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Groupoids: Direct products, semidirect products

and solvability
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Abstract. We present some constructions of groupoids such

as: direct product, semidirect product and give necessary and suffi-

cient conditions for a groupoid to be embedded into a direct product

of groupoids. Also, we establish necessary and sufficient conditions

to determine when a semidirect product is direct. Finally the notion

of solvable groupoid is introduced and studied, in particular it is

shown that a finite groupoid G is solvable if and only if its isotropy

groups are.

Introduction

A groupoid is a small category in which every morphism is invertible.
An equivalent notion of groupoid from an axiomatic approach, such as
that of a group, is presented in [11, p. 89]. Using this point of view, Paques
and Tamusiunas gave necessary and sufficient conditions for a subgroupoid
to be normal (see Definition 1.2) and constructed the quotient groupoid
[17] which plays an important role in the study of Galois extensions for
groupoid actions. In [4,6] several equivalent characterizations of groupoids
are presented. Applications of groupoids appear in several branches, for
instance in [10] the author uses groupoids to simplify proofs of basic
results in group theory. Groupoids are also used to study partial actions
and partial representations of groups, for example in [12] the authors
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presented an alternative way to study globalizations through groupoids,
in [1] it is shown that a partial action gives rise to a groupoid provided
with a Haar system, whose C∗-algebra agrees with the crossed product
by the partial action, while in [8] and [9] is constructed and studied a
special groupoid algebra which controls the partial representations of
an arbitrary group. On the other hand, Étale groupoids are topological
groupoids where the domain and range are local homeomorphisms. In [18]
it was defined a convolution algebra of the R-module (where R being a
commutative unital ring) generated by characteristic functions of certain
types of compact open subsetes of an ample étale groupoid, denomined
étale groupoid algebras, and in [19] chain conditions were established on
étale groupoid algebras and applications to Leavitt path algebras and
inverse semigroup algebras were showed. In [13] orbifolds were described
in terms of a certain kind of groupoids. In algebraic topology Brown in
[7] used the van Kampen theorem for the fundamental groupoid on a set
of base points to prove the Jordan Curve Theorem.

The main goal of this paper is to continue the works [3, 4] and [5]
by presenting new constructions of groupoids and study some structural
properties of them. For this, after the introduction in section 1 we introduce
the necessary background on groupoids. In section 2 we define direct
product of an arbitrary family of groupoids and give in Theorem 2.4
necessary and sufficient conditions for a groupoid to be embedded in a
direct product of groupoids. At this point it is important to remark that in
[16] the author deals with internal direct product of groupoids, but in his
work groupoids are considered as binary system so his approach is different
from ours. We also give in Theorem 2.9 necessary and sufficient conditions
for a semidirect product to be direct. In section 3 we present the concept
of solvable groupoid in terms of subnormal series, a characterization of
solvable groupoid via derived series and normal subgroupoids are given in
Theorem 3.4 and Theorem 3.6, respectively. Finally in Proposition 3.8 we
show that under a mild restriction a groupoid is solvable provided that
all its isotropy groups are.

1. Preliminaries

Recall that a groupoid is a small category in which every morphism is
an isomorphism. The set of the objects of a groupoid G will be denoted by
G0. If g : e → f is a morphism of G then d(g) = e and r(g) = f are called
the domain and the range of g, respectively. We identify any object e of G
with its identity morphism, that is, e = ide and thus G0 ⊆ G. The isotropy
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group associated to an object e of G is the group Ge = {g ∈ G | d(g) =
r(g) = e}. The set Iso(G) =

⋃

e∈G0
Ge is called the isotropy subgroupoid

of G. The composition of morphisms of a groupoid G will be denoted via
concatenation. Hence, for g, h ∈ G, there exists gh, denoted ∃gh, if and
only if r(h) = d(g). Notice that, if g ∈ G then its inverse g−1 is unique,
d(g) = g−1g and r(g) = gg−1.

The following is well-known (see for instance [4, Proposition 2]).

Proposition 1.1. Let G be a groupoid, g, h ∈ G and n ∈ N. The following
assertions hold.

(i) If ∃gh, then d(gh) = d(h) and r(gh) = r(g).
(iii) ∃gh if and only if ∃h−1g−1 and, (gh)−1 = h−1g−1.
(iii) For g1, g2, . . . , gn ∈ G, ∃g1g2 · · · gn if and only if r(gi+1) = d(gi), for

1 ⩽ i ⩽ n− 1.

Recall the notions of subgroupoid, wide and normal subgroupoid.

Definition 1.2. Let G be a groupoid and H a nonempty subset of G.
(i) H is said to be a subgroupoid of G if for all g, h ∈ H, g−1 ∈ H and

gh ∈ H provided that ∃gh. In this case we denote H < G. If in
addition H0 = G0 (or equivalently G0 ⊆ H) then H is called a wide
subgroupoid of G.

(ii) A subgroupoid H of G is said to be normal, denoted by H◁ G, if H
is wide and g−1Hg ⊆ H, where

g−1Hg = {g−1hg | h ∈ H and r(h) = d(h) = r(g)},

for all g ∈ G.

Note that G0 is a wide subgroupoid of G and if g ∈ G then g−1G0g =
{d(g)} ⊆ G0. That is G0 is a normal subgroupoid of G.

Remark 1.3. Normality was defined in [6] as follows: A subgroupoid H
is said to be normal if H0 = G0 and g−1Hr(g)g = Hd(g), for all g ∈ G. The
equivalence between this definition and the presented in Definition 1.2
appears in [17, Lemma 3.1].

Given a wide subgroupoid H of G, in [17] was considered a relation on
G as follows: for every g, l ∈ G,

g ≡H l ⇐⇒ ∃l−1g and l−1g ∈ H.
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Furthermore, this relation is a congruence, that is an equivalence relation
which is compatible with products. The equivalence class of ≡H containing
g is the set gH = {gh | h ∈ H ∧ r(h) = d(g)}. This set is called left coset
of H in G containing g. Then we have the next.

Proposition 1.4. [17, Lemma 3.12]. If H is a normal subgroupoid of G
and G/H is the set of all left cosets of H in G, then G/H is a groupoid
with the partial binary operation given by (gH)(lH) = glH.

The groupoid G/H in Proposition 1.4 is denomined the quotient

groupoid of G by H.

2. Direct and semidirect product of groupoids

We start this section by giving the definition of the direct product
of an arbitrary family of groupoids, we also obtain a criteria to decide
when a groupoid is embedded into a direct product of groupoids. Later
semidirect products are also considered.

2.1. The direct product of a family of groupoids

Let {Gi | i ∈ I} be a family of groupoids and
∏

i∈I Gi the direct product
of the family of sets {Gi | i ∈ I}. We define a partially binary operation
on {Gi | i ∈ I} as follows. Given (xi)i∈I , (yi)i∈I ∈

∏

i∈I Gi,

∃(xi)i∈I(yi)i∈I ⇐⇒ ∃xiyi ∀i ∈ I.

In this case we set (xi)i∈I(yi)i∈I = (xiyi)i∈I . It is clear that with this
product the set

∏

i∈I Gi is a groupoid. Let n be a natural number, if I is
a set with n elements and Gi = G for all i ∈ I, the set

∏

i∈I Gi is denoted
by Gn.

Now consider a family {Xi}1⩽i⩽n consisting of non-empty subsets of
G. We set

(X1 ×X2 × · · · ×Xn)
(n) = {(x1, x2, . . . , xn) ∈ X1 ×X2 × · · · ×Xn | ∃x1 · · ·xn}

and

X1 · · ·Xn = {x1 · · ·xn | (x1, x2, . . . , xn) ∈ (X1 ×X2 × · · · ×Xn)
(n)}.

In general it is not true that (X1 ×X2 × · · · ×Xn)
(n) is a subgroupoid

of Gn, even though each Xi is a subgroupoid of G, for all 1 ⩽ i ⩽ n.
In the next result we provide necessary and sufficient conditions for
(X1 ×X2 × · · · ×Xn)

(n) to be a groupoid.
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Proposition 2.1. Let n be a natural number and Hi be a subgroupoid
of G, for i ∈ {1, . . . , n}. Then (H1 × · · · × Hn)

(n) is a subgroupoid of
Gn if and only if r(hi) = d(hi+1) for 1 ⩽ i ⩽ n − 1 with (h1, . . . , hn) ∈
(H1 × · · · × Hn)

(n).

Proof. (⇒) Let (h1, . . . , hn) ∈ (H1 × · · · × Hn)
(n). We need to show that

d(hi+1) = r(hi), for all 1 ⩽ i ⩽ n − 1. By assumption d(hi) = r(hi+1),
for 1 ⩽ i ⩽ n − 1. Since (H1 × · · · × Hn)

(n) is a groupoid we have
(h−1

1 , . . . , h−1
n ) ∈ (H1 × · · · × Hn)

(n), which gives r(hi) = d(hi+1) for
1 ⩽ i ⩽ n− 1.

(⇐) Let (h1, . . . , hn) ∈ (H1 × · · · × Hn)
(n) and 1 ⩽ i ⩽ n − 1,

then r(h−1
i+1) = d(h−1

i+1) = r(hi) = d(h−1
i+1) and thus (h−1

1 , . . . , h−1
n ) ∈

(H1 × · · · × Hn)
(n). Now if (h′1, . . . , h

′
n) ∈ (H1 × · · · × Hn)

(n) and
∃(h1, . . . , hn)(h

′
1, . . . , h

′
n) then (h1h

′
1, . . . , hnh

′
n) ∈ H1 × · · · × Hn. Now

for 1 ⩽ i ⩽ n− 1

d(h′i) = r(h′i+1) = d(hi) = r(hi+1)

and thus ∃h′ihi+1, which implies (hih
′
1, . . . , hnh

′
n) ∈ (H1 × · · · × Hn)

(n),
and we conclude that (H1 × · · · × Hn)

(n) is a subgroupoid of Gn.

Corollary 2.2. Let n be a natural number and Hi be wide subgroupoids
of G, for i ∈ {1, . . . , n}. Then (H1 × · · · × Hn)

(n) is a subgroupoid of Gn

if and only if Hi = IsoHi for 1 ⩽ i ⩽ n.

Proof. (⇒) Take hi ∈ Hi then (r(hi), . . . , r(hi), hi, d(xi), . . . , d(xi)) ∈
(H1 × · · · × Hn)

(n), by Proposition 2.1 we have that r(r(hi)) = d(hi) =
d(d(hi)), that is r(hi) = d(hi) and hi ∈ IsoHi, that is Hi = IsoHi.

(⇐) Let (h1, . . . , hn) ∈ (H1 × · · · × Hn)
(n) then r(hi) = d(hi) =

r(hi+1) = d(hi+1), again by Proposition 2.1 we have that (H1×· · ·×Hn)
(n)

is a subgroupoid of Gn.

We have the following.

Proposition 2.3. Let G be a groupoid and H1, . . . ,Hn be wide sub-
groupoids of G. Consider the following assertions.

(i) G = H1 · · ·Hn.
(ii) Hi ◁ G, ∀i = 1, . . . , n.
(iii) Hi ∩ (H1 · · ·Hi−1Hi+1 · · ·Hn) = G0, ∀i = 1, . . . , n.
(iv) For each g ∈ G, there exists unique elements x1 ∈ H1, . . . , xn ∈ Hn

such that (x1, . . . , xn) ∈ (H1 ×H2 × · · · × Hn)
(n) and g = x1 · · ·xn.
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(v) For each i ̸= j, we have that xy = yx, ∀x ∈ Hi and ∀y ∈ Hj such
that

r(y) = d(x) = r(x) = d(y).

Then (i),(ii) and (iii) hold if and only if (iv) and (v) hold.

Proof. Assume that the conditions (i), (ii), (iii) hold. We start by checking
(v), for this take x ∈ Hi and y ∈ Hj , with i ̸= j, and r(y) = d(x) =
r(x) = d(y), then ∃y−1x−1yx and y−1x−1yx = (y−1x−1y)x ∈ Hi, because
Hi ◁ G, and y−1x−1yx = y−1(x−1yx) ∈ Hj , because Hj ◁ G. Thus,
y−1x−1yx ∈ Hi ∩Hj = G0. that is,

y−1x−1yx = d(g), (1)

for some g ∈ G, which gives d(x) = d(y−1x−1yx) = d(g) and r(y) =
d(y) = r(x) = d(x) = d(g). From this and (1) we get xy = yx which is
(v).

Now we prove (iv). Take g ∈ G then by (i) there are xi ∈ Hi, 1 ⩽ i ⩽ n
such that g = x1 · · ·xn. If g = y1 · · · yn, with yi ∈ Hi. Let 1 ⩽ i ⩽

n− 1 then d(xi) = r(xi+1) and d(yi) = r(yi+1), also ∃y−1
1 (y1 · · · yn) and

∃x1 · · ·xnx
−1
n · · ·x−1

2 , thus

y−1
1 x1 = y2y3 · · · yn−1ynx

−1
n x−1

n−1 · · ·x
−1
2 .

By (v) we have
y−1
1 x1 = y2x

−1
2 y3x

−1
3 · · · ynx

−1
n ,

where y−1
i xi ∈ Hi with i = 1, . . . , n. Thus, y−1

1 x1 ∈ H1∩ (H2 · · ·Hn) = G0

and there exists g ∈ G such that y−1
1 x1 = d(g). Hence, x1 = y1.

Now as x1 · · ·xn = y1 · · · yn and x1 = y1 by the cancellation law for
groupoids, we obtain x2 · · ·xn = y2 · · · yn and continuing this process we
have xi = yi for i = 2, . . . , n.

For the other implication, suppose that conditions (iv) and (v) are
satisfied. First of all note that (i) follows from (iv). To show (ii) take
i ∈ {1, . . . n} since Hi is wide subgroupoid, then G0 = (Hi)0 and thus
g−1Hig ̸= ∅ for all i = 1, . . . n and g ∈ G. We will see that given g ∈ G
and y ∈ Hi such that ∃g−1yg then g−1yg ∈ Hi. Indeed, by (iv), there are
xj ∈ Hj , 1 ⩽ j ⩽ n such that ∃x1x2 · · ·xn and g = x1x2 · · ·xn. Then

g−1yg = x−1
n · · ·x−1

i x−1
i−1 · · ·x

−1
1 yx1 · · ·xi−1xixi+1 · · ·xn.

Furthermore, for j = 1, . . . , i− 1, yxj = xjy and d(xj) = r(y) thanks to
(v). Thus,

x−1
j yxj = x−1

j xjy = d(xj)y = r(y)y = y, for all j = 1, . . . , i− 1.
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Hence, g−1yg = x−1
n · · ·x−1

i yxixi+1 · · ·xn. Now, as for all j = i+1, . . . , n−
1, x−1

j x−1
j+1 = x−1

j+1x
−1
j and xjxj+1 = xj+1xj , we get

g−1yg = x−1
i x−1

i+1 · · ·x
−1
n yxn · · ·xi+1xi.

Now, for j = i, . . . , n, yxj = xjy and d(xj) = r(y) by condition (v). It
implies that

x−1
j yxj = x−1

j xjy = d(xj)y = r(y)y = y, for all j = i+ 1, . . . , n.

Thus, g−1yg = x−1
i yxi ∈ Hi which is (ii).

To fininsh the proof, we show (iii). As G0 = (Hi)0 for all i = 1, . . . , n,
we have that G0 ⊆ Hi ∩ (H1 · · ·Hi−1Hi+1 · · ·Hn). Now take g ∈ Hi ∩
(H1 · · ·Hi−1Hi+1 · · ·Hn), then g ∈ Hi, and

g = x1 · · ·xi−1gxi+1 · · ·xn

with xj = r(g) for j = 1, . . . , i− 1 and xk = d(g) for k = i+ 1, . . . , n. On
the other hand, as g ∈ H1 · · ·Hi−1Hi+1 · · ·Hn, then

g = h1 · · ·hi−1hi+1 · · ·hn = x1 · · ·xi−1hihi+1 · · ·xn

with hi = d(xi−1), then xj , hj ∈ Hj for all j = 1, . . . , n and by (iv) we get
g ∈ G0, as desired.

If G and G′ are groupoids and F : G → G′ a groupoid homomorphism,
it is not difficult to show that if K is a wide subgroupoid of G′, then
F
−1(K) = {x ∈ G | F(x) ∈ K} is a wide subgroupoid of G. We say that F

is a monomorphism if it is injective, in this case G is embedded in G′.

Theorem 2.4. Let G be a groupoid, then G is embedded in a direct
product of groupoids if and only if there are H1, . . . ,Hn subgroupoids of G
such that H1, . . . ,Hn satisfy conditions (i), (ii) and (iii) of Proposition 2.3.

Proof. (⇒) Suppose that there exists a groupoid monomorphism F : G →
G1 × · · · × Gn. Since

Ki = (G1)0 × · · · × Gi × · · · × (Gn)0

is a normal subgroupoid of G1 × · · · × Gn, then the family of groupoids
Hi = F

−1(Ki) for i = 1, . . . , n satisfies (i), (ii) and (iii) of Proposition 2.3.
(⇒) Suppose that there exists subgroupoids Hi of G, 1 ⩽ i ⩽ n that

satisfy conditions (i), (ii) and (iii). Consider the map

F : G = H1 · · ·Hn ∋ (h1 · · ·hn) 7→ (h1, . . . , hn) ∈ Gn (2)
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Note that condition (iv) makes F well defined and injective. We prove
that F is a homomorphism. Suppose that ∃x1x2 · · ·xn, ∃y1y2 · · · yn and
g = x1x2 · · ·xn and g′ = y1y2 · · · yn in G. If ∃gg′ we have

gg′ = x1x2 · · ·xny1y2 · · · yn = x1y1x2y2 · · ·xnyn.

Using condition (v) we get F(gg′) = (x1y1, x2y2, . . . , xnyn) = F(g)F(g′).

Remark 2.5. The image of F defined by (2) is (H1 × · · · × Hn)
(n), then

under conditions of Theorem 2.4 G is isomorphic to a subgroupoid of a
direct product, provided that the groupoids Hi satisfy the assumptions in
Proposition 2.1.

Example 2.6. Consider the groupoid G = {a, u, v, u−1, v−1, x, y}, where
G0 = {x, y}, d(a) = r(a) = x, d(v) = r(u) = y and r(v) = d(u) = x,
and the following composition rules vu = a, a2 = u−1u = vv−1 = x
and v−1v = uu−1 = y hold in G. The following diagram ilustrates the
composition in G

x y

x

u

a v

Set H1 = {u, u−1, x, y} and H2 = {v, v−1, x, y}. It is not diffiult to check
that H1 and H2 satisfy conditions (i)-(iii) of Proposition 2.3. Then
G = H1H2 is embedded in H1 ×H2.

2.2. Semidirect product and groupoids

Let G be a groupoid,G be a group with identity 1G and ω : G → Aut(G)
be a homomorphism of groups. The homomorphism ω induce a action of
G on G given by

· : G ×G → G

(x, g) 7→ x · g := ωg−1(x).

We use ω to define a groupoid structure on the set G × G. Define the
partial product as follows:

∃(x, g)(z, h) if and only if d(x) = r(ωg(z)).

In this case we set
(x, g)(z, h) = (xωg(z), gh).
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Here the identities are given as follows. For each (x, a) ∈ G ×G, we set
d(x, a) = (d(x) ·a, 1G) and r(x, a) = (r(x), 1G). Further, for (x, a) ∈ G×G
we have

(x, a)−1 = (ωa−1(x−1), a−1) ∈ G ×G. (3)

With this product the groupoid G ×G is denoted by G ×ω G and is
called the semidirect product of the groupoid G with the group G, via the

homomorphism ω : G → Aut(G).
Before giving an example of the construction above we recall that

a groupoid G is connected, if for all e, f ∈ G0 there is g ∈ G such that
d(g) = e and r(g) = f . The following result is well-known.

Proposition 2.7. There is a groupoid isomorphism G ≃ G2
0 × Ge, where

e ∈ G0 and G2
0 is the coarse groupoid associated to G0, that is

d(x, y) = (x, x) and r(x, y) = (y, y), (4)

and the rule of composition in G2
0 is given by (y, z)(x, y) = (x, z), for all

x, y, z ∈ G0.

Example 2.8. Let G be a connected groupoid and take e ∈ G0, by
Proposition 2.7 one may write G = G2

0 × Ge. Consider an action · :
G × Ge → Ge then Ge acts on G via the homomorphism ω : Ge → Aut(G),
where for a ∈ Ge, ωa(x, y, g) = (x, y, a · g), for all ((x, y), g) ∈ G. Now
(G2

0 × Ge)0 = {(x, x, e) | x ∈ G0} and r(ωa(x, y, g)) = (y, y, e). Then
G ×ω Ge is a groupoid with partial product

(y, z, g, a)(x, y, h, b) = ((y, z, g)(x, y, a · h), ab) = (x, z, g(a · h), ab).

for all (y, z, g), (x, y, h) ∈ G and a, b ∈ Ge.

The following result characterizes when a semidirect product is direct.

Theorem 2.9. Let G be a groupoid, G be a group with identity 1G and
ω : G → Aut(G) be a group homomorphism. Then the following assertions
are equivalent.

(i) The identity map between G ×G and G ×ω G is a homomorphism,
and thus an isomorphism.

(ii) ω is trivial.
(iii) G0 ×G is normal in G ×ω G.

Proof. (i) ⇒ (ii) Take g ∈ G we need to show that ωg is the identity map
on G. Take z ∈ G, then ∃(r(z), g)(z, b) ∈ G × G, for b ∈ G. Since the
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identity map is a homomorphism of groupoids we have that ∃(r(z), g)(z, b)
and (z, gb) = (r(z)ωa(z), gb). In particular z = ωg(z) and ω is trivial.

(ii) ⇒ (i) Si ω is trivial, then ωg is the identity on G for all g ∈ G.
Hence G ×ω G = G ×G and the identity map is an isomorphism.

(ii) ⇒ (iii) It is not difficult to check that G0 ×G is a subgroupoid of
G×ωG, also (G0×G)0 = G0×{1G} = (G×ωG)0, that is G0×G is wide. Let
(x, g) ∈ G×ωG and (e, h) ∈ G0×G such that ∃(x, g)(e, h)(x, g)−1 ∈ G×ωG,
but ω is trivial, then

(x, g)(e, h)(x, g)−1 (3)
= (xe, gh)(x−1, g−1) = (xex−1, ghg−1)

= (e, ghg−1) ∈ G0 ×G.

(iii) ⇒ (ii) Suppose that G0 ×G is normal in G ×ω G. Take l ∈ G, x ∈ G
and write l = ghg−1 for some g, h ∈ G. Now (ωg−1(d(x)), h) ∈ G0 × G
and ∃(x, g)(ωg−1(d(x)), h) ∈ G ×ω G which equals (x, gh). Moreover by
(3) (x, g)−1 = (ωg−1(x−1), g−1) and

r(ωg(ωg−1(x−1))) = r(x−1) = d(x),

thus ∃(x, g)(ωg−1(d(x)), h)(x, g)−1 and

(x, g)(ωg−1(d(x)), h)(x, g)−1 (3)
= (x, gh)(ωg−1(x−1), g−1)

= (xωghg−1(x−1), ghg−1) ∈ G0 ×G,

from this xωl(x
−1) = xωghg−1(x−1) ∈ G0 then x = ωl(x) and ω is trivial.

The following result tells us how to recognice semidirect products
inside a groupoid.

Proposition 2.10. Let G be a groupoid, G be a subgroup of G and H a
normal subgroupoid of G. Suppose that H ∩G = {1G} and G acts in H
via conjugation, then HG ≃ H×w G.

Proof. First of all by [4, Proposition 11], HG is a subgroupoid of G.
Since H ∩ G = {1G} every element in HG has a unique expresion hg,
for some h ∈ H, g ∈ G with d(h) = r(g), and thus the map φ : HG ∋
hg 7→ (h, g) ∈ H ×w G is a bijection. To check that it is an isomor-
phism take h, h′ ∈ H, g, g′ ∈ G such that ∃hg, ∃h′g′ and ∃(hg)(h′g′), then
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∃gh′, ∃gh′g−1, ∃hgh′g−1 and

φ((hg)(h′g′)) = φ((hgh′g−1)(gg′))

= φ((hωg(h
′))(gg′))

= (hωg(h
′), gg′)

= φ(hg)φ(h′g′).

Hence HG ≃ H×w G.

3. Solvable groupoids

In this chapter we introduce the notion of solvable groupoid and show
that being solvable is a hereditary property and it is preserved by taking
quotients.

Recall that a groupoid G is called abelian if all its isotropy groups are
abelian. Clearly G0 is an abelian subgroupoid of G.

Definition 3.1. A groupoid G is called solvable if there exists a series:

G0 = H0 ◁H1 ◁ · · ·◁Hs = G

such that each factor Hi+1/Hi is abelian, for all 0 ⩽ i ⩽ s− 1.

Before giving a characterization of solvable groupoid we need to recall
some notions and facts.

Proposition 3.2. [3, Proposition 2.6] Let G be a groupoid, {Hi}i∈I a
family of subgroupoids of G, and ∅ ̸= B ⊆ G. Then:

(i) If
⋂

i∈I Hi ̸= ∅, then
⋂

i∈I Hi is a subgroupoid of G;
(ii) If Hi is wide for each i ∈ I, then

⋂

i∈I Hi is a wide subgroupoid of
G;

(iii) There exists a smallest subgroupoid of G that contains B.

If G is a groupoid and ∅ ̸= B ⊆ G, then the subgroupoid given in the
Proposition 3.2 is called the subgroupoid generated by B and it will be
denoted by ⟨B⟩. It can be proved that the set ⟨B⟩ is given by

⟨B⟩ = {xα1

1 xα2

2 ...xαn

n | ∃xα1

1 xα2

2 ...xαn

n , xi ∈ B,αi ∈ {1,−1} ∀i, n ∈ N} .

Now let X,Y be non-empty subset of G we denote by [X,Y ] the
subgroupoid generated by the set {xyx−1y−1 | x ∈ X, y ∈ Y, r(x) =
d(x) = r(y) = d(y)}, provided that this set is non-empty. When X =
Y = G the groupoid [G,G] is called the derived subgroupoid of G, by
[3, Proposition 4.4] we know that [G,G] is a normal subgroupoid of G. We
proceed with the next.
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Definition 3.3. Let G be a groupoid. Define the following sequence of
subgroupoids:

G(0) = G, G(1) = [G,G] and G(i+1) = [G(i),G(i)] for all i ⩾ 1.

These series of subgroupoids is called the derived or commutator series
of G.

Theorem 3.4. Let G be a groupoid. Then, G is solvable if and only if
G(n) = G0 for some n ⩾ 0.

Proof. Assume that G is solvable. Then there exists a series

G0 = H0 ◁H1 ◁ · · ·◁Hs = G

such that each factor Hi+1/Hi is abelian. We prove that G(i) < Hs−i for
all i ⩾ 0. By induction on i. For i = 0 is evident. Suppose that G(i) < Hs−i.
Then

G(i+1) = [G(i),G(i)] < [Hs−i,Hs−i].

As Hs−1/Hs−i−1 is abelian, by [3, Proposition 4.4 (5)], [Hs−i,Hs−i] <
Hs−i−1. Hence G(i+1) < Hs−i−1. Since H0 = G0, then G(s) = G0. For
the other implication, suppose that G(n) = G0 for some n ⩾ 0. By [3,
Proposition 4.4 (5)] taking Hi = G(n−i) then Hi is a normal subgroupoid
of Hi+1 with abelian quotient, so the derived series satisfies the definition
of solvability of G.

If G is solvable, the solvable length of G is the smallest nonnegative n
such that G(n) = G0. As in the case group, the derived series of a groupoid
is a series of shortest length whose successive quotients are abelian.

Proposition 3.5. Let G and K be groupoids, H be a subgroupoid of G
and let F : G → K be a groupoid epimorphism. Then

(i) H(i) < G(i) for all i ⩾ 0. In particular, if G is solvable then H is
solvable.

(ii) F(G(i)) = K(i). In particular, homomorphic images and quotient
groupoids of solvable groupoids are solvable.

(iii) If G is solvable then every non-trivial normal subgroup of G , that
is different from G0, contains a non-trivial abelian subgroupoid.

Proof. (i). By induction on i. As H < G, then [H,H] < [G,G] by definition
of commutator subgroupoids, i.e., H(1) < G(1). Now, assume that H(i) <
G(i). Then

H(i+1) = [H(i),H(i)] < [G(i),G(i)] = G(i+1).
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In particular, if G is solvable then G(n) = G0 for some n. Hence H(n) <
G(n) = G0. Thus H is solvable.
(ii). Note that for x, y ∈ G(i−1),

F([x, y]) = F(x−1y−1xy) = F(x)−1
F(y)−1

F(x)F(y) = [F(x),F(y)]. (5)

Now, we prove by induction that F(G(i)) < K(i). Indeed, for i = 0 note
that F(G) < K. Now, suppose that F(G(i)) < K(i). Using (5) we have

F(G(i+1)) = F([G(i),G(i)]) = [F(G(i)),F(G(i))] < [K(i),K(i)] = K(i+1).

Since F is epimorphism, then for each [x′, y′] ∈ K there exist [x.y] ∈ G such
that F([x, y]) = [x′, y′]. Hence, we prove by induction that F(G(i)) = K(i).
In fact, for i = 0 we have that F(G) = K since F is epimorphism. Suppose
that F(G(i)) = K(i) and note that

F(G(i+1)) = F([G(i),G(i)]) = [F(G(i)),F(G(i))] = [K(i),K(i)] = K(i+1).

Again, if G(n) = G0 for some n then K(n) = F(G(n)) = F(G0) = K0.
(iii) Suppose that G is solvable and let N be a normal subgroupoid

of G with N ̸= G0 and let G0 = H0 ◁H1 ◁ · · ·◁Hs = G such that each
factor Hi+1

Hi
is abelian. Let i be the maximal possible integer such that

N ∩Hi = G0. Notice that i < n since N is non-trivial. Then K = N ∩Hi+1

is a nontrivial subgroupoid of G which is normal in G. Consider the map
j : Hi+1 →

Hi+1

Hi
then

j(K) =
KHi

Hi
≃

K

K ∩Hi
=

K

G0
≃ K,

where the isomorphism follows from [4, Theorem 2], then K is isomorphic
to a subgroupoid of the abelian groupoid Hi+1

Hi
. Hence it is abelian.

We proceed with the next.

Theorem 3.6. A groupoid G is solvable if and only if for any normal
subgroupoid N of G, N and G/N are solvable.

Proof. (⇒) Let N be a normal subgroupoid of G, we shall prove that N is
solvable. Let G0 = H0◁H1◁ · · ·◁Hs = G be a series such that each factor
Hi+1/Hi is abelian, for all 0 ⩽ i ⩽ s−1. Since Hi+1∩N = (Hi∩N )∩Hi+1

is a normal subgroupoid of Hi ∩N for all 0 ⩽ i ⩽ s− 1, we obtain a series

N0 = (H0 ∩N )◁ (H1 ∩N )◁ · · ·◁ (Hs ∩N ) = N .
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Now, from [4, Theorem 2] it follows that

Hi+1 ∩N

Hi ∩N
≃

Hi(Hi+1 ∩N )

Hi
.

As Hi(Hi+1∩N )
Hi

< Hi+1

Hi
and Hi+1

Hi
is abelian, then Hi+1∩N

Hi∩N
is abelian. Hence

N is solvable. The fact that G
N

is solvable follows from Theorem 3.5
(ii). For the converse, suppose that N is solvable of length m and G

N
is

solvable of length n then by (ii) of Proposition 3.5 applied to the natural

epimorphism j : G → G
N

we obtain j(G(n)) =
(

G
N

)(n)
= G0N ⊆ N , i.e.,

G(n) < N . Thus G(n+m) = (G(n))(m) < N (m) = G0. Hence by Theorem 3.4
we have that G is solvable.

Corollary 3.7. The following assertions hold.
(i) Let K and H be groupoids, then K ×H is solvable if and only if K

and H are.
(ii) If G is a connected groupoid, then G is solvable if and only if the

isotropy group Ge is solvable for all e ∈ G0.

Proof. (i) (⇒) This part follows from (ii) of Proposition 3.5 since K
and H are epimorphic images of K × H. For (⇐) We first check that
K × H0 is solvable, it is not difficult to check that for all i ⩾ 0 one
has that (K × H0)

(i) = K(i) × H
(i)
0 = K(i) × H0. Since K is solvable

Theorem 3.4 implies that there exists n ⩾ 0 such that K(n) = K0 thus
(K ×H0)

(n) = K0 ×H0 and K ×H0 is solvable. Now by [4, Theorem 1],
there is a groupoid isomorphism K×H

K×H0
≃ H and thus K×H

K×H0
is solvable,

then K ×H is solvable due to Theorem 3.6.
(ii) Take e ∈ G0, by Proposition 2.7 there is a groupoid isomorphism
G ≃ G2

0 × Ge, but for f ∈ G2
0 we have by (4) that (G2

0)(f,f) = {(f, f)} and
G2
0 is abelian and thus solvable, then the result follows from (i).

Now we shall show that under suitable conditions the notion of sol-
vability for a groupoid G can be reduced to the group case. Let G be a
groupoid, it is well-known that G is a disjoint union of connected sub-
groupoids. In fact, consider the following equivalence relation on G0:
x, y ∈ G0, x ∼ y if and only if there exists g ∈ G such that s(g) = x
and t(g) = y. For each equivalence class X ∈ G0/∼ corresponds a full
connected subgroupoid GX of G such that (GX)0 = X. By construction, G
is the disjoint union of the subgroupoids GX , that is,

G =
˙⋃

X∈G0/∼
GX . (6)
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and (6) gives [G,G] =
⋃

X∈G0/∼

[GX ,GX ], and G(n) =
⋃

X∈G0/∼

(GX)(n).

Suppose that G is solvable, we know by (i) of Proposition 3.5 that Ge is
solvable for all e ∈ G0. Conversely, suppose that Ge is solvable for all e ∈ G0.
Take X ∈ G0/∼ then GX is solvable thanks to (ii) of Corollary 3.7, and
there is nX ∈ N such that (GX)(nX) = X. If there exists N = max{nX |
X ∈ G0/ ∼}, then G(N) =

⋃

X∈G0/∼

(GX)(N) =
⋃

X∈G0/∼

X = G0, and G is

solvable. Hence we have proved the following.

Proposition 3.8. Let G a groupoid, and write G = ˙⋃
X∈G0/∼

GX as
the union of connected subgroupoids given by (6). Then the following
assertions hold.

(i) If G is solvable, then Ge is solvable for all e ∈ G0.
(ii) If Ge is solvable for all e ∈ G0, then GX is solvable for all X ∈ G0/∼ .

In this case let nX be the solvable length of GX , then G is solvable
provided that the sequence {nX}X∈G0/∼ is upper bounded.

It is clear that the condition on the sequence {nX}X∈G0/∼ given in (ii)
of Proposition 3.8 holds for any finite groupoid. Then we have the next.

Corollary 3.9. let G be a finite groupoid, then G is solvable if and only
if Ge is solvable for all e ∈ G0.

Remark 3.10. It is possible to construct a non solvable groupoid G such
that Ge is solvable for all e ∈ G0. Indeed let n ∈ N by [2, Theorem 2.2]
there is a group Gn of solvable length n, let G be the disjoint union
G = ˙⋃

n∈NGn then G is not solvable.
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