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ABSTRACT. Let Sing, denotes the semigroup of all singular
self-maps of a finite set X,, = {1,2,...,n}. A map « € Sing,, is
called a 3-path if there are i, j, k € X,, such that ia = j, ja =k
and xa = x for all z € X, \ {i,j}. In this paper, we described a
procedure to factorise each o € Sing,, into a product of 3-paths. The
length of each factorisation, that is the number of factors in each
factorisation, is obtained to be equal to [$(g(a)+m(a))], where g(a)
is known as the gravity of @ and m(«) is a parameter introduced in
this work and referred to as the measure of a.. Moreover, we showed
that Sing,, C P!"~1I where P denotes the set of all 3-paths in Sing,,
and P* = PUP?2U..-UPF.

1. Introduction

Let X,, = {1,2,...,n}. The full transformation semigroup 7, on X,
that is the semigroup of all self-maps of X, under composition of mappings,
have been much studied. One of the outstanding contribution is given by
Howie [5], where it was shown that the subsemigroup Sing,,, of all singular
maps in 7,, is generated by its set E; of all idempotents of defect one
(that is element e € T, satisfying e? = e and |X,, \ im(e)| = 1). Later
Howie [6] and Iwahori |7] independently computed the minimum number
of factors in E required to expressed each o € Sing,, to be g(«), the
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gravity of o € Sing,, (see [6] for details). The maximum possible value of
this number was also obtained in [6] to be equal to |3(n —1)|, where |z|
is the floor of = (that is the unique integer m for which z — 1 < m < x).
If E denote the set of all idempotents in Sing,,, the minimum number of
factors in E required to expressed each o € Sing,, was found, by Saito [§],
to be equal to [%] or [%1 + 1, where d(a) = | X,, \ im(«)| denotes
the defect of o, and [z] is the ceiling of x (that is the unique integer m
for which x <m <z +1).

Related lengths problems where addressed, for product of idempotents
in semigroups of order-preserving maps in both full and partial cases, by
Schein [9], Higgins [4] and Yang [10]. Garba |2] solved similar problems in
the semigroup P,, of all partial transformations of X,,. Recently, Garba
and Imam [3] also studied similar lengths problems in the symmetric
inverse semigroup Z,, of all partial one-to-one maps of X,,.

Ayik, et. al. [1] showed that the semigroup Sing,, can also be generated
by certain primitive elements called path-cycles. Special class of path-
cycles called m-paths can be regarded as generalisations of idempotents of
defect one in the sense that all idempotents of defect one are 2-paths and
vice-versa. In general, Ayik et. al. [1| proved that the semigroup Sing,, is
generated by its set of m-paths for each m in {2,3,...,n}. In this paper,
we describe a procedure to factorise each singular map « in Sing,, into
a product of 3-paths. We then obtained the length of each factorisation,
that is the number of 3-paths in the factorisation.

2. Preliminaries

Let X,, = {1,...,n} and let 7, be the full transformation semigroup
on X,. If{z1,...,2,} C X, and a € T, is defined by

Tt = Tit1, Tma=x, (1 <r<m)andza =2z (z € X, \ {z1,...,2m}),

then « is called a path—cycle of length m and period r, or simply, an (m, r)-
path-cycle, and is denoted (in a linear notation) by a = [z1, ..., Tm|x,].
If » = m, a is called an m-path to x,, or simply an m-path; if m > 2
and r = 1, a is called an m-cycle; if m = r = 1, a is called a loop; if
m =r =2, «is an idempotent of defect one; if m > 2 and r # 1, « is said
to be a proper path-cycle.

Let £ = [x1, x2, x3|x3] be an arbitrary 3-path in Sing,,, then £ maps x;
to 2, w2 to x3 and all other elements of X, identically. Instead of using
the linear notation for £, we shall throughout this paper extend the array
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notation, used for idempotents of defect one (that is 2-paths) used in [6],

and write £ as
_ (72 ™
- <~’B3 902) '

This will enable us a proper adoption of the methods of [6] in proving our
results. In the array notation we shall refer to x; as the upper entry of &;
to xo as the middle entry of &; and to x3 as the lower entry of &.

Let « be in Sing,,. The equivalence relation w on X,,, defined by

w={(z,y) € X;y x X;, : (Fu,v = 0)za" = ya"},
partitioned X,, into orbits 1,...,€;. These orbits correspond to the
connected components of the digraph associated to o with vertex set X,
in which there is a directed edge (z,y) if and only if xza = y. Each orbit
Q has a kernel defined by
KQ)={zeQ:(3r>0)za" =z}

An orbit Q is said to be:

standard if and only if 2< |K(Q)] < 19;
acyclic if and only if 1=|K(Q)| < 9Q;
cyclic if and only if 2 < |K(Q)] =19
trivial if and only if 1=|K(Q)| =19

Every orbit of « falls into exactly one of these four categories and all four
cases can arise. Let ¢(a) be the number of cyclic orbits of @ and f(«a) be
the number of fixed points of «, this equals the sum of the number of
trivial and the number of acyclic orbits of «. The gravity of « is defined as

g(a) =n+cla) — fla).

For each standard or acyclic orbit Q of @ € Sing,, and each z € Q\im(«),

the sequence
2

T,xonTa ...
eventually arrives in K (), the kernel of Q, and remains there for all sub-
sequent iterations. Denote the set of all distinct elements in this sequence
by Z(x). Suppose that a € Sing,, has s standard orbits 1, Qo, ..., Qs.
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For each j = 1,2,...,s, let Q; \ im(a) = {w1;, 225, ..., k5 }, Where x1; is
such that

max {|Z(x;j)| :

1<’i<kj
[ Z(x15)| = |Z(xi5)| is even}
maxlgigkj{\Z(xij)H if |Z(.CU”)‘ is odd for all 7.

if |Z(xi;)| is even for some i,

Then there exist m; > 1 and r; > 2 (see [6]) such that
K(Q]) = {xljamj, ‘e ,$1j0¢mj+rj71},

where x1;0"7 7" = z1;0™i. Note that this definition of K (£;) is still
valid for every z;;, not only for z1;, and moreover, they are all the same.
We then define

VAL (Qj) = Z((l)lj) = {xlj, T1jQ .. ,:z:ljamj, .. ,xljamj+rjil} (1)
and
ZZ(Q]) = {xij,xija, . ,.’L‘Z'jap"jil} (2 <1< kj) (2)

where :Ziijapij € (Zl(Qj) ] ZQ(Q]‘) J---u Zi_l(ﬂj)). Thus, {ZZ(Q]) 1<
i < kj} is a partition of ;. Also, suppose that o € Sing,, has acyclic
orbits; let @ be the union of all its acyclic orbits and denote the set
{z € ®: za =z} by Fix(®). Let @ \ im(a) = {21, x2,..., 2} where x; is
such that

|Z (1))

maxi<u<i{|Z(xy)| : |Z(xy)| is odd} if |Z(z,,)] is odd for some wu,

max;<u<i{|Z(xu)|} if |Z(x,)| is even for all u.
Then, for u=1,2,...,[, define
Y (®) = {zy, zua, ..., z,a® 1} (3)

where zja? € Fix(®) and z,0% € (Y1(®)U---UY,_1(P)UFix(®))
(u = 2,3,...,0). Thus, {Yu(®) : 1 < u < [} is a partition of &. We
will be interested in the cardinalities of Z;(2;) and Y;,(®) being odd or
even. For this, we define indicator functions z;; and y, by

0 if |Z;(€2;)] is even, 0 if |Y,(®)] is even,
Zij = and 1y, =
1 if [Z;(95)] is odd, 1 if |Y,(®)|is odd.
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Finally, for each o € Sing,, we define the measure of o by

l(a) —e(a) ifl(a) >e(a),
m(a) = (4)
0 if I(a) < e(a),

where l(a) =37, Efil Zij + Zizl Yy, and e(«) denote the number of
cyclic orbits of a of even cardinality.

Before closing this section, we illustrate the above definitions and
notations in an example.

Example 1. Consider the map

(123456789 10111213 141516 17 18 19 20 21 22
- \234247877111113141416 17 1519 18 21 20 22

in Sing,, with orbits

standard: O =41,2,3,4,5},Q9 = {6,7,8,9};
acyclic: ¢ = {10,11}, P9 = {12,13,14};
cyclic: 01 = {15,16,17},09 = {18,19},03 = {20, 21};
trivial: U, = {22},

as shown in Figure 1.

1 6 9 12

! \ Y/ !

2 5 7 10 13 15 18 20
S N Y T ! A N ]
3——4 8 11D 14D 16——17 19 21 22D

FI1GURE 1. Orbits of o € Sing,,.

For this o, we have ® = {10,11, 12,13, 14} and so, Z; (1) = {1,2, 3,4},
Z5(21) = {5} (note that, according to the concerning definitions, it is also
possible that Z1(Q1) = {2,3,4,5} and Z2(Q1) = {1}), Z1(Q2) = {6, 7,8},
ZQ(QQ) == {9}, Yl((I)) == {12, 13}, Yé(i)) - {10} ThUS, 211 = 0, 221 = 1,
z12 = 1,200 = 1,41 = 0,y2 = L and so, [(«) = z11+291+212+220+y1+y2 =
4, also e(a)) = 2. Therefore the measure of « is m(«a) = 2.
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3. Products of 3-paths

In [1], it was proved that for a fixed m in {2,...,n}, every element
of Sing,, is a product of m-paths. The result was obtain via decomposing
each 2-path in Sing, as a product of 2 m-paths while each element of
Sing,, is decomposable as a product of 2-paths. In this section, we consider
the case when m = 3 and obtain a direct decomposition of each o € Sing,,
as a product of 3-paths.

Let E be the set of all idempotents in Sing,, and E; be the set of all
idempotents of defect 1 in E. First, we note that, in the notation of [6],
each idempotent in F; is of the form (;), with 4,7 € X,, and i # j. Thus,
since n > 3, there is a k € X,,, with k £ i and k # j, such that,

() -G 2G5 ®

Theorem 1. Forn > 3, each o € E'\ Ey is expressible as a product of
g(a) 3-path in Sing,,.

Proof. Let a € E'\ Eq and let Ay, Ay, ..., A, be its non-singleton blocks.
Then, each of the blocks A; (1 < i < r) is stationary. If |A;| > 3 for some
i, we can assume without loss of generality that |A;| > 3. Let

A\ {Aia} = {xi, zio, ..o, Tig, } (1< <)
and define products & (1 < i < r) of 3-paths by
¢ = <3312 xu) (:c13 JJ11> (a:m xu) (3312 :c11>
Ao z12) \ A1 x13 Ao x14, ) \ A1 212
and
c- (e ) (i )G o) eseen
Then, it is easy to verify that

a=%8§8 &

Also, observe that each point in A; \ {A;a} (2 < i < r) appeared
exactly once as a middle entry of a 3-path in & and each point in
A1\ {41, 211,212} appeared exactly once as a middle entry of a 3-
path in &;. The point z12 appeared exactly twice as a middle entry of
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3-paths in & while the point z1; did not appear anywhere as a middle
entry. Thus, the number of 3-paths used in the product &1&3--- &, is

DA\ {Aia}| =1~ f(a) = g(a).
i=1
If |A;| =2 for all i, let A; = {z;, xz;a} (1 <i<r). Then,
[ T1 Ty 2 Tr) [ Tr-1 Ly Ty Ty
o= ria x1) \xzoa a9 Tro10 Tp_1) \xpa x1)°
and again, the number of 3-paths used is n — f(a) = g(«). O

Example 2. Consider the idempotent

. ({1,2,27,5} {3,8,;0, 12} {4,6,&,11}) 660t

£ = 5 1 7 1 5 1
1=\2 5)\2 7)\2 5/
€ = 3 1 10 1 12 1
2= \8 3/\8 10/\8 12)°
¢y — 4 1 6 1 9 1
57\ 4)\11 6/ \11 9/
Theorem 2. Forn > 3, each « € Sing, \F is expressible as a product of
%(Q(Ol) + m(a))] 3-paths in Sing,,.

where

Proof. Suppose that a € Sing,, \ E has orbits as follows:

standard: 01,09, ...,0%;
acyclic: Dy, Dy, ..., Dy;
cyclic: 01,09,...,0,;
trivial: Uy, Uy, ..., Uy,
For each standard orbit ; let Q; \ im(a) = {w15, 225, ..., Tk, };
K(Qj) = {mljamj,xljaij, e ,.%'1j04mj+rj_1};

and define Z(€2;) and Z;(Q;) (i = 2,...,k;) as in Equations (1) and (2),
respectively. Also, let

P=P,UPU---UDg;
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¢\ im(a) = {z1,29,..., 21}

and define Y, (®) (u=1,2,...,1) as in Equation (3). Moreover, let

@U = {yvu Yoy ooy yvapU71}

(where y,aP* = y,). Then we consider six possible cases that may arise.
Case 1. 0 = e(a) = (). In this case each Z;(Q;) (1 = 1,2,...,kj)
and each Y, (®) (v = 1,2,...,1) is of even size; also, each O, is of odd
size. Thus, corresponding to each Z1(8;), Z;(Q2;) (i = 2,3,...,k;), Yu(P)
(u=1,2,...,1) and O, (v=1,2,...,¢) we define, respectively, products
&, & (1=2,3,...k;), 7w (u=1,2,...,0) and 1, (v =1,2,...,¢) of
3-paths by

5 xljamj-H"j—l mljamj-‘r’r‘j—Q xljamj-‘r’l’j—?) $1jamj+rj—4
J xljamj 1 xljamj +r;j—1 xlede +r;i—2 T, oMt 3

3 2
xlja 1'1]‘04 mlja a;lj
xlja4 l‘lj()é?’ $1j0¢2 .’Eleé ’
. APij—1 . APij—2 . APij—3 . APij—4 . .
£ = Tijo Tijo e Tijo [ mija @y
v mijapii :cijapifl 1‘@0&171772 xijapij*‘% xijoﬂ Tijo ’

rya®—l g, qfu? Tpad ™3 x,adu? Tyl Ty
Tay = _ o _
v rpa® ol ) \z,a"2 p,a3 TuQ? T,

and
_ (o T gea TY (ypal Tyt Yo 2
TE 2 et \geatr e T Yy)’
where z is any point in X, \ im(c).
For each 7 =1,2,...,s, let

Bi = &15825 &k

then each element x € €); appears exactly once either as an upper entry
or as a middle entry of a 3-path in the product 8;. Moreover, with the sole
exception of x = xljamﬂ‘*l, an element x € (); appearing as a lower entry
or a middle entry never subsequently reappears as an upper or middle
entry. Hence each @ # z1;a™i 7 ~1 in Q; is moved by exactly one of the
3-paths appearing in the product 3; and moreover, it is moved to za.
The exceptional element z1,;a™ 7~ ! is moved to z1;a™~1 by the first
3-path in the product &;; and then is moved, by either

xljamﬂ'*l .%'1j04mj72 or xljamﬂ' 1’1j0&m7’71
10 xljosz_l azljamf‘H x1;0M
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to z1ja"™i (= 210/ 77). Thus, 28; = xa for every x € Q;, while 25; = x
for every x € X, \ Q. Since the orbits ; (1 < j < s) are pairwise disjoint,
we have a product S5 --- (s of 3-paths such that

ra it ze Ui Qy,
B2 Bs =
z i zeX,\Ui_ Q.

Similarly, if
V=TT T

then each point x € ® appears either as an upper entry or a middle entry
of a 3-path in the product . Moreover, each x € ® that appears as a
lower entry or a middle entry never subsequently reappears as an upper
or middle entry. Hence each x € ® is moved to xa by exactly one of the
3-paths appearing in the product v. Thus, v = za for each x € ¢ while
xy =z for each z € X, \ .
Also, if
d0=mn2Ne,

then, again, we can observe that the product ¢ is such that xd = za for
each z € U{_,0, and 20 = x for each x € X,, \ Uj_,0,,. Hence, it follows
that

o= 152 Bs9,

a product of 3-paths in Sing,,.

Let us denote the number of 3-paths in the products &;;, 7, and 7, by
#(&ij), #(mu) and #(n,), respectively (we shall also use similar notation in
the sequel). Then, counting the number of points appearing at the top of
each product &;;, 7; and 1;, we have #(&;;) = 3(Z:(Q;)], #(1u) = 3|Yu(®)]
and #(n,) = 5(|6,] +1). And so,

kj

#(5) = 3 2140 = 5l
so that, -
(BB ) ;i:l”j" #<v>:1§ljeru<<I>>r
and - 7
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Using these, while noting that

s c l
DI 100+ D [Yu(@) =n— (a+1),
1 v=1 u=1

j:
we have
g(@)

#la) = 5(nte = (a+0) = 5(n+ela) - f(o)) = L2

Case 2. 0 =[(a) < e(a). As in Case 1, each Z;();) (i =1,2,...,k;) and
each Y, (®) (u=1,2,...,1) is of even size. Let e(a)) = e and arrange the
cyclic orbits such that

01,02,...,0.

are of even sizes and

Oct1,0c19,...,0,
are of odd sizes. Then, corresponding to each Z;(€;) (i = 1,2,...,k;),
Yu(®) (u=1,2,...,0) and ©, (v=e+1,e+2,...,¢), we define, respec-
tively, products &;;, 7, and 7, of 3-paths as in Case 1. While if e is even,
then corresponding to the even size cyclic orbits O, (v =1,2,...,¢e), we
define a product n,ny+1 (v =1,2,...,e — 1) of 3-paths by

T Tv+1
v—1 v—2 v—3 v —4 —1
_ yyap yyap yvap yvap o z yv+1apv+l
z yvapv_l yvOépU_Q yvam -3 Yo 2
o1 —2 ot 1—3 2
yv—i-lap +1 yv+1ap +1 Yp+1&0 Yp+1 Yv+1 z
—1 =2 3 2
Yop1QPU T gy aPt Yo1Q° Yo p1Q Ty 1 Yop1)
where z is any point in X, \ im(«).

If e is odd, then for each v = 1,2,...,e — 2, we define the product
MNw+1 Of 3-paths as above and for v = e we define the product 7, of

3-paths by
- yeapefl yeape*Q yeape*?’ yeoépe*4
e = < yeape_l yeape_Q yeape—3

“'<yea ye)(ye Z)
yea2 YeX Ye Ye)'

where again z is any chosen point in X, \ im(«). It is then not difficult to
observe that

a = 3132 Bs79,
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and 0 = -

“Me-

where
Bi = &85 Sy Y =TT 0T,
Also,
1
#(mm+1) = §(|@v‘ + ‘@v+1| + 2)
and

#(7e)

Thus, we have
5(X0-116u] + )

10119 + e+ 1)

#(9)

And therefore

%(n—i—c— (a+1))
#(a) =
sntc—(a+t)+1)
That is .
#(a) = [5(n+c(a) = f(a))]

1
= 2).

if e iseven,

if eisodd.

if eiseven,

if eisodd.

g(a)

=154,

Case 3. 0 = e(a) < l(a). Here, corresponding to each odd size subset
Zi(Q;) and Y, (®), we define, respectively, products &;; (while noting that

|Z1(€25)| > 1) and 7, of 3-paths by

( L L
L T L A ifi=1
P . P - 9y
$1jOémJ 1 xljamj—ﬁ—rj 1
2
xlja ZBlja .1‘1j0£ xlj
P .2 .2 .
T Tl Tl T
§ij =
. oPii—1 - oPii—2
Tyt ryes iti#1
wl'j()tpij ZEijOépijfl
2
xijoa .I'Z'jOé ZCij Jtlj
3 2
:EijOé .CEZ']'O[ mija xij
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and
S rpa® 1l g, qfu2 Ty Ty Tyt Ty
T\ ppat gyatel Ty zya?) \zua® z,a
if |Y,(®)| > 1, otherwise, if |Y,,(®)| = 1, define 7, by

Ty Ty

<x“ Z) if1=u<l,
Tyt Ty,

where z is chosen to be any point of X, \ im(«) distinct from z; which
appeared in a standard orbit of a. Note that this choice of z is possible
sine o ¢ E.

For the subsets Z;(€2;) and Y, (®) of even sizes and the cyclic orbits
©,, we define respectively, the products &;;, 7, and 7, as in Case 1. Then,
here too, we can observe that, if

(“ xﬁ if1<u<l,

Ty =

B = &15825 &k y=7iT2 -7, and 0 =mnz- -1,

then
a= 1B Bsy6
and that
1 1 ks
#(Bj) = 5 D (12 )] + zi5) = 5 (1] + > zij),
=1 i=1
L
#(v) = 5 Z(|Yu(<1>)\ + Yu)
u=1

and
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These give
s l
#lo) =5 [ 10+ 3 @ |+Z|@|+Zzz”+zyu+c
j=1 u=1 j=11i=1
1
:5 n+c—(a+t) —|—j§:ﬂ§;z”+2yu
= 3 (04 c(0) — f(a) +1())
= £ (9(a) + m(a).

Case 4. 0 < l(a) = e(a). If Z1(§;) is of odd size, we define a product &;;
of 3-paths by

51,_ xljamj-i—r]-—l xljamj+7’j—2 xljam]-+rj—3 xljamj+Tj_4
J xljamj_l .fUledmj+rj_l xljamj—i-rj—Z X mj—i-rj—?)

l‘lja
2
T Ti;0 T1j Yo
a;lja?’ xljag :L’leé xlj ’
otherwise if Z1(£2;) is of even size, we define a product ;; of 3-paths as

in Case 1. Corresponding to each Z;(£2;) (i # 1) and Y;,(®) of odd sizes,
define products ;; and 7, of 3-paths, respectively, by

_ (maPaTh walia T (wali Tt wpalitt o Cag oy,
4 J}ijapij xijoapijfl xijapii” .’L‘Z'japijfg TijQ Tjj

S (muaq“_l xuoﬂ“_2> (xuaq“_3 a:uaq“_4> (aju yv>

T\ zpa® zya® ) \ g0 a3 Tul Ty)
where the points y,, appearing as upper entries of the last 3-paths in
these products, ranges (distinctively) from the even cyclic orbits O,
(v=1,2,...,e(a)).

Now Correspondlng to each Z;(2;) (¢ # 1) and Y, (®) of even sizes
as well as each cyclic orbit ©, of odd size, the products &;;, 7, and O,

of 3-paths are respectively defined as in Case 1. For the cyclic orbits 0,
(v=1,2,...,e(a)) of even sizes, we define products 7, of 3-paths by

= yoaPiTt a2 (yaPe T ot My 2
v yv yvap’v_l yvap’U72 yvapv_3 y’l}a2 y]a ?
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where z is the middle entry of the last 3-path, in the (already defined)
product corresponding to the odd subset Z;(2;) or Y;,(®), to which y, is
an upper entry. As in the earlier cases, it can be observed that

a = 3132 Bs,
where
Bi = &15825 &k y=mT2---1 and d =2

Also, observing the points appearing at the top of the products &;;, 7
and 7);, we have

$1Z:(€) if |Z;(€2)] is even,
#(&ij) =

sUZi(Q)| + 1) if | Z(Q)] is odd,

2YL(9)] if Y, (®)]is even,
#(Tu):

LIYu(@)] +1) i [Ya(®)]is odd,

and
2104 if |©,]|is even,
#(nw) =

$(|0u] +1) if O, is odd.

Thus, #(8,) = 317, (1Z:()] +2) = H%| + Y ), #(y) =
IS (Ya(®)] + yu) and #(8) = 1(32¢_ [6y] + ¢ — €). Hence,

=§<ilnj|+iwy |+Z\@ r+zzzw+zym y

j=11=1
:;< —(a+1) +Zzzzj+2yu+c—€>
j=111=1
- %( — f(@) + (@) + c(a) — e(a))
% n+c(a) — f(a)) (since l(a) = e(av))

Case 5. 0 < [(a) < e(a). Here, corresponding to each Z;(€2;) and each
Y., (®) of odd sizes and exactly I(«) cyclic orbits ©,, of even sizes, we define,
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respectively, products &;;, 7, and 7, as described in Case 4. Corresponding
to the even sizes subsets Z;(§2;) and Y, (®), as well as the odd sizes cyclic
orbits ©,, we define , respectively, the products &;;, 7, and 7, as described
in Case 1. For the remaining e(a) — I(a) cyclic orbits O, of even sizes, we
define the products 7, as described in Case 2. It is then easily seen that, if

Bj =&1€25 - &kyjy Y =T1T2 0T, and = mng- e

then
a= 1P Bsyo
and that
1
#(8) = 5 210+ 75) = 519 |+sz
i=1
1
#0) = 3 3 (Yl @) +30)
u=1
and
;(Z 10, + ¢ if e(a) — () is even,
(33w
Jj=11i=1
3 <; 10,| + ¢ if e(a) — I() is odd.
(ZZ% +Zyu> +1>
Jj=11i=1

Thus, in this case we have

(n+c—(a+t)) if e(a)—I(w) is even,

D=

#(a) =
m+c—(a+t)+1) if e(a)—I(a)isodd.

N[

That is #(a) = [3(n +c(@) — f(a))] = [%5].
Case 6. 0 < e(«a) < l(«). Here, corresponding to each cyclic orbits ©, of
even size and exactly e(a) subsets Z;(€2;) and Y;,(®) of odd sizes, we define,



A. T. ImaM, M. J. IBRAHIM 75

respectively, products 7,, &;; and 7, as described in Case 4. Corresponding
to the even sizes subsets Z;(§2;) and Y,,(®), as well as the odd sizes cyclic
orbits ©,, we define, respectively, the products &;;, 7, and 7, as described
in Case 1. For the remaining [(a) — e(«) subsets Z;(€2;) and Y, (®) of
odd sizes, we define, respectively, the products §;; and 7, as described
in Case 3. Then, it is easily seen that, if

Bj = &15€25 - &k y=m1T2---1 and d =m0,
then
a= PPz Bsy0
and that
1
#(53)252(‘Z( )H’ZU ’Q H’Z'ZW
=1
!
#) = 3 S (V@) +3) and #( Zy@ +e—e)
u=1
Thus here
1 s 0
#(0) = 2<n— (a+1) +ZZzZJ+Zyu+c—e>
7j=11i=1
= 2 (nt cla) — f(0) + 1(0) — e(a) = 5 (g(a) + m(a)).

Hence in all cases we have expressed o € Sing,, as a product of

1

[5 (9(@) +m(a))]

3-paths and so the proof of the theorem is now complete. ]

Example 3. Let o € Singyy be the map given in Example 1. Then g(«) =
22+ 3 —3 =22 and m(a) = 2, so that « can be expressed as a product of
k() = [5(22+2)] = 12 3-paths in Singy,. The processes of decomposition
described in the proof of Theorem 2 give a = £11&12821&20T1 72111213 Where

§11 = (1 )( 5):62=(38), &1 =(§8)(88).&2=03%),n = (11 13),
T2 = ( (1) ) m = (115%)(%?116) 772—( 2159)311(17]3:(%(1)291)-

In the next lemma we obtain the maximum value of g(a) + m(«) in
Sing,,.
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Lemma 1. Letn > 3 and Sing,, be the semigroup of all singular self-maps
of Xy,. Then max{g(a) + m(«a) : o € Sing,, } = 2(n — 1).

Proof. From [6, Lemma 2.5], we have

max{g(a) : a € Sing,} = Lg(n -1)]

and from (4), the maximum value of m(«) is attained by making I(«) as
large as possible while keeping e(«) as small as possible. It is clear that
any map « € Sing,, of height one has I(a) =n — 1 and e(a) = 0, which
are the maximum and least possible values of [(«) and e(«) respectively.
Thus,

max{m(a) : o € Sing, } =n — 1.

Now, for a map « € Sing,, of height one, g(a) =n — 1 and so,
max{g(a) +m(a) : « € Sing,,} > 2(n — 1).
Next, we show the opposite inequality, that is,
max{g(a) +m(a) : « € Sing,,} < 2(n — 1).

Suppose for some 5 € Sing,,, g(8) +m(a) > 2(n—1). Then, since m(3) <
n — 1, we must have g(8) > n — 1. Also, g(8) < [3(n — 1)], for if
9(8) = [3(n—1)], then m(B) = 0 and g(8)+m(B) = [3(n—1)] < 2n—1)
for all n > 3, which is a contradiction to the choice of 5 € Sing,,. It then
follows that g(a) + m(a) < 2(n — 1) for all o € Sing,,. O

Let P be the set of all 3-paths in Sing,,, and for each positive integer
k write PI¥ for the set of all product of elements in P of length k or less.
That is P = PUP2U---U P*. Then, from Theorem 2 and Lemma 1
we deduce the following.

Corollary 1. For each n > 3, we have Sing,, C pln=1l,
Remark 1. At the moment, we do not know whether the formula obtained

in Theorem 2 is best possible, that is whether there is a number smaller
then [$(g(c) + m(«))] expressing o € Sing,, as a product of 3-paths.
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