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On certain semigroups of contraction mappings

of a finite chain

A. Umar and M. M. Zubairu∗

Communicated by V. Mazorchuk

Abstract. Let [n] = {1, 2, . . . , n} be a őnite chain and let Pn

(resp., Tn) be the semigroup of partial transformations on [n] (resp.,
full transformations on [n]). Let CPn = {α ∈ Pn : (for all x, y ∈
Domα) |xα− yα| ⩽ |x− y|} (resp., CT n = {α ∈ Tn : (for all x, y ∈
[n]) |xα−yα| ⩽ |x−y|} ) be the subsemigroup of partial contraction
mappings on [n] (resp., subsemigroup of full contraction mappings
on [n]). We characterize all the starred Green’s relations on CPn

and it subsemigroup of order preserving and/or order reversing
and subsemigroup of order preserving partial contractions on [n],
respectively. We show that the semigroups CPn and CT n, and some
of their subsemigroups are left abundant semigroups for all n but
not right abundant for n ⩾ 4. We further show that the set of
regular elements of the semigroup CT n and its subsemigroup of
order preserving or order reversing full contractions on [n], each forms
a regular subsemigroup and an orthodox semigroup, respectively.

1. Introduction and preliminaries

Let [n] = {1, 2, . . . , n} be a őnite chain, a map α which has domain and
image both subsets of [n] is said to be a transformation. A transformation
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α whose domain is a subset of [n] (i.e., Domα ⊆ [n]) is said to be
partial, and it is said to be full if its domain is [n]. The collection of
all partial transformations of [n] (resp., full transformations of [n]) is
known as the partial transformation semigroup (resp., full transformation
semigroup), usually denoted by Pn (resp., Tn). A map α ∈ Pn is said
to be order preserving (resp., order reversing) if (for all x, y ∈ Domα)
x ⩽ y implies xα ⩽ yα (resp., xα ⩾ yα); is order decreasing if (for all
x ∈ Domα) xα ⩽ x; an isometry (i.e., distance preserving) if (for all
x, y ∈ Domα) |xα− yα| = |x− y|; a contraction if (for all x, y ∈ Domα)
|xα− yα| ⩽ |x− y|.

The full transformation semigroup Tn, is known to be a regular semi-
group (see [[3], p.33. Ex.1]). The idempotents in Tn do not form a sub-
semigroup for n ⩾ 2, however the semigroup generated by idempotents in
Tn was investigated by Howie [22] in 1996.

Let

CPn = {α ∈ Pn : (for all x, y ∈ Domα) |xα− yα| ⩽ |x− y|}

and

OCPn = {α ∈ CPn : (for all x, y ∈ Domα) x ⩽ y implies xα ⩽ yα}

be the subsemigroups of partial contractions and of order preserving partial
contractions of [n], respectively.

Further, notice that the collection of all order preserving or order
reversing partial contractions denoted by ORCPn is a subsemigroup of
ORPn (where ORPn denotes the semigroup of order preserving or order
reversing partial transformations of [n]).

Moreover, let

CT n = {α ∈ Tn : (for all x, y ∈ [n]) |xα− yα| ⩽ |x− y|}, (1)

OCT n = {α ∈ CT n : (for all x, y ∈ [n]) x ⩽ y implies xα ⩽ yα}, (2)

and

ORCT n = OCT n ∪ {α ∈ CT n : (for all x, y∈ [n]) x⩽y implies xα⩾yα}
(3)

be the subsemigroups of full contractions, of order preserving full con-
tractions and of order preserving or reversing full contractions on [n],
respectively. A general study of these semigroups was proposed in a 2013
research proposal by Umar and Alkharousi [9] supported by a grant from
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The Research Council of Oman (TRC). In the proposal [9], notations for
the semigroups and their subsemigroups were given, as such we maintain
the same notations in this paper. The earliest reference to contraction
mappings in the context of algebraic semigroup theory is in [28]. Later in
2012, Zhao and Yang [31] characterized the Green’s relations on the sub-
semigroup OCPn. Recently, Adeshola and Umar [11] studied combinatorial
properties of certain subsemigroups of CT n while Ali et al. [12,13] obtained
a necessary and sufficient condition for an element in CPn and CT n to
be regular and also described all their Green’s equivalences. Most of the
results concerning regularity and Green’s relations for some subsemigroups
of CPn can be deduced from the results obtained in Ali et al. [12,13]. Zhao
and Yang [31] have shown that the semigroup OCPn is nonregular for
n > 2. Similarly, Ali et al. [12,13] have shown that the semigroups CPn

and ORCPn are nonregular for n > 2. Thus, there is a need to identify the
class of semigroups to which they belong, for example, whether they are
abundant semigroups [18] and/or idempotent-generated semigroups [22].
Therefore, this paper is a natural sequel to Ali et al. [12, 13].

This section includes a brief introduction giving some basic deőnitions
and introducing some new concepts. In section 2, we characterize all the
starred Green’s relations on the semigroups CPn, ORCPn and OCPn and
show that D∗ = J ∗ (see [18]). We also show that the semigroups CPn,
ORCPn and OCPn (resp., the semigroups CT n, ORCT n and OCT n),
are left abundant for all n but not right abundant for n ⩾ 4. In section
3, we give a characterization of idempotent elements in CT n and show
that product of two idempotents in CT n is not necessarily an idempotent.
Moreover, we show that the regular elements in CT n forms a subsemigroup.
In section 4, we show that the semigroups ORCT n and OCT n are left
quasi-adequate. In section 5, we explore some orthodox subsemigroups of
CT n and its Rees factor semigroups. For standard concepts in semigroup
theory, we refer the reader to Howie [19], Higgins [27] and Ganyushkin
and Mazorchuk [26].

Let α be an element of CPn and let Dom α, Imα, h(α) and F (α)
denote, the domain of α, image of α, | Imα| and {x ∈ Domα : xα =
x} (i.e., the set of őxed points of α), respectively. For α, β ∈ CPn, the
composition of α and β is deőned as x(α ◦ β) = ((x)α)β for any x in
Domαβ = (Imα ∩Domβ)α−1. Without ambiguity, we shall be using the
notation αβ to denote α ◦ β.

Next, given any transformation α in ORCPn, the domain of α is
partitioned into p − blocks by the relation kerα = {(x, y) ∈ Domα ×
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Domα : xα = yα} and so as in [21], α can be expressed as

α =

(

A1 A2 . . . Ap

x1 x2 . . . xp

)

(1 ⩽ p ⩽ n), (4)

where, 1 ⩽ x1 < x2 < . . . < xp ⩽ n or 1 ⩾ x1 > x2 > . . . > xp ⩾ n, and Ai

(1 ⩽ i ⩽ p) are equivalence classes under the relation kerα, i.e.,Ai = xiα
−1

(1 ⩽ i ⩽ p). Thus for the rest of the content of the paper we shall consider
α to be as expressed in equation (4) unless otherwise speciőed. Next, let
kerα = {A1, A2, . . . , Ap} be the partition of Domα. Observe that in this
case, kerα is ordered under the usual ordering, i.e., Ai < Aj if and only if
i < j for all i, j ∈ {1, . . . , n}. As such A1 < A2 < . . . < Ap. A subset Tα

of Domα is said to be a transversal of the partition kerα if |Ai ∩ Tα| = 1
(1 ⩽ i ⩽ p). A transversal Tα is said to be convex (resp., relatively convex )
if for all x, y ∈ Tα with x ⩽ y and if x ⩽ z ⩽ y (z ∈ [n])(resp., z ∈ Domα),
then z ∈ Tα. Notice that every convex transversal is necessarily relatively
convex but not vice-versa. A transversal Tα is said to be admissible if and
only if the map Ai 7→ ti ({ti} = Ai∩Tα, i ∈ {1, 2, . . . , p}) is a contraction,
see [12]. Notice that every (relatively) convex transversal is admissible
but not vice-versa.

An element a in a semigroup S is said to be an idempotent if and only
if a2 = a. It is well known that an element α ∈ Pn is an idempotent if
and only if Imα = F (α) = {x ∈ Domα : xα = x}. Equivalently, α is an
idempotent if and only if xi ∈ Ai for 1 ⩽ i ⩽ p, that is to say the blocks
Ai are stationary [21]. As usual E(S) denotes the set of all idempotents
in S. An element a ∈ S is said to be regular if there exists b ∈ S such
that a = aba.

The following lemmas from [11ś13] would be useful in what follows:

Lemma 1 ([12], Lemma 1.3 and [13], Lemma 1.4). For n ⩾ 4, let α ∈ CPn

be such that there exists k ∈ {2, . . . , p − 1} (3 ⩽ p ⩽ n) and |Ak| ⩾ 2.
Suppose Ai < Aj if and only if i < j for all i, j ∈ {1, 2, . . . , p}. Then
the partition kerα = {A1, A2, . . . , Ap} of Domα has no relatively convex
transversal and hence has no admissible transversal.

Lemma 2 ([12], Lemma 1.8 and [13], Lemma 1.5). Let α ∈ CPn and let
A be a convex subset of Domα. Then Aα is convex.

Lemma 3 ([11], Lemma 1.2). Let α ∈ CT n. Then Imα is convex.

Lemma 4 ([10], Corollary 1.15 and [13], Corollary 5.17). Let α ∈ ORCT n.
Then α is regular if and only if minAp − xp = maxA1 − x1 = d and
Ai = {xi + d} or minAp − x1 = maxA1 − xp = d and Ai = {xp−i+1 + d},
for i = 2, . . . , p− 1.
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2. Starred Green’s relations

Let S be a semigroup. The relation L∗ deőned as (for all a, b ∈ S)
aL∗b if and only if a, b are related by the Green’s L relation in some
oversemigroup of S, is known as the starred Green’s L relation. The
relation R∗ is deőned dually, while the relation D∗ is deőned as the join
of the relations L∗ and R∗. The intersection of L∗ and R∗ is denoted by
H∗. A semigroup S is said to be left abundant (resp., right abundant) if
each L∗−class (resp., R∗−class) contains an idempotent, and it is called
abundant if each L∗−class and each R∗−class of S contains an idempotent.
An abundant semigroup S in which the set E(S), of its idempotents is
a subsemigroup of S is called quasi-adequate and if E(S) is commutative
then S is called adequate [2, 17, 18]. In the 1980s and 1990s, Fountain
and his students introduced and studied various classes of abundant and
adequate semigroups, for example see [1, 2, 24,25,33,34, 37].

The class of abundant semigroups include in particular the class of
cancellative monoids, and any subsemigroup of a regular semigroup S
that contains E(S) is abundant [27]. The starred Green’s relations play
a role in the theory of abundant semigroups analogue to that of Green’s
relations in the theory of regular semigroups.

Many nonregular classes of transformation semigroups were shown
to be either abundant or adequate, for example see [4ś7, 16, 23, 30, 32].
Recently, AlKharousi et al. have shown that the semigroup OCIn, of
all order preserving one to one contraction maps of a őnite chain is
adequate [14]. In this section we are going to show that the semigroups
CPn, OCPn, CT n and OCT n are all left abundant (for all n) but not right
abundant for n ⩾ 4.

We shall use the following notation from ([19], Chapter 2). If U is
a subsemigroup of a semigroup S then aLUb means that there exist
u, v ∈ U1 such that ua = b and vb = a, while aLSb means that there
exist x, y ∈ S1 such that xa = b and yb = a. Similarly, for the relation
R. Furthermore, We shall write 1A to denote a partial identity mapping
deőned on A ⊆ [n].

Some of the earlier results concerning starred Green’s relations on
a transformation semigroup were obtained by Umar [4ś7], where he de-
scribed all the starred relations on the semigroups of order decreasing full
and of order decreasing partial one-one transformations of a chain, these
papers marked the beginning of the study of these relations on a trans-
formation semigroup. Recently, Garba et al. characterized these relations
on the semigroup of full contraction maps and of order preserving full
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contraction maps of a őnite chain: CT n and OCT n, respectively [15]. In
this section, we characterize these relations on the more general semigroup
of partial contractions CPn and its subsemigroups of order preserving or
order reversing partial contraction maps of a őnite chain ORCPn, and of
order preserving partial contraction maps of a őnite chain OCPn, respec-
tively. We equally show that the relations D∗ and J ∗ coincide on these
semigroups.

To begin our investigation let us start with the following. The relations
L∗ and R∗ have the following characterizations as described in ([19],
Exercise 2.6.7-9) or as described in [17].

L∗ = {(a, b) : (for all x, y ∈ S1) ax = ay ⇔ bx = by} (5)

and
R∗ = {(a, b) : (for all x, y ∈ S1) xa = ya ⇔ xb = yb} (6)

It is worth noting that the relations L∗ and R∗ do not commute, in general.
Also, for regular semigroups, L = L∗ and R = R∗.

Denote

α =

(

A1 A2 . . . Ap

x1 x2 . . . xp

)

and β =

(

B1 B2 . . . Bp

y1 y2 . . . yp

)

(1 ⩽ p ⩽ n),

(7)
We next give the characterizations of these relations on the semi-

groups CPn, ORCPn and OCPn as follows: Let S be a semigroup in
{CPn,ORCPn,OCPn}.

Theorem 1. Let α, β ∈ S be as expressed in equation (7). Then
(i) αL∗β if and only if Imα = Imβ.
(ii) αR∗β if and only if kerα = kerβ.
(iii) αH∗β if and only if Imα = Imβ and kerα = kerβ.
(iv) αD∗β if and only if | Imα| = | Imβ|.

Proof. (i) Let α, β be elements in S ∈ {CPn,ORCPn,OCPn} such that

αL∗β and Imα = {x1, x2, . . . , xp}. Further, let γ =

(

x1 x2 . . . xp
x1 x2 . . . xp

)

.

Then clearly γ ∈ S and

α ◦

(

x1 x2 . . . xp
x1 x2 . . . xp

)

= α ◦ 1[n]

⇔ β ◦

(

x1 x2 . . . xp
x1 x2 . . . xp

)

= β ◦ 1[n] (by equation (5))
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which implies that Imβ ⊆ {x1, x2, . . . , xp} = Imα or Imβ = ∅ ⊆
{x1, x2, . . . , xp} = Imα. Similarly, in the same manner we can show
that Imα ⊆ Imβ. Thus, Imα = Imβ.

Conversely, suppose that Imα = Imβ. Then by ([19], Exercise 2.6.17)
αLPnβ, and it follows from deőnition that αL∗β. Thus, the result follows.

(ii) Suppose that α, β ∈ S and αR∗β. Now if (x, y) ∈ kerα then there
are 3 instances. i.e., either x, y ∈ Domβ or x, y /∈ Domβ or x ∈ Domβ
and y /∈ Domβ. If x, y ∈ Domβ. Then (x, y) ∈ kerα if and only if

(

Domα
x

)

◦ α =

(

Domα
y

)

◦ α

⇔

(

Domα
x

)

◦ β =

(

Domα
y

)

◦ β (by equation (6)).

⇔ xβ = yβ

⇔ (x, y) ∈ kerβ.

If x, y /∈ Domβ. Then
(

Domα
x

)

◦ β = ∅ =

(

Domα
y

)

◦ β

⇔

(

Domα
x

)

◦ α = ∅ =

(

Domα
y

)

◦ α (by equation (6)).

⇔ x, y /∈ Domα.

Finally if x ∈ Domβ and y /∈ Domβ. Then (x, y) /∈ kerβ if and only
if
(

Domα
x

)

◦ β =

(

Domα
x

)

̸= ∅ =

(

Domα
y

)

◦ β

⇔

(

Domα
x

)

◦ α =

(

Domα
x

)

̸= ∅ =

(

Domα
y

)

◦ α (by equation (6)).

⇔ x ∈ Domα and y /∈ Domα.

⇔ (x, y) /∈ kerα.

Hence kerα = kerβ.
Conversely, suppose that kerα = kerβ. Then by ([19], Exercise 2.6.17)

αRPnβ, and it follows from deőnition that αR∗β.
(iii) This follows directly from (i) and (ii) above.
(iv) Suppose that αD∗β. Then by ([19], Proposition 1.5.11) there exist

elements γ1, γ2, . . . , γ2n−1 ∈ S such that αL∗γ1, γ1R
∗γ2, γ2L

∗γ3, . . . ,
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γ2n−1R
∗β for some n ∈ N. Thus, by (i) and (ii) we have Imα = Im γ1,

ker γ1 = ker γ2, Im γ2 = Im γ3 . . . , ker γ2n−1 = kerβ. This implies
that | Imα| = | Im γ1| = |Dom γ1/ ker γ1| = |Dom γ2/ ker γ2| = . . . =
|Dom γ2n−1/ ker γ2n−1| = |Domβ/ kerβ| = | Imβ|.

Conversely, suppose | Imα| = | Imβ| where

α =

(

A1 A2 . . . Ap

x1 x2 . . . xp

)

and β =

(

B1 B2 . . . Bp

y1 y2 . . . yp

)

(p ⩽ n) (8)

where we may without loss of generality assume that 1 ⩽ x1 < x2 < . . . <
xp ⩽ n and 1 ⩽ y1 < y2 < . . . < yp ⩽ n. Now let {x+ 1, x+ 2, . . . , x+ p}
be an arbitrary convex subset of [n]. Notice that Imα and Imβ are ordered.
Now consider

γ1 =

(

A1 . . . Ap

x+ 1 . . . x+ p

)

and γ2 =

(

B1 . . . Bp

x+ 1 . . . x+ p

)

∈ CPn.

Then by Theorem 1 (i) and (ii), it follows that αR∗γ1L
∗γ2R

∗β which
imply αR∗oL∗oR∗β. On the other hand suppose αR∗oL∗oR∗β. This
means there exist γ1, γ2 ∈ CPn such that αR∗γ1L

∗γ2R
∗β. It follows

that | Imα| = |Domα/ kerα| = |Dom γ1/ ker γ1| = | Im γ1| = | Im γ2| =
|Dom γ2/ ker γ2| = |Domβ/ kerβ| = | Imβ|. This means by ([19], Propo-
sition 1.5.11) that αD∗β, as required.

In the last paragraph of the proof above, we have proved the following
lemma.

Lemma 5. Let S be a semigroup in {CPn,ORCPn,OCPn}. Then D∗ =
R∗oL∗oR∗.

The following theorem gives characterizations of starred Green’s rela-
tions for a semigroup S ∈ {CT n,OCT n} from [15].

Theorem 2 ([15], Theorem 4.1). Let α, β be elements in S∈{CT n,OCT n}
be as expressed in (7). Then we have the following:

(i) (α, β) ∈ L∗ if and only if Imα = Imβ;
(ii) (α, β) ∈ R∗ if and only if kerα = kerβ;
(iii) (α, β) ∈ H∗ if and only if Imα = Imβ and kerα = kerβ;
(iv) (α, β) ∈ D∗ if and only if | Imα| = | Imβ|.

Remark 1. (i) The statements of Theorems 1 and 2 are the same. However
the proofs are different since S ∈ {CPn,ORCPn,OCPn} contains partial
maps. In our proof of Theorem 2.1(i), we have to consider where Imβ
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could be empty, and in (ii) we have to consider the cases where either
x, y ∈ Domβ or x, y /∈ Domβ or x ∈ Domβ and y /∈ Domβ.

(ii) The starred Green’s relations characterizations in Theorem 2 also
hold in ORCT n.

Proposition 1. Let S be a semigroup in {CPn,ORCPn}. Then for n ⩾ 5,
D∗ = R∗oL∗oR∗ ̸= L∗oR∗oL∗.

Proof. Let α =

(

1 2 4 5
1 2 4 5

)

and β =

(

1 3 4 5
1 3 4 5

)

be elements in S.

Deőne

γ1 =

(

1 2 4 5
1 2 3 4

)

and γ2 =

(

1 3 4 5
1 2 3 4

)

.

Then it is clear that αR∗γ1L
∗γ2R

∗β. However, if αL∗γ1R
∗γ2L

∗β then
Im γ1 = Imα = {1, 2, 4, 5} and Im γ2 = Imβ = {1, 3, 4, 5}, but it is
impossible to őnd Dom γ1 = Dom γ2 ⊆ {1, 2, 3, 4, 5} that will admit the
two possible image sets and, for γ1 and γ2 to be contractions. Hence
D∗ ̸= L∗oR∗oL∗.

Proposition 2. On the semigroup OCPn (n ⩾ 4), D∗ = R∗oL∗oR∗ ̸=
L∗oR∗oL∗.

Proof. Let α =

(

1 2 4
1 2 4

)

and β =

(

1 3 4
1 3 4

)

. Deőne

γ1 =

(

1 2 4
1 2 3

)

and γ2 =

(

1 3 4
1 2 3

)

.

Then it is clear that αR∗γ1L
∗γ2R

∗β. However, if αL∗γ1R
∗γ2L

∗β then
Im γ1 = Imα = {1, 2, 4} and Im γ2 = Imβ = {1, 3, 4}, but it is impossible
to őnd Dom γ1 = Dom γ2 ⊆ {1, 2, 3, 4} that will admit the two possible
image sets and, for γ1 and γ2 to be order preserving contractions. In fact

for γ1 and γ2 to be contractions, they must be

(

1 3 4
4 2 1

)

and

(

1 3 4
1 3 4

)

,

respectively or

(

1 2 4
1 2 4

)

and

(

1 2 4
4 3 1

)

, respectively. Notice that in

the former γ1 is a contraction but not order preserving, i.e., γ1 /∈ OCPn

and also in the latter γ2 is a contraction but not order preserving, i.e.,
γ2 /∈ OCPn. Hence D∗ ̸= L∗oR∗oL∗.

Fountain [18] introduced the notion of ∗−ideal to study the starred
Green’s relation J∗. A left (resp., right) ∗−ideal of a semigroup S is
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deőned as the left (resp., right) ideal of S for which L∗
a ⊆ I (resp., R∗

a ⊆ I)
for all a ∈ I. A subset I of a semigroup S is a ∗−ideal if it is both left
and right ∗−ideal of S. The principal ∗−ideal, J∗(a), generated by a ∈ S
is the intersection of all ∗−ideal of S containing a, where the relation J ∗

is deőned as: aJ ∗b if and only if J∗(a) = J∗(b) for all a, b ∈ S. We now
recognize the following lemma from Fountain [18].

Lemma 6 ([18], Lemma 1.7(3)). Let a, b be elements of a semigroup S.
Then b ∈ J∗(a) if and only if there are elements a0, a1, . . . , an ∈ S,
x1, x2, . . . , xn, y1, y2, . . . , yn ∈ S1 such that a = a0, b = an and
(ai, xiai−1yi) ∈ D∗ for i = 1, 2, . . . , n.

As in [5], we immediately have:

Lemma 7. Let S be in {CPn,ORCPn,OCPn}. Then for α, β ∈ S, α ∈
J∗(β) implies | Imα| ⩽ | Imβ|.

Proof. Let α ∈ J∗(β). Then by Lemma 6, there exist η0, η1 . . . , ηn ∈ S,
ρ1, . . . , ρn, τ1, . . . , τn ∈ S1 such that β = η0,α = ηn and (ηi, ρiηi−1τi) ∈ D∗

for i = 1, 2, . . . , n. Thus, by Theorem 1(iv), it implies that

| Im ηi| = | Im ρiηi−1τi| ⩽ | Im ηi| for i = 1, 2, . . . , n,

which implies that | Imα| ⩽ | Imβ|.

Notice that, D∗ ⊆ J ∗ and together with Lemma 7 we have:

Corollary 1. On the semigroups CPn, ORCPn or OCPn we have
D∗ = J ∗.

We now are going to show in the next lemma that if S ∈ {CPn,
OCPn,ORCPn} then S is left abundant.

Lemma 8. Let S ∈ {CPn,OCPn,ORCPn}. Then S is left abundant.

Proof. Let α ∈ S and L∗
α be an L∗ − class of α in S, where α =

(

A1 A2 . . . Ap

x1 x2 . . . xp

)

(1 ⩽ p ⩽ n). Deőne γ =

(

x1 x2 . . . xp
x1 x2 . . . xp

)

.

Clearly γ2 = γ ∈ S and Imα = Im γ, therefore by Theorem 1(i), αL∗γ,
which means that γ ∈ L∗

α. Thus, S is left abundant, as required.

Theorem 3. Let S ∈ {CPn,ORCPn,OCPn}. Then for n ⩾ 4, S is not
right abundant.
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Proof. Let n = 4 and consider α =

(

1 {2, 3} 4
1 2 3

)

. It is clear that α is

in S and

R∗
α ⊆

{(

1 {2, 3} 4
1 2 3

)

,

(

1 {2, 3} 4
3 2 1

)

,

(

1 {2, 3} 4
2 3 4

)

,

(

1 {2, 3} 4
4 3 2

)}

,

which has no idempotent element.

Remark 2. Let S ∈ {CPn,ORCPn,OCPn}. Then for 1 ⩽ n ⩽ 3, S is
right abundant.

The starred Green’s relations for the semigroups CT n and OCT n were
characterized by Garba et al. [15] and curiously they did not show whether
they are abundant or not. We are now going to show that the semigroup
CT n and its subsemigroups ORCT n and OCT n are left abundant but not
right abundant, in general.

One of the essential differences between the usual Green’s relations
and their starred analogues is that L∗ and R∗ may not commute in an
arbitrary semigroup. However, in the case of CT n, ORCT n and OCT n,
they do commute as shown in the proposition below.

Proposition 3. Let S be a semigroup in {CT n,ORCT n,OCT n}. Then
D∗ = L∗oR∗ = R∗oL∗.

Proof. Suppose αD∗β. Then by Theorem 2 (iv), | Imα| = | Imβ|. Notice
that Imα and Imβ are convex by Lemma 3. Thus we can write α and β
as:

α =

(

A1 . . . Ap

x+ 1 . . . x+ p

)

and β =

(

B1 . . . Bp

y + 1 . . . y + p

)

(p ⩽ n) (9)

where we may without loss of generality assume that 1 ⩽ x+ 1 < x+ 2 <
. . . < x+ p ⩽ n and 1 ⩽ y+1 < y+2 < . . . < y+ p ⩽ n. It is now easy to

see that the map deőned as

(

x+ 1 x+ 2 . . . x+ p
y + 1 y + 2 . . . y + p

)

is an isometry.

Therefore the maps deőned as

γ1 =

(

A1 A2 . . . Ap

y + 1 y + 2 . . . y + p

)

and γ2 =

(

B1 B2 . . . Bp

x+ 1 x+ 2 . . . x+ p

)

are also contractions in S. Thus by Theorem 2 (i) and (ii), it follows that
αL∗γ2 and γ2R

∗β which imply αL∗oR∗β. Similarly by Theorem 2 (i) and
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(ii), it is easy to see that αR∗γ1 and γ1L
∗β, which imply αR∗oL∗β. It

follows that:

D∗ ⊆ L∗oR∗ ⊆ D∗ and D∗ ⊆ R∗oL∗ ⊆ D∗.

The result now follows.

The following result is the version of a well known result about regular
semigroups that applies to the semigroup CT n and some of its subsemi-
groups. A similar version of this result about a nonregular semigroup was
recorded in ([4], Lemma 3.1).

Lemma 9. Let α, β ∈ S, where S ∈ {CT n,OCT n,ORCT n}. If (α, β) ∈
D∗ and (α, αβ) ∈ D∗, then (α, αβ) ∈ R∗ and (αβ, β) ∈ L∗.

Proof. Let (α, β) ∈ D∗ and (α, αβ) ∈ D∗. Then by Theorem 2 (iv)

| Imα| = | Imβ| = | Imαβ|.

It follows that Imαβ = Imβ and kerαβ = kerα, which respectively implies
(αβ, β) ∈ L∗ and (α, αβ) ∈ R∗ by Theorem 2 (i) and (ii), respectively.

We now prove the following theorem:

Theorem 4. Let S ∈ {CT n,OCT n,ORCT n}. Then S is left abundant.

Proof. Let L∗
α be an L∗ − class of α in S. First notice that by Lemma 3

an arbitrary α ∈ S can be expressed as

α =

(

A1 A2 . . . Ap

x+ 1 x+ 2 . . . x+ p

)

(1 ⩽ p ⩽ n).

Now consider

γ =

(

{1, 2, . . . , x+1} x+2 . . . x+p−1 {x+p, x+p+1, . . . , n}
x+ 1 x+ 2 . . . x+ p− 1 x+ p

)

∈ S.

It is clear that γ is an idempotent with Imα = Im γ so that γ ∈ L∗
α by

Theorem 1(i). This completes the proof.

Now similarly, as in Theorem 3 we deduce the following remark.

Remark 3. Let S ∈ {CT n,ORCT n,OCT n}. Then
(i) for n ⩾ 4, S is not right abundant;
(ii) for 1 ⩽ n ⩽ 3, S is right abundant.
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3. Regular elements of CT n

A regular semigroup S is said to be orthodox if E(S) is a subsemigroup
of S. An orthodox semigroup is said to be R-unipotent (resp., L-unipotent)
if every R-class (resp., every L-class) has a unique idempotent (see [27],
Exercise 1.2.19). If an orthodox semigroup S is both R and L-unipotent
then S is an inverse semigroup. For detailed account on regular semi-
groups, we refer the reader to [20,29,36]. Regular elements in CT n were
characterized in [12] and [13]. Furthermore, we denote by Reg(S) to be
the collection of all regular elements of S. If A is a subset of S then ⟨A⟩
denotes the semigroup generated by A. Moreover, ⟨A⟩ = A if and only if A
is a subsemigroup of S and if ⟨A⟩ = S then A is said to generate S. Recall
from section one that an element α ∈ CT n is an idempotent if and only
if xi ∈ Ai for 1 ⩽ i ⩽ p, that is to say the blocks Ai are stationary [21].
We begin by recalling the following known characterization of regular
elements in CT n from [10].

Theorem 5 ([10], Corollary 1.13 and [13], Theorem 5.15). Let α ∈ CT n.
Then α is regular if and only if kerα has a convex transversal, Tα.

We now have the following lemma.

Lemma 10. Let α ∈ CT n be as expressed in equation (4). Then α is
an idempotent if and only if Imα = Tα, where Tα = {t + 1, . . . , t + p}
(t+ i ∈ Ai, 1 ⩽ i ⩽ p) is a convex transversal of kerα.

Proof. The result follows from the deőnition of an idempotent and the
fact that Imα and the transversal {t+1, . . . , t+ p} are necessarily convex
by Lemma 3 and Theorem 5, respectively.

Remark 4. It is worth noting that product of two idempotents in CT n

is not necessarily an idempotent. For example, consider the idempotents

ϵ1 =

(

1 2 {3, 4}
1 2 3

)

and ϵ2 =

(

{1, 2, 4} 3
4 3

)

in CT 4. The product ϵ1ϵ2 =

(

{1, 2} {3, 4}
4 3

)

is not an idempotent.

Moreover, the non-regular element α =

(

1 {2, 3} 4
1 2 3

)

∈ CT 4 cannot

be expressed as a product of idempotents in CT 4. Notice that the only
idempotent in CT 4 with rank greater than 3 is the identity map which is
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not useful in product of idempotents. Furthermore the collection of all
idempotents in CT 4 of rank 3 is
{(

1 2 {3, 4}
1 2 3

)

,

(

{1, 3} 2 4
3 2 4

)

,

(

{1, 2} 3 4
2 3 4

)

,

(

1 {2, 4} 3
1 2 3

)}

.

It is easy to verify that no products of idempotents from this collection
gives α. This shows that CT n (n ⩾ 4) is not generated by idempotents.

We thus conclude from the above remark that ⟨E(CT n)⟩ ≠ E(CT n)
and ⟨E(CT n)⟩ ≠ CT n (n ⩾ 4). The next result is from [35].

Proposition 4 ([35], Proposition 1). Let S be an arbitrary semigroup.
Then the following are equivalent:

(i) For all idempotents e and f of S, the element ef is regular;
(ii) Reg(S) is a regular subsemigroup;
(iii) ⟨E(S)⟩ is a regular semigroup.

Then we have the following lemma.

Lemma 11. Let ϵ, τ ∈ E(CT n). Then ϵτ is regular.

Proof. Let ϵ, τ ∈ E(CT n). Then by Lemma 10 we may denote

ϵ =

(

A1 A2 . . . Ap

t+ 1 t+ 2 . . . t+ p

)

and τ =

(

B1 B2 . . . Bs

t
′

+ 1 t
′

+ 2 . . . t
′

+ s

)

for some p, s ∈ [n], where Tϵ = {t+1, . . . , t+p} (t+ i ∈ Ai, 1 ⩽ i ⩽ p) and
Tτ = {t

′

+1, . . . , t
′

+ s} (t
′

+ j ∈ Bj , 1 ⩽ j ⩽ s) are convex transversals of
Ker ϵ and Ker τ , respectively. Now since Tϵ = {t+ 1, t+ 2, . . . , t+ p} is
convex, Tϵϵτ = {(t+1)ϵτ, (t+2)ϵτ, . . . , (t+ p)ϵτ} whose elements are not
necessarily distinct but is nevertheless convex. Moreover, it is not difficult
to see that it is a convex transversal of Ker ϵτ . Hence by Theorem 5 ϵτ
is regular.

As a consequence of Proposition 4 and Lemma 11 we have the following:

Corollary 2. Let CT n be as deőned in equation (1). Then we have
(i) Reg(CT n) is a regular subsemigroup of CT n;
(ii) ⟨E(CT n)⟩ is a regular subsemigroup of CT n.

Remark 5. It is worth noting that Reg(CT n) ̸= ⟨E(CT n)⟩ (n ⩾ 2).

To see this, consider α =

(

1 2
2 1

)

∈ Reg(CT 2). Notice that E(CT 2) =
{(

1 2
1 1

)

,

(

1 2
2 2

)

,

(

1 2
1 2

)}

. However, it is easy to see that for all ϵ1, ϵ2 ∈

E(CT 2), ϵ1ϵ2 ̸= α.
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4. Semigroup of order preserving or order reversing full

contractions: ORCT n

A semigroup S is said to be left quasi-adequate (resp., right quasi-
adequate) when it is left abundant (resp., right abundant) and its set of
idempotents forms a subsemigroup, and it is said to be quasi-adequate
when it is both left and right quasi-adequate. For a detailed account of
the structure theory and examples of quasi-adequate semigroups, we refer
the reader to [2] and [8], respectively. Now let Reg(ORCT n) denote the
set of all regular elements in ORCPn. Then we have the following lemma:

Lemma 12. Let α ∈ ORCT n be as expressed in equation (4). Then α is
regular if and only if α is of the form

α =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
x+ 1 x+ 2 . . . x+ p− 1 x+ p

)

or

α =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
x+ p x+ p− 1 . . . x+ 2 x+ 1

)

.

Proof. Let α ∈ ORCT n be as expressed in equation (4). Now suppose α is
a regular element in ORCT n. Then by the contrapositive of Lemma 1 we
see that kerα = {A1, {a+2}, . . . , {a+ p− 1}, Ap} (where A1 < {a+2} <
· · · < {a + p − 1} < Ap). Now since α is regular, Tα = {maxA1, {a +
2}, . . . , {a + p − 1},minAp} is convex. Therefore maxA1 = a + 1 and
minAp = a+ p. The fact that α is a full map and kerα is ordered implies
A1 = {1, . . . , a + 1} and Ap = {a + p, . . . , n}. Moreover, by Lemma 3,
Tαα = Imα is convex say Imα = {x+1, x+2, . . . , x+ p} and hence since
α is order preserving or reversing, we have:

α =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
x+ 1 x+ 2 . . . x+ p− 1 x+ p

)

or

α =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
x+ p x+ p− 1 . . . x+ 2 x+ 1

)

,

as required.
Conversely, if

α =

(

{1, . . . , a+ 1} a+ 2 a+ 3 . . . a+ p− 1 {a+ p, . . . , n}
x+ 1 x+ 2 x+ 3 . . . x+ p− 1 x+ p

)
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or

α =

(

{1, . . . , a+ 1} a+ 2 a+ 3 . . . a+ p− 1 {a+ p, . . . , n}
x+ p x+ p− 1 x+ p− 2 . . . x+ 2 x+ 1

)

.

Notice that in either case, a + 1 = max{1, . . . , a + 1} and a + p =
min{a + p, . . . , n} and also both Tα = {a + 1, a + 2, . . . , a + p} and
Imα = {x+1, x+2, . . . , x+p} are convex. It is easy to see from Lemma 4
that α is regular in either of the cases.

Theorem 6. Reg(ORCT n) is a regular subsemigroup of ORCT n.

Proof. The proof follows from Corollary 2(i) coupled with the fact that
Reg(ORCT n) = Reg(CT n) ∩ ORCT n.

Now, we have the following lemma.

Lemma 13. Let ϵ be an idempotent element in Reg(ORCT n). Then ϵ
can be expressed as

(

{1, . . . , a+ 1} a+ 2 a+ 3 . . . a+ p− 1 {a+ p, . . . , n}
a+ 1 a+ 2 a+ 3 . . . a+ p− 1 a+ p

)

.

Proof. Let ϵ ∈ Reg(ORCT n) be of height p. Then by Lemma 12 ϵ can be
expressed as

ϵ =

(

{1, . . . , a+ 1} a+ 2 a+ 3 . . . a+ p− 1 {a+ p, . . . , n}
x+ 1 x+ 2 x+ 3 . . . x+ p− 1 x+ p

)

.

However, since ϵ is an idempotent, the blocks of ker ϵ are stationary
i.e., x + 1 ∈ {1, . . . , a + 1}, x + p ∈ {a + p, . . . , n}, and x + i = a + i
(i = 2, . . . , p − 1). Notice also that Tϵ = {a + 1, . . . , a + p} and Im ϵ =
{x + 1, . . . , x + p} are both convex, this means that a + 1 = x + 1 and
a+ p = x+ p. Thus, x+ i = a+ i (i = 1, . . . , p), which implies x = a, as
required.

Theorem 7. Let ORCT n be as deőned in equation (3). Then
Reg(ORCT n) is orthodox.

Proof. Let ϵ, τ ∈ E(Reg(ORCT n)). Thus by Lemma 13 we may suppose

ϵ =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
a+ 1 a+ 2 . . . a+ p− 1 a+ p

)
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and

τ =

(

{1, . . . , b+ 1} b+ 2 . . . b+ s− 1 {b+ s, . . . , n}
b+ 1 b+ 2 . . . b+ s− 1 b+ s

)

with p, s ∈ {1, 2, . . . , n}.

Let c = max{a+1, b+1} and d = min{a+ p, b+ s} and let the blocks
of the product ϵτ be D1, D2, . . . , Dk, where k ⩽ min{p, s}. It is worth
noting that F (ϵ) ∩ F (τ) ̸= ∅, since ϵ and τ are full maps, and therefore
c ⩽ d and so F (ϵτ) = {c, . . . , d}. We shall consider four subcases:

(i) If a+1 = c and a+p = d then b+1 ⩽ a+1 and a+p ⩽ b+s. Using
convexity, it is now not difficult to see that D1 = {1, . . . , a + 1},
Di = {a+ i} (i = 2, . . . , k − 1) and Dk = {a+ p, . . . , n}. Moreover,
D1ϵτ = a+ 1 = maxD1 and Dkϵτ = a+ p = minDk. Hence ϵτ is
an idempotent;

(ii) If a+ 1 = c and b+ s = d. Using convexity, it is now not difficult to
see that D1 = {1, . . . , a + 1}, Di = {a + i} (i = 2, . . . , k − 1) and
Dk ⊆ [b+s, a+p]∪{a+p, . . . , n}. Moreover, D1ϵτ = a+1 = maxD1

and Dkϵτ = b+ s = minDk. Hence ϵτ is an idempotent;
(iii) If b+1 = c and a+p = d. If a+1 = c and b+s = d. Using convexity,

it is now not difficult to see that D1 ⊆ {1, . . . , a+ 1} ∪ [a+ p, b+ 1],
Di = {a+ i} (i = 2, . . . , k − 1) and Dk = {a+ p, . . . , n}. Moreover,
D1ϵτ = b+ 1 = maxD1 and Dkϵτ = a+ p = minDk. Hence ϵτ is
an idempotent;

(iv) If b+ 1 = c and b+ s = d. Using convexity, it is now not difficult
to see that D1 ⊆ {1, . . . , a + 1} ∪ [a + p, b + 1], Di = {a + i}
(i = 2, . . . , k− 1) and Dk ⊆ [b+ s, a+ p]∪ {a+ p, . . . , n}. Moreover,
D1ϵτ = b+ 1 = maxD1 and Dkϵτ = b+ s = minDk. Hence ϵτ is
an idempotent.
Therefore, in either eventuality ϵτ ∈ E(Reg(ORCT n)).

Notice that Reg(ORCT n) is a subsemigroup of ORCT n by Theorem 6.
Thus Reg(ORCT n) is orthodox, as required.

We verify case 1 of the above proof with the following example:

Example 1. Choose n = 8, a = 3, b = 1 so that c = 4. Let p = 4 and
s = 7. Then a+ p ⩽ b+ s. Now

ϵ =

(

{1, 2, 3, 4} 5 6 {7, 8}
4 5 6 7

)

and τ =

(

{1, 2} 3 4 5 {6, 7, 8}
2 3 4 5 6

)

.
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Thus D1 = {1, 2, 3, 4}, D2 = {5} and D3 = {6, 7, 8}. Furthermore, D1 =
{1, 2, 3, 4}ϵτ = 4, D2 = {5}ϵτ = 5 and D3 = {6, 7, 8}ϵτ = 6. Hence the
product

ϵτ =

(

{1, 2, 3, 4} 5 {6, 7, 8}
4 5 6

)

is an idempotent and it is easy to verify that k ⩽ min{4, 5} and also
F (ϵτ) = {4, 5, 6}.

Next, we are now going to show that Reg(ORCT n) is indeed a special
orthodox semigroup. However, őrst we establish the following lemma:

Lemma 14. Reg(ORCT n) is an L-unipotent semigroup.

Proof. Let

α =

(

A1 a+ 2 . . . a+ p− 1 Ap

x+ 1 x+ 2 . . . x+ p− 1 x+ p

)

be an arbitrary element of Reg(ORCT n). It is enough to show that every
Lα contains a unique idempotent. However, the map

ϵ =

(

{1, . . . , x+ 1} x+ 2 . . . x+ p− 1 {x+ p, . . . , n}
x+ 1 x+ 2 . . . x+ p− 1 x+ p

)

is obviously the unique idempotent in Lα, as required.

We now have as a consequence of Theorems 4 and 7 the following
result:

Theorem 8. Let S be a semigroup in {ORCT n,OCT n}. Then S is left
quasi-adequate.

Notice that Reg(ORCT n) is not an R-unipotent semigroup for n ⩾ 2.

To see this, consider α =

(

[n]
x

)

and α
′

=

(

[n]

x
′

)

where x
′

, x ∈ [n] (n ⩾ 2)

and x ̸= x
′

are distinct idempotents in Rα.

Remark 6. (i) The results proved in this section for the semigroup
ORCT n hold when ORCT n is replaced with OCT n.

(ii) The results proved in this section for the semigroup ORCT n do
not necessarily hold when ORCT n is replaced with ORCPn. This is due
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to the fact that product of regular elements in ORCPn is not necessarily
regular. For example, consider the regular elements

(

1 4
1 4

)

and

(

{1, 2} 3 4
4 3 2

)

in ORCP4. Their product

(

1 4
1 4

)(

{1, 2} 3 4
4 3 2

)

=

(

1 4
4 2

)

is not reg-

ular.

5. Rees quotients of Reg(ORCT n)

In this section we construct a Rees quotient semigroup from
Reg(ORCT n) and show that it is an inverse semigroup. For n ⩾ p ⩾ 2,
let

K(n, p) = {α ∈ Reg(ORCT n) : | Imα| ⩽ p} (10)

be the two-sided ideal of Reg(ORCT n) consisting of all elements of height
less than or equal to p. Further, let

Qp(n) = K(n, p)/K(n, p− 1) (11)

be the Rees factor or quotient semigroup on the two-sided ideal K(n, p).
The product of two elements in Qp(n) is zero if its height is less than p,
otherwise it is as in Reg(ORCT n).

Immediately, we have the following lemma.

Theorem 9. The semigroup Qp(n) is an inverse semigroup.

Proof. It is clear from Lemma 14 that Qp(n) is L-unipotent. To show it
is R-unipotent, let α ∈ Qp(n), where

α =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
x+ 1 x+ 2 . . . x+ p− 1 x+ p

)

(p ⩾ 2),

and consider Rα−class. Notice that the map deőned as

ϵ =

(

{1, . . . , a+ 1} a+ 2 . . . a+ p− 1 {a+ p, . . . , n}
a+ 1 a+ 2 . . . a+ p− 1 a+ p

)

is in Qp(n) and clearly kerα = ker ϵ, thus ϵ ∈ Rα by ([13], Corollary 5.3(ii)).
Furthermore, notice that the blocks of ϵ are stationary, i.e., ϵ is an idempo-
tent and obviously unique in Rα. Hence Qp(n) is R-unipotent and hence
Qp(n) is an inverse semigroup, as required.
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Remark 7. The results proved in this section for the semigroup ORCT n

hold when ORCT n is replaced with OCT n.

We conclude the paper with the following questions suggested by the
referee:

(i) When is the product of two regular elements in ORCPn regular?
(ii) Is it possible to describe or characterize the idempotent generated

subsemigroup of CT n?
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