On the direct sum of dual-square-free modules Y. Ibrahim and M. Yousif

Communicated by R. Wisbauer

ABSTRACT. A module M is called square-free if it contains no non-zero isomorphic submodules A and B with $A \cap B = 0$. Dually, M is called dual-square-free if M has no proper submodules A and B with M = A + B and $M/A \cong M/B$. In this paper we show that if $M = \bigoplus_{i \in I} M_i$, then M is square-free iff each M_i is square-free and M_j and $\bigoplus_{j \neq i \in I} M_i$ are orthogonal. Dually, if $M = \bigoplus_{i=1}^n M_i$, then Mis dual-square-free iff each M_i is dual-square-free, $1 \leq i \leq n$, and M_j and $\bigoplus_{i \neq j}^n M_i$ are factor-orthogonal. Moreover, in the infinite case, we show that if $M = \bigoplus_{i \in I} S_i$ is a direct sum of non-isomorphic simple modules, then M is a dual-square-free. In particular, if $M = A \oplus B$ where A is dual-square-free and $B = \bigoplus_{i \in I} S_i$ is a direct sum of non-isomorphic simple modules, then M is dual-square-free iff Aand B are factor-orthogonal; this extends an earlier result by the authors in [2, Proposition 2.8].

Let R be an associative ring with identity. A right R-module M is called square-free if it contains no non-zero isomorphic submodules A and B with $A \cap B = 0$. This notion was dualized in [1] as follows: a right R-module M is called dual-square-free if M has no proper submodules Aand B with M = A + B and $M/A \cong M/B$, and a ring R is called right DSF-ring if R as a right R-module is a DSF-module. Subsequently, a thorough investigation of DSF-modules was carried out in [2], where it was shown that every DSF-module M is Dedekind finite, and if in addition M satisfies the finite-exchange property, then M satisfies the substitution

²⁰²⁰ MSC: Primary 16D40, 16D50, 16D60; Secondary 16L30, 16L60, 16P20, 16P40, 16P60.

Key words and phrases: square-free and dual-square-free modules, abelian and quasi-duo rings.

property and its endomorphism ring has stable range 1. Moreover, a DSF-module M has the finite exchange property iff M is clean, iff M has the full exchange property. It was also shown in [2] that, maximal submodules of a DSF-module are fully invariant; in particular a ring R is a right DSF-ring iff every maximal right ideal of R is two-sided. The latter class of rings is known in the literature by right quasi-duo rings, and it is an open question if every right quasi-duo ring is left quasi-duo.

In [3, Lemma 2.17], the authors proved that an orthogonal direct sum of two square-free modules is square-free. However, with a direct induction argument we can show that if $M = \bigoplus_{i=1}^{n} M_i$, then M is square-free iff each M_i is square-free, $1 \leq i \leq n$, and M_j and $\bigoplus_{i\neq j}^{n} M_i$ are orthogonal, where two right R-modules M and N are called orthogonal if, no nonzero submodule of M is isomorphic to a submodule of N. Moreover, in [2, Proposition 2.8], the authors proved that if $M = A \oplus B$ where A is a dual-square-free module and B is a finite direct sum of non-isomorphic simple modules, then Mis a dual-square-free module if and only if A & B are factor-orthogonal, where two right R-modules L and N are called factor-orthogonal if, no nonzero factor of L is isomorphic to a factor of N.

In this paper we extend the aforementioned result on direct sums of SF-modules to the infinite case, and present a partial dualization in the dual-square-free case. More precisely, we prove that if $M = \bigoplus_{i=1}^{n} M_i$, then M is dual-square-free iff each M_i is dual-square-free, $1 \leq i \leq n$, and M_j and $\bigoplus_{i\neq j}^{n} M_i$ are factor-orthogonal. Moreover, while the infinite case still remains open, we show that if $M = \bigoplus_{i\in I} S_i$ is a direct sum of non-isomorphic simple modules, then M is a dual-square-free module. In particular, if $M = A \oplus B$ where A is a dual-square-free module and $B = \bigoplus_{i\in I} S_i$ is a direct sum of non-isomorphic simple modules, then M is a dual-square-free module if and only if A & B are factor-orthogonal.

Theorem 1. If $M = \bigoplus_{i \in I} M_i$, then the following conditions are equivalent:

- 1) M is a square-free module;
- 2) Each M_i is square-free, $i \in I$, and M_j and $\bigoplus_{i \neq i \in I} M_i$ are orthogonal.

Proof. Observe first that, by [2, Lemma 2.17] and a straightforward induction on n, one can show that if $N = \bigoplus_{i=1}^{n} N_i$, then N is a square-free module iff each N_i is square-free, $1 \leq i \leq n$, and N_j and $\bigoplus_{i\neq j}^{n} N_i$ are orthogonal.

 $(2) \Rightarrow (1)$. Let $A \cong B$ with $A \cap B = 0$, where $A, B \subseteq M$. If $x \in A$, then $xR \cong yR$ for some $y \in B$. But this means that, there is a finite subset $F \subseteq I$ such that $xR, yR \subseteq \bigoplus_{i \in F} M_i$. By the aforementioned observation, since $\bigoplus_{i \in F} M_i$ is square-free, xR = yR = 0. This shows that A = B = 0, and M is square-free.

 $(1) \Rightarrow (2)$. Obvious, since the class of square-free modules is closed under direct summands.

Corollary 1 ([2, Lemma 2.17]). If $M = \bigoplus_{i=1}^{n} M_i$, then the following conditions are equivalent:

- 1) M is a square-free module;
- 2) Each M_i is square-free, $1 \leq i \leq n$, and M_j and $\bigoplus_{i \neq j}^n M_i$ are orthogonal.

Observe that if $f: X \longrightarrow Y$ is a homomorphism and A is a submodule of X, then f induces a homomorphism $\overline{f}: X/A \longrightarrow Y/f(A)$ given by $\overline{f}(x+A) = f(x) + f(A)$ with ker $\overline{f} = (A + \ker f)/A$. Moreover if f is an epimorphism (monomorphism, isomorphism, resp.), then so is \overline{f} . Now, the next lemma is well-known and therefore we don't include a proof.

Lemma 1. Let $M = M_1 \oplus M_2$, $A \subseteq M$ and $f : M \to M_1$ be the projection map of M onto M_1 . Then $A + M_2 = f(A) + M_2$. In particular if $f(A) = M_1$, then $M = A + M_2$.

Lemma 2. Let $M = \bigoplus_{i \in I} M_i$ with each M_i a DSF-module, $i \in I$, and M_j and $\bigoplus_{i \neq j} M_i$ are factor-orthogonal for every $j \in I$. For $j \in I$, let $f_j : M \to M_j$ be the projection map of M onto M_j . If A and B are submodules of M with M = A + B and $\frac{M}{A} \cong \frac{M}{B}$, then $f_j(A) = f_j(B) = M_j$ and $M = A + (\bigoplus_{i \neq j} M_i) = B + (\bigoplus_{i \neq j} M_i)$.

Proof. We will only show that $f_j(A) = M_j$, as the other equality $f_j(B) = M_J$ can be done with a similar argument. Clearly, we have the following epimorphism:

$$\frac{M}{B} \cong \frac{M}{A} \xrightarrow{\bar{f}_j} \frac{M_j}{f_j(A)}.$$

But then, $\frac{M_j}{f_j(A)} \cong \frac{M}{X}$, where $X \subseteq M$ and $B \subseteq X$. Next, consider the following epimorphism:

$$\frac{M_j}{f_j(A)} \cong \frac{M}{X} \xrightarrow{\bar{f}_j} \frac{M_j}{f_j(X)}.$$

As before, $\frac{M_j}{f_j(X)} \cong \frac{M_j}{Y}$, with $Y \subseteq M_j$ and $f_j(A) \subseteq Y$. Now, since M = A + B = A + X, $M_j = f_j(M) = f_j(A) + f_j(X) = Y + f_j(X)$.

Inasmuchas M_j is a *DSF*-module, we infer that $f_j(X) = M_j$. Now, by Lemma 1, $M = X + (\bigoplus_{i \neq j} M_i)$, and consequently

$$\frac{M_j}{f_j(A)} \cong \frac{M}{X} = \frac{X + (\bigoplus_{i \neq j} M_i)}{X} \cong \frac{(\bigoplus_{i \neq j} M_i)}{X \cap (\bigoplus_{i \neq j} M_i)}.$$

Since M_j and $(\bigoplus_{i \neq j} M_i)$ are factor-orthogonal, $f_j(A) = M_j$, as required. The last statement now follows from Lemma 1.

Theorem 2. Let $M = M_1 \oplus M_2 \oplus \cdots \oplus M_n$. Then the following are equivalent:

- 1) M is a DSF-module.
- 2) Each M_i is a DSF-module, $1 \leq i \leq n$, and M_j and $\bigoplus_{i \neq j}^n M_i$ are factor-orthogonal.

Proof. $(1) \Rightarrow (2)$. This is clear, since the class of *DSF*-modules is closed under direct summands.

 $(2) \Rightarrow (1)$. We proceed by induction on n. Nothing need to be done when n = 1. Assume that $n \ge 2$ and $K = M_1 \oplus M_2 \oplus \cdots \oplus M_{n-1}$ is a DSF-module. Then $M = K \oplus M_n$ with K and M_n are DSF-modules which are factor-orthogonal. We need to show that, if M = A + B with $\frac{M}{A} \cong \frac{M}{B}$, then M = A = B. We will only show that M = A, as the other equality can be verified the same way. By Lemma 2, M = A + K = $A + M_n = B + K = B + M_n$. Now, we have:

$$\frac{K}{A \cap K} \cong \frac{A+K}{A} = \frac{M}{A} \cong \frac{M}{B} = \frac{B+M_n}{B} \cong \frac{M_n}{B \cap M_n}.$$

Since K and M_n are factor-orthogonal, we get $K = A \cap K$ and so $K \subseteq A$. Therefore, M = A + K = A, as required.

Lemma 3. If $M = \bigoplus_{i \in I} S_i$ is a direct sum of non-isomorphic simple modules, then M is a DSF-module.

Proof. Let M = A + B with $M/A \cong M/B$. We need to show that M = A = B. We will only show that M = A. Since M is semisimple, $A \cap B \subseteq^{\oplus} M$. Now, write, $M = (A \cap B) \oplus T$ for a submodule $T \subseteq M$. Therefore, $A = (A \cap B) \oplus (A \cap T)$ and $B = (A \cap B) \oplus (B \cap T)$. Consequently,

$$M = A + B = [(A \cap B) \oplus (A \cap T)] + [(A \cap B) \oplus (B \cap T)]$$
$$= (A \cap B) \oplus (A \cap T) \oplus (B \cap T) = A \oplus (B \cap T) = B \oplus (A \cap T)$$

Since M is semisimple, we have $A \subseteq^{\oplus} M$ and $B \subseteq^{\oplus} M$, with $(A \cap T) \cong M/B \cong M/A \cong (B \cap T)$. Now, if $S_i \notin A$, for some $i \in I$, then $S_i \cap A = 0$.

Thus if $f : A \oplus (B \cap T) \longrightarrow (B \cap T)$ is the projection map of M onto $(B \cap T)$, then $S_i \cong f(S_i) \subseteq (B \cap T)$. But since $(A \cap T) \cong (B \cap T)$, we infer that $S_i \cong X \subseteq A$, for some submodule X in A. Since S_i is a fully invariant submodule of M, $X = S_i$, which is a contradiction. This shows that $S_i \subseteq A$ for every $i \in I$, and M = A as required. \Box

The next result extends the work of the authors in [2, Proposition 2.8].

Proposition 1. Let $M = A \oplus B$ where A is a DSF-module and $B = \bigoplus_{i \in I} S_i$ is a direct sum of non-isomorphic simple modules. Then M is a DSF-module if and only if A and B are factor-orthogonal.

Proof. Follows from both Theorem 2 and Lemma 3.

References

- N. Ding, Y. Ibrahim, M. Yousif and Y. Zhou, D4-modules, Journal of Algebra and Its Applications 16, No. 5 (2017) 1750166 (25 pages).
- [2] Y. Ibrahim and M. Yousif, Dual-Square-Free Modules, Comm. Algebra 47 (2019), 2954-2966.
- [3] Y. Ibrahim and M. Yousif, Utumi Modules, Commun. Algebra 46 (2018) 870–886.

CONTACT INFORMATION

Yasser Ibrahim	Department of Mathematics, Faculty of Science,
	Cairo University, Giza, Egypt, and Department
	of Mathematics, Faculty of Science, Taibah
	University, Madina, Saudi Arabia.
	E-Mail(s): yfibrahim@sci.cu.edu.eg,
	yabdelwahab@taibahu.edu.sa
Mohamed Yousif	Department of Mathematics, The Ohio State
	University, Lima, Ohio 45804, USA.
	E-Mail(s): yousif.10osu.edu

Received by the editors: 17.04.2021.