (n > 2)

and z # & are distinct idempotents in Ry.

Remark 6. (i) The results proved in this section for the semigroup
ORCT,, hold when ORCT,, is replaced with OCT,,.

(ii) The results proved in this section for the semigroup ORCT,, do
not necessarily hold when ORCT,, is replaced with ORCP,,. This is due
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to the fact that product of regular elements in ORCP,, is not necessarily
regular. For example, consider the regular elements

G3) e (750

. _ 1 4\ /{1,2} 3 4\ (1 4).
in ORCP4. Their product (1 4>< 4 3 2) = <4 2) is not reg-

ular.

5. Rees quotients of Reg(ORCT,)

In this section we construct a Rees quotient semigroup from
Reg(ORCT,) and show that it is an inverse semigroup. For n > p > 2,
let

K(n,p) = {a € Reg(ORCT,,) : |Imal < p} (10)

be the two-sided ideal of Reg(ORCT,,) consisting of all elements of height
less than or equal to p. Further, let

@p(n) = K(n,p)/K(n,p—1) (11)

be the Rees factor or quotient semigroup on the two-sided ideal K (n,p).
The product of two elements in Qp(n) is zero if its height is less than p,
otherwise it is as in Reg(ORCT ).

Immediately, we have the following lemma.

Theorem 9. The semigroup Q,(n) is an inverse semigroup.

Proof. Tt is clear from Lemma 14 that @Q,(n) is £L-unipotent. To show it
is R-unipotent, let o € Qp(n), where

o {1,...,a+1} a+2 ... a+p—1 {a+p,...,n} (p>2),
r+1 r+2 ... z4+p—1 Tr+p
and consider R,—class. Notice that the map defined as
. {1,...,a+1} a+2 ... a+p—1 {a+p,...,n}
N a+1 a+2 ... a+p—1 a+p

isin @Qp(n) and clearly ker o = ker e, thus € € R, by ([13], Corollary 5.3(ii)).
Furthermore, notice that the blocks of € are stationary, i.e., € is an idempo-
tent and obviously unique in R,. Hence Qp(n) is R-unipotent and hence
(Qp(n) is an inverse semigroup, as required. O
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Remark 7. The results proved in this section for the semigroup ORCT
hold when ORCT,, is replaced with OCT,,.

We conclude the paper with the following questions suggested by the
referee:
(i) When is the product of two regular elements in ORCP,, regular?
(ii) Is it possible to describe or characterize the idempotent generated
subsemigroup of CT,,7
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