On the direct sum of dual-square-free modules

Y. Ibrahim and M. Yousif

Communicated by R. Wisbauer

Abstract. A module M is called square-free if it contains no non-zero isomorphic submodules A and B with $A \cap B=0$. Dually, M is called dual-square-free if M has no proper submodules A and B with $M=A+B$ and $M / A \cong M / B$. In this paper we show that if $M=\oplus_{i \in I} M_{i}$, then M is square-free iff each M_{i} is square-free and M_{j} and $\oplus_{j \neq i \in I} M_{i}$ are orthogonal. Dually, if $M=\oplus_{i=1}^{n} M_{i}$, then M is dual-square-free iff each M_{i} is dual-square-free, $1 \leqslant i \leqslant n$, and M_{j} and $\oplus_{i \neq j}^{n} M_{i}$ are factor-orthogonal. Moreover, in the infinite case, we show that if $M=\oplus_{i \in I} S_{i}$ is a direct sum of non-isomorphic simple modules, then M is a dual-square-free. In particular, if $M=A \oplus B$ where A is dual-square-free and $B=\oplus_{i \in I} S_{i}$ is a direct sum of non-isomorphic simple modules, then M is dual-square-free iff A and B are factor-orthogonal; this extends an earlier result by the authors in [2, Proposition 2.8].

Let R be an associative ring with identity. A right R-module M is called square-free if it contains no non-zero isomorphic submodules A and B with $A \cap B=0$. This notion was dualized in [1] as follows: a right R-module M is called dual-square-free if M has no proper submodules A and B with $M=A+B$ and $M / A \cong M / B$, and a ring R is called right $D S F$-ring if R as a right R-module is a $D S F$-module. Subsequently, a thorough investigation of $D S F$-modules was carried out in [2], where it was shown that every $D S F$-module M is Dedekind finite, and if in addition M satisfies the finite-exchange property, then M satisfies the substitution

[^0]property and its endomorphism ring has stable range 1. Moreover, a $D S F$-module M has the finite exchange property iff M is clean, iff M has the full exchange property. It was also shown in [2] that, maximal submodules of a $D S F$-module are fully invariant; in particular a ring R is a right $D S F$-ring iff every maximal right ideal of R is two-sided. The latter class of rings is known in the literature by right quasi-duo rings, and it is an open question if every right quasi-duo ring is left quasi-duo.

In [3, Lemma 2.17], the authors proved that an orthogonal direct sum of two square-free modules is square-free. However, with a direct induction argument we can show that if $M=\oplus_{i=1}^{n} M_{i}$, then M is square-free iff each M_{i} is square-free, $1 \leqslant i \leqslant n$, and M_{j} and $\oplus_{i \neq j}^{n} M_{i}$ are orthogonal, where two right R-modules M and N are called orthogonal if, no nonzero submodule of M is isomorphic to a submodule of N. Moreover, in [2, Proposition 2.8], the authors proved that if $M=A \oplus B$ where A is a dual-square-free module and B is a finite direct sum of non-isomorphic simple modules, then M is a dual-square-free module if and only if $A \& B$ are factor-orthogonal, where two right R-modules L and N are called factor-orthogonal if, no nonzero factor of L is isomorphic to a factor of N.

In this paper we extend the aforementioned result on direct sums of $S F$-modules to the infinite case, and present a partial dualization in the dual-square-free case. More precisely, we prove that if $M=\oplus_{i=1}^{n} M_{i}$, then M is dual-square-free iff each M_{i} is dual-square-free, $1 \leqslant i \leqslant n$, and M_{j} and $\oplus_{i \neq j}^{n} M_{i}$ are factor-orthogonal. Moreover, while the infinite case still remains open, we show that if $M=\oplus_{i \in I} S_{i}$ is a direct sum of non-isomorphic simple modules, then M is a dual-square-free module. In particular, if $M=A \oplus B$ where A is a dual-square-free module and $B=\oplus_{i \in I} S_{i}$ is a direct sum of non-isomorphic simple modules, then M is a dual-square-free module if and only if $A \& B$ are factor-orthogonal.

Theorem 1. If $M=\oplus_{i \in I} M_{i}$, then the following conditions are equivalent:

1) M is a square-free module;
2) Each M_{i} is square-free, $i \in I$, and M_{j} and $\oplus_{j \neq i \in I} M_{i}$ are orthogonal.

Proof. Observe first that, by [2, Lemma 2.17] and a straightforward induction on n, one can show that if $N=\oplus_{i=1}^{n} N_{i}$, then N is a square-free module iff each N_{i} is square-free, $1 \leqslant i \leqslant n$, and N_{j} and $\oplus_{i \neq j}^{n} N_{i}$ are orthogonal.
$(2) \Rightarrow(1)$. Let $A \cong B$ with $A \cap B=0$, where $A, B \subseteq M$. If $x \in A$, then $x R \cong y R$ for some $y \in B$. But this means that, there is a finite subset $F \subseteq I$ such that $x R, y R \subseteq \oplus_{i \in F} M_{i}$. By the aforementioned observation,
since $\oplus_{i \in F} M_{i}$ is square-free, $x R=y R=0$. This shows that $A=B=0$, and M is square-free.
$(1) \Rightarrow(2)$. Obvious, since the class of square-free modules is closed under direct summands.

Corollary 1 ([2, Lemma 2.17]). If $M=\oplus_{i=1}^{n} M_{i}$, then the following conditions are equivalent:

1) M is a square-free module;
2) Each M_{i} is square-free, $1 \leqslant i \leqslant n$, and M_{j} and $\oplus_{i \neq j}^{n} M_{i}$ are orthogonal.

Observe that if $f: X \longrightarrow Y$ is a homomorphism and A is a submodule of X, then f induces a homomorpism $\bar{f}: X / A \longrightarrow Y / f(A)$ given by $\bar{f}(x+A)=f(x)+f(A)$ with $\operatorname{ker} \bar{f}=(A+\operatorname{ker} f) / A$. Moreover if f is an epimorphism (monomorphism, isomorphism, resp.), then so is \bar{f}. Now, the next lemma is well-known and therefore we don't include a proof.

Lemma 1. Let $M=M_{1} \oplus M_{2}, A \subseteq M$ and $f: M \rightarrow M_{1}$ be the projection map of M onto M_{1}. Then $A+M_{2}=f(A)+M_{2}$. In particular if $f(A)=M_{1}$, then $M=A+M_{2}$.

Lemma 2. Let $M=\oplus_{i \in I} M_{i}$ with each M_{i} a $D S F$-module, $i \in I$, and M_{j} and $\oplus_{i \neq j} M_{i}$ are factor-orthogonal for every $j \in I$. For $j \in I$, let $f_{j}: M \rightarrow M_{j}$ be the projection map of M onto M_{j}. If A and B are submodules of M with $M=A+B$ and $\frac{M}{A} \cong \frac{M}{B}$, then $f_{j}(A)=f_{j}(B)=M_{j}$ and $M=A+\left(\oplus_{i \neq j} M_{i}\right)=B+\left(\oplus_{i \neq j} M_{i}\right)$.

Proof. We will only show that $f_{j}(A)=M_{j}$, as the other equality $f_{j}(B)=$ M_{J} can be done with a similar argument. Clearly, we have the following epimorphism:

$$
\frac{M}{B} \cong \frac{M}{A} \xrightarrow{\bar{f}_{j}} \frac{M_{j}}{f_{j}(A)}
$$

But then, $\frac{M_{j}}{f_{j}(A)} \cong \frac{M}{X}$, where $X \subseteq M$ and $B \subseteq X$. Next, consider the following epimorphism:

$$
\frac{M_{j}}{f_{j}(A)} \cong \frac{M}{X} \xrightarrow{\bar{f}_{j}} \frac{M_{j}}{f_{j}(X)}
$$

As before, $\frac{M_{j}}{f_{j}(X)} \cong \frac{M_{j}}{Y}$, with $Y \subseteq M_{j}$ and $f_{j}(A) \subseteq Y$. Now, since $M=A+B=A+X, M_{j}=f_{j}(M)=f_{j}(A)+f_{j}(X)=Y+f_{j}(X)$.

Inasmuchas M_{j} is a $D S F$-module, we infer that $f_{j}(X)=M_{j}$. Now, by Lemma $1, M=X+\left(\oplus_{i \neq j} M_{i}\right)$, and consequently

$$
\frac{M_{j}}{f_{j}(A)} \cong \frac{M}{X}=\frac{X+\left(\oplus_{i \neq j} M_{i}\right)}{X} \cong \frac{\left(\oplus_{i \neq j} M_{i}\right)}{X \cap\left(\oplus_{i \neq j} M_{i}\right)}
$$

Since M_{j} and $\left(\oplus_{i \neq j} M_{i}\right)$ are factor-orthogonal, $f_{j}(A)=M_{j}$, as required. The last statement now follows from Lemma 1.

Theorem 2. Let $M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$. Then the following are equivalent:

1) M is a $D S F$-module.
2) Each M_{i} is a DSF-module, $1 \leqslant i \leqslant n$, and M_{j} and $\oplus_{i \neq j}^{n} M_{i}$ are factor-orthogonal.

Proof. (1) $\Rightarrow(2)$. This is clear, since the class of $D S F$-modules is closed under direct summands.
$(2) \Rightarrow(1)$. We proceed by induction on n. Nothing need to be done when $n=1$. Assume that $n \geqslant 2$ and $K=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n-1}$ is a $D S F$-module. Then $M=K \oplus M_{n}$ with K and M_{n} are $D S F$-modules which are factor-orthogonal. We need to show that, if $M=A+B$ with $\frac{M}{A} \cong \frac{M}{B}$, then $M=A=B$. We will only show that $M=A$, as the other equality can be verified the same way. By Lemma $2, M=A+K=$ $A+M_{n}=B+K=B+M_{n}$. Now, we have:

$$
\frac{K}{A \cap K} \cong \frac{A+K}{A}=\frac{M}{A} \cong \frac{M}{B}=\frac{B+M_{n}}{B} \cong \frac{M_{n}}{B \cap M_{n}}
$$

Since K and M_{n} are factor-orthogonal, we get $K=A \cap K$ and so $K \subseteq A$. Therefore, $M=A+K=A$, as required.

Lemma 3. If $M=\oplus_{i \in I} S_{i}$ is a direct sum of non-isomorphic simple modules, then M is a DSF-module.

Proof. Let $M=A+B$ with $M / A \cong M / B$. We need to show that $M=A=B$. We will only show that $M=A$. Since M is semisimple, $A \cap B \subseteq \oplus$. Now, write, $M=(A \cap B) \oplus T$ for a submodule $T \subseteq M$. Therefore, $A=(A \cap B) \oplus(A \cap T)$ and $B=(A \cap B) \oplus(B \cap T)$. Consequently,

$$
\begin{aligned}
M & =A+B=[(A \cap B) \oplus(A \cap T)]+[(A \cap B) \oplus(B \cap T)] \\
& =(A \cap B) \oplus(A \cap T) \oplus(B \cap T)=A \oplus(B \cap T)=B \oplus(A \cap T)
\end{aligned}
$$

Since M is semisimple, we have $A \subseteq{ }^{\oplus} M$ and $B \subseteq{ }^{\oplus} M$, with $(A \cap T) \cong$ $M / B \cong M / A \cong(B \cap T)$. Now, if $S_{i} \nsubseteq A$, for some $i \in I$, then $S_{i} \cap A=0$.

Thus if $f: A \oplus(B \cap T) \longrightarrow(B \cap T)$ is the projection map of M onto $(B \cap T)$, then $S_{i} \cong f\left(S_{i}\right) \subseteq(B \cap T)$. But since $(A \cap T) \cong(B \cap T)$, we infer that $S_{i} \cong X \subseteq A$, for some submodule X in A. Since S_{i} is a fully invariant submodule of $M, X=S_{i}$, which is a contradiction. This shows that $S_{i} \subseteq A$ for every $i \in I$, and $M=A$ as required.

The next result extends the work of the authors in [2, Proposition 2.8].
Proposition 1. Let $M=A \oplus B$ where A is a $D S F$-module and $B=$ $\oplus_{i \in I} S_{i}$ is a direct sum of non-isomorphic simple modules. Then M is a $D S F$-module if and only if A and B are factor-orthogonal.

Proof. Follows from both Theorem 2 and Lemma 3.

References

[1] N. Ding, Y. Ibrahim, M. Yousif and Y. Zhou, D4-modules, Journal of Algebra and Its Applications 16, No. 5 (2017) 1750166 (25 pages).
[2] Y. Ibrahim and M. Yousif, Dual-Square-Free Modules, Comm. Algebra 47 (2019), 2954-2966.
[3] Y. Ibrahim and M. Yousif, Utumi Modules, Commun. Algebra 46 (2018) 870-886.

Contact information

Received by the editors: 17.04.2021.

[^0]: 2020 MSC: Primary 16D40, 16D50, 16D60; Secondary 16L30, 16L60, 16P20, 16P40, 16P60.

 Key words and phrases: square-free and dual-square-free modules, abelian and quasi-duo rings.

