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ABSTRACT. Let R be a ring. A right R-module M is called
d-Rickart if for every endomorphism ¢ of M, ¢(M) is a direct
summand of M and it is called wd-Rickart if for every nonzero
endomorphism ¢ of M, ¢(M) contains a nonzero direct summand
of M. We begin with some basic properties of (w)d-Rickart modules.
Then we study direct sums of (w)d-Rickart modules and the class
of rings for which every finitely generated module is (w)d-Rickart.
We conclude by some structure results.

1. Introduction

In [10], Lee, Rizvi and Roman introduced and studied a notion called
d-Rickart modules. A module M is said to be d-Rickart (or dual Rickart)
if for every ¢ € Endr(M), Imy is a direct summand of M. Actually,
this notion is dual to the notion of Rickart modules introduced by Lee,
Rizvi and Roman in [9]. A module M is called a Rickart module if for
every endomorphism ¢ of M, Ker ¢ is a direct summand of M. Later
in [13], Tribak introduced and investigated the notion called wd-Rickart
modules, which is a generalization of the concept of d-Rickart modules.
A module M is said to be wd-Rickart (or weak dual Rickart) if for every
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nonzero endomorphism ¢ of M, Im ¢ contains a nonzero direct summand
of M. Let M and N be two modules. Then M is called N-wd-Rickart if
for every nonzero homomorphism ¢ : M — N, Im ¢ contains a nonzero
direct summand of N.

In Section 2, we investigate some basic properties of (w)d-Rickart
modules.

In Section 3, we study direct sums of (w)d-Rickart modules. We provide
a characterization for a direct sum of two d-Rickart modules to be d-
Rickart. We also show that if My,..., M, are modules such that M; is
Mj-projective for all j >4 in {1,...,n}. Then @} ,M; is a wd-Rickart
module if and only if M; is M;-wd-Rickart for all 4,j € {1,...,n}.

Section 4 is devoted to the study of the class of rings over which
finitely generated modules are (w)d-Rickart. Among other results, the
class of commutative rings R for which every finitely generated R-module
is d-Rickart is shown to be precisely that of semisimple rings.

We conclude this paper by a short section in which we present some
structure results.

Throughout this paper, R is an associative ring with identity and all
the modules are unital right R-modules. Let M be a module. The notation
N < M means that N is a submodule of M. By Soc(M) and Endr (M),
we denote the socle of M and the endomorphism ring of M, respectively.
By Q, Z, and N we denote the set of rational, integer and natural numbers,
respectively.

2. Some properties of d-Rickart modules and wd-Rickart
modules

Let M and N be two modules. Following [10, Definition 2.14], the
module M is called N-d-Rickart (or relatively d-Rickart to N) if for every
homomorphism ¢ : M — N, Im ¢ is a direct summand of N. Therefore
M is a d-Rickart module if and only if M is M-d-Rickart.

Recall that a module M is called a (C3)-module if whenever A and
B are direct summands of M with AN B = 0, then A& B is a direct
summand of M. Note that every injective module is a (C3)-module.

Example 2.1. Let My be a semisimple module and let Ms be a module
such that the module M = My @& My is a (C3)-module. Then My and Mo
are relatively d-Rickart to each other by [2, Proposition 2.3].

If M is a d-Rickart (wd-Rickart) module, then a factor module of M
may not be d-Rickart (wd-Rickart) as we see in the following example.
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Example 2.2. Let R be a von Neumann regular ring which is not a
right V-ring (see [8, Example 3.74A]). By [10, Remark 2.2|, Ry is a d-
Rickart module. Then by [10, Proposition 2.25], every finitely generated
free R-module is a d-Rickart module. Since R is not a right V-ring, there
exists a finitely generated R-module M such that M is not a wd-Rickart
module (Proposition 4.1). It is well known that every finitely generated
R-module is a homomorphic image of a finitely generated free R-module.
Therefore there exists a positive integer n such that M = R™ /K for some
submodule K of R(™. Hence R™ /K is not a wd-Rickart (so R™ /K is
not a d-Rickart) module while R is a d-Rickart module.

The following proposition provides a sufficient condition under which
some factor modules of a d-Rickart module are d-Rickart.

Proposition 2.3. Let M be a d-Rickart module and let N be a fully
invariant submodule of M. If every endomorphism of M/N can be lifted
to an endomorphism of M, then M /N is also a d-Rickart module.

Proof. Let ¢ be a nonzero endomorphism of M/N. By assumption, there
exists an endomorphism 1 of M such that wi) = o7, where 7 : M — M/N
is the canonical projection. It is clear that ¢ # 0. As M is d-Rickart,
Im is a direct summand of M. Note that Im ¢ = pm(M) = (M) =
(¢(M)+N)/N. Since N is fully invariant in M, Im ¢ is a direct summand
of M/N. O

Corollary 2.4. Let M be a quasi-projective d-Rickart module. If N is a
fully invariant submodule of M, then M/N is a d-Rickart module.

Proof. By Proposition 2.3. O

Next, we investigate connections between a wd-Rickart module and
its endomorphism ring.

A ring R is called left w-Rickart if for every nonzero element = € R,
Ir(x) ={r € R| rz =0} is contained in a proper direct summand of the
left R-module rR.

Proposition 2.5. If M is a wd-Rickart module, then S = Endg(M) is
a left w-Rickart ring.

Proof. Let ¢ be a nozero endomorphism of M. Since M is wd-Rickart,
there exists a nonzero idempotent e € S with e(M) C ¢(M). Then clearly
ls(¢p) € S(1—e) and S(1 —e) # S. This proves the proposition. O

The following example shows that the converse of the above proposition
is not true, in general.
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Example 2.6. The Z-module Z is not wd-Rickart, but Endz(Z) = Z is
a left w-Rickart ring.

Corollary 2.7. If R is a right wd-Rickart ring, then eRe is a left w-
Rickart ring for any idempotent e in R.

Proof. This follows from [13, Corollary 2.5| and Proposition 2.5. O

Let M be an R-module and let S = Endg(M). We denote ry (1) =
{meM|Im=0}for d#1CSandlg(N)={peS|¢(N)=0} for
a submodule N of M. In [1, Corollary 4.2|, it is presented some examples
of submodules K of a module M for which ry/(Is(K)) = K. Moreover, it
is shown in [10, Corollary 3.7] that a module M is a d-Rickart module if
and only if rasls(p(M)) = p(M) and ryls((M)) is a direct summand
of M for all ¢ € S =Endr(M).

It is natural to ask when the converse of Proposition 2.5 holds. In this
vein we give the next theorem. But first we need the following lemma.

Lemma 2.8. Let M be a module with S = Endg(M). Then S is a left w-
Rickart ring if and only if rasls(p(M)) contains a nonzero direct summand
of M for all nonzero endomorphisms @ of M.

Proof. (=) Let ¢ : M — M be a nonzero endomorphism of M. Since S
is left w-Rickart, there exists an idempotent f of S such that Is(¢) C Sf
and Sf # S. Then rp(Sf) C rarls(p(M)). This implies that the nonzero
direct summand (1 — f)(M) of M is contained in rprlg(p(M)).

(<) Let 0 # ¢ € S. By hypothesis, there exists 0 # ¢ = e? € S
such that e(M) C rasls(p(M)). Thus lgrals(p(M)) C lg(e(M)). Hence
ls(e(M)) Cls(e(M)). So ls(p) Cls(e) = S(1 —e) # R. This completes
the proof. O

Theorem 2.9. Let M be a module with the property that ryrls(o(M)) =
©(M) for every nonzero endomorphism ¢ of M. Then M is a wd-Rickart
module if and only if S = Endr(M) is a left w-Rickart ring.

Proof. (=) By Proposition 2.5.
(<) This follows from Lemma 2.8. O

Recall that a module M is called retractable if for every nonzero
submodule N < M, there exists a nonzero endomorphism ¢ of M such
that Im¢ C N. It was shown in [10, Proposition 4.10] that if M is a
retractable d-Rickart module, then every nonzero submodule of M contains
a nonzero direct summand of M. Now we give the following.
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Proposition 2.10. Let M be a wd-Rickart module. Then M is retractable
if and only if every nonzero submodule of M contains a nonzero direct
summand of M.

Proof. (=) By [13, Proposition 2.13|.
(<) This is clear. O

Let M and N be two modules. The module M is called N-wd-
Rickart (or relatively wd-Rickart to N) if for every nonzero homomorphism
@ : M — N, Im ¢ contains a nonzero direct summand of N. Therefore M
is a wd-Rickart module if and only if M is M-wd-Rickart (see |13, Defini-
tion 2.1]).

Lemma 2.11. Let M and N be modules. Then M s N-wd-Rickart
(N-d-Rickart) if and only if M /X is N-wd-Rickart (N-d-Rickart) for any
submodule X < M.

Proof. (=) Assume that M is N-wd-Rickart (N-d-Rickart). Let ¢ :
M/X — N be a nonzero homomorphism. Consider the nonzero homo-
morphism ¢m : M — M/X — N, where 7 : M — M/X is the natural
epimorphism. By the assumption, there exists a nonzero direct summand 7'
of N such that T'CIm ¢or=Im ¢ (Im pm=Im ¢ is a direct summand of N).

(<) The result follows by taking X = 0. O

Theorem 2.12. The following conditions are equivalent for a module M :
(a) M is a wd-Rickart module;
(b) For any submodule N of M and every direct summand K of M,
M/N is K-wd-Rickart;
(c) For every pair of direct summands K and N of M, N is K-wd-
Rickart.

Proof. (a) = (b) This is clear by Lemma 2.11 and [13, Proposition 2.4].
(b) = (¢) Clear.
(c) = (a) Take N = K = M. O

Definition 2.13. A module M is called w-Cj if for every nonzero sub-
module N of M and every direct summand K of M, N = K implies that
N contains a nonzero direct summand of M.

Proposition 2.14. A module M is wd-Rickart if and only if M has w-Co
condition and for every nonzero ¢ € Endr(M), there exists a nonzero
submodule A of M such that A is isomorphic to a nonzero direct summand
of M and A C Im .
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Proof. This follows from [13, Proposition 2.3| and the definition of a
wd-Rickart module. O

Theorem 2.15. The following are equivalent for a module M :
(a) M is a wd-Rickart module;
(b) For every nonzero finitely generated right ideal I of S = Endg(M),
>per P(M) contains a nonzero direct summand of M.

Proof. (a) = (b) Let I =< ¢1,...,¢, > be a finitely generated right
ideal of S, where each ¢; is a nonzero endomorphism of M. Note that
>per P(M) = o1(M)+ -+ ¢n(M). Since M is wd-Rickart, there exists
a nonzero direct summand T of M such that T C o1 (M) € >° o/ ¢(M).

(b) = (a) This is clear. O

3. Direct sums of d-Rickart (wd-Rickart) modules

We begin with the following theorem which gives a characterization
for a direct sum of two d-Rickart modules to be d-Rickart.

Theorem 3.1. Let M = M & My be a module. The following conditions
are equivalent:
(a) M is a d-Rickart module;
(b) (i) M; and M; are relatively d-Rickart fori,j € {1,2}, and
(ii) for every ¢ € Endg(M) such that Im o+ M, is a direct summand
of M, Im  is a direct summand of M.
(c) (i) M; and M; are relatively d-Rickart for i,j € {1,2}, and
(ii) for every ¢ € Endgr(M) with (Imyp + M) & N = M for some
submodule N < Mas, Im ¢ is a direct summand of M.

Proof. (a) = (b) By [10, Theorem 2.19| and the definition of a d-Rickart
module.

(b) = (c) This is clear.

(c) = (a) Let ¢ : M — M be a nonzero homomorphism. Let 7 :
M — Mj and w9 : M — My be the natural epimorphisms. Consider the
homomorphisms ¢1 = ¢ : M — M; and @2 = map : M — M. Note
that M is M;-d-Rickart and M is Ms-d-Rickart by [10, Corollary 5.4].
Then there exists a direct summand M/ of M; and a direct summand M}
of My such that My = @1 (M) @ M| and My = po( M) @ M. It is easy
to check that (M) + My = ¢1(M) ® po(M) & M| = My ® @2(M). So
(p(M) + M) @ M5 = M. By assumption, p(M) is a direct summand of
M. Hence M is a d-Rickart module. O
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Recall that an element ¢ of a ring R is called regular if ¢r # 0 and
rc¢ # 0 for all nonzero r € R. Following [5, p. 104], an R-module X is called
divisible in case X = Xc¢ for every regular element ¢ of R. An R-module
Y is called torsion if for any y € Y, there exists a regular element ¢ in R
such that yc = 0. On the other hand, an R-module Z is called torsion-free
if whenever z € Z satisfies zd = 0 for some regular element d of R then
z = 0. The ring R is called a right Goldie ring if Rr has finite rank and
R has the acc on right annihilators. The following theorem provides many
examples of d-Rickart modules.

Theorem 3.2. Let R be a prime right Goldie ring such that R is not
right primitive and let an R-module M be a direct sum of a torsion-free
divisible submodule X and a torsion semisimple submodule Y. Then M is
a d-Rickart module.

Proof. By |5, Propositions 6.12 and 6.13|, X is a nonsingular injective mod-
ule. Hence X is d-Rickart since Endg(X) is von Neumann regular. More-
over, in the proof of |7, Corollary 2.16] it is shown that Hompg(X,Y) =0
and Homp(Y, X) = 0. Therefore X and Y are fully invariant submodules
of M. Then M is a d-Rickart module by [10, Proposition 5.14]. O

Corollary 3.3. Let R be a prime Pl-ring which is not artinian and let
an R-module M be a direct sum of a torsion-free divisible submodule X
and a torsion semisimple submodule Y. Then M is a d-Rickart module.

Proof. By [7, Corollary 2.17] and [11, Corollary 13.6.6 and Theorem 13.3.8],
R is a right Goldie ring and R is not right primitive. The result follows
from Theorem 3.2. L

The following proposition is inspired by [10, Proposition 5.2|. This
result provides a rich source of examples showing that the wd-Rickart
property does not go to direct sums of wd-Rickart modules. It extends
[13, Example 2.6] to arbitrary modules.

Proposition 3.4. Let M be an indecomposable module with a nonzero
proper socle. Then M & Soc(M) is not a wd-Rickart module.

Proof. Assume that M @&Soc(M) is wd-Rickart. By Theorem 2.12, Soc(M)
is M-wd-Rickart. Let p : Soc(M) — M be the inclusion map. Then there
exists a nonzero direct summand 7" of M such that T C p(Soc(M)) =
Soc(M). Since M is indecomposable, we have T'= M = Soc(M ), which
is a contradiction. O
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In [13, Proposition 2.7], it is studied when a direct sum @;c;M; of
modules M; (i € I) is N-wd-Rickart for some module N. Next, we provide
a sufficient condition under which N is (@®;c;rM;)-wd-Rickart for some
finite index set 1.

Proposition 3.5. Let M = M & Ms such that Ms is M;i-projective
and let N be a module. Then N is M-wd-Rickart if and only if N is
M;-wd-Rickart for all i =1, 2.

Proof. (=) By Theorem 2.12.

(«<=) Let ¢ : N — M be a nonzero homomorphism. Let 7o : M — Moy
be the projection on My along M. Let w9 = map : N — Mo.

Case 1: Assume that o is nonzero. Since N is My-wd-Rickart, there
exists a nonzero direct summand Ky of My such that Ko C Imyy =
(Im @ + M) N M. Then Ko = (Imp + M;) N Ks. Let Ly be a submodule
of M such that My = Lo® Ko. Note that Ko is Mj-projective by [15, 18.1].
On the other hand, Ko @ M; = [Im ¢ N (K9 @ My)] + M;. Then by [15, 41.
14], Ky ® My = C & M; for some submodule C' < Imy N (K3 & Mj).
Clearly, C'is a nonzero direct summand of M which is contained in Im ¢.

Case 2: Assume that @3 = 0. Then (Im ¢+ M;)N Mz = 0. This implies
that Im ¢ + M7 = M; and hence Im ¢ C M;. Since N is Mj-wd-Rickart,
Im ¢ contains a nonzero direct summand of M. O

Theorem 3.6. Let M = @7 M; such that M; is M;-projective for all
jg>iin{l,...,n}, and let N be a module. Then N is M-wd-Rickart if
and only if N is M;-wd-Rickart for alli=1,... n.

Proof. The proof is by induction on n and using Proposition 3.5, Theorem
2.12 and [15, 18.2(2)]. O

Corollary 3.7. Assume that My, ..., M, are R-modules such that M; is
Mj-projective for all j > i in {1,...,n}. Then @] M; is a wd-Rickart
module if and only if M; is Mj-wd-Rickart for all i,j € {1,...,n}.

Proof. (=) Clear by Theorem 2.12.

(<) By [13, Proposition 2.7|, @7, M; is M;-wd-Rickart for all j €
{1,...,n}. Therefore ®]' ; M; is a wd-Rickart module by Theorem 3.6. [

4. Rings whose finitely generated modules are d-Rickart
(wd-Rickart)

We begin with a result which gives some information about the class
of rings over which every finitely generated module is wd-Rickart.
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Proposition 4.1. Let R be a ring such that every finitely generated
R-module is a wd-Rickart module. Then
(i) R is a right V-ring.
(ii) Ewery indecomposable finitely generated R-module is a simple injec-
tive module.
(iii) Ewvery uniform module is a simple injective module.

Proof. (i) Assume that there is a simple R-module S with E(S) # S.
Take a nonzero element x € E(S) which is not in S. Clearly, we have
Soc(zR) = S. By hypothesis, the finitely generated right R-module 2R &
Soc(zR) = xR @ S is wd-Rickart. This is impossible (see Proposition 3.4).

(ii) Let M be an indecomposable finitely generated R-module. Let
0 # x € M. Since zR & M is wd-Rickart, xR is M-wd-Rickart by [13,
Corollary 2.8(ii)|]. Therefore xR contains a nonzero direct summand of M.
As M is indecomposable, xR = M. Hence M is a simple module.

(iii) Let U be a uniform R-module and let 0 # = € U. So zR is
indecomposable. Thus xR is simple by (ii). It follows that U is a semisimple
module. But U is indecomposable. Then U is a simple module. O

The following example shows that, in general, a right V-ring may
have a finitely generated module which is not wd-Rickart. Note that there
exist right noetherian right V-rings which are not von Neumann regular
(see [4]).

Example 4.2. Let R be a right noetherian right V-ring which is not von
Neumann regular. Then Rp is not a d-Rickart module by [10, Remark 2.2].
Therefore Rp is not a wd-Rickart module by [13, Corollary 3.5]|.

Next, we focus on the class of rings over which every finitely generated
module is d-Rickart.

A module M is said to be regular if every cyclic submodule of M is a
direct summand of M. Equivalently, every finitely generated submodule
of M is a direct summand of M (see |14, Remark 6.1]).

Lemma 4.3. (i) If M is an R-module such that R ® M s a d-Rickart
R-module, then M is a von Neumann regular module and R is a von
Neumann reqular ring.

(ii) If N is a finitely generated R-module and M is a regular R-module,
then N is M-d-Rickart.

Proof. (i) Let @ € M and consider the R-homomorphism ¢, : R — M
defined by ¢,(x) = ax for all z € R. By (i) and [10, Theorem 2.19|, R
is M-d-Rickart. Therefore Im ¢, = aR is a direct summand of M. So M
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is a von Neumann regular module. Similarly, we can see that R is a von
Neumann regular ring.

(ii) Let ¢ : N — M be an R-homomorphism. Then Im ¢ is finitely
generated. Hence Im ¢ is a direct summand of M since M is a regular
module. It follows that N is M-d-Rickart. ]

Proposition 4.4. The following conditions are equivalent for a finitely
generated R-module M :
(i) R® M is a d-Rickart module;
(ii) M is a von Neumann regular module and R is a von Neumann
reqular ring.

Proof. (i) = (ii) By Lemma 4.3(i).

(ii) = (i) Applying Lemma 4.3(ii), we conclude that M is d-Rickart,
Rp is M-d-Rickart, M is Rp-d-Rickart and Rp is d-Rickart. By [10,
Corollary 5.6], it follows that R @ M is a d-Rickart module. O

Corollary 4.5. The following are equivalent for a ring R:

(i) Ewvery finitely generated R-module is a d-Rickart module;

(ii) For any finitely generated R-module M, R®M is a d-Rickart module;
(iii) Ewvery finitely generated R-module is a regular module.

Proof. By Lemma 4.3 and Proposition 4.4. [

A ring R is called a right FGC-ring if every finitely generated right
R-module is a direct sum of cyclic submodules.

Proposition 4.6. Let R be a ring such that every finitely generated
R-module is d-Rickart. Then the following hold:
(i) R is a von Neumann regular ring,
(ii) R is a right V-ring,
(iii) R is an FGC-ring,
(iv) Ewvery indecomposable finitely generated R-module is a simple injec-
tive module, and
(v) For any right ideal I of R and any x € R, there exists a right ideal
I' of R such that I CI', xRNI' CI and xR+ 1 = R.

Proof. (i) By Corollary 4.5 (see also [10, Remark 2.2]).

(ii) By Proposition 4.1.

(iii) By Corollary 4.5 and [14, Remark 6.2(2)].

(iv) By Proposition 4.1.

(v) Let I be a right ideal of R and let € R. By Corollary 4.5, R/I is
a regular R-module. So (zR+1)/I is a direct summand of R/I. Let I’ be
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a right ideal of R which contains I such that (zR+1)/I)® (I'/I) = R/I.
Then xR+ 1’ = R and xRN I’ C I. This completes the proof. O

Proposition 4.7. Let R be a right noetherian ring. Then the following
are equivalent:

(i) Ewvery finitely generated R-module is a d-Rickart module;

(ii) R is a semisimple ring.

Proof. (i) = (ii) Let I be a right ideal of R. Since R is right noetherian,
1 is finitely generated. Then by Corollary 4.5, I is a direct summand of
Rp. Thus R is a semisimple ring.

(ii) = (i) This is clear. O

Note that there exists a commutative noetherian local ring R that
may have an R-module which is not wd-Rickart, and hence not d-Rickart.

Example 4.8. Let F' be a field. Consider F[[z]], the formal power series
ring over F. It is not hard to see that F[[z]] is a commutative local
noetherian ring (it is also a domain). Let F'((x)) be the quotient field of
F[z]]. Take the cyclic F[[z]]-module K = {q € F((x)) | zq € F[[z]]}. Note
that F[[z]] € K. Consider the nonzero F[[z]]-monomorphism o : K — K
defined by ¢ — xzq. Clearly, Ina C F[[z]]. If Im « contains a nonzero
direct summand of K, then Im o = F[[z]], which is a contradiction. This
means that K is not a wd-Rickart F[[z]]-module.

Now we characterize commutative semisimple rings in terms of finitely
generated d-Rickart modules.

Proposition 4.9. The following are equivalent for a commutative ring R:
(i) Ewvery finitely generated R-module is a d-Rickart module;
(ii) R is a semisimple ring.

Proof. (i) = (ii) By Proposition 4.6, R is an FGC-ring which is von
Neumann regular. Thus R is a direct sum of indecomposable rings by
[3, Theorem 9.1]. Since R is von Neumann regular, it follows that R is a
semisimple ring.

(ii) = (i) This is clear. O

Note that there exists a non-commutative artinian local ring R that
may have a finitely generated injective R-module which is not wd-Rickart,
and hence not d-Rickart.
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Example 4.10. Let R be a local artinian ring with radical W such that
W? =0, Q = R/W is commutative, dim(oW) = 2 and dim(Wg) = 1.
Then the indecomposable injective 2-generated right R-module U =
[(R® R)/D|g with D = {(ur,—vr) | » € R} and W = Ru + Ruv is
not regular. For, let N be a cyclic submodule of U with length 2. Then
N # U since U has length 3. Therefore N cannot be a direct summand
of U. On the other hand, note that U/N is simple and let 7 : U — U/N
denote the canonical epimorphism. Since R is an artinian ring, we have
Soc(U) # 0. Let S be a simple submodule of U. Therefore there exists
an isomorphism « : U/N — S as R is a local ring. Let p: S — U be the
inclusion map. It follows that f = pam : U — U is an endomorphism of U
such that Im f = S is not a direct summand of U. This implies that U is
not a d-Rickart module. Since U is indecomposable, U is not wd-Rickart,
either.

5. Some structure results

Recall that a module M is said to be dual Baer if for every submodule
N < M, there exists an idempotent e € S = Endg(M) such that D(N) =
eS, where D(N) = {p € S| Imp C N}. This notion was introduced by
Keskin Tiitiincii-Tribak in 2010 [6].

In this section, we present some structure results for some subclasses
of wd-Rickart modules.

Since the properties of d-Rickart and wd-Rickart coincide for every
noetherian module by [13, Corollary 3.5], the following three results can be
obtained immediately from [10, Propositions 4.12 and 4.13 and Theorem
4.14], respectively.

Proposition 5.1. Let M be a noetherian wd-Rickart module. Then there
exists a decomposition M = My @& My & ... H M, where for each i, M;
is an indecomposable noetherian wd-Rickart module with Endg(M;) a
diviston ring. Moreover, n € N is uniquely determined, and the sequence
of isomorphism types of My, Mo, ..., M, is uniquely determined up to
permutation.

Proposition 5.2. Let M be a noetherian module over a commutative
ring R. Then the following are equivalent for M :
(a) M is a d-Rickart module;
(b) M is a wd-Rickart module;
(¢) M is a dual Baer module;
(d) M is a semisimple module.
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Theorem 5.3. Let M be an n-generated module over a commutative
noetherian ring R for n € N. Then the following are equivalent for M :
(a) M is a d-Rickart module;
(b) M is a wd-Rickart module;
(¢) M is a dual Baer module;
(d) M= R/m1 @ R/my® ---® R/my,, where m; are mazimal ideals of
R with 1 <i< n.

Let R be a Dedekind domain which is not a field. Then for each nonzero
prime ideal P of R, R(P°) will denote the P-primary component of the
torsion R-module K/R, where K is the quotient field of R.

Theorem 5.4. Let R be a Dedekind domain which is not a field. Let K
be the quotient field of R. The following are equivalent for an R-module
M = @1 M;, where M; is indecomposable for each i € I:

(i) M is a dual Baer module;
(ii) M is a d-Rickart module;
(iii) M is a wd-Rickart module;
(iv) M is a direct sum of copies of K, (R(P°))icr and (R/Q;)je., where

(Pi)icr and (Qj)jes are nonzero prime ideals of R with P; # Q; for
every couple (i,7) € I x J.

Proof. (i) = (ii) = (iii) are clear by definitions.

(iii) = (iv) By [13, Corollaries 2.5 and 3.4|, each M; (i € I) is an
indecomposable dual Baer module. Applying [6, Theorem 3.4], we see that
each M; is either isomorphic to K or R(P°) or R/Q; for some nonzero
prime ideals P; and @; of R. Moreover, by [13, Example 2.6], it follows
that for every nonzero prime ideal P of R, the R-module R(P*>) & R/P
is not a wd-Rickart module. The result follows.

(iv) = (i) By [6, Theorem 3.4|. O

Corollary 5.5. For a Z-module M = ®;c;M;, where M; is indecompos-

able for each i € I, the following are equivalent:

(i) M is a dual Baer module;

(ii) M is a d-Rickart module;

(iii) M is a wd-Rickart module;

(iv) M is isomorphic to a direct sum of arbitrarily many copies of Q
and (Z(ps°))ier and (Z/q;Z) e, where p;i(i € I) and q;(j € J) are
primes with p; # q; for every couple (i,5) € I x J.

Recall that a module M is called lifting if for every submodule N of

M, there exists a direct summand K of M such that K < N and N/K is
small in M/K.
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Theorem 5.6. Let R be a non-local Dedekind domain. The following are
equivalent for an R-module M = @;c 1 M;, where M; is indecomposable for
each i € I:
(i) M is a dual Baer lifting module;
(ii) M is a d-Rickart lifting module;
(i) M is a wd-Rickart lifting module;
(iv) M is torsion and every P-primary component of M is isomorphic
either to [R(P>)]™? or [R/P]'P) for some natural number np and
index set Ip.

Proof. By Theorem 5.4 and [12, Propositions A.7 and A.§|. O

Corollary 5.7. For a Z-module M = &;c1M;, where M; is indecompos-

able for each i € I, the following are equivalent:

(i) M is dual Baer lifting;

(ii) M is d-Rickart lifting;

(iii) M is wd-Rickart lifting;

(iv) M is torsion and each p-primary component M, is isomorphic either
to [Z(p™)|"P or [Z/pZ])IP) for some natural number np and index
set Ip.
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