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Online list coloring for signed graphs
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Abstract. We generalize the notion of online list coloring

to signed graphs. We define the online list chromatic number of a

signed graph, and prove a generalization of Brooks’ Theorem. We

also give necessary and sufficient conditions for a signed graph to

be degree paintable, or degree choosable. Finally, we classify the

2-list-colorable and 2-list-paintable signed graphs.

1. Introduction

One of the most classical results in graph coloring is Brooks’ Theorem:

Theorem 1 ([1]). Let G be a connected graph. Then χ(G) ⩽ ∆(G),
unless G is an odd cycle or a clique.

Recently, an analogue of Brooks’ theorem for signed graphs was proven
in [3]. Recall that a signed graph is a graph where each edge is labeled
positive or negative. Signed graph coloring was originally introduced by
Zaslavsky [6]. Recall that an unbalanced cycle is a cycle with an odd
number of negative edges, and a signed graph is unbalanced if it contains
an unbalanced cycle. Otherwise, it is balanced.

Theorem 2 ([3]). Let Σ be a simple connected signed graph. Then
χ(Σ) ⩽ ∆(Σ), unless Σ is a balanced odd cycle, unbalanced even cycle, or
a balanced clique.
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This theorem only applies to simple signed graphs; however, many
signed graphs in the literature allow parallel edges and loops. In this
paper, we prove a generalization of Brooks’ Theorem for signed graphs
with parallel edges. We go further: we generalize the notion of online list
coloring to signed graphs, and prove the natural generalization of Brooks’
Theorem for the online list chromatic number (or paintability number) of
a signed graph. The definitions of list coloring, the list chromatic number
χℓ(Σ), online list coloring, and the online list chromatic number χp(Σ)
are given in Section 3. Definitions of families of signed graphs, such as
double clique, are given in Section 2.

Theorem 1. Let Σ be a connected signed graph without loops. Then
χp(Σ) ⩽ ∆(Σ), unless Σ is a balanced odd cycle, unbalanced cycle, odd
double cycle, balanced clique, or a double clique. Moreover, if Σ is an
unbalanced odd cycle, then χℓ(Σ) = 2.

Some of the new graphs described in the theorem appear in Figure
1. A double graph consists of taking a simple graph and replacing every
edge with two edges, where one is positive and one is negative. We also
discuss the version of the theorem where we allow Σ to have negative
loops: however, the resulting classification is not as nice.

In Section 3, we generalize the notions of degree choosable and degree
paintable, and describe the signed graphs that fail to be degree choosable
or degree paintable. Recall that a block is a maximal biconnected subgraph.
A signed Gallai tree is a signed graph where each block is an odd cycle, a
balanced even cycle, and odd double cycle, a balanced clique, or a double
clique. Then we generalize a result of Erdős, Rubin, and Taylor [2]:

Theorem 2. Let Σ be a connected signed graph.
1) Σ is not degree choosable if and only if Σ is a signed Gallai tree

with no unbalanced odd cycle block.
2) Σ is not degree paintable if and only if Σ is a signed Gallai tree

with no intersecting unbalanced odd cycle blocks, and such that no
vertex v in an unbalanced odd cycle block B has a negative loop.

For signed graphs, there is a distinction between degree choosability
and degree paintability, where for ordinary graphs there is no distinction:
degree choosable graphs must be degree paintable.

The paper is organized as follows: first, we review terminology about
signed graphs, and then introduce online list coloring of signed graphs.
Then we prove some preliminary lemmas about paintability and choos-
ability. We focus on several families of signed graphs. Then we prove our
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result about degree paintability. Then we deduce our version of Brooks’
Theorem. Then, we classify all 2-paintable signed graphs, relying on the
similar classification of 2-list-choosable graphs appearing in [2]. Finally,
we end with some open questions about paintability.

2. Signed graphs

A signed graph is a pair Σ = (G, σ), where G = (V,E) is a graph and
σ : E → {+,−}. Given u, v ∈ V (Σ), and ϵ ∈ {+,−}, we use uvϵ to denote
an edge e between u and v such that σ(e) = ϵ. A cycle is balanced if the
product of all the edge labels are positive. If all cycles in a signed graph
are balanced, then the graph itself is balanced. A signed graph that is not
balanced is unbalanced. Equivalently, a signed graph is balanced if there
exists a bipartition of the vertex set V into sets A and B such that an
edge uvϵ is positive if and only if u, v both belong to the same set of the
bipartition (that is, u, v ∈ A or u, v ∈ B). We call such a bipartition a
balanced bipartition.

Switching a signed graph at a vertex v is done by negating the label on
every non-loop edge incident to v. We denote the switched graph by Σv.
Switching is a common operation in the theory of signed graphs because
many interesting properties of signed graphs are invariant under switching
operations: for instance, Σ is balanced if and only if Σv is balanced. In
Proposition 3, we show that Σ if f -choosable (or f -paintable) if and only
if Σv is f -choosable (respectively, f -paintable). Invariance under switching
operations often allows us to reduce the number of cases in various proofs.
Recall that Σ is balanced if and only if it is switch equivalent to a graph
with all positive edges. The underlying graph, Σ is obtained by removing
parallel edges, and removing signs.

There are few types of signed graphs that are important for this paper,
some of which appear in Figure 1 or Figure 3. We use dashed lines to denote
negative edges, and solid lines to denote positive edges. A balanced clique

is a simple balanced signed graph whose underlying graph is complete.
A double complete graph is a graph that has both positive and negative
edges between every pair of vertices. A double cycle is a signed graph
Σ obtained from a cycle graph by replacing every edge with two edges,
where one edge is positive and one is negative. Also, given a sequence
of positive integers a1, . . . , ak, a theta graph θa1,...,ak is a graph with two
distinguished vertices, x, and y, and k disjoint paths from x to y, of lengths
a1, a2, . . . , ak, respectively. A signed theta graph is a signed graph whose
underlying graph is a theta graph. In particular, parallel edges are allowed.
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Figure 1. Signed graphs, where dashed lines represent negative edges.

The degree of a vertex v is the number of edges incident to that vertex,
where loops are only counted once each. So the degree of a vertex on a
double cycle is 4, while the degree of a vertex on the double complete
graph on n vertices is 2n− 2.

3. Online list coloring

First, we review the definition of signed chromatic number from [3].
For n ∈ N, let M2n+1 = {−n,−n + 1, . . . ,−1, 0, 1, . . . , n}, and M2n =
M2n+1 \ {0}. A coloring of Σ is a function f : V → Mn, for some n, such
that, for every edge uvϵ we have f(u) ̸= ϵf(v). The chromatic number
χ(Σ) of a signed graph is the minimum n such that there is a proper
coloring f : V → Mn.

We extend the definition of list coloring to signed graphs. A list

assignment L : V → 2Z assigns a finite non-empty set of integers to each
vertex. A proper coloring c : V → Z is an L-coloring if c(v) ∈ L(v) for all
v. A graph is L-colorable if it has an L-coloring.

Given a function f : V → N, a list assignment is f -compatible if
|L(v)| ⩾ f(v) for all v ∈ V . A signed graph is f -choosable if there is an
L-coloring for every f -compatible list assignment L. A signed graph is
k-choosable if it is f -choosable, where f(v) = k for all v. The minimum
k such that this holds is the list chromatic number χℓ(Σ). Similarly, a
signed graph is degree choosable if it is d-choosable, where d is the degree
function of Σ.

Now, we extend the notion of online list coloring to signed graphs.
Online list coloring, or graph painting, was first introduced in [5] and
[7]. Given a function f : V → N, consider the following two player game,
with players Lister and Painter. In round 0, Lister presents the set of all
vertices whose lists contain color 0. Painter must then use color 0 on some
independent subset of these vertices, and cannot change this set in the
future. In each subsequent round k, Lister chooses some subset A of the
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vertices to contain color k in their lists, and some subset B of the vertices
to contain the color −k in their lists, subject to the constraint that no
vertex v has more than f(v) colors in its list. Then Painter chooses some
subset A′ ⊆ A to color k, and some subset B′ ⊆ B to color −k. Painter
wins if they succeed in obtaining a proper coloring. Alternatively, Lister
wins if, after the end of some round, there is an uncolored vertex v whose
list has size f(v).

If Painter has a winning strategy, then Σ is f -paintable. It is not hard
to see that f -paintability implies f -choosability: given an f -compatible
list assignment L, and a winning strategy, we can just simulate the game,
by having Lister add colors ϵi to L(v) at the (i+ 1)st round if and only if
ϵi ∈ L(v), with ϵ ∈ {+,−}. Then the game will terminate with a proper
G-coloring. A signed graph Σ is k-paintable if it is f -paintable, where
f(v) = k for all v ∈ V . Similarly, a signed graph is degree paintable if it is
d-paintable, where d is the degree function.

Now we show that f -choosability and f -paintability are invariant under
switching operations. For choosability, we can perform switching operations
on list assignments. Given a list L(v), we define −L(v) = {−x : x ∈ L(v)}.
Likewise, fix a list assignment L on a signed graph Σ. Given a vertex v,
we define the switching of L with respect to v to be the list assignment
Lv given by Lv(u) = L(u) when u ̸= v, and Lv(v) = −L(v).

Proposition 3. Let Σ be a signed graph with list assignment L, and let
v be a vertex. Then Σ is L-colorable if and only if Σv is Lv-colorable.

In particular, Σ is f -choosable if and only if Σv is f -choosable. Finally,
Σ is f -paintable if and only if Σv is f -paintable.

Proof. For each claim, it suffices to prove that ‘if Σ satisfies P, then Σv

satisfies P’. This is because we can apply this statement to Σv to obtain
‘if Σv satisfies P, then (Σv)v satisfies P’. Since (Σv)v = Σ, we obtain the
converse statement.

Fix a signed graph Σ, and let L be a list assignment for Σ. Suppose
that Σ is L-colorable. Let c : V → Z be an L-coloring. Fix a vertex v ∈ V .
Define cv : V → Z by cv(u) = c(u) if u ̸= v, and cv(v) = −c(v). Then
cv(u) ∈ Lv(u) for all u. Then cv is an Lv-coloring of Σv.

For the second result, suppose that Σ is f -choosable. Let L be a
list assignment for Σv such that |L(v)| ⩾ f(v) for all v. Then Lv is
f -compatible, and Σ is Lv-colorable. Thus Σv is (Lv)v-colorable. Since
(Lv)v = L, we have shown that Σv is f -choosable.

Note that for f -choosability, the idea was to switch the list assignment,
choose a coloring, and then switch the coloring. For f -paintability, the
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strategy is similar, but happens at each step: at each step, switch the list
assignment, then choose the coloring, then switch back. Now suppose that
Σ is f -paintable. Consider the following strategy for Σv for Painter: Painter
creates an auxiliary game with Σ. Every time Lister places ϵi ∈ L(u) in
Σv when u ≠ v, then Painter puts ϵi ∈ Lv(u) in Σ. When Lister places
ϵi ∈ L(v), then Painter puts −ϵi ∈ Lv(v). Then Painter copies the winning
strategy for Σ, choosing subsets A and B for Σ. If the vertex v does not
appear in A ∪ B, then Painter chooses those same subsets for Σv. If v
appears in one of those sets, then Painter moves it to the other set, creating
A′ and B′ for Σv. This strategy ensures that Painter is creating a proper
coloring for Σv, while also creating a proper coloring for Σ using lists of
the same size. Since we know that the Painter is using a winning strategy
for Σ, the auxiliary game must end with |Lv(u)| < f(u) for all v ∈ Σ.
Then |L(u)| < f(u) for all v ∈ Σv, and thus the Painter has a winning
strategy to f -paint Σv.

4. Lemmas on painting

In this section, we prove lemmas for determining whether or not a
signed graph is f -paintable or f -choosable. Given any signed graph Σ, the
graph Σ◦ is obtained from Σ by deleting all negative loops. Note that, for
A ⊂ V , we define eA(v) to be the number of edges between v and A.

Lemma 4. Let Σ be a signed graph, and let f : V → N. Let A ⊂ V . If
Σ[A] is f -paintable, and Σ \A is (f − eA)-paintable, then Σ is f -paintable.

Proof. We describe the winning strategy for Painter. By the hypothesis,
Painter has a winning strategy for f -painting Σ[A], and a winning strategy
for (f−eA)-painting Σ\A. Painter’s strategy is going to consist of creating
a list assignment L′ on Σ \ A such that L′(v) ⊆ L(v) for all v ∈ V \ A,
and |L′(v)| ⩽ f(v)− eA(v).

At the ith step, Lister adds color ±i to various lists. First, Painter
applies the winning strategy for Σ[A] to determine which vertices of A
get colored i or −i. Then, for each v ∈ V \A, and ϵ ∈ {+,−} if ϵi ∈ L(v),
and there is no signed edge uvη with u ∈ A that has been colored ηϵi,
then Painter adds ϵi to L′(v). Then Painter applies the winning strategy
for Σ \A with respect to the list assignment L′. Due to how we choose L′,
Painter always creates a proper coloring. Also, since Painter only removes
colors from lists when they correspond to edges between A and V \A, we
see that |L′(v)| ⩽ f(v)− eA(v) for all v ∈ V \A. Thus Painter successfully
paints both A and V \A.
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We apply our lemma to prove the following result:

Proposition 5. Let Σ be a connected signed graph, and let U ⊂ V be
nonempty. Let δU : V → {0, 1} be defined by δU (x) = 1 if and only if
x ∈ U . Then Σ is (d+ δU )-paintable.

Proof. We prove the result by induction on |V (Σ)|. Let x ∈ U . Let
U ′ = (U ∪ N(x)) \ {x}. Then Σ′ = Σ − x has components. Let C be a
component, and define V = U ′ ∩ C. Then by induction, C is (dC + δV )-
paintable. For each vertex u ∈ C \ (N(x) \ U), we have dΣ(u) ⩾ dC(u),
and δV (u) = δU (u). For u ∈ (N(x) ∩ C) \ U , we have dΣ(u) = dC(u)− 1
and δV (u) = δU (u) + 1. Thus C is (dΣ + δU )-paintable. This is true for
every component, so Σ′ is (dΣ + δU )-paintable. Since x is also 1-paintable,
the result follows from Lemma 4 with A = V \ {x}.

Note that our proof gives a winning strategy: choose x ∈ U , and order
vertices as v1, . . . , vn so that Σ[vi, . . . , vn] is connected for all i, and vn = x.
When Lister gives new color classes, Painter greedily colors according to
the ordering: coloring a vertex i when it is possible, and otherwise coloring
the vertex with −i.

First, we begin with two fundamental lemmas.

Lemma 6. Let Σ be a 2-connected graph, and let i be the first round
where Lister has added colors to some of the lists. Suppose that there
exists a non-loop signed edge uvϵ such that L(u)\ϵL(v) ̸= ∅. Then Painter
has a winning strategy.

Note that this lemma forces Σ to be a regular graph. Moreover, if Σ is
unbalanced, then L(u) = L(v) for all u, v, and −L(u) = L(u) as well.

Proof. Let i ∈ L(u) \ ϵL(v). We assign the vertex u the color i. Then
Σ− u is connected. If we set U = {v}, then by Proposition 5, we see that
Σ− u is (dΣ−u + δU )-paintable. We see that dΣ−u + δU = dΣ on Σ− u, so
the result follows by applying Lemma 4 with A = {u}.

We see that a similar proof can be used to establish the following:

Lemma 7. Let Σ be a 2-connected graph, and suppose that there is a
degree-satisfiable list assignment L such that there exists a non-loop edge
uvϵ with L(u) \ ϵL(v) ̸= ∅. Then Σ is L-colorable.

Given a list assignment L, if L(u) = ϵL(v) for every edge uvϵ, we
refer to L as a satisfied list assignment. In light of Lemma 7, we see
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that it suffices to show that a graph Σ is f -choosable by showing that it
has an L-coloring for any f -compatible satisfied list assignment L. The
situation for f -paintability is a little more complicated: we have to show
that Painter has a winning strategy to win any game where Lister creates
a satisfied list assignment on the first round that Lister adds colors to
lists. Note that Lister is not required to continue to maintain the property
of the list assignment being satisfied on later rounds.

Lemma 8. Let Σ be a connected signed graph. Let B be a connected
subgraph. If B is degree paintable, then Σ is degree paintable. If B is
degree choosable, then Σ is degree choosable.

Proof. Let B be a connected subgraph of Σ. Let C be a component of
Σ \B, and set U = N(B) ∩ C. Then U ̸= ∅. Thus, by Proposition 5, we
see that C is (dC + δU )-paintable. We also see that dC(v)+ δU (v) ⩽ dΣ(v).
Thus, each component of Σ\B is dΣ-paintable. Hence Σ\B is dΣ-paintable.
The first result follows from Lemma 4 by setting A = V (Σ \B).

For the latter result, we see that Σ \B is dΣ-paintable, and hence is
dΣ-choosable. Let L be a degree compatible list assignment for Σ. Let f be
an L-coloring of Σ\B, which exists since Σ\B is dΣ-choosable. For v ∈ B,
let L′(v) = L(v) \ {σ(e)f(u) : e = uv ∈ E(Σ)}. Then |L′(v)| ⩾ dB(v).
Thus, since B is degree choosable, we extend f to B such that f(v) ∈ L′(v)
for v ∈ B.

Lemma 9. Let Σ be a connected signed graph. If Σ contains two parallel
edges e and f such that σ(e) = σ(f), then Σ is degree paintable.

Let Σ◦ be obtained from Σ by removing all negative loops. If Σ◦ is
degree paintable (degree choosable), then Σ is degree paintable (degree
choosable)

Proof. Let Σ be connected, and suppose that e and f be parallel edges such
that σ(e) = σ(f). Let u, v be the endpoints of e, and let Σ′ = Σ− e. Then
by Proposition 5, with U = {u, v}, we see that Σ′ is (dΣ′+δ{u,v})-paintable.
Since dΣ = dΣ′ + δ{u,v}, it follows that Painter’s winning strategy for Σ′

is also a winning strategy for Σ.
Suppose that Σ is connected, and Σ◦ is degree paintable. We describe

a winning strategy for Painter. Let S be the subset of vertices that contain
a negative loop, and let A be the set of vertices v such that 0 ∈ L(v) after
the 0th round. Then Painter follows the winning strategy for Σ◦ if Lister
presented A \ S. For all subsequent rounds, Painter follows the winning
strategy for Σ◦. For v ∈ S ∩A, we see that |L(v)| ⩽ 1 + dΣ◦(v) = dΣ(v),
as we start with 0 ∈ L(v), and we know that Painter finishes painting
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before Lister can add dΣ◦(v) more colors. For v ∈ S \A, we have |L(v)| ⩽
dΣ◦(v) = dΣ(v)−1. Finally, for v ∈ V \S, we have |L(v)| ⩽ d◦Σ(v) = dΣ(v).
Thus Σ is degree paintable.

Similarly, suppose that Σ◦ is degree choosable. Let L be a degree
compatible list assignment for Σ. For each v that has a negative loop,
if 0 ∈ L(v), delete 0. If 0 /∈ L(v), choose i ∈ L(v) and delete it. This
gives us a new list assignment L′ such that L′(v) ⊆ L(v) for all v. Now
delete all the negative loops. We now have Σ◦ with a degree compatible
list assignment L′. Since Σ◦ is degree choosable, there is an L′-coloring
f . Since 0 /∈ L(v) whenever v has a negative loop, we see that f is an
L-coloring of Σ.

5. Special cases

In this section, we study paintability for special classes of signed graphs,
such as cycles and cliques.

Lemma 10. Let Σ be a loopless signed graph such that Σ is a cycle. If Σ
is not degree choosable if and only if Σ is a balanced odd cycle, unbalanced
even cycle, or odd double cycle. Also Σ is not degree paintable if and only
if Σ is a balanced odd cycle, unbalanced even cycle, odd double cycle, or
an unbalanced odd cycle.

Proof. By Lemma 9, if Σ has parallel edges of the same sign, then the
Σ is degree paintable. Thus there are at most two edges between any
pair of distinct vertices u and v, and if there is a pair of edges, they have
to have opposite signs. First, we study the case where Σ has a pair of
vertices that have exactly one edge between them, and a pair of vertices
that have two edges between them. In light of Lemma 6, when showing
that Painter has a winning strategy we restrict ourselves to games where
on the first nontrivial step i the list assignment is satisfied. Similarly, in
light of Lemma 7, when showing that Σ is degree choosable we restrict
ourselves to degree-compatible satisfied list assignments.

Suppose that we have labeled the vertices of Σ so that there is exactly
one edge from vn to v0, exactly two edges from v0 to v1, and vj is adjacent
to vj+1 for all j. Suppose that i = 0. Then Painter should color v1 with
0, and then color the vertices vj greedily by increasing j, resulting in a
maximum independent set I in Σ\{v} of vertices that are colored 0. If the
uncolored vertices form an independent set, then Painter wins, as we see
that Lister must add at least one more color to the lists for each uncolored
vertex. Otherwise, the only possibility is that v0 and vn are uncolored.
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If we let X be the set of uncolored vertices, and U = {vn}, then we can
apply Proposition 5 and conclude that Painter has a winning strategy for
Σ[X].

Suppose that i > 0. Since L is satisfied at the ith round, we see that
L(v1) = L(v0) and L(v1) = −L(v0). This forces L(v1) = {i,−i}, and thus
L(x) = {−i, i} for all x ∈ V . Now we start by coloring vn with i, and
start coloring vj greedily by decreasing j. Note that we skip vertices that
cannot be colored. If a vertex cannot be colored, then it is adjacent to a
colored vertex by a double edge. After we finish, we see that the uncolored
vertices of Σ \ v1 from an independent set. Moreover, since uncolored
vertex x was incident to a double edge, the degree of those vertices was at
least three, so Lister still has to add more colors to L(x). Thus, Painter
will win if Painter can paint v1. If v1 is still uncolored, then it is because
it is incident to two double edges, and has degree 4. If we let X be the
set of uncolored vertices, and U = {v1}, then Proposition 5 implies that
Painter has a winning strategy for Σ[X].

Thus, we are left in the case where Σ is a simple graph or is a double
cycle. We show that balanced odd cycles, unbalanced even cycles, and
odd double cycles are not degree choosable. If Σ is a balanced odd cycle,
or an unbalanced even cycle, then it is not degree choosable. Setting
L(v) = {−1, 1} for all v ∈ V gives a list assignment for which no proper
coloring exists. Similarly, if Σ is an odd double cycle, then it is not degree
choosable, and setting L(v) = {−2,−1, 1, 2} for all v ∈ V gives a list
assignment where no proper coloring exists.

Next, we show that unbalanced odd cycles are degree choosable, but
not degree paintable. Suppose that Σ is an unbalanced odd cycle. Label the
vertices as v0 through vn with vj adjacent to vj+1 for all j. Up to switch
equivalence, we can assume that every edge of Σ is positive except the
edge from vn to v0, which is negative. Let L be a satisfied list assignment.
Thus L(vj) = L(vj+1) for j < n and L(v0) = −L(vn). Hence there exists
an i such that L(u) = {i,−i} for all u. We color v0 with i. For j > 0, we
color vj with (−1)ji. This yields a proper coloring.

However, Σ is not degree paintable: Lister starts by placing 0 ∈ L(v)
for every v. This yields a satisfied list assignment for the first round. Since
Σ is odd, Painter has to leave a signed edge uvϵ with uncolored vertices u
and v. Then Lister puts 1 ∈ L(u), and ϵ1 ∈ L(v), ensuring that Painter
cannot properly color the graph.

In the remaining case Σ is either a balanced even cycle or even double
cycle. We show the graph is paintable. Let i be the first round where
Lister adds colors to the lists. If it is a balanced even cycle, then up to
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switching equivalence, we assume every edge is positive. If i = 0, or i > 0
and Σ is an even double cycle. Painter finds a maximum independent
set I and colors it i. The remainder of the graph is an independent set
which can be 1-painted, so Painter wins. So we are left in the case where
i > 0, and Σ is an even cycle where every edge is positive. In this case, we
have L(x) = {i} for all x, or we have L(x) = {i,−i} for all x. We take a
maximum independent set and color it i. If L(x) ̸= {i}, then we color the
remaining vertices with −i. Otherwise, |L(x)| = 1 < 2 = d(x) for all x,
so Lister must add a color to the lists for each of the remaining vertices.
Hence Painter wins.

Lemma 11. Let Σ be a loopless signed graph such that Σ is a theta
graph. Then Σ is degree paintable.

Proof. Let x, y be the unique vertices of degree 3 in Σ. Let i be the first
stage for which Lister adds colors to lists. By Lemma 6, we assume that
L is a satisfied list assignment.

Suppose that i > 0, and that Σ is not balanced. Then L(v) = {i,−i}
for all v. Then we know that we can color Σ− x with the colors ±i. Since
d(x) ⩾ 3, Lister must give at least one more color to L(x), and hence
Painter can complete the coloring.

Suppose that Σ is a balanced graph. We know that Σ contains an even
cycle C. By Lemma 10, C is degree paintable. By Lemma 8, it follows
that Σ is as well.

Lemma 12. Let Σ be a signed graph such that Σ is a complete graph
on at least 4 vertices. Then the following are equivalent:

1) Σ◦ is not a balanced complete graph or a double complete graph.
2) Σ is degree choosable.
3) Σ is degree paintable.

Proof. Suppose that Σ◦ is a simple graph. If it is unbalanced, then it
contains an unbalanced triangle T . Let B be a subset on 4 vertices
including T . By Lemma 8, it suffices to show that B is dB-paintable.

Now we give a winning strategy for Painter on an unbalanced simple
signed clique on four vertices a, b, c, d where a, b, c form the vertices of an
unbalanced triangle T . Let i be the first stage for which Lister adds colors
to lists. By Lemma 6, we assume that L is satisfied. Since Σ is unbalanced,
this implies that L(v) = {i,−i} for all v. Suppose that i = 0. Then color
d with the color 0. What is left is an unbalanced odd cycle, so by Lemma
10, Painter has a winning strategy to dT -paint T . Hence Painter has a
winning strategy.
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If i > 0, then Painter should color the triangle a, b, c. Then we see that
Lister still has to add at least one more color to L(d), and hence Painter
will win.

On the other hand, if Σ◦ is a balanced simple complete graph, then
Σ is not degree choosable: Let A,B be a balanced bipartition of Σ, and
suppose Σ has degree k. Let L(v) = {1, . . . , k} for v ∈ A, and let L(v) =
{−1, . . . ,−k} for v ∈ B. Finally, add 0 ∈ L(v) if v contains a negative
loop. Then clearly Σ has no proper L-coloring.

Now assume that Σ has parallel edges. By Lemma 9, we can assume
that any pair of vertices that have two edges between them have exactly

two edges between them, and that the edges are opposite in sign. Suppose
that Σ′ is not a double complete graph. Then Σ◦ must contain a triangle
T = {a, b, c} such that there is exactly one edge between a and b, and
exactly two edges between b and c. By Lemma 8, it suffices to show that
T is degree paintable. However T is a cycle, so the result follows from
Lemma 10.

So assume that Σ◦ is a double clique on n vertices. Let L(v) =
{−n+1, . . . ,−1, 1, . . . , n− 1} for all v ∈ Σ, and put 0 into L(v) whenever
v contains a negative loop. Then Σ is not L-colorable, and hence is not
degree choosable.

Recall that a block of Σ is a maximal biconnected subgraph. A vertex
that belongs to more than one block of G is a cut vertex. A leaf block is a
block with only one cut vertex. A Gallai tree is a connected graph where
each block is an odd cycle or a clique. If each block of Σ◦ is an odd cycle,
unbalanced even cycle, odd double cycle, balanced complete graph, or
double complete graph, then we call Σ a signed Gallai tree. Note that the
definition is meant to be a signed analogue of Gallai tree: since we allow
unbalanced even cycles, it could be the case that Σ is a signed Gallai tree
while Σ is not a Gallai tree.

Lemma 13. Let Σ be a signed Gallai tree such that no block of Σ is an
unbalanced odd cycle. Then Σ is not degree choosable.

Proof. We prove that there is a degree-compatible list assignment L on Σ
that involves only non-zero integers, and for which Σ is not L-colorable
whenever Σ is a loopless and contains no unbalanced odd cycle blocks.
The result is proven by induction on the number b of blocks.

Suppose that b = 1. Then Σ is a balanced complete graph, a double
complete graph, a balanced odd cycle, an unbalanced even cycle, or an
odd double cycle. By the proofs of Lemma 12 or Lemma 10, there is a
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degree compatible list assignment L for Σ involving only non-zero integers
for which there is no L-coloring.

So let Σ be a loopless, signed Gallai tree with no unbalanced odd cycle
blocks. Suppose Σ has b blocks, where b > 0. Let B be a leaf block, with
cut vertex v. By the inductive hypothesis, Σ′ = Σ \ (B \ {v}) has fewer
blocks, and hence a degree compatible list assignment L′ involving only
non-zero integers for which there is no L′-coloring. Similarly, by induction,
B has a degree compatible list assignment L′′ involving non-zero integers
for which there is no L′′-coloring.

Let m be the maximum integer such that {m,−m} ∩ L′(u) ̸= ∅ for
some u ∈ Σ′. For u ∈ B, let L−

m(u) = {i − m : i < 0, i ∈ L′′(u)}, and
L+
m(u) = {i+m : i > 0, i ∈ L′′(u)}. Now we construct our list assignment.

For u ∈ Σ\B, let L(u) = L′(u). For u ∈ B\{v}, let L(u) = L−
m(u)∪L+

m(u).
Finally, let L(v) = L′(v) ∪ L−

m(u) ∪ L+
m(u).

Observe that L is degree compatible for Σ. Suppose that there is an
L-coloring f . If f(v) ∈ L′(v), then f restricts to an L′-coloring of Σ′, which
is impossible, by our inductive assumption. Thus f(v) ∈ L−

m(v) ∪ L+
m(v).

Then we define a proper L′′-coloring of B, to obtain a contradiction. For
u ∈ B, we let f ′(u) = f(u) − m if f(u) > 0, and f ′(u) = f(u) + m, if
f(u) < 0. Then f ′(u) ∈ L′′(u) for all u ∈ B, giving a proper L′′-coloring.

Now suppose that Σ is a signed Gallai tree that contains negative
loops, but no unbalanced odd cycle blocks. Then we have constructed a
degree-compatible list assignment L′ for Σ◦ that contains only non-zero
numbers and for which Σ◦ is not L′-colorable. If we add 0 to L′(v) for any
v that is part of a negative loop, then we obtain a new list assignment L
that is degree-compatible for Σ. We see that Σ is not L-colorable.

Lemma 14. Let Σ be a Gallai tree that does not have a pair of intersecting
unbalanced odd cycle blocks. Suppose that, for every unbalanced cycle
block B and every v ∈ B, v does not have a negative loop. Then Σ is not
degree paintable.

Proof. We prove by induction on b, the number of blocks, that there is a
winning strategy for Lister where Lister puts 0 into L(v) if and only if v
has a negative loop or is contained in an unbalanced odd cycle block.

First, suppose that b = 1. Suppose that Σ is an unbalanced odd cycle
block. We describe a winning strategy for Lister by induction on b, the
number of blocks. Moreover, the strategy puts 0 into L(v) if and only if v
has a negative loop, or v is contained in an unbalanced odd cycle block.
Then Lister follows the winning strategy for Lister detailed in the proof of
Lemma 10 for unbalanced odd cycles. We observe that the strategy given
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in that proof also starts by putting 0 ∈ L(v) for every v ∈ B. Hence the
Lister wins.

Now suppose that Σ is not an unbalanced odd cycle block. Then Σ◦

is not degree choosable. For any v ∈ Σ that contains a negative loop, we
add 0 to L(v). We know from the proof of Lemma 10 or Lemma 12 that
there is a degree-compatible List assignment L′ for Σ◦ such that Σ◦ is not
L′-colorable and 0 /∈ L′(v) for any v. Lister adapts the following strategy:
in the i-th round, Lister adds ϵi to L(v) if and only if ϵi ∈ L′(v), for all
v ∈ Σ and ϵ ∈ {+,−}. This results in a winning strategy for Lister, so Σ
is not degree paintable.

Now suppose that b > 1. Let B be a leaf block and let x be a cut
vertex with x ∈ B. We let Σ′ = Σ \ (B \ {x}). First, Lister puts 0 ∈ L(v)
for all v such that v has a negative loop or v is part of an unbalanced
cycle block.

By induction, Lister has a winning strategy for B where the 0th step
matches the 0th step we just described. We let the Lister follow that
strategy until there is an uncolored vertex v with dB(v) = |L(v)|. If v ̸= x,
then the Lister wins. So suppose that v = x. Then by induction, the Lister
has a winning strategy for Σ′ where the 0th step involves adding 0 ∈ L(v)
if and only if v contains a negative loop or is contained in an unbalanced
odd cycle block. We implement that strategy for several rounds, and we
must end with an uncolored vertex. If we find a vertex u ̸= x with with
dΣ′(u) = |L(u)|, then Lister wins. Otherwise, every vertex of the graph is
colored but x, and |L(x)| = dΣ′(x) + dB(x) = dΣ(x). In that case, Lister
wins.

6. Proof of the main theorems

Proof of Theorem 2. First, suppose that Σ◦ is not a Gallai tree. Then Σ◦

contains a block B such that B is not a cycle or clique. By Lemma 8
and Lemma 9, it suffices to show that B is degree paintable. Since B is
2-connected and is not a cycle or clique, B contains an induced subgraph
T such that T is a theta graph. By Lemma 11, T is degree paintable. By
Lemma 8, B is degree paintable. Thus Σ is degree paintable.

We assume that Σ◦ is a Gallai tree. Suppose that Σ◦ has a block B
that is degree choosable. Then by Lemma 8, Σ◦ is degree choosable, and
by Lemma 9, we see that Σ is degree choosable. So assume that every
block of Σ◦ is not degree choosable. By Lemma 10 and Lemma 12, we see
that every block of Σ◦ must be a balanced odd cycle, an unbalanced even
cycle, an odd double cycle, a balanced clique, or a double clique. Then Σ
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is the type of Gallai tree described in Lemma 13, and hence is not degree
choosable.

Similarly, if Σ is a Gallai tree that contains a block B that is degree
paintable, then Σ is degree paintable. Conversely, if Σ meets the conditions
of Lemma 14, then it is not degree paintable. Suppose that Σ◦ is a signed
Gallai tree that contains two intersecting unbalanced odd cycle blocks. Let
A be the union of these two cycles. We show that A is degree paintable.
Then Σ is degree paintable by Lemma 8. We describe a winning strategy
for Painter. As usual, let i be the first stage for which Lister adds colors
to the lists, and assume that L is satisfied.

Suppose first that i > 0. Then L(u) = {i,−i} for all u, and A can
be colored. Suppose that i = 0. Suppose that A′ is still the intersection
of two unbalanced odd cycles. Let x be the cut vertex of A. We find a
maximum independent I set of A \ {x}, and color the vertices in I with 0.
Then A \ I consists of an independent set, and a path on three vertices
u, x and v, with x as the internal node. However, Lister still needs to add
three more colors to L(x), and one more color to the remaining vertices’
lists. Hence Painter will be able to win by choosing to color u and v before
x whenever such a choice is available. Hence A◦ is degree paintable, and
so A is degree paintable.

We are left in the case that Σ has an unbalanced odd cycle block A and
a vertex v ∈ A that contains a negative loop. We show that A is degree
paintable, and hence so is Σ. We label the vertices of A as v0, . . . , vn
where vj is adjacent to vj+1 for all j. We also have L(v) = {0} for every v.
Suppose that there exists a vertex v that does not have a negative loop.
Without loss of generality, we assume that v0 does not have a negative
loop. Let I = {v0}, and consider each vj , as j increases, greedily adding
vj to I if vj does not have a negative loop and adding vj to I results in
an independent set. Then we color the vertices in I with 0. Then A \ I
consists of paths. Moreover, given a path P on vj , . . . , vj+k with k > 0, we
see that vj+1, . . . , vj+k all have negative loops. Hence if we set U = vj+k,
then P ◦ is (dP + δU )-paintable. Hence Painter wins.

Hence every vertex of A must have a negative loop. Then Painter
leaves every vertex uncolored. However, Painter is able to paint A◦ on
round i > 0 as we have shown above. Thus Painter will win.

Now we discuss deriving Brooks’ Theorem for signed graphs.

Proof of Theorem 1. Let Σ be a loopless connected signed graph. Suppose
that there is a v ∈ V with d(v) < ∆(Σ). Let C be a component of Σ− v.
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Figure 2. A regular signed Gallai tree.

Let U = N(v)∩C. By Proposition 5, we see that C is (dC + δU )-paintable.
Since (dC +δU )(x) ⩽ ∆(x) for all x ∈ C, it follows that C is ∆Σ-paintable.

Taking the union over all the components of Σ− v, we see that Σ− v
is ∆Σ-paintable. By Lemma 4, applied to A = V \ {v}, we see that Σ is
∆-paintable.

Suppose that Σ is ∆-regular and is not ∆-paintable. In light of The-
orem 2. We see that Σ is a regular signed Gallai tree. Suppose that Σ
has at least two blocks. Let B be a block, and let v be a cut vertex with
v ∈ B. We observe that every block of a loopless signed Gallai tree is
regular, since each block is a simple cycle, a double cycle, a simple clique,
or a double clique. Thus d(v) > d(x) for any x ∈ B \ {v}, contradicting
the fact that Σ is regular. Hence Σ only has one block, and is biconnected.
Then Σ is an odd cycle, an unbalanced even cycle, an odd double cycle,
a balanced clique, or a double clique. Similarly, if we assume that Σ is
∆-regular, but not ∆-choosable, we see that Σ is biconnected, and is a
balanced odd cycle, an unbalanced even cycle, an odd double cycle, a
balanced clique, or a double clique.

Note that if we allow loops, then there are more examples, such as in
Figure 2. The best we can say is that Σ is a regular signed Gallai tree
subject to the conditions of Theorem 2.

7. Two choosability and paintability

In this section we classify the 2-choosable signed graphs: those Σ
where χℓ(Σ) ⩽ 2. We see that χ(Σ) ⩽ 2 if and only −Σ is balanced.
This is because Σ is balanced if and only if Σ has a balanced bipartition
A,B. If −Σ has a balanced bipartition A,B, then coloring all vertices in
A with the color 1 and all vertices in B with the color −1 results in a
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signed 2-coloring. Similarly, given a signed 2-coloring f of Σ, we see that
f−1(−1), f−1(1) is a balanced bipartition of −Σ.

Recall that the core of a graph is obtained by removing vertices of
degree 1 until no such vertices remain.

Theorem 3 ([2]). Let G be connected graph. Then G is 2-choosable if
and only if its core is a vertex, and even cycle, or a theta graph θ2,2,2m
where m ⩾ 1.

We prove a version of this result for signed graphs.

Theorem 15. A connected signed graph Σ is 2-choosable if and only if
its core is one of the following graphs:

1) a vertex,
2) a balanced even cycle,
3) an unbalanced odd cycle,
4) a balanced θ2,2,2m, with m ⩾ 1.

The proof mimics the original proof due to Rubin in the classical graph
case. We first discuss some preliminary lemmas.

Lemma 16. Let Σ be a signed graph. Let u, v, w ∈ Σ such that u and w
are not adjacent, uv and vw are positive, and d(v) = 2. If Σ/{u, v, w} is
not 2-choosable, then Σ is not 2-choosable.

Proof. If Σ/uvw is not 2-choosable, then there exists a list assignment L′

for Σ/uvw such that |L′(x)| = 2 for all x ∈ V (Σ/uvw) such that Σ/uvw
has no L′-coloring. Define L on Σ by

L(x) =

{

L′(x) x /∈ {u, v, w}

L′(xuvw) x ∈ {u, v, w}

where xuvw is the contracted vertex. If Σ is L-colorable with coloring f ,
then defining f ′ by

f ′(x) =

{

f(x) x ̸= xuvw

f(u) x = xuvw

yields an L′-coloring of Σ/uvw, which is a contradiction.

Now we define the notion of weight of a cycle. The weight of C is
(−1)e+(C), where e+(C) is the number of positive edges in C.
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Lemma 17. Let Σ be a connected signed graph such that δ(Σ) ⩾ 2. If
Σ is neither K1, nor a positive weight cycle, nor a balanced θ2,2,2m with
m ⩾ 1, then Σ contains one of the following subgraphs:

(i) a cycle of negative weight,
(ii) two vertex disjoint cycles of positive weight joined by a path,
(iii) two cycles of positive weight that share exactly one vertex,
(iv) a theta graph whose underlying graph is θa,b,c, a ̸= 2, b ̸= 2,
(v) an unbalanced theta graph whose underlying graph is θ2,2,m,
(vi) a balanced theta graph whose underlying graph is θ2,2,2,2m.

Proof. If Σ is balanced, then we perform switching operations to obtain
an ordinary graph. In this case, Erdös, Rubin, and Taylor showed that this
graph has one of the following as a subgraph (not necessarily induced):
(a) an odd cycle, (b) two vertex disjoint even cycles joined by a path, (c)
two even cycles meeting in exactly one vertex, (d) a theta graph θa,b,c
with a ≠ 2 and b ̸= 2, or (e) a θ2,2,2,2m with m ⩾ 1. So suppose that Σ is
unbalanced.

If Σ has an induced negative weight cycle, then we are done, since
(i) above holds. So we assume that every cycle has positive weight; that
is, the number of positive edges on each cycle is even. This implies that
−Σ is balanced. Suppose that Σ contains two vertex disjoint cycles. Since
Σ is connected, it contains a path that connects these two cycles; so Σ
contains (ii) above. Similarly, if two cycles share a single vertex, then we
are done, since Σ contains (iii) above.

Let C be a minimum unbalanced cycle. By assumption, Σ is not a
positive weight cycle. If C = Σ, then C also has negative weight, and Σ is
of type (i). Thus C ≠ Σ. Since δ(Σ) ⩾ 2, there are other cycles of Σ. We
may assume that there exists a cycle which intersects C in more than one
vertex. Thus, Σ must contain a path R whose ends are on C, but whose
internal vertices are not. Together C ∪ R forms a theta graph θa,b,c. If
a ̸= 2 and b ̸= 2, then Σ contains (iv) above. So suppose Σ contains θ2,2,c.
Then this theta graph is unbalanced, and thus Σ contains a graph of the
form (v) above.

Lemma 18. Let Σ be a signed graph of negative weight. Suppose that Σ
is one of the following signed graphs:

(i) a cycle,
(ii) two vertex disjoint cycles of positive weight joined by a path,
(iii) two cycles of positive weight that share exactly one vertex,
(iv) a theta graph whose underlying graph is θa,b,c, a ̸= 2, b ̸= 2,
(v) an unbalanced theta graph whose underlying graph is θ2,2,m,
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(vi) a balanced theta graph whose underlying graph is θ2,2,2,2m.
Then Σ is not 2-choosable.

Proof. Let Σ be a cycle of negative weight. Then Σ is not 2-colorable, and
hence not 2-choosable.

Suppose that there exists a signed graph Σ that is of type (ii)-(vi) that
is 2-choosable. We prove the theorem by induction on |Σ|. We see that
the base case is |Σ| = 2, where Σ consists of two vertices connected by an
edge, where each vertex has a negative loop. The resulting graph appears
in Figure 3, along with a list assignment for which it is not L-colorable.

So we assume that |Σ| > 2. Suppose that Σ is of type (ii), and that
the connecting path P has length at least two. By switching equivalence,
we can assume that there are three vertices x, y, z ∈ P with xy, yz ∈ E(Σ)
and σ(xy) = σ(yz) = +. We let Σ′ = Σ/x, y, z. We see that Σ′ is of type
(ii) or (iii), so by induction Σ′ is not 2-choosable. By Lemma 16, we see
that Σ is also not 2-choosable.

Now suppose that Σ is of type (iii) or type (ii) where the path con-
necting the two cycles consists of one edge. Suppose that at least one
cycle C of Σ has length at least five. Then, up to switch equivalence,
we may assume that there are vertices x, y, z ∈ C with xy, yz ∈ E(Σ),
xz /∈ E(Σ), and σ(xy) = σ(yz) = +. Moreover, Σ/xyz is also of type (ii)
or (iii). By induction, Σ/xyz is not 2-choosable, and by Lemma 16, Σ is
not 2-choosable.

For graphs of type (ii) or (iii), we are left with the case where both
cycles have length at most four, and the connecting path, if it exists, is an
edge. If Σ is balanced, then it is switch equivalent to an ordinary graph,
which is not 2-choosable by Theorem 3. Since every cycle of Σ is positive,
−Σ is balanced, and thus Σ is switch-equivalent to a signed graph with
only negative edges. Thus we only need to consider unbalanced signed
graphs of type (ii) or (iii) where each cycle has length at most four, each
edge is negative, and the connecting path, if it exists is an edge. We list all
such graphs in Figure 3, along with list assignments for which the graphs
are not L-colorable.

If Σ is a balanced graph of type (iv) or (vi), then up to switch equiv-
alence Σ is an ordinary graph. Then we already know that Σ is not
2-choosable by Theorem 3. So suppose that Σ is an unbalanced graph
of type (iv) or (v). Let d be the maximum of a, b, and c. Suppose that
d ⩾ 3. Then there exists vertices x, y, z on the path of d vertices such
that xy, yz ∈ E(Σ), xz /∈ E(Σ), and σ(xy) = σ(yz) = +. If d ⩾ 4, then
Σ/{x, y, z} is still of type (iv) or (vi), so by induction is not 2-choosable.
By Lemma 16, neither is Σ. Thus we have d ⩽ 3. If Σ contains a cycle
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C of negative weight, then C is not 2-choosable, and hence neither is Σ.
If every cycle of Σ has positive weight, then −Σ is balanced, and Σ is
switch-equivalent to a signed graph with only negative edges. Thus we are
reduced to the case of an unbalanced θ graph with only negative edges
and d ⩽ 3.

Hence we are in the case where a = 1, b = 2 and c = 3, or a ⩽ b ⩽ c = 2.
We may assume that Σ has no cycle of negative weight. This implies that
−Σ is balanced, and hence Σ is switching equivalent to a signed graph
with only negative edges. There are only two

We see in Figure 3 various such examples where the lengths of the two
cycles are at most four.

Proof of Theorem 15. Let Σ′ denote the core of Σ. If Σ′ is one of those
graphs listed in Theorem 15, then it is 2 choosable. The first three families
are regular graphs with max degree two, that are already known to be
degree choosable, by Lemma 10. On the other hand, since choosability is
invariant under switching, a balanced θ2,2,2m is 2-choosable if and only
if θ2,2,2m is 2-choosable, by just switching vertices until there are only
positive edges. Erdős, Rubin and Taylor already showed that θ2,2,2m is
2-choosable. We see that we can use induction on |Σ \ Σ′| to show that
Σ is also 2-choosable, since we obtain Σ′ from Σ by recursively removing
vertices of degree one.

Suppose that Σ′ is not one of the graphs listed in Theorem 15. Then
by Lemma 17 and Lemma 18, Σ′ contains a subgraph B that is not 2-
choosable. Let L′ be a list assignment for B such that |L′(u)| = 2 for all
u ∈ B and such that B has no L′-coloring. Define a list assignment L for
Σ by

L(x) =

{

L′(x) x ∈ B

{1,−1} x /∈ B

If f is an L-coloring of Σ, then f restricts to an L′-coloring of B, a
contradiction. Hence Σ is not 2-choosable.

We know unbalanced odd cycles are not 2-paintable, and it was shown
in [7] that θ2,2,2m is only 2-paintable when m = 1. Thus, we obtain the
following:

Proposition 19. A connected signed graph Σ is 2-paintable if and only
if its core is a vertex, a balanced even cycle, or a balanced K2,3.
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Figure 3. Signed graphs that are not 2-choosable. We use 1̄ and 2̄ for −1
and −2.

8. Open questions

Finally, we end with some open questions regarding possible future
work. One problem to consider for signed graphs would be to study an
analogue of Reed’s conjecture [4]. For ordinary graphs, Reed’s conjecture

is that χ(G) ⩽ ⌊ω(G)+∆(G)+1
2 ⌋. In our case, we must define ω(Σ) for a

signed graph. One definition is that ω(Σ) is the largest k such that Σ
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contains a (k − 1)-regular signed Gallai tree. With that in mind, one can

ask if χ(Σ) ⩽ ⌊ω(Σ)+∆(Σ)+1
2 ⌋.

Reed’s conjecture is known in certain cases, particularly when we
replace χ(G) with the fractional chromatic number. What is the right
definition of fractional chromatic number of a signed graph? Can we prove
an analogue of Reed’s conjecture in that case?

There is also work on studying hypergraph coloring. When is a signed
hypergraph degree paintable? Also, what is the definition of paintability,
or choosability, for arbitrary gain graphs? Recall that a gain graph is an
oriented graph where the edges are labeled with elements of a fixed group
G. In the case of signed graphs, the group is {−1, 1}, and the orientation
does not matter.
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