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On the direct sum of dual-square-free modules
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Abstract. A module M is called square-free if it contains no
non-zero isomorphic submodules A and B with A ∩B = 0. Dually,
M is called dual-square-free if M has no proper submodules A and
B with M = A+B and M/A ∼= M/B. In this paper we show that
if M = ⊕i∈IMi, then M is square-free iff each Mi is square-free and
Mj and ⊕j ̸=i∈IMi are orthogonal. Dually, if M = ⊕n

i=1
Mi, then M

is dual-square-free iff each Mi is dual-square-free, 1 ⩽ i ⩽ n, and Mj

and ⊕n
i ̸=jMi are factor-orthogonal. Moreover, in the inőnite case, we

show that if M = ⊕i∈ISi is a direct sum of non-isomorphic simple
modules, then M is a dual-square-free. In particular, if M = A⊕B
where A is dual-square-free and B = ⊕i∈ISi is a direct sum of
non-isomorphic simple modules, then M is dual-square-free iff A
and B are factor-orthogonal; this extends an earlier result by the
authors in [2, Proposition 2.8].

Let R be an associative ring with identity. A right R-module M is
called square-free if it contains no non-zero isomorphic submodules A and
B with A ∩ B = 0. This notion was dualized in [1] as follows: a right
R-module M is called dual-square-free if M has no proper submodules A
and B with M = A+B and M/A ∼= M/B, and a ring R is called right
DSF -ring if R as a right R-module is a DSF -module. Subsequently, a
thorough investigation of DSF -modules was carried out in [2], where it was
shown that every DSF -module M is Dedekind őnite, and if in addition
M satisőes the őnite-exchange property, then M satisőes the substitution
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property and its endomorphism ring has stable range 1. Moreover, a
DSF -module M has the őnite exchange property iff M is clean, iff M
has the full exchange property. It was also shown in [2] that, maximal
submodules of a DSF -module are fully invariant; in particular a ring R
is a right DSF -ring iff every maximal right ideal of R is two-sided. The
latter class of rings is known in the literature by right quasi-duo rings,
and it is an open question if every right quasi-duo ring is left quasi-duo.

In [3, Lemma 2.17], the authors proved that an orthogonal direct sum
of two square-free modules is square-free. However, with a direct induction
argument we can show that if M = ⊕n

i=1Mi, then M is square-free iff each
Mi is square-free, 1 ⩽ i ⩽ n, and Mj and ⊕n

i ̸=jMi are orthogonal, where two
right R-modules M and N are called orthogonal if, no nonzero submodule
of M is isomorphic to a submodule of N . Moreover, in [2, Proposition 2.8],
the authors proved that if M = A⊕B where A is a dual-square-free module
and B is a őnite direct sum of non-isomorphic simple modules, then M
is a dual-square-free module if and only if A & B are factor-orthogonal,
where two right R-modules L and N are called factor-orthogonal if, no
nonzero factor of L is isomorphic to a factor of N .

In this paper we extend the aforementioned result on direct sums
of SF -modules to the inőnite case, and present a partial dualization in
the dual-square-free case. More precisely, we prove that if M = ⊕n

i=1Mi,
then M is dual-square-free iff each Mi is dual-square-free, 1 ⩽ i ⩽ n,
and Mj and ⊕n

i ̸=jMi are factor-orthogonal. Moreover, while the inőnite
case still remains open, we show that if M = ⊕i∈ISi is a direct sum of
non-isomorphic simple modules, then M is a dual-square-free module.
In particular, if M = A ⊕ B where A is a dual-square-free module and
B = ⊕i∈ISi is a direct sum of non-isomorphic simple modules, then M is
a dual-square-free module if and only if A & B are factor-orthogonal.

Theorem 1. If M = ⊕i∈IMi, then the following conditions are equivalent:

1) M is a square-free module;

2) Each Mi is square-free, i ∈ I, and Mj and ⊕j ̸=i∈IMi are orthogonal.

Proof. Observe őrst that, by [2, Lemma 2.17] and a straightforward in-
duction on n, one can show that if N = ⊕n

i=1Ni, then N is a square-free
module iff each Ni is square-free, 1 ⩽ i ⩽ n, and Nj and ⊕n

i ̸=jNi are
orthogonal.

(2) ⇒ (1). Let A ∼= B with A ∩ B = 0, where A,B ⊆ M . If x ∈ A,
then xR ∼= yR for some y ∈ B. But this means that, there is a őnite subset
F ⊆ I such that xR, yR ⊆ ⊕i∈FMi. By the aforementioned observation,
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since ⊕i∈FMi is square-free, xR = yR = 0. This shows that A = B = 0,
and M is square-free.

(1) ⇒ (2). Obvious, since the class of square-free modules is closed
under direct summands.

Corollary 1 ([2, Lemma 2.17]). If M = ⊕n
i=1Mi, then the following

conditions are equivalent:

1) M is a square-free module;

2) Each Mi is square-free, 1 ⩽ i ⩽ n, and Mj and ⊕n
i ̸=jMi are orthog-

onal.

Observe that if f : X −→ Y is a homomorphism and A is a submodule
of X, then f induces a homomorpism f̄ : X/A −→ Y/f(A) given by
f̄(x+A) = f(x) + f(A) with ker f̄ = (A+ ker f)/A. Moreover if f is an
epimorphism (monomorphism, isomorphism, resp.), then so is f̄ . Now, the
next lemma is well-known and therefore we don’t include a proof.

Lemma 1. Let M = M1⊕M2, A ⊆ M and f : M → M1 be the projection

map of M onto M1. Then A+M2 = f(A)+M2. In particular if f(A) = M1,

then M = A+M2.

Lemma 2. Let M = ⊕i∈IMi with each Mi a DSF -module, i ∈ I, and

Mj and ⊕i ̸=jMi are factor-orthogonal for every j ∈ I. For j ∈ I, let

fj : M → Mj be the projection map of M onto Mj. If A and B are

submodules of M with M = A+B and M
A

∼= M
B

, then fj(A) = fj(B) = Mj

and M = A+ (⊕i ̸=jMi) = B + (⊕i ̸=jMi).

Proof. We will only show that fj(A) = Mj , as the other equality fj(B) =
MJ can be done with a similar argument. Clearly, we have the following
epimorphism:

M

B
∼=

M

A

f̄j
−→

Mj

fj(A)
.

But then,
Mj

fj(A)
∼= M

X
, where X ⊆ M and B ⊆ X. Next, consider the

following epimorphism:

Mj

fj(A)
∼=

M

X

f̄j
−→

Mj

fj(X)
.

As before,
Mj

fj(X)
∼=

Mj

Y
, with Y ⊆ Mj and fj(A) ⊆ Y . Now, since

M = A + B = A + X , Mj = fj(M) = fj(A) + fj(X) = Y + fj(X).
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Inasmuchas Mj is a DSF -module, we infer that fj(X) = Mj . Now, by
Lemma 1, M = X + (⊕i ̸=jMi), and consequently

Mj

fj(A)
∼=

M

X
=

X + (⊕i ̸=jMi).

X
∼=

(⊕i ̸=jMi)

X ∩ (⊕i ̸=jMi)
.

Since Mj and (⊕i ̸=jMi) are factor-orthogonal, fj(A) = Mj , as required.
The last statement now follows from Lemma 1.

Theorem 2. Let M = M1 ⊕ M2 ⊕ · · · ⊕ Mn. Then the following are

equivalent:

1) M is a DSF -module.

2) Each Mi is a DSF -module, 1 ⩽ i ⩽ n, and Mj and ⊕n
i ̸=jMi are

factor-orthogonal.

Proof. (1) ⇒ (2). This is clear, since the class of DSF -modules is closed
under direct summands.

(2) ⇒ (1). We proceed by induction on n. Nothing need to be done
when n = 1. Assume that n ⩾ 2 and K = M1 ⊕M2 ⊕ · · · ⊕Mn−1 is a
DSF -module. Then M = K ⊕ Mn with K and Mn are DSF -modules
which are factor-orthogonal. We need to show that, if M = A+B with
M
A

∼= M
B

, then M = A = B. We will only show that M = A, as the
other equality can be veriőed the same way. By Lemma 2, M = A+K =
A+Mn = B +K = B +Mn. Now, we have:

K

A ∩K
∼=

A+K

A
=

M

A
∼=

M

B
=

B +Mn

B
∼=

Mn

B ∩Mn
.

Since K and Mn are factor-orthogonal, we get K = A ∩ K and so
K ⊆ A. Therefore, M = A+K = A, as required.

Lemma 3. If M = ⊕i∈ISi is a direct sum of non-isomorphic simple

modules, then M is a DSF -module.

Proof. Let M = A + B with M/A ∼= M/B. We need to show that
M = A = B. We will only show that M = A. Since M is semisimple,
A ∩ B ⊆⊕ M . Now, write, M = (A ∩ B) ⊕ T for a submodule T ⊆ M .
Therefore,A = (A ∩B)⊕(A∩T ) and B = (A ∩B)⊕(B∩T ). Consequently,

M = A+B = [(A ∩B)⊕ (A ∩ T )] + [(A ∩B)⊕ (B ∩ T )]

= (A ∩B)⊕ (A ∩ T )⊕ (B ∩ T ) = A⊕ (B ∩ T ) = B ⊕ (A ∩ T )

Since M is semisimple, we have A ⊆⊕ M and B ⊆⊕ M , with (A ∩ T ) ∼=
M/B ∼= M/A ∼= (B ∩T ). Now, if Si ⊈ A, for some i ∈ I, then Si ∩A = 0.
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Thus if f : A ⊕ (B ∩ T ) −→ (B ∩ T ) is the projection map of M onto
(B ∩ T ), then Si

∼= f(Si) ⊆ (B ∩ T ). But since (A ∩ T ) ∼= (B ∩ T ), we
infer that Si

∼= X ⊆ A, for some submodule X in A. Since Si is a fully
invariant submodule of M , X = Si, which is a contradiction. This shows
that Si ⊆ A for every i ∈ I, and M = A as required.

The next result extends the work of the authors in [2, Proposition 2.8].

Proposition 1. Let M = A ⊕ B where A is a DSF -module and B =
⊕i∈ISi is a direct sum of non-isomorphic simple modules. Then M is a

DSF -module if and only if A and B are factor-orthogonal.

Proof. Follows from both Theorem 2 and Lemma 3.
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