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On products of 3-paths in finite full

transformation semigroups
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Abstract. Let Singn denotes the semigroup of all singular

self-maps of a finite set Xn = {1, 2, . . . , n}. A map α ∈ Singn is

called a 3-path if there are i, j, k ∈ Xn such that iα = j, jα = k
and xα = x for all x ∈ Xn \ {i, j}. In this paper, we described a

procedure to factorise each α ∈ Singn into a product of 3-paths. The

length of each factorisation, that is the number of factors in each

factorisation, is obtained to be equal to ⌈ 1
2 (g(α)+m(α))⌉, where g(α)

is known as the gravity of α and m(α) is a parameter introduced in

this work and referred to as the measure of α. Moreover, we showed

that Singn ⊆ P [n−1], where P denotes the set of all 3-paths in Singn
and P [k] = P ∪ P 2 ∪ · · · ∪ P k.

1. Introduction

Let Xn = {1, 2, . . . , n}. The full transformation semigroup Tn on Xn,
that is the semigroup of all self-maps of Xn under composition of mappings,
have been much studied. One of the outstanding contribution is given by
Howie [5], where it was shown that the subsemigroup Singn, of all singular
maps in Tn, is generated by its set E1 of all idempotents of defect one
(that is element e ∈ Tn satisfying e2 = e and |Xn \ im(e)| = 1). Later
Howie [6] and Iwahori [7] independently computed the minimum number
of factors in E1 required to expressed each α ∈ Singn to be g(α), the
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gravity of α ∈ Singn (see [6] for details). The maximum possible value of
this number was also obtained in [6] to be equal to ⌊32(n− 1)⌋, where ⌊x⌋
is the ŕoor of x (that is the unique integer m for which x− 1 < m ⩽ x).
If E denote the set of all idempotents in Singn, the minimum number of
factors in E required to expressed each α ∈ Singn was found, by Saito [8],

to be equal to ⌈ g(α)
d(α)⌉ or ⌈ g(α)

d(α)⌉ + 1, where d(α) = |Xn \ im(α)| denotes

the defect of α, and ⌈x⌉ is the ceiling of x (that is the unique integer m
for which x ⩽ m < x+ 1).

Related lengths problems where addressed, for product of idempotents
in semigroups of order-preserving maps in both full and partial cases, by
Schein [9], Higgins [4] and Yang [10]. Garba [2] solved similar problems in
the semigroup Pn, of all partial transformations of Xn. Recently, Garba
and Imam [3] also studied similar lengths problems in the symmetric
inverse semigroup In, of all partial one-to-one maps of Xn.

Ayik, et. al. [1] showed that the semigroup Singn can also be generated
by certain primitive elements called path-cycles. Special class of path-
cycles called m-paths can be regarded as generalisations of idempotents of
defect one in the sense that all idempotents of defect one are 2-paths and
vice-versa. In general, Ayik et. al. [1] proved that the semigroup Singn is
generated by its set of m-paths for each m in {2, 3, . . . , n}. In this paper,
we describe a procedure to factorise each singular map α in Singn into
a product of 3-paths. We then obtained the length of each factorisation,
that is the number of 3-paths in the factorisation.

2. Preliminaries

Let Xn = {1, . . . , n} and let Tn be the full transformation semigroup
on Xn. If {x1, . . . , xm} ⊆ Xn and α ∈ Tn is defined by

xiα = xi+1, xmα = xr (1 ⩽ r ⩽ m) and xα = x (x ∈ Xn \ {x1, . . . , xm}),

then α is called a path−cycle of length m and period r, or simply, an (m, r)-
path-cycle, and is denoted (in a linear notation) by α = [x1, . . . , xm|xr].
If r = m, α is called an m-path to xm or simply an m-path; if m ⩾ 2
and r = 1, α is called an m-cycle; if m = r = 1, α is called a loop; if
m = r = 2, α is an idempotent of defect one; if m ⩾ 2 and r ≠ 1, α is said
to be a proper path-cycle.

Let ξ = [x1, x2, x3|x3] be an arbitrary 3-path in Singn, then ξ maps x1
to x2, x2 to x3 and all other elements of Xn identically. Instead of using
the linear notation for ξ, we shall throughout this paper extend the array
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notation, used for idempotents of defect one (that is 2-paths) used in [6],
and write ξ as

ξ =

(

x2 x1
x3 x2

)

.

This will enable us a proper adoption of the methods of [6] in proving our
results. In the array notation we shall refer to x1 as the upper entry of ξ;
to x2 as the middle entry of ξ; and to x3 as the lower entry of ξ.

Let α be in Singn. The equivalence relation ω on Xn, defined by

ω = {(x, y) ∈ Xn ×Xn : (∃u, v ⩾ 0)xαu = yαv},

partitioned Xn into orbits Ω1, . . . ,Ωk. These orbits correspond to the
connected components of the digraph associated to α with vertex set Xn

in which there is a directed edge (x, y) if and only if xα = y. Each orbit
Ω has a kernel defined by

K(Ω) = {x ∈ Ω : (∃r > 0)xαr = x}.

An orbit Ω is said to be:

standard if and only if 2 ⩽ |K(Ω)| < |Ω|;

acyclic if and only if 1 = |K(Ω)| < |Ω|;

cyclic if and only if 2 ⩽ |K(Ω)| = |Ω|;

trivial if and only if 1 = |K(Ω)| = |Ω|.

Every orbit of α falls into exactly one of these four categories and all four
cases can arise. Let c(α) be the number of cyclic orbits of α and f(α) be
the number of fixed points of α, this equals the sum of the number of
trivial and the number of acyclic orbits of α. The gravity of α is defined as

g(α) = n+ c(α)− f(α).

For each standard or acyclic orbitΩ of α ∈ Singn and each x ∈ Ω\im(α),
the sequence

x, xα, xα2, . . .

eventually arrives in K(Ω), the kernel of Ω, and remains there for all sub-
sequent iterations. Denote the set of all distinct elements in this sequence
by Z(x). Suppose that α ∈ Singn has s standard orbits Ω1,Ω2, . . . ,Ωs.



A. T. Imam, M. J. Ibrahim 63

For each j = 1, 2, . . . , s, let Ωj \ im(α) = {x1j , x2j , . . . , xkjj}, where x1j is
such that

|Z(x1j)| =















max
1⩽i⩽kj

{|Z(xij)| :

|Z(xij)| is even}
if |Z(xij)| is even for some i,

max1⩽i⩽kj{|Z(xij)|} if |Z(xij)| is odd for all i.

Then there exist mj ⩾ 1 and rj ⩾ 2 (see [6]) such that

K(Ωj) = {x1jα
mj , . . . , x1jα

mj+rj−1},

where x1jα
mj+rj = x1jα

mj . Note that this definition of K(Ωj) is still
valid for every xij , not only for x1j , and moreover, they are all the same.
We then define

Z1(Ωj) = Z(x1j) = {x1j , x1jα, . . . , x1jα
mj , . . . , x1jα

mj+rj−1} (1)

and
Zi(Ωj) = {xij , xijα, . . . , xijα

pij−1} (2 ⩽ i ⩽ kj) (2)

where xijα
pij ∈ (Z1(Ωj) ∪ Z2(Ωj) ∪ · · · ∪ Zi−1(Ωj)). Thus, {Zi(Ωj) : 1 ⩽

i ⩽ kj} is a partition of Ωj . Also, suppose that α ∈ Singn has acyclic
orbits; let Φ be the union of all its acyclic orbits and denote the set
{x ∈ Φ : xα = x} by Fix(Φ). Let Φ \ im(α) = {x1, x2, . . . , xl} where x1 is
such that

|Z(x1)|

=







max1⩽u⩽l{|Z(xu)| : |Z(xu)| is odd} if |Z(xu)| is odd for some u,

max1⩽u⩽l{|Z(xu)|} if |Z(xu)| is even for all u.

Then, for u = 1, 2, . . . , l, define

Yu(Φ) = {xu, xuα, . . . , xuα
qu−1}, (3)

where x1α
q1 ∈ Fix(Φ) and xuα

qu ∈ (Y1(Φ) ∪ · · · ∪ Yu−1(Φ) ∪ Fix(Φ))
(u = 2, 3, . . . , l). Thus, {Yu(Φ) : 1 ⩽ u ⩽ l} is a partition of Φ. We
will be interested in the cardinalities of Zi(Ωj) and Yu(Φ) being odd or
even. For this, we define indicator functions zij and yu by

zij =







0 if |Zi(Ωj)| is even,

1 if |Zi(Ωj)| is odd,
and yu =







0 if |Yu(Φ)| is even,

1 if |Yu(Φ)| is odd.
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Finally, for each α ∈ Singn we define the measure of α by

m(α) =







l(α)− e(α) if l(α) > e(α),

0 if l(α) ⩽ e(α),
(4)

where l(α) =
∑s

j=1

∑kj
i=1 zij +

∑l
u=1 yu and e(α) denote the number of

cyclic orbits of α of even cardinality.

Before closing this section, we illustrate the above definitions and
notations in an example.

Example 1. Consider the map

α =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 2 4 7 8 7 7 11 11 13 14 14 16 17 15 19 18 21 20 22

)

in Sing22 with orbits

standard: Ω1 = {1, 2, 3, 4, 5},Ω2 = {6, 7, 8, 9};

acyclic: Φ1 = {10, 11},Φ2 = {12, 13, 14};

cyclic: Θ1 = {15, 16, 17},Θ2 = {18, 19},Θ3 = {20, 21};

trivial: Ψ1 = {22},

as shown in Figure 1.
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Figure 1. Orbits of α ∈ Sing22.

For this α, we have Φ = {10, 11, 12, 13, 14} and so,Z1(Ω1) = {1, 2, 3, 4},
Z2(Ω1) = {5} (note that, according to the concerning definitions, it is also
possible that Z1(Ω1) = {2, 3, 4, 5} and Z2(Ω1) = {1}), Z1(Ω2) = {6, 7, 8},
Z2(Ω2) = {9}, Y1(Φ) = {12, 13}, Y2(Φ) = {10}. Thus, z11 = 0, z21 = 1,
z12 = 1, z22 = 1, y1 = 0, y2 = 1 and so, l(α) = z11+z21+z12+z22+y1+y2 =
4, also e(α) = 2. Therefore the measure of α is m(α) = 2.
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3. Products of 3-paths

In [1], it was proved that for a fixed m in {2, . . . , n}, every element
of Singn is a product of m-paths. The result was obtain via decomposing
each 2-path in Singn as a product of 2 m-paths while each element of
Singn is decomposable as a product of 2-paths. In this section, we consider
the case when m = 3 and obtain a direct decomposition of each α ∈ Singn
as a product of 3-paths.

Let E be the set of all idempotents in Singn and E1 be the set of all
idempotents of defect 1 in E. First, we note that, in the notation of [6],
each idempotent in E1 is of the form

(

i
j

)

, with i, j ∈ Xn and i ̸= j. Thus,
since n ⩾ 3, there is a k ∈ Xn, with k ̸= i and k ̸= j, such that,

(

i

j

)

=

(

j k

i j

)(

j i

k j

)

. (5)

Theorem 1. For n ⩾ 3, each α ∈ E \ E1 is expressible as a product of

g(α) 3-path in Singn.

Proof. Let α ∈ E \E1 and let A1, A2, . . . , Ar be its non-singleton blocks.
Then, each of the blocks Ai (1 ⩽ i ⩽ r) is stationary. If |Ai| ⩾ 3 for some
i, we can assume without loss of generality that |A1| ⩾ 3. Let

Ai \ {Aiα} = {xi1, xi2, . . . , xiai} (1 ⩽ i ⩽ r)

and define products ξi (1 ⩽ i ⩽ r) of 3-paths by

ξ1 =

(

x12 x11
A1α x12

)(

x13 x11
A1α x13

)

· · ·

(

x1a1 x11
A1α x1a1

)(

x12 x11
A1α x12

)

and

ξi =

(

xi1 x11
Aiα xi1

)(

xi2 x11
Aiα xi2

)

· · ·

(

xiai x11
Aiα xiai

)

(2 ⩽ i ⩽ r).

Then, it is easy to verify that

α = ξ1ξ2 · · · ξr.

Also, observe that each point in Ai \ {Aiα} (2 ⩽ i ⩽ r) appeared
exactly once as a middle entry of a 3-path in ξi and each point in
A1 \ {A1α, x11, x12} appeared exactly once as a middle entry of a 3-
path in ξ1. The point x12 appeared exactly twice as a middle entry of
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3-paths in ξ1 while the point x11 did not appear anywhere as a middle
entry. Thus, the number of 3-paths used in the product ξ1ξ2 · · · ξr is

r
∑

i=1

|Ai \ {Aiα}| = n− f(α) = g(α).

If |Ai| = 2 for all i, let Ai = {xi, xiα} (1 ⩽ i ⩽ r). Then,

α =

(

x1 xr
x1α x1

)(

x2 xr
x2α x2

)

· · ·

(

xr−1 xr
xr−1α xr−1

)(

x1 xr
xrα x1

)

,

and again, the number of 3-paths used is n− f(α) = g(α).

Example 2. Consider the idempotent

e =

(

{1, 2, 7, 5} {3, 8, 10, 12} {4, 6, 9, 11}
2 8 11

)

= ξ1ξ2ξ3

where

ξ1 =

(

5 1
2 5

)(

7 1
2 7

)(

5 1
2 5

)

,

ξ2 =

(

3 1
8 3

)(

10 1
8 10

)(

12 1
8 12

)

,

ξ3 =

(

4 1
11 4

)(

6 1
11 6

)(

9 1
11 9

)

.

Theorem 2. For n ⩾ 3, each α ∈ Singn \E is expressible as a product of

⌈12(g(α) +m(α))⌉ 3-paths in Singn.

Proof. Suppose that α ∈ Singn \E has orbits as follows:

standard: Ω1,Ω2, . . . ,Ωs;

acyclic: Φ1,Φ2, . . . ,Φa;

cyclic: Θ1,Θ2, . . . ,Θc;

trivial: Ψ1,Ψ2, . . . ,Ψt.

For each standard orbit Ωj let Ωj \ im(α) = {x1j , x2j , . . . , xkjj};

K(Ωj) = {x1jα
mj , x1jα

mj+1, . . . , x1jα
mj+rj−1};

and define Z1(Ωj) and Zi(Ωj) (i = 2, . . . , kj) as in Equations (1) and (2),
respectively. Also, let

Φ = Φ1 ∪ Φ2 ∪ · · · ∪ Φa;
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Φ \ im(α) = {x1, x2, . . . , xl}

and define Yu(Φ) (u = 1, 2, . . . , l) as in Equation (3). Moreover, let

Θv = {yv, yvα, . . . , yvα
pv−1}

(where yvα
pv = yv). Then we consider six possible cases that may arise.

Case 1. 0 = e(α) = l(α). In this case each Zi(Ωj) (i = 1, 2, . . . , kj)
and each Yu(Φ) (u = 1, 2, . . . , l) is of even size; also, each Θv is of odd
size. Thus, corresponding to each Z1(Ωj), Zi(Ωj) (i = 2, 3, . . . , kj), Yu(Φ)
(u = 1, 2, . . . , l) and Θv (v = 1, 2, . . . , c) we define, respectively, products
ξ1j , ξij (i = 2, 3, . . . , kj), τu (u = 1, 2, . . . , l) and ηv (v = 1, 2, . . . , c) of
3-paths by

ξ1j =

(

x1jα
mj+rj−1 x1jα

mj+rj−2

x1jα
mj−1 x1jα

mj+rj−1

)(

x1jα
mj+rj−3 x1jα

mj+rj−4

x1jα
mj+rj−2 x1jα

mj+rj−3

)

· · ·

(

x1jα
3 x1jα

2

x1jα
4 x1jα

3

)(

x1jα x1j
x1jα

2 x1jα

)

,

ξij =

(

xijα
pij−1 xijα

pij−2

xijα
pij xijα

pij−1

)(

xijα
pij−3 xijα

pij−4

xijα
pij−2 xijα

pij−3

)

· · ·

(

xijα xij
xijα

2 xijα

)

,

τu =

(

xuα
qu−1 xuα

qu−2

xuα
qu xiα

qu−1

)(

xuα
qu−3 xuα

qu−4

xuα
qu−2 xuα

qu−3

)

· · ·

(

xuα xu
xuα

2 xuα

)

and

ηv =

(

yvα
pv−1 yvα

pv−2

z yvα
pv−1

)(

yvα
pv−3 yvα

pv−4

yvα
pv−2 yvα

pv−3

)

· · ·

(

yv z
xvα yv

)

,

where z is any point in Xn \ im(α).
For each j = 1, 2, . . . , s, let

βj = ξ1jξ2j · · · ξkjj ,

then each element x ∈ Ωj appears exactly once either as an upper entry
or as a middle entry of a 3-path in the product βj . Moreover, with the sole
exception of x = x1jα

mj−1, an element x ∈ Ωj appearing as a lower entry
or a middle entry never subsequently reappears as an upper or middle
entry. Hence each x ̸= x1jα

mj+rj−1 in Ωj is moved by exactly one of the
3-paths appearing in the product βj and moreover, it is moved to xα.
The exceptional element x1jα

mj+rj−1 is moved to x1jα
mj−1 by the first

3-path in the product ξ1j and then is moved, by either
(

x1jα
mj−1 x1jα

mj−2

x1jα
mj x1jα

mj−1

)

or

(

x1jα
mj x1jα

mj−1

x1jα
mj+1 x1jα

mj

)
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to x1jα
mj (= x1jα

mj+rj ). Thus, xβj = xα for every x ∈ Ωj , while xβj = x
for every x ∈ Xn \Ωj . Since the orbits Ωj (1 ⩽ j ⩽ s) are pairwise disjoint,
we have a product β1β2 · · ·βs of 3-paths such that

xβ1β2 · · ·βs =







xα if x ∈ ∪s
j=1Ωj ,

x if x ∈ Xn \ ∪s
j=1Ωj .

Similarly, if
γ = τ1τ2 · · · τl,

then each point x ∈ Φ appears either as an upper entry or a middle entry
of a 3-path in the product γ. Moreover, each x ∈ Φ that appears as a
lower entry or a middle entry never subsequently reappears as an upper
or middle entry. Hence each x ∈ Φ is moved to xα by exactly one of the
3-paths appearing in the product γ. Thus, xγ = xα for each x ∈ Φ while
xγ = x for each x ∈ Xn \ Φ.

Also, if
δ = η1η2 · · · ηc,

then, again, we can observe that the product δ is such that xδ = xα for
each x ∈ ∪c

v=1Θv and xδ = x for each x ∈ Xn \ ∪c
v=1Θv. Hence, it follows

that
α = β1β2 · · ·βsγδ,

a product of 3-paths in Singn.
Let us denote the number of 3-paths in the products ξij , τu and ηv by

#(ξij), #(τu) and #(ηv), respectively (we shall also use similar notation in
the sequel). Then, counting the number of points appearing at the top of
each product ξij , τi and ηj , we have #(ξij) =

1
2 |Zi(Ωj)|, #(τu) =

1
2 |Yu(Φ)|

and #(ηv) =
1
2(|Θv|+ 1). And so,

#(βj) =
1

2

kj
∑

i=1

|Zi(Ωj)| =
1

2
|Ωj |,

so that,

#(β1β2 · · ·βs) =
1

2

s
∑

j=1

|Ωj |, #(γ) =
1

2

l
∑

u=1

|Yu(Φ)|

and

#(δ) =
1

2

c
∑

v=1

(|Θv|+ 1) =
1

2
(

c
∑

v=1

|Θv|+ c).
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Using these, while noting that

s
∑

j=1

|Ωj |+
c
∑

v=1

|Θv|+
l
∑

u=1

|Yu(Φ)| = n− (a+ t),

we have

#(α) =
1

2
(n+ c− (a+ t)) =

1

2
(n+ c(α)− f(α)) =

g(α)

2
.

Case 2. 0 = l(α) < e(α). As in Case 1, each Zi(Ωj) (i = 1, 2, . . . , kj) and
each Yu(Φ) (u = 1, 2, . . . , l) is of even size. Let e(α) = e and arrange the
cyclic orbits such that

Θ1,Θ2, . . . ,Θe

are of even sizes and
Θe+1,Θe+2, . . . ,Θc

are of odd sizes. Then, corresponding to each Zi(Ωj) (i = 1, 2, . . . , kj),
Yu(Φ) (u = 1, 2, . . . , l) and Θv (v = e+ 1, e+ 2, . . . , c), we define, respec-
tively, products ξij , τu and ηv of 3-paths as in Case 1. While if e is even,
then corresponding to the even size cyclic orbits Θv (v = 1, 2, . . . , e), we
define a product ηvηv+1 (v = 1, 2, . . . , e− 1) of 3-paths by

ηvηv+1

=

(

yvα
pv−1 yvα

pv−2

z yvα
pv−1

)(

yvα
pv−3 yvα

pv−4

yvα
pv−2 yvα

pv−3

)

· · ·

(

z yv+1α
pv+1−1

yv z

)

(

yv+1α
pv+1−2 yv+1α

pv+1−3

yv+1α
pv+1−1 yv+1α

pv+1−2

)

· · ·

(

yv+1α
2 yv+1α

yv+1α
3 yv+1α

2

)(

yv+1 z
xv+1α yv+1

)

,

where z is any point in Xn \ im(α).
If e is odd, then for each v = 1, 2, . . . , e − 2, we define the product

ηvηv+1 of 3-paths as above and for v = e we define the product ηe of
3-paths by

ηe =

(

yeα
pe−1 yeα

pe−2

z yeα
pe−1

)(

yeα
pe−3 yeα

pe−4

yeα
pe−2 yeα

pe−3

)

· · ·

(

yeα ye
yeα

2 yeα

)(

ye z
yeα ye

)

,

where again z is any chosen point in Xn \ im(α). It is then not difficult to
observe that

α = β1β2 · · ·βsγδ,
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where

βj = ξ1jξ2j · · · ξkjj , γ = τ1τ2 · · · τl, and δ = η1η2 · · · ηc.

Also,

#(ηvηv+1) =
1

2
(|Θv|+ |Θv+1|+ 2)

and

#(ηe) =
1

2
(|Θe|+ 2).

Thus, we have

#(δ) =







1
2(
∑c

v=1 |Θv|+ c) if e is even,

1
2(
∑c

v=1 |Θv|+ c+ 1) if e is odd.

And therefore

#(α) =







1
2(n+ c− (a+ t)) if e is even,

1
2(n+ c− (a+ t) + 1) if e is odd.

That is

#(α) = ⌈
1

2
(n+ c(α)− f(α))⌉ = ⌈

g(α)

2
⌉.

Case 3. 0 = e(α) < l(α). Here, corresponding to each odd size subset
Zi(Ωj) and Yu(Φ), we define, respectively, products ξij (while noting that
|Z1(Ωj)| > 1) and τu of 3-paths by

ξij =











































































(

x1jα
mj+rj−1 x1jα

mj+rj−2

x1jα
mj−1 x1jα

mj+rj−1

)

· · ·

(

x1jα
2 x1jα

x1jα
3 x1jα

2

)(

x1jα x1j

x1jα
2 x1jα

)

if i = 1,

(

xijα
pij−1 xijα

pij−2

xijα
pij xijα

pij−1

)

· · ·

(

xijα
2 xijα

xijα
3 xijα

2

)(

xij x1j

xijα xij

)

if i ̸= 1
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and

τu =

(

xuα
qu−1 xuα

qu−2

xuα
qu xuα

qu−1

)

· · ·

(

xuα
2 xuα

xuα
3 xuα

2

)(

xuα xu
xuα

2 xuα

)

if |Yu(Φ)| > 1, otherwise, if |Yu(Φ)| = 1, define τu by

τu =























(

xu x1
xuα xu

)

if 1 < u ⩽ l,

(

xu z
xuα xu

)

if 1 = u ⩽ l,

where z is chosen to be any point of Xn \ im(α) distinct from xi which
appeared in a standard orbit of α. Note that this choice of z is possible
sine α /∈ E.

For the subsets Zi(Ωj) and Yu(Φ) of even sizes and the cyclic orbits
Θv, we define respectively, the products ξij , τu and ηv as in Case 1. Then,
here too, we can observe that, if

βj = ξ1jξ2j · · · ξkjj , γ = τ1τ2 · · · τl, and δ = η1η2 · · · ηc,

then

α = β1β2 · · ·βsγδ

and that

#(βj) =
1

2

kj
∑

i=1

(|Zi(Ωj)|+ zij) =
1

2
(|Ωj |+

kj
∑

i=1

zij),

#(γ) =
1

2

l
∑

u=1

(|Yu(Φ)|+ yu)

and

#(δ) =
1

2

c
∑

v=1

(|Θv|+ c).
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These give

#(α) =
1

2





s
∑

j=1

|Ωj |+
l
∑

u=1

|Yu(Φ)|+
c
∑

v=1

|Θv|+
s
∑

j=1

kj
∑

i=1

zij +
l
∑

u=1

yu + c





=
1

2



n+ c− (a+ t) +

s
∑

j=1

kj
∑

i=1

zij +
l
∑

u=1

yu





=
1

2
(n+ c(α)− f(α) + l(α))

=
1

2
(g(α) +m(α)) .

Case 4. 0 < l(α) = e(α). If Z1(Ωj) is of odd size, we define a product ξ1j
of 3-paths by

ξ1j =

(

x1jα
mj+rj−1 x1jα

mj+rj−2

x1jα
mj−1 x1jα

mj+rj−1

)(

x1jα
mj+rj−3 x1jα

mj+rj−4

x1jα
mj+rj−2 x1jα

mj+rj−3

)

· · ·

(

x1jα
2 x1jα

x1jα
3 x1jα2

)(

x1j yv
x1jα x1j

)

,

otherwise if Z1(Ωj) is of even size, we define a product ξ1j of 3-paths as
in Case 1. Corresponding to each Zi(Ωj) (i ̸= 1) and Yu(Φ) of odd sizes,
define products ξij and τu of 3-paths, respectively, by

ξij =

(

xijα
pij−1 xijα

pij−2

xijα
pij xijα

pij−1

)(

xijα
pij−3 xijα

pij−4

xijα
pij−2 xijα

pij−3

)

· · ·

(

xij yv
xijα xij

)

and

τu =

(

xuα
qu−1 xuα

qu−2

xuα
qu xuα

qu−1

)(

xuα
qu−3 xuα

qu−4

xuα
qu−2 xuα

qu−3

)

· · ·

(

xu yv
xuα xu

)

,

where the points yv, appearing as upper entries of the last 3-paths in
these products, ranges (distinctively) from the even cyclic orbits Θv

(v = 1, 2, . . . , e(α)).
Now corresponding to each Zi(Ωj) (i ̸= 1) and Yu(Φ) of even sizes

as well as each cyclic orbit Θv of odd size, the products ξij , τu and Θv

of 3-paths are respectively defined as in Case 1. For the cyclic orbits Θv

(v = 1, 2, . . . , e(α)) of even sizes, we define products ηv of 3-paths by

ηv =

(

yvα
pj−1 yvα

pv−2

yv yvα
pv−1

)(

yvα
pv−3 yvα

pv−4

yvα
pv−2 yvα

pv−3

)

· · ·

(

yvα z
yvα

2 yjα

)

,
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where z is the middle entry of the last 3-path, in the (already defined)
product corresponding to the odd subset Zi(Ωj) or Yu(Φ), to which yv is
an upper entry. As in the earlier cases, it can be observed that

α = β1β2 · · ·βsγδ,

where

βj = ξ1jξ2j · · · ξkjj , γ = τ1τ2 · · · τl and δ = η1η2 · · · ηc.

Also, observing the points appearing at the top of the products ξij , τi
and ηi, we have

#(ξij) =







1
2 |Zi(Ωj)| if |Zi(Ωj)| is even,

1
2(|Zi(Ωj)|+ 1) if |Zi(Ωj)| is odd,

#(τu) =







1
2 |Yu(Φ)| if |Yu(Φ)| is even,

1
2(|Yu(Φ)|+ 1) if |Yu(Φ)| is odd,

and

#(ηv) =







1
2 |Θv| if |Θv| is even,

1
2(|Θv|+ 1) if |Θv| is odd.

Thus, #(βv) = 1
2

∑kj
i=1(|Zi(Ωj)| + zij) = 1

2(|Ωj | +
∑kj

i=1 zij), #(γ) =
1
2

∑l
u=1(|Yu(Φ)|+ yu) and #(δ) = 1

2(
∑c

v=1 |Θv|+ c− e). Hence,

#(α) =
1

2

( s
∑

j=1

|Ωj |+

l
∑

u=1

|Yu(Φ)|+

c
∑

v=1

|Θv|+

s
∑

j=1

kj
∑

i=1

zij+

l
∑

u=1

yu+c−e

)

=
1

2

(

n− (a+ t) +

s
∑

j=1

kj
∑

i=1

zij +

l
∑

u=1

yu + c− e

)

=
1

2
(n− f(α) + l(α) + c(α)− e(α))

=
1

2
(n+ c(α)− f(α)) (since l(α) = e(α))

=
g(α)

2
.

Case 5. 0 < l(α) < e(α). Here, corresponding to each Zi(Ωj) and each
Yu(Φ) of odd sizes and exactly l(α) cyclic orbits Θv of even sizes, we define,
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respectively, products ξij , τu and ηv as described in Case 4. Corresponding
to the even sizes subsets Zi(Ωj) and Yu(Φ), as well as the odd sizes cyclic
orbits Θv, we define , respectively, the products ξij , τu and ηv as described
in Case 1. For the remaining e(α)− l(α) cyclic orbits Θv of even sizes, we
define the products ηv as described in Case 2. It is then easily seen that, if

βj = ξ1jξ2j · · · ξkjj , γ = τ1τ2 · · · τl, and δ = η1η2 · · · ηc,

then
α = β1β2 · · ·βsγδ

and that

#(βj) =
1

2

kj
∑

i=1

(|Zi(Ωj)|+ zij) =
1

2
(|Ωj |+

kj
∑

i=1

zij),

#(γ) =
1

2

l
∑

u=1

(|Yu(Φ)|+ yu)

and

#(δ) =







































































1

2

( c
∑

v=1

|Θv|+ c

−

( s
∑

j=1

kj
∑

i=1

zij +
l
∑

u=1

yu

))

if e(α)− l(α) is even,

1

2

( c
∑

v=1

|Θv|+ c

−

( s
∑

j=1

kj
∑

i=1

zij +

l
∑

u=1

yu

)

+ 1

)

if e(α)− l(α) is odd.

Thus, in this case we have

#(α) =







1
2(n+ c− (a+ t)) if e(α)− l(α) is even,

1
2(n+ c− (a+ t) + 1) if e(α)− l(α) is odd.

That is #(α) = ⌈12(n+ c(α)− f(α))⌉ = ⌈g(α)2 ⌉.
Case 6. 0 < e(α) < l(α). Here, corresponding to each cyclic orbits Θv of
even size and exactly e(α) subsets Zi(Ωj) and Yu(Φ) of odd sizes, we define,
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respectively, products ηv, ξij and τu as described in Case 4. Corresponding
to the even sizes subsets Zi(Ωj) and Yu(Φ), as well as the odd sizes cyclic
orbits Θv, we define, respectively, the products ξij , τu and ηv as described
in Case 1. For the remaining l(α) − e(α) subsets Zi(Ωj) and Yu(Φ) of
odd sizes, we define, respectively, the products ξij and τu as described
in Case 3. Then, it is easily seen that, if

βj = ξ1jξ2j · · · ξkjj , γ = τ1τ2 · · · τl and δ = η1η2 · · · ηc,

then
α = β1β2 · · ·βsγδ

and that

#(βj) =
1

2

kj
∑

i=1

(|Zi(Ωj)|+ zij) =
1

2
(|Ωj |+

kj
∑

i=1

zij),

#(γ) =
1

2

l
∑

u=1

(|Yu(Φ)|+ yi) and #(δ) =
1

2
(

c
∑

v=1

|Θv|+ c− e).

Thus here,

#(α) =
1

2

(

n− (a+ t) +
s
∑

j=1

kj
∑

i=1

zij +
l
∑

u=1

yu + c− e

)

=
1

2
(n+ c(α)− f(α) + l(α)− e(α)) =

1

2
(g(α) +m(α)) .

Hence in all cases we have expressed α ∈ Singn as a product of

⌈
1

2
(g(α) +m(α))⌉

3-paths and so the proof of the theorem is now complete.

Example 3. Let α ∈ Sing22 be the map given in Example 1. Then g(α) =
22+ 3− 3 = 22 and m(α) = 2, so that α can be expressed as a product of
k(α) = ⌈12(22+2)⌉ = 12 3-paths in Sing22. The processes of decomposition
described in the proof of Theorem 2 give α = ξ11ξ12ξ21ξ22τ1τ2η1η2η3 where
ξ11 = ( 4 3

1 4 ) (
2 1
3 2 ), ξ12 = ( 5 18

4 5 ), ξ21 = ( 8 7
6 8 ) (

6 1
7 6 ), ξ22 = ( 9 20

7 9 ), τ1 = ( 13 12
14 13 ),

τ2 = ( 10 12
11 10 ), η1 = ( 15 17

1 15 ) (
16 1
17 16 ), η2 = ( 19 5

18 19 ) and η3 = ( 21 9
20 21 ).

In the next lemma we obtain the maximum value of g(α) +m(α) in
Singn.
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Lemma 1. Let n ⩾ 3 and Singn be the semigroup of all singular self-maps

of Xn. Then max{g(α) +m(α) : α ∈ Singn} = 2(n− 1).

Proof. From [6, Lemma 2.5], we have

max{g(α) : α ∈ Singn} = ⌊
3

2
(n− 1)⌋

and from (4), the maximum value of m(α) is attained by making l(α) as
large as possible while keeping e(α) as small as possible. It is clear that
any map α ∈ Singn of height one has l(α) = n− 1 and e(α) = 0, which
are the maximum and least possible values of l(α) and e(α) respectively.
Thus,

max{m(α) : α ∈ Singn} = n− 1.

Now, for a map α ∈ Singn of height one, g(α) = n− 1 and so,

max{g(α) +m(α) : α ∈ Singn} ⩾ 2(n− 1).

Next, we show the opposite inequality, that is,

max{g(α) +m(α) : α ∈ Singn} ⩽ 2(n− 1).

Suppose for some β ∈ Singn, g(β)+m(α) > 2(n−1). Then, since m(β) ⩽
n − 1, we must have g(β) > n − 1. Also, g(β) < ⌈32(n − 1)⌉, for if
g(β) = ⌈32(n−1)⌉, then m(β) = 0 and g(β)+m(β) = ⌈32(n−1)⌉ ⩽ 2(n−1)
for all n ⩾ 3, which is a contradiction to the choice of β ∈ Singn. It then
follows that g(α) +m(α) ⩽ 2(n− 1) for all α ∈ Singn.

Let P be the set of all 3-paths in Singn, and for each positive integer
k write P [k] for the set of all product of elements in P of length k or less.
That is P [k] = P ∪ P 2 ∪ · · · ∪ P k. Then, from Theorem 2 and Lemma 1
we deduce the following.

Corollary 1. For each n ⩾ 3, we have Singn ⊆ P [n−1].

Remark 1. At the moment, we do not know whether the formula obtained
in Theorem 2 is best possible, that is whether there is a number smaller
then ⌈12(g(α) +m(α))⌉ expressing α ∈ Singn as a product of 3-paths.
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