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Ryser’s conjecture under linear constraints
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Abstract. There are no nontrivial circulant Hadamard

matrices provided that the entries satisfy some linear relations.

Introduction

A matrix of order n is a square matrix with n rows. A circulant matrix
A := circ(a1, . . . , an) of order n is a matrix of order n, with őrst row
[a1, . . . , an], in which each row after the őrst is obtained by a cyclic shift
to the right of its predecessor by one position. For example, the second row
of A is [an, a1, . . . , an−1]. A Hadamard matrix H of order n is a matrix of
order n with entries in {−1, 1} such that K := H√

n
is an orthogonal matrix

with rational entries. A circulant Hadamard matrix of order n is a circulant
matrix that is Hadamard. The 10 known circulant Hadamard matrices are
H1 := circ(1), H2 := −H1, H3 := circ(1,−1,−1,−1), H4 := −H3, H5 :=
circ(−1, 1,−1,−1), H6 := −H5, H7 := circ(−1,−1, 1,−1), H8 := −H7,
H9 := circ(−1,−1,−1, 1), H10 := −H9.

If H = circ(h1, . . . , hn) is a circulant Hadamard matrix of order n then
its representer polynomial is the polynomial R(x) := h1 + h2x + · · · +
hnx

n−1.
No one has been able, despite several deep computations (see [12]), to

discover any other circulant Hadamard matrix. Ryser proposed in 1963
(see [2, p. 97], [16]) the conjecture of the non-existence of these matrices
when n > 4. Ryser’s conjecture has since attracted many attention [1, 3ś
7,9ś13,15,18].
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Schmidt and Leung results [9ś11] helped Logan and Mossinghoff [12]
to obtain the nice result that up to order 4 · 1030 there are only 4489
undecided values of n (thus the Conjecture holds for very large orders).
In this paper we are not able to obtain any progress on new values of n
for which the Conjecture holds. Our approach is much more modest, we
will work, instead, on a simple generalization of some results of Brualdi,
detailed below.

We are aware of only two results in which the Conjecture is proved
for an inőnity of n’s. Brualdi [1] proved the conjecture in 1965 for every
n provided H is symmetric, and Turyn [18] proved the conjecture for all
n’s of the form n = 4p2m where p is an odd prime number and m is a
positive integer.

We may think of the result of Brualdi as proving that the existence
of a circulant Hadamard matrix H := circ(h1, . . . , hn) of order n ⩾ 4,
such that the entries hj satisfy the following set of n/2− 1 (by Lemma 1
n = 4h2 with h odd) linear equations

hn−k − hk+2 = 0, for k = 0, . . . n/2− 2, (1)

implies that n = 4.

The conjecture being very difficult, we have only tried to őnd some
simple sufficient conditions. For example, in most of our preceding papers
(c.f. the bibliography), we focused, mainly, in the behavior of the eigenvalues
of a possible circulant Hadamard matrix H of order n (or its orthogonal
version K := H/

√
n). Our new contribution in the present paper is based

in working directly with congruences on the entries of the őrst row of H
(or of some appropriate sub-matrix of H), in a more general way than
in the special case [5]. There, we asked that C := A(H) + B(H)/2 be
symmetric. Some details on the matrix C are showed below. For more, see
Lemma 3, as well as the őrst few lines of the proof of Theorem 1. On the
other hand, in the present paper, our conditions ask for a more general
kind of symmetry on the matrix C.

Thus, in the present paper, we assume that the entries of a possi-
ble circulant Hadamard H with more that 4 rows, satisfy some linear
relations, and that the matrix C satisfy some symmetric property (see
Condition 1). Then we build a contradiction. These contradiction proves
the non-existence of H. This explains why we are unable to obtain new
values of n for which there is no circulant Hadamard matrices of order n.

More precisely, in the present paper, we will require a condition ana-
logue to (1) stated in terms of entries of special sub-matrices of H. We
replace the set of equations (1), by a set of n/4− 1 congruences modulo 2,
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depending on some of the entries of a circulant matrix of order n/2 as-
sociated to H, namely C := (A + B)/2, where A and B are n/2 × n/2
block sub-matrices of H deőned (see details in Lemma 3) by

H =

[

A B
B A

]

Write C := circ(c1, . . . , cn/2). Observe that (see Lemma 4) C has
exactly n/4 nonzero entries ctj in its őrst row, with 1 ⩽ t1 < t2 < · · · <
th2 ⩽ 2h2. Put D := {ctk | 2 ⩽ k ⩽ h2}. Recall that by Lemma 1, n = 4h2

with h odd.

Our condition follows.

Condition 1. One has t1 = 1, ct1 = −1, and ch2+1 = 0. Moreover, if
n > 4, then for each of the h2 − 1 elements ctk ∈ D we have

(a)
{tk + h2 | 1 < tk ⩽ h2} = {tm | h2 + 1 ⩽ tm ⩽ 2h2}. (2)

(b) Let G1 := {k | 2 ⩽ k ⩽ h2, 1 < tk ⩽ h2, and ctk = ctk+h2}. One has

♯G1 ⩾ h(h− 1)/2. (3)

Part (a) of our condition ask roughly for a kind of symmetric repartition,
relative to the entry in position h2 of the nonzero entries of the őrst row
of the circulant matrix C, that has order 2h2. For example, taking t1 = 2,
and assuming that t1 ⩽ h2, we ask in (2) that ch2+2 ∈ {−1, 1}.

Since all hj ’s are in {−1, 1} and for all k = 1, . . . , 2h2, one has ck =
(hk + hk+n/2)/2, so that ctk ∈ {−1, 1}, we may think of (a) as linear
conditions on some of the hj ’s, the entries of H.

Condition 1 already hold (trivially) for the known circulant Hadamard
matrix H9, for which the corresponding C, say C9, is equal to circ(−1, 0).
We might think that we prove that the matrix H9 is the unique circulant
Hadamard matrix with these properties.

More precisely, our main result is the following:

Theorem 1. Let H = circ(h1, . . . , hn) be a circulant Hadamard matrix

of order n ⩾ 4. Then n = 4, provided that Condition 1 hold.

Unfortunately, Condition 1 do not allow one to obtain new speciőc
values of n for which Ryser’s conjecture holds.

The necessary tools for the proof of the theorem are given in section 1.
The proof of Theorem 1 is presented in section 2. For a matrix M with
complex entries, we let M∗ denote the transpose conjugate matrix of M .
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Also, we let Ik denote the identity matrix of order k. For a őnite set S,
we let ♯S denote the number of elements of S.

1. Tools

The following is well known. See, e.g., [8, p. 1193], [14, p. 234], [18, pp.
329-330] for the őrst lemma and [2, p. 73] for the second.

Lemma 1. Let H be a regular Hadamard matrix of order n ⩾ 4, i.e., a

Hadamard matrix whose row and column sums are all equal. Then n = 4h2

for some positive integer h. Moreover, the row and column sums are all

equal to ±2h and each row has 2h2±h positive entries and 2h2∓h negative

entries. If H is circulant then h is odd.

Lemma 2. Let H be a circulant Hadamard matrix of order n, let w =
exp(2πi/n) and let R(x) be its representer polynomial. Then all the eigen-

values R(v) of H, where v ∈ {1, w, w2, . . . , wn−1}, satisfy

|R(v)| =
√
n.

The following is well known, useful, and easy to check:

Lemma 3. Let M be a circulant matrix of even order n and with őrst

row R1 = [m1, . . . ,mn]. Then

(a)

M =

[

A(M) B(M)
B(M) A(M)

]

where A(M), B(M) are the matrices of order n
2
, with subscripts

(mod n), deőned by A(M) = (ai,j), B(M) = (bk,ℓ), where i, j, k, ℓ =
1, . . . , n/2, and ai,j = mj−i+1, bk,ℓ = mℓ+n/2−k+1.

(b) The matrix A(M) +B(M) is circulant.

The following lemma counts useful things and is important for the
proof of the theorem.

Lemma 4. Let H be a circulant Hadamard matrix of order n > 1. Let A
and B be the n/2 square matrices deőned in Lemma 3. Let M := A+B

2
.

Let a := number of 0’s in the őrst row of the circulant matrix M. Let b
:= number of 1’s in the őrst row of M, and let c := number of −1’s in

the őrst row of M. Then, up to change H by −H, that would permute b
and c one has

(a) a = n
4
,

(b) b = n+2
√
n

8
,
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(c) c = n−2
√
n

8
.

Proof. Since H/
√
n is orthogonal one has from Lemma 3: AA∗ +BB∗ =

nIn/2 and AB∗ +BA∗ = 0. It follows then that

MM∗ = (n/4)In/2. (4)

One has

M = circ

(

h1 + hn/2+1

2
, . . . ,

hn/2 + hn

2

)

. (5)

Observe, from (4), that n/4 equals the sum of squares of all entries

in row 1 of M and that an entry
hi+hn/2+i

2
= 0, does not contribute to

the sum of squares, while the other entries, i.e., the nonzero ones, each
contribute by 1 to the same sum. In other words one has

n/4 = b+ c. (6)

Compute now the sum S of all entries in row 1 of M :

S =

n/2
∑

i=1

hi + hn/2+i

2
=

1

2

n
∑

i=1

hi =

√
n

2
. (7)

But S = b− c since zeros do not contribute to the sum, thus it follows
from (7) that

b− c =

√
n

2
. (8)

From (6) and (8) we get (b) and (c). Since the total number of entries
in the őrst row of M is equal to n/2 we have

n/2 = a+ b+ c, (9)

thereby obtaining also (a). This őnishes the proof of the lemma.

The next lemma (see [17, Lemma 8.6]) is frequently used in the theory
of group representations.

Lemma 5. Let c1, . . . , cr be r complex numbers of absolute value 1. If

|c1 + · · ·+ cr| = r, then c1 = · · · = cr.

2. Proof of Theorem 1

Assume that n > 4. Observe that H is regular since H is circulant. In
particular, Lemma 1, implies that n = 4h2 for some positive odd integer
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h > 1, so that n is even. Write H = circ(h1, . . . , hn) and let R(x) be the
representer polynomial of H. Let C := (A(H) +B(H))/2 obtained from
Lemma (3) applied to M := H. Thus C is a circulant matrix of order
2h2 with all its entries in {−1, 0, 1}. Moreover, by block multiplication we
deduce from HH∗ = In that, with A := A(H) and B := B(H), one has

AA∗ +BB∗ = 4h2I2h2 , AB∗ +BA∗ = 0. (10)

By adding both equations in (10) we get

CC∗ = h2I2h2 . (11)

Let S(x) be the representer polynomial of C = circ(c1, . . . , c2h2). By
Condition 1 we can assume that c1 = −1, and that ch2+1 = 0. Put ω :=
exp(2πi/2h2) = exp(πi/h2). By Lemma 2 and (11) one has S(ω) = ha
where a is a complex number on the unit circle, i.e.,

|a| = 1. (12)

In other words we have

ha = c1 + c2ω + · · ·+ c2h2ω2h2−1. (13)

Lemma (4) implies that there are h2 values of j = 1, . . . , 2h2 such
that cj = 0. Put z1 := c1 and let denote by ztj with j = 2, . . . , h2 the
remaining (nonzero) terms in the right hand side of (13). In other words:
we have 1 < t2 < · · · < th2 ⩽ 2h2, with ztj := ctjω

tj−1.

Observe that ch2+1 = 0 means that for all k = 2, . . . , h2 one has

tk − 1 ̸= h2. Thus, from (2), ωh2

= −1, and ch2+1 = 0, we get

ha = z1 +

h2

∑

k=2

(ctk − ctk+h2)ωtk−1. (14)

Put L := {k | 1 < tk ⩽ h2}, and d := ♯L. By (2) one sees that

d = (h2 − 1)/2. (15)

Put G2 := L\G1. By (3) and(15) it follows that ♯G2 ⩽ (h− 1)/2.

From Condition 1 (b) one sees that (14) becomes

ha = −1 + 2 ·
∑

k∈G2

ztk . (16)
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In more detail: since k ∈ G2 ⇐⇒ ctk+h2 ≠ ctk , and both ctk and ctk+h2

are ±1, one has −ctk+h2 = ctk .

By (12) |a| = 1, and for each j one has |ztj | = 1. Thus, we apply the
triangle inequality to (16). From (3) we get

h = |ha| ⩽ 1 + 2 · ♯G2 ⩽ h. (17)

Therefore, (17) implies that

♯G2 = (h− 1)/2. (18)

Put S :=
∑

k∈G2
ztk . Since |ztk | = 1, (18) implies that

|S| ⩽ (h− 1)/2. (19)

But, (16) says that S = (ha+ 1)/2. Thus

|S| = |ha+ 1|/2 ⩾ (1/2) · ||ha| − |1|| = (h− 1)/2 (20)

since |a| = 1.

From (19) and (20) one gets

|S| = (h− 1)/2. (21)

From (18) and (21) we obtain that Lemma 5, applied to the set
{ztk | k ∈ G2} with r := (h− 1)/2 implies that

ztk = ztℓ for all k ̸= ℓ ∈ G2. (22)

Thus (22) and (18) implies that h = 3. But, it is known [12] that there
are no circulant Hadamard matrices of order 36.

Thus our assumption n > 4 fails, and we have then

n = 4. (23)

This őnishes the proof of Theorem 1 and the conjecture is settled,
under Condition 1.
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