© Algebra and Discrete Mathematics Volume **33** (2022). Number 2, pp. 60–77 DOI:10.12958/adm1770

On products of 3-paths in finite full transformation semigroups

A. T. Imam and M. J. Ibrahim

Communicated by V. Mazorchuk

ABSTRACT. Let Sing_n denotes the semigroup of all singular self-maps of a finite set $X_n = \{1, 2, \ldots, n\}$. A map $\alpha \in \operatorname{Sing}_n$ is called a 3-path if there are $i, j, k \in X_n$ such that $i\alpha = j, j\alpha = k$ and $x\alpha = x$ for all $x \in X_n \setminus \{i, j\}$. In this paper, we described a procedure to factorise each $\alpha \in \operatorname{Sing}_n$ into a product of 3-paths. The length of each factorisation, that is the number of factors in each factorisation, is obtained to be equal to $\lceil \frac{1}{2}(g(\alpha) + m(\alpha)) \rceil$, where $g(\alpha)$ is known as the gravity of α and $m(\alpha)$ is a parameter introduced in this work and referred to as the measure of α . Moreover, we showed that $\operatorname{Sing}_n \subseteq P^{[n-1]}$, where P denotes the set of all 3-paths in Sing_n and $P^{[k]} = P \cup P^2 \cup \cdots \cup P^k$.

1. Introduction

Let $X_n = \{1, 2, ..., n\}$. The full transformation semigroup \mathcal{T}_n on X_n , that is the semigroup of all self-maps of X_n under composition of mappings, have been much studied. One of the outstanding contribution is given by Howie [5], where it was shown that the subsemigroup Sing_n , of all singular maps in \mathcal{T}_n , is generated by its set E_1 of all idempotents of defect one (that is element $e \in \mathcal{T}_n$ satisfying $e^2 = e$ and $|X_n \setminus \operatorname{im}(e)| = 1$). Later Howie [6] and Iwahori [7] independently computed the minimum number of factors in E_1 required to expressed each $\alpha \in \operatorname{Sing}_n$ to be $g(\alpha)$, the

The authors are grateful to an anonymous referee for his/her comments and suggestions.

²⁰²⁰ MSC: 20M20, 20M05.

Key words and phrases: 3-path, length formular, full transformation.

gravity of $\alpha \in \operatorname{Sing}_n$ (see [6] for details). The maximum possible value of this number was also obtained in [6] to be equal to $\lfloor \frac{3}{2}(n-1) \rfloor$, where $\lfloor x \rfloor$ is the floor of x (that is the unique integer m for which $x - 1 < m \leq x$). If E denote the set of all idempotents in Sing_n , the minimum number of factors in E required to expressed each $\alpha \in \operatorname{Sing}_n$ was found, by Saito [8], to be equal to $\lceil \frac{g(\alpha)}{d(\alpha)} \rceil$ or $\lceil \frac{g(\alpha)}{d(\alpha)} \rceil + 1$, where $d(\alpha) = |X_n \setminus \operatorname{im}(\alpha)|$ denotes the defect of α , and $\lceil x \rceil$ is the ceiling of x (that is the unique integer mfor which $x \leq m < x + 1$).

Related lengths problems where addressed, for product of idempotents in semigroups of order-preserving maps in both full and partial cases, by Schein [9], Higgins [4] and Yang [10]. Garba [2] solved similar problems in the semigroup \mathcal{P}_n , of all partial transformations of X_n . Recently, Garba and Imam [3] also studied similar lengths problems in the symmetric inverse semigroup \mathcal{I}_n , of all partial one-to-one maps of X_n .

Ayik, et. al. [1] showed that the semigroup Sing_n can also be generated by certain primitive elements called path-cycles. Special class of pathcycles called *m*-paths can be regarded as generalisations of idempotents of defect one in the sense that all idempotents of defect one are 2-paths and vice-versa. In general, Ayik et. al. [1] proved that the semigroup Sing_n is generated by its set of *m*-paths for each *m* in $\{2, 3, \ldots, n\}$. In this paper, we describe a procedure to factorise each singular map α in Sing_n into a product of 3-paths. We then obtained the length of each factorisation, that is the number of 3-paths in the factorisation.

2. Preliminaries

Let $X_n = \{1, \ldots, n\}$ and let \mathcal{T}_n be the full transformation semigroup on X_n . If $\{x_1, \ldots, x_m\} \subseteq X_n$ and $\alpha \in \mathcal{T}_n$ is defined by

$$x_i \alpha = x_{i+1}, \ x_m \alpha = x_r \ (1 \leq r \leq m) \text{ and } x\alpha = x \ (x \in X_n \setminus \{x_1, \dots, x_m\}),$$

then α is called a *path-cycle* of length m and period r, or simply, an (m, r)*path-cycle*, and is denoted (in a linear notation) by $\alpha = [x_1, \ldots, x_m | x_r]$. If r = m, α is called an *m*-*path* to x_m or simply an *m*-*path*; if $m \ge 2$ and r = 1, α is called an *m*-*cycle*; if m = r = 1, α is called a *loop*; if m = r = 2, α is an *idempotent of defect one*; if $m \ge 2$ and $r \ne 1$, α is said to be a *proper path-cycle*.

Let $\xi = [x_1, x_2, x_3 | x_3]$ be an arbitrary 3-path in Sing_n, then ξ maps x_1 to x_2, x_2 to x_3 and all other elements of X_n identically. Instead of using the linear notation for ξ , we shall throughout this paper extend the array

notation, used for idempotents of defect one (that is 2-paths) used in [6], and write ξ as

$$\xi = \begin{pmatrix} x_2 & x_1 \\ x_3 & x_2 \end{pmatrix}.$$

This will enable us a proper adoption of the methods of [6] in proving our results. In the array notation we shall refer to x_1 as the *upper entry* of ξ ; to x_2 as the *middle entry* of ξ ; and to x_3 as the *lower entry* of ξ .

Let α be in Sing_n. The equivalence relation ω on X_n , defined by

$$\omega = \{ (x, y) \in X_n \times X_n : (\exists u, v \ge 0) x \alpha^u = y \alpha^v \},\$$

partitioned X_n into orbits $\Omega_1, \ldots, \Omega_k$. These orbits correspond to the connected components of the digraph associated to α with vertex set X_n in which there is a directed edge (x, y) if and only if $x\alpha = y$. Each orbit Ω has a kernel defined by

$$K(\Omega) = \{ x \in \Omega : (\exists r > 0) x \alpha^r = x \}.$$

An orbit Ω is said to be:

standard	if and only if	$2 \leqslant K(\Omega) < \Omega ;$
acyclic	if and only if	$1 = K(\Omega) < \Omega ;$
cyclic	if and only if	$2 \leqslant K(\Omega) = \Omega ;$
trivial	if and only if	$1 = K(\Omega) = \Omega .$

Every orbit of α falls into exactly one of these four categories and all four cases can arise. Let $c(\alpha)$ be the number of cyclic orbits of α and $f(\alpha)$ be the number of fixed points of α , this equals the sum of the number of trivial and the number of acyclic orbits of α . The *gravity* of α is defined as

$$g(\alpha) = n + c(\alpha) - f(\alpha).$$

For each standard or acyclic orbit Ω of $\alpha \in \text{Sing}_n$ and each $x \in \Omega \setminus \text{im}(\alpha)$, the sequence

$$x, x\alpha, x\alpha^2, \ldots$$

eventually arrives in $K(\Omega)$, the kernel of Ω , and remains there for all subsequent iterations. Denote the set of all distinct elements in this sequence by Z(x). Suppose that $\alpha \in \operatorname{Sing}_n$ has s standard orbits $\Omega_1, \Omega_2, \ldots, \Omega_s$. For each $j = 1, 2, \ldots, s$, let $\Omega_j \setminus im(\alpha) = \{x_{1j}, x_{2j}, \ldots, x_{k_j j}\}$, where x_{1j} is such that

$$|Z(x_{1j})| = \begin{cases} \max_{1 \le i \le k_j} \{ |Z(x_{ij})| : & \text{if } |Z(x_{ij})| \text{ is even for some } i, \\ |Z(x_{ij})| \text{ is even} \} & \\ \max_{1 \le i \le k_j} \{ |Z(x_{ij})| \} & \text{if } |Z(x_{ij})| \text{ is odd for all } i. \end{cases}$$

Then there exist $m_j \ge 1$ and $r_j \ge 2$ (see [6]) such that

$$K(\Omega_j) = \{x_{1j}\alpha^{m_j}, \dots, x_{1j}\alpha^{m_j+r_j-1}\},\$$

where $x_{1j}\alpha^{m_j+r_j} = x_{1j}\alpha^{m_j}$. Note that this definition of $K(\Omega_j)$ is still valid for every x_{ij} , not only for x_{1j} , and moreover, they are all the same. We then define

$$Z_1(\Omega_j) = Z(x_{1j}) = \{x_{1j}, x_{1j}\alpha, \dots, x_{1j}\alpha^{m_j}, \dots, x_{1j}\alpha^{m_j+r_j-1}\}$$
(1)

and

$$Z_i(\Omega_j) = \{x_{ij}, x_{ij}\alpha, \dots, x_{ij}\alpha^{p_{ij}-1}\} \quad (2 \le i \le k_j)$$
(2)

where $x_{ij}\alpha^{p_{ij}} \in (Z_1(\Omega_j) \cup Z_2(\Omega_j) \cup \cdots \cup Z_{i-1}(\Omega_j))$. Thus, $\{Z_i(\Omega_j) : 1 \leq i \leq k_j\}$ is a partition of Ω_j . Also, suppose that $\alpha \in \text{Sing}_n$ has acyclic orbits; let Φ be the union of all its acyclic orbits and denote the set $\{x \in \Phi : x\alpha = x\}$ by $\text{Fix}(\Phi)$. Let $\Phi \setminus \text{im}(\alpha) = \{x_1, x_2, \ldots, x_l\}$ where x_1 is such that

$$|Z(x_1)| = \begin{cases} \max_{1 \le u \le l} \{|Z(x_u)| : |Z(x_u)| \text{ is odd} \} & \text{if } |Z(x_u)| \text{ is odd for some } u, \\ \\ \max_{1 \le u \le l} \{|Z(x_u)|\} & \text{if } |Z(x_u)| \text{ is even for all } u. \end{cases}$$

Then, for $u = 1, 2, \ldots, l$, define

$$Y_u(\Phi) = \{x_u, x_u\alpha, \dots, x_u\alpha^{q_u-1}\},\tag{3}$$

where $x_1 \alpha^{q_1} \in \operatorname{Fix}(\Phi)$ and $x_u \alpha^{q_u} \in (Y_1(\Phi) \cup \cdots \cup Y_{u-1}(\Phi) \cup \operatorname{Fix}(\Phi))$ $(u = 2, 3, \ldots, l)$. Thus, $\{Y_u(\Phi) : 1 \leq u \leq l\}$ is a partition of Φ . We will be interested in the cardinalities of $Z_i(\Omega_j)$ and $Y_u(\Phi)$ being odd or even. For this, we define indicator functions z_{ij} and y_u by

$$z_{ij} = \begin{cases} 0 & \text{if } |Z_i(\Omega_j)| \text{ is even,} \\ & & \text{and} \quad y_u = \begin{cases} 0 & \text{if } |Y_u(\Phi)| \text{ is even,} \\ \\ 1 & \text{if } |Z_i(\Omega_j)| \text{ is odd,} \end{cases}$$

Finally, for each $\alpha \in \operatorname{Sing}_n$ we define the *measure* of α by

$$m(\alpha) = \begin{cases} l(\alpha) - e(\alpha) & \text{if } l(\alpha) > e(\alpha), \\ 0 & \text{if } l(\alpha) \leqslant e(\alpha), \end{cases}$$
(4)

where $l(\alpha) = \sum_{j=1}^{s} \sum_{i=1}^{k_j} z_{ij} + \sum_{u=1}^{l} y_u$ and $e(\alpha)$ denote the number of cyclic orbits of α of even cardinality.

Before closing this section, we illustrate the above definitions and notations in an example.

Example 1. Consider the map

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\ 2 & 3 & 4 & 2 & 4 & 7 & 8 & 7 & 7 & 11 & 11 & 13 & 14 & 14 & 16 & 17 & 15 & 19 & 18 & 21 & 20 & 22 \end{pmatrix}$$

in $Sing_{22}$ with orbits

$\Omega_1 = \{1, 2, 3, 4, 5\}, \Omega_2 = \{6, 7, 8, 9\}$	standard:
$\Phi_1 = \{10, 11\}, \Phi_2 = \{12, 13, 14\}$	acyclic:
$\Theta_1 = \{15, 16, 17\}, \Theta_2 = \{18, 19\}, \Theta_3 = \{20, 21\}$	cyclic:
$\Psi_1 = \{22\}$	trivial:

as shown in Figure 1.

FIGURE 1. Orbits of $\alpha \in \text{Sing}_{22}$.

For this α , we have $\Phi = \{10, 11, 12, 13, 14\}$ and so, $Z_1(\Omega_1) = \{1, 2, 3, 4\}$, $Z_2(\Omega_1) = \{5\}$ (note that, according to the concerning definitions, it is also possible that $Z_1(\Omega_1) = \{2, 3, 4, 5\}$ and $Z_2(\Omega_1) = \{1\}$), $Z_1(\Omega_2) = \{6, 7, 8\}$, $Z_2(\Omega_2) = \{9\}$, $Y_1(\Phi) = \{12, 13\}$, $Y_2(\Phi) = \{10\}$. Thus, $z_{11} = 0$, $z_{21} = 1$, $z_{12} = 1$, $z_{22} = 1$, $y_1 = 0$, $y_2 = 1$ and so, $l(\alpha) = z_{11} + z_{21} + z_{12} + z_{22} + y_1 + y_2 = 4$, also $e(\alpha) = 2$. Therefore the measure of α is $m(\alpha) = 2$.

3. Products of 3-paths

In [1], it was proved that for a fixed m in $\{2, \ldots, n\}$, every element of Sing_n is a product of m-paths. The result was obtain via decomposing each 2-path in Sing_n as a product of 2 m-paths while each element of Sing_n is decomposable as a product of 2-paths. In this section, we consider the case when m = 3 and obtain a direct decomposition of each $\alpha \in \operatorname{Sing}_n$ as a product of 3-paths.

Let E be the set of all idempotents in Sing_n and E_1 be the set of all idempotents of defect 1 in E. First, we note that, in the notation of [6], each idempotent in E_1 is of the form $\binom{i}{j}$, with $i, j \in X_n$ and $i \neq j$. Thus, since $n \geq 3$, there is a $k \in X_n$, with $k \neq i$ and $k \neq j$, such that,

$$\binom{i}{j} = \binom{j \quad k}{i \quad j} \binom{j \quad i}{k \quad j}.$$
(5)

Theorem 1. For $n \ge 3$, each $\alpha \in E \setminus E_1$ is expressible as a product of $g(\alpha)$ 3-path in Sing_n.

Proof. Let $\alpha \in E \setminus E_1$ and let A_1, A_2, \ldots, A_r be its non-singleton blocks. Then, each of the blocks A_i $(1 \leq i \leq r)$ is stationary. If $|A_i| \geq 3$ for some i, we can assume without loss of generality that $|A_1| \geq 3$. Let

$$A_i \setminus \{A_i \alpha\} = \{x_{i1}, x_{i2}, \dots, x_{ia_i}\} \quad (1 \le i \le r)$$

and define products ξ_i $(1 \leq i \leq r)$ of 3-paths by

$$\xi_1 = \begin{pmatrix} x_{12} & x_{11} \\ A_1 \alpha & x_{12} \end{pmatrix} \begin{pmatrix} x_{13} & x_{11} \\ A_1 \alpha & x_{13} \end{pmatrix} \cdots \begin{pmatrix} x_{1a_1} & x_{11} \\ A_1 \alpha & x_{1a_1} \end{pmatrix} \begin{pmatrix} x_{12} & x_{11} \\ A_1 \alpha & x_{12} \end{pmatrix}$$

and

$$\xi_i = \begin{pmatrix} x_{i1} & x_{11} \\ A_i \alpha & x_{i1} \end{pmatrix} \begin{pmatrix} x_{i2} & x_{11} \\ A_i \alpha & x_{i2} \end{pmatrix} \cdots \begin{pmatrix} x_{ia_i} & x_{11} \\ A_i \alpha & x_{ia_i} \end{pmatrix} \qquad (2 \le i \le r).$$

Then, it is easy to verify that

$$\alpha = \xi_1 \xi_2 \cdots \xi_r.$$

Also, observe that each point in $A_i \setminus \{A_i\alpha\}$ $(2 \leq i \leq r)$ appeared exactly once as a middle entry of a 3-path in ξ_i and each point in $A_1 \setminus \{A_1\alpha, x_{11}, x_{12}\}$ appeared exactly once as a middle entry of a 3path in ξ_1 . The point x_{12} appeared exactly twice as a middle entry of 3-paths in ξ_1 while the point x_{11} did not appear anywhere as a middle entry. Thus, the number of 3-paths used in the product $\xi_1 \xi_2 \cdots \xi_r$ is

$$\sum_{i=1}^{r} |A_i \setminus \{A_i \alpha\}| = n - f(\alpha) = g(\alpha).$$

If $|A_i| = 2$ for all i, let $A_i = \{x_i, x_i \alpha\}$ $(1 \le i \le r)$. Then,

$$\alpha = \begin{pmatrix} x_1 & x_r \\ x_1 \alpha & x_1 \end{pmatrix} \begin{pmatrix} x_2 & x_r \\ x_2 \alpha & x_2 \end{pmatrix} \cdots \begin{pmatrix} x_{r-1} & x_r \\ x_{r-1} \alpha & x_{r-1} \end{pmatrix} \begin{pmatrix} x_1 & x_r \\ x_r \alpha & x_1 \end{pmatrix},$$

and again, the number of 3-paths used is $n - f(\alpha) = g(\alpha)$.

Example 2. Consider the idempotent

$$e = \begin{pmatrix} \{1, 2, 7, 5\} & \{3, 8, 10, 12\} & \{4, 6, 9, 11\} \\ 2 & 8 & 11 \end{pmatrix} = \xi_1 \xi_2 \xi_3$$

where

$$\xi_{1} = \begin{pmatrix} 5 & 1 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 7 & 1 \\ 2 & 7 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 2 & 5 \end{pmatrix},$$

$$\xi_{2} = \begin{pmatrix} 3 & 1 \\ 8 & 3 \end{pmatrix} \begin{pmatrix} 10 & 1 \\ 8 & 10 \end{pmatrix} \begin{pmatrix} 12 & 1 \\ 8 & 12 \end{pmatrix},$$

$$\xi_{3} = \begin{pmatrix} 4 & 1 \\ 11 & 4 \end{pmatrix} \begin{pmatrix} 6 & 1 \\ 11 & 6 \end{pmatrix} \begin{pmatrix} 9 & 1 \\ 11 & 9 \end{pmatrix}.$$

Theorem 2. For $n \ge 3$, each $\alpha \in \text{Sing}_n \setminus E$ is expressible as a product of $\lceil \frac{1}{2}(g(\alpha) + m(\alpha)) \rceil$ 3-paths in Sing_n .

Proof. Suppose that $\alpha \in \operatorname{Sing}_n \setminus E$ has orbits as follows:

standard:	$\Omega_1, \Omega_2, \ldots, \Omega_s;$
acyclic:	$\Phi_1, \Phi_2, \ldots, \Phi_a;$
cyclic:	$\Theta_1, \Theta_2, \ldots, \Theta_c;$
trivial:	$\Psi_1, \Psi_2, \ldots, \Psi_t.$

For each standard orbit Ω_j let $\Omega_j \setminus \operatorname{im}(\alpha) = \{x_{1j}, x_{2j}, \dots, x_{k_j j}\};$

$$K(\Omega_j) = \{ x_{1j} \alpha^{m_j}, x_{1j} \alpha^{m_j+1}, \dots, x_{1j} \alpha^{m_j+r_j-1} \};$$

and define $Z_1(\Omega_j)$ and $Z_i(\Omega_j)$ $(i = 2, ..., k_j)$ as in Equations (1) and (2), respectively. Also, let

$$\Phi = \Phi_1 \cup \Phi_2 \cup \dots \cup \Phi_a;$$

$$\Phi \setminus \operatorname{im}(\alpha) = \{x_1, x_2, \dots, x_l\}$$

and define $Y_u(\Phi)$ (u = 1, 2, ..., l) as in Equation (3). Moreover, let

$$\Theta_v = \{y_v, y_v \alpha, \dots, y_v \alpha^{p_v - 1}\}$$

(where $y_v \alpha^{p_v} = y_v$). Then we consider six possible cases that may arise. **Case 1.** $0 = e(\alpha) = l(\alpha)$. In this case each $Z_i(\Omega_j)$ $(i = 1, 2, ..., k_j)$ and each $Y_u(\Phi)$ (u = 1, 2, ..., l) is of even size; also, each Θ_v is of odd size. Thus, corresponding to each $Z_1(\Omega_j)$, $Z_i(\Omega_j)$ $(i = 2, 3, ..., k_j)$, $Y_u(\Phi)$ (u = 1, 2, ..., l) and Θ_v (v = 1, 2, ..., c) we define, respectively, products ξ_{1j}, ξ_{ij} $(i = 2, 3, ..., k_j), \tau_u$ (u = 1, 2, ..., l) and η_v (v = 1, 2, ..., c) of 3-paths by

$$\begin{aligned} \xi_{1j} &= \begin{pmatrix} x_{1j}\alpha^{m_j+r_j-1} & x_{1j}\alpha^{m_j+r_j-2} \\ x_{1j}\alpha^{m_j-1} & x_{1j}\alpha^{m_j+r_j-1} \end{pmatrix} \begin{pmatrix} x_{1j}\alpha^{m_j+r_j-3} & x_{1j}\alpha^{m_j+r_j-4} \\ x_{1j}\alpha^{m_j+r_j-2} & x_{1j}\alpha^{m_j+r_j-3} \end{pmatrix} \\ & \cdots \begin{pmatrix} x_{1j}\alpha^3 & x_{1j}\alpha^2 \\ x_{1j}\alpha^4 & x_{1j}\alpha^3 \end{pmatrix} \begin{pmatrix} x_{1j}\alpha & x_{1j} \\ x_{1j}\alpha^2 & x_{1j}\alpha \end{pmatrix}, \\ \xi_{ij} &= \begin{pmatrix} x_{ij}\alpha^{p_{ij}-1} & x_{ij}\alpha^{p_{ij}-2} \\ x_{ij}\alpha^{p_{ij}-1} & x_{ij}\alpha^{p_{ij}-2} \end{pmatrix} \begin{pmatrix} x_{ij}\alpha^{p_{ij}-3} & x_{ij}\alpha^{p_{ij}-4} \\ x_{ij}\alpha^{p_{ij}-3} & x_{ij}\alpha^{p_{ij}-3} \end{pmatrix} \cdots \begin{pmatrix} x_{ij}\alpha & x_{ij} \\ x_{ij}\alpha^2 & x_{ij}\alpha \end{pmatrix}, \\ \tau_u &= \begin{pmatrix} x_u\alpha^{q_u-1} & x_u\alpha^{q_u-2} \\ x_u\alpha^{q_u} & x_i\alpha^{q_u-1} \end{pmatrix} \begin{pmatrix} x_u\alpha^{q_u-3} & x_u\alpha^{q_u-4} \\ x_u\alpha^{q_u-3} & x_u\alpha^{q_u-3} \end{pmatrix} \cdots \begin{pmatrix} x_u\alpha & x_u \\ x_u\alpha^2 & x_u\alpha \end{pmatrix} \end{aligned}$$

and

$$\eta_v = \begin{pmatrix} y_v \alpha^{p_v - 1} & y_v \alpha^{p_v - 2} \\ z & y_v \alpha^{p_v - 1} \end{pmatrix} \begin{pmatrix} y_v \alpha^{p_v - 3} & y_v \alpha^{p_v - 4} \\ y_v \alpha^{p_v - 2} & y_v \alpha^{p_v - 3} \end{pmatrix} \cdots \begin{pmatrix} y_v & z \\ x_v \alpha & y_v \end{pmatrix},$$

where z is any point in $X_n \setminus im(\alpha)$.

For each $j = 1, 2, \ldots, s$, let

$$\beta_j = \xi_{1j}\xi_{2j}\cdots\xi_{k_jj},$$

then each element $x \in \Omega_j$ appears exactly once either as an upper entry or as a middle entry of a 3-path in the product β_j . Moreover, with the sole exception of $x = x_{1j}\alpha^{m_j-1}$, an element $x \in \Omega_j$ appearing as a lower entry or a middle entry never subsequently reappears as an upper or middle entry. Hence each $x \neq x_{1j}\alpha^{m_j+r_j-1}$ in Ω_j is moved by exactly one of the 3-paths appearing in the product β_j and moreover, it is moved to $x\alpha$. The exceptional element $x_{1j}\alpha^{m_j+r_j-1}$ is moved to $x_{1j}\alpha^{m_j-1}$ by the first 3-path in the product ξ_{1j} and then is moved, by either

$$\begin{pmatrix} x_{1j}\alpha^{m_j-1} & x_{1j}\alpha^{m_j-2} \\ x_{1j}\alpha^{m_j} & x_{1j}\alpha^{m_j-1} \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} x_{1j}\alpha^{m_j} & x_{1j}\alpha^{m_j-1} \\ x_{1j}\alpha^{m_j+1} & x_{1j}\alpha^{m_j} \end{pmatrix}$$

to $x_{1j}\alpha^{m_j}$ (= $x_{1j}\alpha^{m_j+r_j}$). Thus, $x\beta_j = x\alpha$ for every $x \in \Omega_j$, while $x\beta_j = x$ for every $x \in X_n \setminus \Omega_j$. Since the orbits Ω_j ($1 \leq j \leq s$) are pairwise disjoint, we have a product $\beta_1\beta_2\cdots\beta_s$ of 3-paths such that

$$x\beta_1\beta_2\cdots\beta_s = \begin{cases} x\alpha & \text{if } x \in \cup_{j=1}^s \Omega_j, \\ \\ x & \text{if } x \in X_n \setminus \cup_{j=1}^s \Omega_j. \end{cases}$$

Similarly, if

 $\gamma = \tau_1 \tau_2 \cdots \tau_l,$

then each point $x \in \Phi$ appears either as an upper entry or a middle entry of a 3-path in the product γ . Moreover, each $x \in \Phi$ that appears as a lower entry or a middle entry never subsequently reappears as an upper or middle entry. Hence each $x \in \Phi$ is moved to $x\alpha$ by exactly one of the 3-paths appearing in the product γ . Thus, $x\gamma = x\alpha$ for each $x \in \Phi$ while $x\gamma = x$ for each $x \in X_n \setminus \Phi$.

Also, if

$$\delta = \eta_1 \eta_2 \cdots \eta_c,$$

then, again, we can observe that the product δ is such that $x\delta = x\alpha$ for each $x \in \bigcup_{v=1}^{c} \Theta_{v}$ and $x\delta = x$ for each $x \in X_n \setminus \bigcup_{v=1}^{c} \Theta_{v}$. Hence, it follows that

$$\alpha = \beta_1 \beta_2 \cdots \beta_s \gamma \delta_s$$

a product of 3-paths in Sing_n .

Let us denote the number of 3-paths in the products ξ_{ij} , τ_u and η_v by $\#(\xi_{ij})$, $\#(\tau_u)$ and $\#(\eta_v)$, respectively (we shall also use similar notation in the sequel). Then, counting the number of points appearing at the top of each product ξ_{ij} , τ_i and η_j , we have $\#(\xi_{ij}) = \frac{1}{2}|Z_i(\Omega_j)|$, $\#(\tau_u) = \frac{1}{2}|Y_u(\Phi)|$ and $\#(\eta_v) = \frac{1}{2}(|\Theta_v| + 1)$. And so,

$$\#(\beta_j) = \frac{1}{2} \sum_{i=1}^{k_j} |Z_i(\Omega_j)| = \frac{1}{2} |\Omega_j|,$$

so that,

$$\#(\beta_1 \beta_2 \cdots \beta_s) = \frac{1}{2} \sum_{j=1}^s |\Omega_j|, \qquad \#(\gamma) = \frac{1}{2} \sum_{u=1}^l |Y_u(\Phi)|$$

and

$$\#(\delta) = \frac{1}{2} \sum_{v=1}^{c} (|\Theta_v| + 1) = \frac{1}{2} (\sum_{v=1}^{c} |\Theta_v| + c).$$

Using these, while noting that

$$\sum_{j=1}^{s} |\Omega_j| + \sum_{v=1}^{c} |\Theta_v| + \sum_{u=1}^{l} |Y_u(\Phi)| = n - (a+t),$$

we have

$$\#(\alpha) = \frac{1}{2}(n+c-(a+t)) = \frac{1}{2}(n+c(\alpha)-f(\alpha)) = \frac{g(\alpha)}{2}$$

Case 2. $0 = l(\alpha) < e(\alpha)$. As in Case 1, each $Z_i(\Omega_j)$ $(i = 1, 2, ..., k_j)$ and each $Y_u(\Phi)$ (u = 1, 2, ..., l) is of even size. Let $e(\alpha) = e$ and arrange the cyclic orbits such that

$$\Theta_1, \Theta_2, \ldots, \Theta_e$$

are of even sizes and

$$\Theta_{e+1}, \Theta_{e+2}, \ldots, \Theta_c$$

are of odd sizes. Then, corresponding to each $Z_i(\Omega_j)$ $(i = 1, 2, ..., k_j)$, $Y_u(\Phi)$ (u = 1, 2, ..., l) and Θ_v (v = e + 1, e + 2, ..., c), we define, respectively, products ξ_{ij} , τ_u and η_v of 3-paths as in Case 1. While if e is even, then corresponding to the even size cyclic orbits Θ_v (v = 1, 2, ..., e), we define a product $\eta_v \eta_{v+1}$ (v = 1, 2, ..., e - 1) of 3-paths by

$$\begin{aligned} &= \begin{pmatrix} y_v \alpha^{p_v - 1} & y_v \alpha^{p_v - 2} \\ z & y_v \alpha^{p_v - 1} \end{pmatrix} \begin{pmatrix} y_v \alpha^{p_v - 3} & y_v \alpha^{p_v - 4} \\ y_v \alpha^{p_v - 2} & y_v \alpha^{p_v - 3} \end{pmatrix} \cdots \begin{pmatrix} z & y_{v+1} \alpha^{p_{v+1} - 1} \\ y_v & z \end{pmatrix} \\ & \begin{pmatrix} y_{v+1} \alpha^{p_{v+1} - 2} & y_{v+1} \alpha^{p_{v+1} - 3} \\ y_{v+1} \alpha^{p_{v+1} - 1} & y_{v+1} \alpha^{p_{v+1} - 2} \end{pmatrix} \cdots \begin{pmatrix} y_{v+1} \alpha^2 & y_{v+1} \alpha \\ y_{v+1} \alpha^3 & y_{v+1} \alpha^2 \end{pmatrix} \begin{pmatrix} y_{v+1} & z \\ x_{v+1} \alpha & y_{v+1} \end{pmatrix}, \end{aligned}$$

where z is any point in $X_n \setminus im(\alpha)$.

If e is odd, then for each v = 1, 2, ..., e - 2, we define the product $\eta_v \eta_{v+1}$ of 3-paths as above and for v = e we define the product η_e of 3-paths by

$$\eta_e = \begin{pmatrix} y_e \alpha^{p_e-1} & y_e \alpha^{p_e-2} \\ z & y_e \alpha^{p_e-1} \end{pmatrix} \begin{pmatrix} y_e \alpha^{p_e-3} & y_e \alpha^{p_e-4} \\ y_e \alpha^{p_e-2} & y_e \alpha^{p_e-3} \end{pmatrix} \\ \cdots \begin{pmatrix} y_e \alpha & y_e \\ y_e \alpha^2 & y_e \alpha \end{pmatrix} \begin{pmatrix} y_e & z \\ y_e \alpha & y_e \end{pmatrix},$$

where again z is any chosen point in $X_n \setminus im(\alpha)$. It is then not difficult to observe that

$$\alpha = \beta_1 \beta_2 \cdots \beta_s \gamma \delta,$$

where

$$\beta_j = \xi_{1j}\xi_{2j}\cdots\xi_{k_jj}, \qquad \gamma = \tau_1\tau_2\cdots\tau_l, \quad \text{and} \quad \delta = \eta_1\eta_2\cdots\eta_c$$

Also,

$$\#(\eta_v \eta_{v+1}) = \frac{1}{2}(|\Theta_v| + |\Theta_{v+1}| + 2)$$

and

$$\#(\eta_e) = \frac{1}{2}(|\Theta_e| + 2).$$

Thus, we have

$$#(\delta) = \begin{cases} \frac{1}{2} (\sum_{v=1}^{c} |\Theta_v| + c) & \text{if } e \text{ is even,} \\ \\ \frac{1}{2} (\sum_{v=1}^{c} |\Theta_v| + c + 1) & \text{if } e \text{ is odd.} \end{cases}$$

And therefore

$$\#(\alpha) = \begin{cases} \frac{1}{2}(n+c-(a+t)) & \text{if } e \text{ is even}, \\ \frac{1}{2}(n+c-(a+t)+1) & \text{if } e \text{ is odd}. \end{cases}$$

That is

$$#(\alpha) = \left\lceil \frac{1}{2}(n + c(\alpha) - f(\alpha)) \right\rceil = \left\lceil \frac{g(\alpha)}{2} \right\rceil.$$

Case 3. $0 = e(\alpha) < l(\alpha)$. Here, corresponding to each odd size subset $Z_i(\Omega_j)$ and $Y_u(\Phi)$, we define, respectively, products ξ_{ij} (while noting that $|Z_1(\Omega_j)| > 1$) and τ_u of 3-paths by

$$\xi_{ij} = \begin{cases} \begin{pmatrix} x_{1j}\alpha^{m_j+r_j-1} & x_{1j}\alpha^{m_j+r_j-2} \\ x_{1j}\alpha^{m_j-1} & x_{1j}\alpha^{m_j+r_j-1} \end{pmatrix} & \text{if } i = 1, \\ \\ \dots \begin{pmatrix} x_{1j}\alpha^2 & x_{1j}\alpha \\ x_{1j}\alpha^3 & x_{1j}\alpha^2 \end{pmatrix} \begin{pmatrix} x_{1j}\alpha & x_{1j} \\ x_{1j}\alpha^2 & x_{1j}\alpha \end{pmatrix} \\ \begin{pmatrix} x_{ij}\alpha^{p_{ij}-1} & x_{ij}\alpha^{p_{ij}-2} \\ x_{ij}\alpha^{p_{ij}} & x_{ij}\alpha^{p_{ij}-1} \end{pmatrix} & \text{if } i \neq 1 \\ \\ \dots \begin{pmatrix} x_{ij}\alpha^2 & x_{ij}\alpha \\ x_{ij}\alpha^3 & x_{ij}\alpha^2 \end{pmatrix} \begin{pmatrix} x_{ij} & x_{1j} \\ x_{ij}\alpha & x_{ij} \end{pmatrix} \end{cases}$$

and

$$\tau_u = \begin{pmatrix} x_u \alpha^{q_u - 1} & x_u \alpha^{q_u - 2} \\ x_u \alpha^{q_u} & x_u \alpha^{q_u - 1} \end{pmatrix} \cdots \begin{pmatrix} x_u \alpha^2 & x_u \alpha \\ x_u \alpha^3 & x_u \alpha^2 \end{pmatrix} \begin{pmatrix} x_u \alpha & x_u \\ x_u \alpha^2 & x_u \alpha \end{pmatrix}$$

if $|Y_u(\Phi)| > 1$, otherwise, if $|Y_u(\Phi)| = 1$, define τ_u by

$$\tau_u = \begin{cases} \begin{pmatrix} x_u & x_1 \\ x_u \alpha & x_u \end{pmatrix} & \text{if } 1 < u \leqslant l, \\ \\ \begin{pmatrix} x_u & z \\ x_u \alpha & x_u \end{pmatrix} & \text{if } 1 = u \leqslant l, \end{cases}$$

where z is chosen to be any point of $X_n \setminus im(\alpha)$ distinct from x_i which appeared in a standard orbit of α . Note that this choice of z is possible sine $\alpha \notin E$.

For the subsets $Z_i(\Omega_j)$ and $Y_u(\Phi)$ of even sizes and the cyclic orbits Θ_v , we define respectively, the products ξ_{ij} , τ_u and η_v as in Case 1. Then, here too, we can observe that, if

$$\beta_j = \xi_{1j}\xi_{2j}\cdots\xi_{k_jj}, \qquad \gamma = \tau_1\tau_2\cdots\tau_l, \quad \text{and} \quad \delta = \eta_1\eta_2\cdots\eta_c,$$

then

$$\alpha = \beta_1 \beta_2 \cdots \beta_s \gamma \delta$$

and that

$$\#(\beta_j) = \frac{1}{2} \sum_{i=1}^{k_j} (|Z_i(\Omega_j)| + z_{ij}) = \frac{1}{2} (|\Omega_j| + \sum_{i=1}^{k_j} z_{ij}),$$

$$\#(\gamma) = \frac{1}{2} \sum_{u=1}^{l} (|Y_u(\Phi)| + y_u)$$

and

$$\#(\delta) = \frac{1}{2} \sum_{v=1}^{c} (|\Theta_v| + c).$$

These give

$$\begin{aligned} \#(\alpha) &= \frac{1}{2} \left(\sum_{j=1}^{s} |\Omega_j| + \sum_{u=1}^{l} |Y_u(\Phi)| + \sum_{v=1}^{c} |\Theta_v| + \sum_{j=1}^{s} \sum_{i=1}^{k_j} z_{ij} + \sum_{u=1}^{l} y_u + c \right) \\ &= \frac{1}{2} \left(n + c - (a+t) + \sum_{j=1}^{s} \sum_{i=1}^{k_j} z_{ij} + \sum_{u=1}^{l} y_u \right) \\ &= \frac{1}{2} \left(n + c(\alpha) - f(\alpha) + l(\alpha) \right) \\ &= \frac{1}{2} \left(g(\alpha) + m(\alpha) \right). \end{aligned}$$

Case 4. $0 < l(\alpha) = e(\alpha)$. If $Z_1(\Omega_j)$ is of odd size, we define a product ξ_{1j} of 3-paths by

$$\xi_{1j} = \begin{pmatrix} x_{1j}\alpha^{m_j+r_j-1} & x_{1j}\alpha^{m_j+r_j-2} \\ x_{1j}\alpha^{m_j-1} & x_{1j}\alpha^{m_j+r_j-1} \end{pmatrix} \begin{pmatrix} x_{1j}\alpha^{m_j+r_j-3} & x_{1j}\alpha^{m_j+r_j-4} \\ x_{1j}\alpha^{m_j+r_j-2} & x_{1j}\alpha^{m_j+r_j-3} \end{pmatrix} \\ \cdots \begin{pmatrix} x_{1j}\alpha^2 & x_{1j}\alpha \\ x_{1j}\alpha^3 & x_{1j}\alpha_2 \end{pmatrix} \begin{pmatrix} x_{1j} & y_v \\ x_{1j}\alpha & x_{1j} \end{pmatrix},$$

otherwise if $Z_1(\Omega_j)$ is of even size, we define a product ξ_{1j} of 3-paths as in Case 1. Corresponding to each $Z_i(\Omega_j)$ $(i \neq 1)$ and $Y_u(\Phi)$ of odd sizes, define products ξ_{ij} and τ_u of 3-paths, respectively, by

$$\xi_{ij} = \begin{pmatrix} x_{ij}\alpha^{p_{ij}-1} & x_{ij}\alpha^{p_{ij}-2} \\ x_{ij}\alpha^{p_{ij}} & x_{ij}\alpha^{p_{ij}-1} \end{pmatrix} \begin{pmatrix} x_{ij}\alpha^{p_{ij}-3} & x_{ij}\alpha^{p_{ij}-4} \\ x_{ij}\alpha^{p_{ij}-2} & x_{ij}\alpha^{p_{ij}-3} \end{pmatrix} \cdots \begin{pmatrix} x_{ij} & y_v \\ x_{ij}\alpha & x_{ij} \end{pmatrix}$$

and

$$\tau_u = \begin{pmatrix} x_u \alpha^{q_u - 1} & x_u \alpha^{q_u - 2} \\ x_u \alpha^{q_u} & x_u \alpha^{q_u - 1} \end{pmatrix} \begin{pmatrix} x_u \alpha^{q_u - 3} & x_u \alpha^{q_u - 4} \\ x_u \alpha^{q_u - 2} & x_u \alpha^{q_u - 3} \end{pmatrix} \cdots \begin{pmatrix} x_u & y_v \\ x_u \alpha & x_u \end{pmatrix},$$

where the points y_v , appearing as upper entries of the last 3-paths in these products, ranges (distinctively) from the even cyclic orbits Θ_v $(v = 1, 2, \ldots, e(\alpha))$.

Now corresponding to each $Z_i(\Omega_j)$ $(i \neq 1)$ and $Y_u(\Phi)$ of even sizes as well as each cyclic orbit Θ_v of odd size, the products ξ_{ij} , τ_u and Θ_v of 3-paths are respectively defined as in Case 1. For the cyclic orbits Θ_v $(v = 1, 2, \ldots, e(\alpha))$ of even sizes, we define products η_v of 3-paths by

$$\eta_{v} = \begin{pmatrix} y_{v}\alpha^{p_{j}-1} & y_{v}\alpha^{p_{v}-2} \\ y_{v} & y_{v}\alpha^{p_{v}-1} \end{pmatrix} \begin{pmatrix} y_{v}\alpha^{p_{v}-3} & y_{v}\alpha^{p_{v}-4} \\ y_{v}\alpha^{p_{v}-2} & y_{v}\alpha^{p_{v}-3} \end{pmatrix} \cdots \begin{pmatrix} y_{v}\alpha & z \\ y_{v}\alpha^{2} & y_{j}\alpha \end{pmatrix},$$

where z is the middle entry of the last 3-path, in the (already defined) product corresponding to the odd subset $Z_i(\Omega_j)$ or $Y_u(\Phi)$, to which y_v is an upper entry. As in the earlier cases, it can be observed that

$$\alpha = \beta_1 \beta_2 \cdots \beta_s \gamma \delta,$$

where

$$\beta_j = \xi_{1j}\xi_{2j}\cdots\xi_{k_jj}, \qquad \gamma = \tau_1\tau_2\cdots\tau_l \quad \text{and} \quad \delta = \eta_1\eta_2\cdots\eta_c.$$

Also, observing the points appearing at the top of the products ξ_{ij}, τ_i and η_i , we have

$$\#(\xi_{ij}) = \begin{cases} \frac{1}{2} |Z_i(\Omega_j)| & \text{if } |Z_i(\Omega_j)| \text{ is even,} \\\\ \frac{1}{2} (|Z_i(\Omega_j)| + 1) & \text{if } |Z_i(\Omega_j)| \text{ is odd,} \end{cases}$$
$$\#(\tau_u) = \begin{cases} \frac{1}{2} |Y_u(\Phi)| & \text{if } |Y_u(\Phi)| \text{ is even,} \\\\ \frac{1}{2} (|Y_u(\Phi)| + 1) & \text{if } |Y_u(\Phi)| \text{ is odd,} \end{cases}$$

and

$$\#(\eta_v) = \begin{cases} \frac{1}{2}|\Theta_v| & \text{if } |\Theta_v| \text{ is even,} \\\\ \frac{1}{2}(|\Theta_v|+1) & \text{if } |\Theta_v| \text{ is odd.} \end{cases}$$

Thus, $\#(\beta_v) = \frac{1}{2} \sum_{i=1}^{k_j} (|Z_i(\Omega_j)| + z_{ij}) = \frac{1}{2} (|\Omega_j| + \sum_{i=1}^{k_j} z_{ij}), \ \#(\gamma) = \frac{1}{2} \sum_{u=1}^l (|Y_u(\Phi)| + y_u) \text{ and } \ \#(\delta) = \frac{1}{2} (\sum_{v=1}^c |\Theta_v| + c - e). \text{ Hence,}$

$$\#(\alpha) = \frac{1}{2} \left(\sum_{j=1}^{s} |\Omega_j| + \sum_{u=1}^{l} |Y_u(\Phi)| + \sum_{v=1}^{c} |\Theta_v| + \sum_{j=1}^{s} \sum_{i=1}^{k_j} z_{ij} + \sum_{u=1}^{l} y_u + c - e \right)$$

$$= \frac{1}{2} \left(n - (a+t) + \sum_{j=1}^{s} \sum_{i=1}^{k_j} z_{ij} + \sum_{u=1}^{l} y_u + c - e \right)$$

$$= \frac{1}{2} \left(n - f(\alpha) + l(\alpha) + c(\alpha) - e(\alpha) \right)$$

$$= \frac{1}{2} \left(n + c(\alpha) - f(\alpha) \right) \qquad (\text{since } l(\alpha) = e(\alpha))$$

$$= \frac{g(\alpha)}{2}.$$

Case 5. $0 < l(\alpha) < e(\alpha)$. Here, corresponding to each $Z_i(\Omega_j)$ and each $Y_u(\Phi)$ of odd sizes and exactly $l(\alpha)$ cyclic orbits Θ_v of even sizes, we define,

respectively, products ξ_{ij} , τ_u and η_v as described in Case 4. Corresponding to the even sizes subsets $Z_i(\Omega_j)$ and $Y_u(\Phi)$, as well as the odd sizes cyclic orbits Θ_v , we define, respectively, the products ξ_{ij} , τ_u and η_v as described in Case 1. For the remaining $e(\alpha) - l(\alpha)$ cyclic orbits Θ_v of even sizes, we define the products η_v as described in Case 2. It is then easily seen that, if

$$\beta_j = \xi_{1j}\xi_{2j}\cdots\xi_{k_jj}, \quad \gamma = \tau_1\tau_2\cdots\tau_l, \text{ and } \delta = \eta_1\eta_2\cdots\eta_c,$$

then

$$\alpha = \beta_1 \beta_2 \cdots \beta_s \gamma \delta$$

and that

$$\#(\beta_j) = \frac{1}{2} \sum_{i=1}^{k_j} (|Z_i(\Omega_j)| + z_{ij}) = \frac{1}{2} (|\Omega_j| + \sum_{i=1}^{k_j} z_{ij}),$$
$$\#(\gamma) = \frac{1}{2} \sum_{u=1}^{l} (|Y_u(\Phi)| + y_u)$$

and

$$\#(\delta) = \begin{cases} \frac{1}{2} \left(\sum_{v=1}^{c} |\Theta_{v}| + c & \text{if } e(\alpha) - l(\alpha) \text{ is even,} \right. \\ \left. - \left(\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{ij} + \sum_{u=1}^{l} y_{u} \right) \right) \\ \frac{1}{2} \left(\sum_{v=1}^{c} |\Theta_{v}| + c & \text{if } e(\alpha) - l(\alpha) \text{ is odd.} \right. \\ \left. - \left(\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{ij} + \sum_{u=1}^{l} y_{u} \right) + 1 \right) \end{cases}$$

Thus, in this case we have

$$\#(\alpha) = \begin{cases} \frac{1}{2}(n+c-(a+t)) & \text{if } e(\alpha)-l(\alpha) \text{ is even,} \\ \frac{1}{2}(n+c-(a+t)+1) & \text{if } e(\alpha)-l(\alpha) \text{ is odd.} \end{cases}$$

That is $\#(\alpha) = \lceil \frac{1}{2}(n + c(\alpha) - f(\alpha)) \rceil = \lceil \frac{g(\alpha)}{2} \rceil$.

Case 6. $0 < e(\alpha) < l(\alpha)$. Here, corresponding to each cyclic orbits Θ_v of even size and exactly $e(\alpha)$ subsets $Z_i(\Omega_j)$ and $Y_u(\Phi)$ of odd sizes, we define,

respectively, products η_v , ξ_{ij} and τ_u as described in Case 4. Corresponding to the even sizes subsets $Z_i(\Omega_j)$ and $Y_u(\Phi)$, as well as the odd sizes cyclic orbits Θ_v , we define, respectively, the products ξ_{ij} , τ_u and η_v as described in Case 1. For the remaining $l(\alpha) - e(\alpha)$ subsets $Z_i(\Omega_j)$ and $Y_u(\Phi)$ of odd sizes, we define, respectively, the products ξ_{ij} and τ_u as described in Case 3. Then, it is easily seen that, if

$$\beta_j = \xi_{1j}\xi_{2j}\cdots\xi_{k_jj}, \qquad \gamma = \tau_1\tau_2\cdots\tau_l \quad \text{and} \quad \delta = \eta_1\eta_2\cdots\eta_c,$$

then

$$\alpha = \beta_1 \beta_2 \cdots \beta_s \gamma \delta$$

and that

$$\#(\beta_j) = \frac{1}{2} \sum_{i=1}^{k_j} (|Z_i(\Omega_j)| + z_{ij}) = \frac{1}{2} (|\Omega_j| + \sum_{i=1}^{k_j} z_{ij}),$$

$$\#(\gamma) = \frac{1}{2} \sum_{u=1}^l (|Y_u(\Phi)| + y_i) \quad \text{and} \quad \#(\delta) = \frac{1}{2} (\sum_{v=1}^c |\Theta_v| + c - e).$$

Thus here,

$$\#(\alpha) = \frac{1}{2} \left(n - (a+t) + \sum_{j=1}^{s} \sum_{i=1}^{k_j} z_{ij} + \sum_{u=1}^{l} y_u + c - e \right)$$
$$= \frac{1}{2} \left(n + c(\alpha) - f(\alpha) + l(\alpha) - e(\alpha) \right) = \frac{1}{2} \left(g(\alpha) + m(\alpha) \right).$$

Hence in all cases we have expressed $\alpha \in \operatorname{Sing}_n$ as a product of

$$\lceil \frac{1}{2} \left(g(\alpha) + m(\alpha) \right) \rceil$$

3-paths and so the proof of the theorem is now complete.

Example 3. Let $\alpha \in \text{Sing}_{22}$ be the map given in Example 1. Then $g(\alpha) = 22 + 3 - 3 = 22$ and $m(\alpha) = 2$, so that α can be expressed as a product of $k(\alpha) = \lceil \frac{1}{2}(22+2) \rceil = 12$ 3-paths in Sing_{22} . The processes of decomposition described in the proof of Theorem 2 give $\alpha = \xi_{11}\xi_{12}\xi_{21}\xi_{22}\tau_{1}\tau_{2}\eta_{1}\eta_{2}\eta_{3}$ where $\xi_{11} = \begin{pmatrix} 4 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}, \xi_{12} = \begin{pmatrix} 5 & 18 \\ 4 & 5 \end{pmatrix}, \xi_{21} = \begin{pmatrix} 8 & 7 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} 6 & 1 \\ 7 & 6 \end{pmatrix}, \xi_{22} = \begin{pmatrix} 9 & 20 \\ 7 & 9 \end{pmatrix}, \tau_{1} = \begin{pmatrix} 13 & 12 \\ 14 & 13 \end{pmatrix}, \tau_{2} = \begin{pmatrix} 10 & 12 \\ 11 & 10 \end{pmatrix}, \eta_{1} = \begin{pmatrix} 15 & 17 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 16 & 1 \\ 17 & 16 \end{pmatrix}, \eta_{2} = \begin{pmatrix} 19 & 5 \\ 18 & 19 \end{pmatrix}$ and $\eta_{3} = \begin{pmatrix} 21 & 9 \\ 20 & 21 \end{pmatrix}$.

In the next lemma we obtain the maximum value of $g(\alpha) + m(\alpha)$ in Sing_n .

Lemma 1. Let $n \ge 3$ and Sing_n be the semigroup of all singular self-maps of X_n . Then $\max\{g(\alpha) + m(\alpha) : \alpha \in \operatorname{Sing}_n\} = 2(n-1)$.

Proof. From [6, Lemma 2.5], we have

$$\max\{g(\alpha): \alpha \in \operatorname{Sing}_n\} = \lfloor \frac{3}{2}(n-1) \rfloor$$

and from (4), the maximum value of $m(\alpha)$ is attained by making $l(\alpha)$ as large as possible while keeping $e(\alpha)$ as small as possible. It is clear that any map $\alpha \in \text{Sing}_n$ of height one has $l(\alpha) = n - 1$ and $e(\alpha) = 0$, which are the maximum and least possible values of $l(\alpha)$ and $e(\alpha)$ respectively. Thus,

$$\max\{m(\alpha) : \alpha \in \operatorname{Sing}_n\} = n - 1.$$

Now, for a map $\alpha \in \text{Sing}_n$ of height one, $g(\alpha) = n - 1$ and so,

$$\max\{g(\alpha) + m(\alpha) : \alpha \in \operatorname{Sing}_n\} \ge 2(n-1).$$

Next, we show the opposite inequality, that is,

$$\max\{g(\alpha) + m(\alpha) : \alpha \in \operatorname{Sing}_n\} \leq 2(n-1).$$

Suppose for some $\beta \in \operatorname{Sing}_n$, $g(\beta) + m(\alpha) > 2(n-1)$. Then, since $m(\beta) \leq n-1$, we must have $g(\beta) > n-1$. Also, $g(\beta) < \lceil \frac{3}{2}(n-1) \rceil$, for if $g(\beta) = \lceil \frac{3}{2}(n-1) \rceil$, then $m(\beta) = 0$ and $g(\beta) + m(\beta) = \lceil \frac{3}{2}(n-1) \rceil \leq 2(n-1)$ for all $n \geq 3$, which is a contradiction to the choice of $\beta \in \operatorname{Sing}_n$. It then follows that $g(\alpha) + m(\alpha) \leq 2(n-1)$ for all $\alpha \in \operatorname{Sing}_n$. \Box

Let P be the set of all 3-paths in Sing_n , and for each positive integer k write $P^{[k]}$ for the set of all product of elements in P of length k or less. That is $P^{[k]} = P \cup P^2 \cup \cdots \cup P^k$. Then, from Theorem 2 and Lemma 1 we deduce the following.

Corollary 1. For each $n \ge 3$, we have $\operatorname{Sing}_n \subseteq P^{[n-1]}$.

Remark 1. At the moment, we do not know whether the formula obtained in Theorem 2 is best possible, that is whether there is a number smaller then $\lfloor \frac{1}{2}(g(\alpha) + m(\alpha)) \rfloor$ expressing $\alpha \in \text{Sing}_n$ as a product of 3-paths.

References

- Ayik, G., Ayik, H., and Howie, H. M., (2005), On factorisations and generators in transformations semigroups, *Semigroup Forum*, 70(2), 225 - 237.
- [2] Garba, G. U., (1990), Nilpotent in partial one-one order-preserving transformations, Semigroup Forum, 48, 37 - 49.
- [3] Garba, G. U., and Imam, A. T., (2016), Products of quasi-idempotents in finite symmetric inverse semigroups, *Semigroup Forum*, 92, 645 - 658.
- [4] Higgins, P. M., (1994), Idempotent depth in semigroups of order-preserving mappings, Proc. Roy. Soc. Edinburgh, 124A, 1045 - 1058.
- [5] Howie, J. M., (1966), The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41, 707 - 716.
- [6] Howie, J. M., (1980), Products of idempotents in a finite full transformation semigroup, Proc. Roy. Soc. Edinburgh, 86A, 243 - 254.
- [7] Iwahori, N., (1977), A length formula in a semigroup of mappings, J. Fac. Sci. Univ. Tokyo, sect. 1A, 24, 255 - 260.
- [8] Saito, T., (1989), Products of idempotents in finite full transformation semigroups, Semigroup forum, 39, 295 - 309.
- [9] Schein, B. M., (1975), Products of idempotents of order-preserving transformations of arbitrary chains, *Semigroup forum*, 11, 297 - 309.
- [10] Yang, X., (1999), Products of idempotents of defect 1 in certain semigroups of transformation, Comm. Algebra, 27(7), 3557 - 3568.

CONTACT INFORMATION

A. T. Imam	Department of Mathematics,	
	Ahmadu Bello University Zaria, Nigeria $E[M_{cil}(z)]$ et increase de la c	
	<i>L-Man(s)</i> : atimameabu.edu.ng	
M. J. Ibrahim	Department of Mathematics and Computer	

M. J. Ibrahim Department of Mathematics and Computer Science, Sule Lamido University Jigawa, Nigeria *E-Mail(s)*: mjibrahim@slu.edu.ng

Received by the editors: 17.02.2021 and in final form 12.05.2021.