On products of 3-paths in finite full transformation semigroups

A. T. Imam and M. J. Ibrahim

Communicated by V. Mazorchuk

Abstract. Let Sing_{n} denotes the semigroup of all singular self-maps of a finite set $X_{n}=\{1,2, \ldots, n\}$. A map $\alpha \in \operatorname{Sing}_{n}$ is called a 3-path if there are $i, j, k \in X_{n}$ such that $i \alpha=j, j \alpha=k$ and $x \alpha=x$ for all $x \in X_{n} \backslash\{i, j\}$. In this paper, we described a procedure to factorise each $\alpha \in \operatorname{Sing}_{n}$ into a product of 3-paths. The length of each factorisation, that is the number of factors in each factorisation, is obtained to be equal to $\left\lceil\frac{1}{2}(g(\alpha)+m(\alpha))\right\rceil$, where $g(\alpha)$ is known as the gravity of α and $m(\alpha)$ is a parameter introduced in this work and referred to as the measure of α. Moreover, we showed that $\operatorname{Sing}_{n} \subseteq P^{[n-1]}$, where P denotes the set of all 3-paths in Sing_{n} and $P^{[k]}=P \cup P^{2} \cup \cdots \cup P^{k}$.

1. Introduction

Let $X_{n}=\{1,2, \ldots, n\}$. The full transformation semigroup \mathcal{T}_{n} on X_{n}, that is the semigroup of all self-maps of X_{n} under composition of mappings, have been much studied. One of the outstanding contribution is given by Howie [5], where it was shown that the subsemigroup Sing_{n}, of all singular maps in \mathcal{T}_{n}, is generated by its set E_{1} of all idempotents of defect one (that is element $e \in \mathcal{T}_{n}$ satisfying $e^{2}=e$ and $\left|X_{n} \backslash \operatorname{im}(e)\right|=1$). Later Howie [6] and Iwahori [7] independently computed the minimum number of factors in E_{1} required to expressed each $\alpha \in \operatorname{Sing}_{n}$ to be $g(\alpha)$, the

The authors are grateful to an anonymous referee for his/her comments and suggestions.

2020 MSC: 20M20, 20M05.
Key words and phrases: 3-path, length formular, full transformation.
gravity of $\alpha \in \operatorname{Sing}_{n}$ (see [6] for details). The maximum possible value of this number was also obtained in [6] to be equal to $\left\lfloor\frac{3}{2}(n-1)\right\rfloor$, where $\lfloor x\rfloor$ is the floor of x (that is the unique integer m for which $x-1<m \leqslant x$). If E denote the set of all idempotents in Sing_{n}, the minimum number of factors in E required to expressed each $\alpha \in \operatorname{Sing}_{n}$ was found, by Saito [8], to be equal to $\left\lceil\frac{g(\alpha)}{d(\alpha)}\right\rceil$ or $\left\lceil\frac{g(\alpha)}{d(\alpha)}\right\rceil+1$, where $d(\alpha)=\left|X_{n} \backslash \operatorname{im}(\alpha)\right|$ denotes the defect of α, and $\lceil x\rceil$ is the ceiling of x (that is the unique integer m for which $x \leqslant m<x+1$).

Related lengths problems where addressed, for product of idempotents in semigroups of order-preserving maps in both full and partial cases, by Schein [9], Higgins [4] and Yang [10]. Garba [2] solved similar problems in the semigroup \mathcal{P}_{n}, of all partial transformations of X_{n}. Recently, Garba and Imam [3] also studied similar lengths problems in the symmetric inverse semigroup \mathcal{I}_{n}, of all partial one-to-one maps of X_{n}.

Ayik, et. al. [1] showed that the semigroup Sing_{n} can also be generated by certain primitive elements called path-cycles. Special class of pathcycles called m-paths can be regarded as generalisations of idempotents of defect one in the sense that all idempotents of defect one are 2 -paths and vice-versa. In general, Ayik et. al. [1] proved that the semigroup Sing ${ }_{n}$ is generated by its set of m-paths for each m in $\{2,3, \ldots, n\}$. In this paper, we describe a procedure to factorise each singular map α in Sing_{n} into a product of 3 -paths. We then obtained the length of each factorisation, that is the number of 3 -paths in the factorisation.

2. Preliminaries

Let $X_{n}=\{1, \ldots, n\}$ and let \mathcal{T}_{n} be the full transformation semigroup on X_{n}. If $\left\{x_{1}, \ldots, x_{m}\right\} \subseteq X_{n}$ and $\alpha \in \mathcal{T}_{n}$ is defined by
$x_{i} \alpha=x_{i+1}, x_{m} \alpha=x_{r}(1 \leqslant r \leqslant m)$ and $x \alpha=x\left(x \in X_{n} \backslash\left\{x_{1}, \ldots, x_{m}\right\}\right)$,
then α is called a path-cycle of length m and period r, or simply, an (m, r) -path-cycle, and is denoted (in a linear notation) by $\alpha=\left[x_{1}, \ldots, x_{m} \mid x_{r}\right]$. If $r=m, \alpha$ is called an m-path to x_{m} or simply an m-path; if $m \geqslant 2$ and $r=1, \alpha$ is called an m-cycle; if $m=r=1, \alpha$ is called a loop; if $m=r=2, \alpha$ is an idempotent of defect one; if $m \geqslant 2$ and $r \neq 1, \alpha$ is said to be a proper path-cycle.

Let $\xi=\left[x_{1}, x_{2}, x_{3} \mid x_{3}\right]$ be an arbitrary 3-path in Sing_{n}, then ξ maps x_{1} to x_{2}, x_{2} to x_{3} and all other elements of X_{n} identically. Instead of using the linear notation for ξ, we shall throughout this paper extend the array
notation, used for idempotents of defect one (that is 2-paths) used in [6], and write ξ as

$$
\xi=\left(\begin{array}{ll}
x_{2} & x_{1} \\
x_{3} & x_{2}
\end{array}\right)
$$

This will enable us a proper adoption of the methods of [6] in proving our results. In the array notation we shall refer to x_{1} as the upper entry of ξ; to x_{2} as the middle entry of ξ; and to x_{3} as the lower entry of ξ.

Let α be in Sing_{n}. The equivalence relation ω on X_{n}, defined by

$$
\omega=\left\{(x, y) \in X_{n} \times X_{n}:(\exists u, v \geqslant 0) x \alpha^{u}=y \alpha^{v}\right\}
$$

partitioned X_{n} into orbits $\Omega_{1}, \ldots, \Omega_{k}$. These orbits correspond to the connected components of the digraph associated to α with vertex set X_{n} in which there is a directed edge (x, y) if and only if $x \alpha=y$. Each orbit Ω has a kernel defined by

$$
K(\Omega)=\left\{x \in \Omega:(\exists r>0) x \alpha^{r}=x\right\} .
$$

An orbit Ω is said to be:

standard	if and only if	$2 \leqslant\|K(\Omega)\|<\|\Omega\| ;$
acyclic	if and only if	$1=\|K(\Omega)\|<\|\Omega\| ;$
cyclic	if and only if	$2 \leqslant\|K(\Omega)\|=\|\Omega\| ;$
trivial	if and only if	$1=\|K(\Omega)\|=\|\Omega\|$.

Every orbit of α falls into exactly one of these four categories and all four cases can arise. Let $c(\alpha)$ be the number of cyclic orbits of α and $f(\alpha)$ be the number of fixed points of α, this equals the sum of the number of trivial and the number of acyclic orbits of α. The gravity of α is defined as

$$
g(\alpha)=n+c(\alpha)-f(\alpha)
$$

For each standard or acyclic orbit Ω of $\alpha \in \operatorname{Sing}_{n}$ and each $x \in \Omega \backslash \operatorname{im}(\alpha)$, the sequence

$$
x, x \alpha, x \alpha^{2}, \ldots
$$

eventually arrives in $K(\Omega)$, the kernel of Ω, and remains there for all subsequent iterations. Denote the set of all distinct elements in this sequence by $Z(x)$. Suppose that $\alpha \in \operatorname{Sing}_{n}$ has s standard orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{s}$.

For each $j=1,2, \ldots, s$, let $\Omega_{j} \backslash \operatorname{im}(\alpha)=\left\{x_{1 j}, x_{2 j}, \ldots, x_{k_{j} j}\right\}$, where $x_{1 j}$ is such that

$$
\left|Z\left(x_{1 j}\right)\right|= \begin{cases}\max _{1 \leqslant i \leqslant k_{j}}\left\{\left|Z\left(x_{i j}\right)\right|:\right. & \text { if }\left|Z\left(x_{i j}\right)\right| \text { is even for some } i \\ \left.\left|Z\left(x_{i j}\right)\right| \text { is even }\right\} & \\ \max _{1 \leqslant i \leqslant k_{j}}\left\{\left|Z\left(x_{i j}\right)\right|\right\} & \text { if }\left|Z\left(x_{i j}\right)\right| \text { is odd for all } i\end{cases}
$$

Then there exist $m_{j} \geqslant 1$ and $r_{j} \geqslant 2$ (see [6]) such that

$$
K\left(\Omega_{j}\right)=\left\{x_{1 j} \alpha^{m_{j}}, \ldots, x_{1 j} \alpha^{m_{j}+r_{j}-1}\right\}
$$

where $x_{1 j} \alpha^{m_{j}+r_{j}}=x_{1 j} \alpha^{m_{j}}$. Note that this definition of $K\left(\Omega_{j}\right)$ is still valid for every $x_{i j}$, not only for $x_{1 j}$, and moreover, they are all the same. We then define

$$
\begin{equation*}
Z_{1}\left(\Omega_{j}\right)=Z\left(x_{1 j}\right)=\left\{x_{1 j}, x_{1 j} \alpha, \ldots, x_{1 j} \alpha^{m_{j}}, \ldots, x_{1 j} \alpha^{m_{j}+r_{j}-1}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{i}\left(\Omega_{j}\right)=\left\{x_{i j}, x_{i j} \alpha, \ldots, x_{i j} \alpha^{p_{i j}-1}\right\} \quad\left(2 \leqslant i \leqslant k_{j}\right) \tag{2}
\end{equation*}
$$

where $x_{i j} \alpha^{p_{i j}} \in\left(Z_{1}\left(\Omega_{j}\right) \cup Z_{2}\left(\Omega_{j}\right) \cup \cdots \cup Z_{i-1}\left(\Omega_{j}\right)\right)$. Thus, $\left\{Z_{i}\left(\Omega_{j}\right): 1 \leqslant\right.$ $\left.i \leqslant k_{j}\right\}$ is a partition of Ω_{j}. Also, suppose that $\alpha \in \operatorname{Sing}_{n}$ has acyclic orbits; let Φ be the union of all its acyclic orbits and denote the set $\{x \in \Phi: x \alpha=x\}$ by $\operatorname{Fix}(\Phi)$. Let $\Phi \backslash \operatorname{im}(\alpha)=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$ where x_{1} is such that
$\left|Z\left(x_{1}\right)\right|$
$= \begin{cases}\max _{1 \leqslant u \leqslant l}\left\{\left|Z\left(x_{u}\right)\right|:\left|Z\left(x_{u}\right)\right| \text { is odd }\right\} & \text { if }\left|Z\left(x_{u}\right)\right| \text { is odd for some } u, \\ \max _{1 \leqslant u \leqslant l}\left\{\left|Z\left(x_{u}\right)\right|\right\} & \text { if }\left|Z\left(x_{u}\right)\right| \text { is even for all } u .\end{cases}$
Then, for $u=1,2, \ldots, l$, define

$$
\begin{equation*}
Y_{u}(\Phi)=\left\{x_{u}, x_{u} \alpha, \ldots, x_{u} \alpha^{q_{u}-1}\right\} \tag{3}
\end{equation*}
$$

where $x_{1} \alpha^{q_{1}} \in \operatorname{Fix}(\Phi)$ and $x_{u} \alpha^{q_{u}} \in\left(Y_{1}(\Phi) \cup \cdots \cup Y_{u-1}(\Phi) \cup \operatorname{Fix}(\Phi)\right)$ $(u=2,3, \ldots, l)$. Thus, $\left\{Y_{u}(\Phi): 1 \leqslant u \leqslant l\right\}$ is a partition of Φ. We will be interested in the cardinalities of $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$ being odd or even. For this, we define indicator functions $z_{i j}$ and y_{u} by

$$
z_{i j}=\left\{\begin{array}{ll}
0 & \text { if }\left|Z_{i}\left(\Omega_{j}\right)\right| \text { is even, } \\
1 & \text { if }\left|Z_{i}\left(\Omega_{j}\right)\right| \text { is odd, }
\end{array} \quad \text { and } \quad y_{u}=\left\{\begin{array}{cc}
0 & \text { if }\left|Y_{u}(\Phi)\right| \text { is even } \\
1 & \text { if }\left|Y_{u}(\Phi)\right| \text { is odd }
\end{array}\right.\right.
$$

Finally, for each $\alpha \in \operatorname{Sing}_{n}$ we define the measure of α by

$$
m(\alpha)= \begin{cases}l(\alpha)-e(\alpha) & \text { if } l(\alpha)>e(\alpha) \tag{4}\\ 0 & \text { if } l(\alpha) \leqslant e(\alpha)\end{cases}
$$

where $l(\alpha)=\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}$ and $e(\alpha)$ denote the number of cyclic orbits of α of even cardinality.

Before closing this section, we illustrate the above definitions and notations in an example.

Example 1. Consider the map

$$
\alpha=\left(\begin{array}{llllllllllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
2 & 3 & 4 & 2 & 4 & 7 & 8 & 7 & 7 & 11 & 11 & 13 & 14 & 14 & 16 & 17 & 15 & 19 & 18 & 21 & 20 & 22
\end{array}\right)
$$

in Sing_{22} with orbits

$$
\begin{array}{rr}
\text { standard: } & \Omega_{1}=\{1,2,3,4,5\}, \Omega_{2}=\{6,7,8,9\} ; \\
\text { acyclic: } & \Phi_{1}=\{10,11\}, \Phi_{2}=\{12,13,14\} ; \\
\text { cyclic: } & \Theta_{1}=\{15,16,17\}, \Theta_{2}=\{18,19\}, \Theta_{3}=\{20,21\} ; \\
\text { trivial: } & \Psi_{1}=\{22\},
\end{array}
$$

as shown in Figure 1.

Figure 1. Orbits of $\alpha \in \operatorname{Sing}_{22}$.
For this α, we have $\Phi=\{10,11,12,13,14\}$ and so, $Z_{1}\left(\Omega_{1}\right)=\{1,2,3,4\}$, $Z_{2}\left(\Omega_{1}\right)=\{5\}$ (note that, according to the concerning definitions, it is also possible that $Z_{1}\left(\Omega_{1}\right)=\{2,3,4,5\}$ and $\left.Z_{2}\left(\Omega_{1}\right)=\{1\}\right), Z_{1}\left(\Omega_{2}\right)=\{6,7,8\}$, $Z_{2}\left(\Omega_{2}\right)=\{9\}, Y_{1}(\Phi)=\{12,13\}, Y_{2}(\Phi)=\{10\}$. Thus, $z_{11}=0, z_{21}=1$, $z_{12}=1, z_{22}=1, y_{1}=0, y_{2}=1$ and so, $l(\alpha)=z_{11}+z_{21}+z_{12}+z_{22}+y_{1}+y_{2}=$ 4 , also $e(\alpha)=2$. Therefore the measure of α is $m(\alpha)=2$.

3. Products of 3 -paths

In [1], it was proved that for a fixed m in $\{2, \ldots, n\}$, every element of Sing_{n} is a product of m-paths. The result was obtain via decomposing each 2-path in Sing_{n} as a product of $2 m$-paths while each element of Sing_{n} is decomposable as a product of 2-paths. In this section, we consider the case when $m=3$ and obtain a direct decomposition of each $\alpha \in \operatorname{Sing}_{n}$ as a product of 3 -paths.

Let E be the set of all idempotents in Sing_{n} and E_{1} be the set of all idempotents of defect 1 in E. First, we note that, in the notation of [6], each idempotent in E_{1} is of the form $\binom{i}{j}$, with $i, j \in X_{n}$ and $i \neq j$. Thus, since $n \geqslant 3$, there is a $k \in X_{n}$, with $k \neq i$ and $k \neq j$, such that,

$$
\binom{i}{j}=\left(\begin{array}{ll}
j & k \tag{5}\\
i & j
\end{array}\right)\left(\begin{array}{ll}
j & i \\
k & j
\end{array}\right)
$$

Theorem 1. For $n \geqslant 3$, each $\alpha \in E \backslash E_{1}$ is expressible as a product of $g(\alpha) 3$-path in Sing_{n}.

Proof. Let $\alpha \in E \backslash E_{1}$ and let $A_{1}, A_{2}, \ldots, A_{r}$ be its non-singleton blocks. Then, each of the blocks $A_{i}(1 \leqslant i \leqslant r)$ is stationary. If $\left|A_{i}\right| \geqslant 3$ for some i, we can assume without loss of generality that $\left|A_{1}\right| \geqslant 3$. Let

$$
A_{i} \backslash\left\{A_{i} \alpha\right\}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i a_{i}}\right\} \quad(1 \leqslant i \leqslant r)
$$

and define products $\xi_{i}(1 \leqslant i \leqslant r)$ of 3 -paths by

$$
\xi_{1}=\left(\begin{array}{cc}
x_{12} & x_{11} \\
A_{1} \alpha & x_{12}
\end{array}\right)\left(\begin{array}{cc}
x_{13} & x_{11} \\
A_{1} \alpha & x_{13}
\end{array}\right) \ldots\left(\begin{array}{cc}
x_{1 a_{1}} & x_{11} \\
A_{1} \alpha & x_{1 a_{1}}
\end{array}\right)\left(\begin{array}{cc}
x_{12} & x_{11} \\
A_{1} \alpha & x_{12}
\end{array}\right)
$$

and

$$
\xi_{i}=\left(\begin{array}{cc}
x_{i 1} & x_{11} \\
A_{i} \alpha & x_{i 1}
\end{array}\right)\left(\begin{array}{cc}
x_{i 2} & x_{11} \\
A_{i} \alpha & x_{i 2}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{i a_{i}} & x_{11} \\
A_{i} \alpha & x_{i a_{i}}
\end{array}\right) \quad(2 \leqslant i \leqslant r)
$$

Then, it is easy to verify that

$$
\alpha=\xi_{1} \xi_{2} \cdots \xi_{r}
$$

Also, observe that each point in $A_{i} \backslash\left\{A_{i} \alpha\right\}(2 \leqslant i \leqslant r)$ appeared exactly once as a middle entry of a 3 -path in ξ_{i} and each point in $A_{1} \backslash\left\{A_{1} \alpha, x_{11}, x_{12}\right\}$ appeared exactly once as a middle entry of a 3path in ξ_{1}. The point x_{12} appeared exactly twice as a middle entry of

3 -paths in ξ_{1} while the point x_{11} did not appear anywhere as a middle entry. Thus, the number of 3 -paths used in the product $\xi_{1} \xi_{2} \cdots \xi_{r}$ is

$$
\sum_{i=1}^{r}\left|A_{i} \backslash\left\{A_{i} \alpha\right\}\right|=n-f(\alpha)=g(\alpha)
$$

If $\left|A_{i}\right|=2$ for all i, let $A_{i}=\left\{x_{i}, x_{i} \alpha\right\}(1 \leqslant i \leqslant r)$. Then,

$$
\alpha=\left(\begin{array}{cc}
x_{1} & x_{r} \\
x_{1} \alpha & x_{1}
\end{array}\right)\left(\begin{array}{cc}
x_{2} & x_{r} \\
x_{2} \alpha & x_{2}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{r-1} & x_{r} \\
x_{r-1} \alpha & x_{r-1}
\end{array}\right)\left(\begin{array}{cc}
x_{1} & x_{r} \\
x_{r} \alpha & x_{1}
\end{array}\right)
$$

and again, the number of 3 -paths used is $n-f(\alpha)=g(\alpha)$.
Example 2. Consider the idempotent

$$
e=\left(\begin{array}{ccc}
\{1,2,7,5\} & \{3,8,10,12\} & \{4,6,9,11\} \\
2 & 8 & 11
\end{array}\right)=\xi_{1} \xi_{2} \xi_{3}
$$

where

$$
\begin{gathered}
\xi_{1}=\left(\begin{array}{ll}
5 & 1 \\
2 & 5
\end{array}\right)\left(\begin{array}{ll}
7 & 1 \\
2 & 7
\end{array}\right)\left(\begin{array}{ll}
5 & 1 \\
2 & 5
\end{array}\right), \\
\xi_{2}=\left(\begin{array}{ll}
3 & 1 \\
8 & 3
\end{array}\right)\left(\begin{array}{cc}
10 & 1 \\
8 & 10
\end{array}\right)\left(\begin{array}{cc}
12 & 1 \\
8 & 12
\end{array}\right), \\
\xi_{3}=\left(\begin{array}{cc}
4 & 1 \\
11 & 4
\end{array}\right)\left(\begin{array}{cc}
6 & 1 \\
11 & 6
\end{array}\right)\left(\begin{array}{cc}
9 & 1 \\
11 & 9
\end{array}\right) .
\end{gathered}
$$

Theorem 2. For $n \geqslant 3$, each $\alpha \in \operatorname{Sing}_{n} \backslash E$ is expressible as a product of $\left\lceil\frac{1}{2}(g(\alpha)+m(\alpha))\right\rceil$ 3-paths in Sing $_{n}$.
Proof. Suppose that $\alpha \in \operatorname{Sing}_{n} \backslash E$ has orbits as follows:

$$
\begin{aligned}
\text { standard: } & \Omega_{1}, \Omega_{2}, \ldots, \Omega_{s} ; \\
\text { acyclic: } & \Phi_{1}, \Phi_{2}, \ldots, \Phi_{a} ; \\
\text { cyclic: } & \Theta_{1}, \Theta_{2}, \ldots, \Theta_{c} ; \\
\text { trivial: } & \Psi_{1}, \Psi_{2}, \ldots, \Psi_{t}
\end{aligned}
$$

For each standard orbit Ω_{j} let $\Omega_{j} \backslash \operatorname{im}(\alpha)=\left\{x_{1 j}, x_{2 j}, \ldots, x_{k_{j} j}\right\}$;

$$
K\left(\Omega_{j}\right)=\left\{x_{1 j} \alpha^{m_{j}}, x_{1 j} \alpha^{m_{j}+1}, \ldots, x_{1 j} \alpha^{m_{j}+r_{j}-1}\right\}
$$

and define $Z_{1}\left(\Omega_{j}\right)$ and $Z_{i}\left(\Omega_{j}\right)\left(i=2, \ldots, k_{j}\right)$ as in Equations (1) and (2), respectively. Also, let

$$
\Phi=\Phi_{1} \cup \Phi_{2} \cup \cdots \cup \Phi_{a}
$$

$$
\Phi \backslash \operatorname{im}(\alpha)=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}
$$

and define $Y_{u}(\Phi)(u=1,2, \ldots, l)$ as in Equation (3). Moreover, let

$$
\Theta_{v}=\left\{y_{v}, y_{v} \alpha, \ldots, y_{v} \alpha^{p_{v}-1}\right\}
$$

(where $y_{v} \alpha^{p_{v}}=y_{v}$). Then we consider six possible cases that may arise.
Case 1. $0=e(\alpha)=l(\alpha)$. In this case each $Z_{i}\left(\Omega_{j}\right)\left(i=1,2, \ldots, k_{j}\right)$ and each $Y_{u}(\Phi)(u=1,2, \ldots, l)$ is of even size; also, each Θ_{v} is of odd size. Thus, corresponding to each $Z_{1}\left(\Omega_{j}\right), Z_{i}\left(\Omega_{j}\right)\left(i=2,3, \ldots, k_{j}\right), Y_{u}(\Phi)$ $(u=1,2, \ldots, l)$ and $\Theta_{v}(v=1,2, \ldots, c)$ we define, respectively, products $\xi_{1 j}, \xi_{i j}\left(i=2,3, \ldots, k_{j}\right), \tau_{u}(u=1,2, \ldots, l)$ and $\eta_{v}(v=1,2, \ldots, c)$ of 3 -paths by

$$
\begin{aligned}
\xi_{1 j}= & \left(\begin{array}{cc}
x_{1 j} \alpha^{m_{j}+r_{j}-1} & x_{1 j} \alpha^{m_{j}+r_{j}-2} \\
x_{1 j} \alpha^{m_{j}-1} & x_{1 j} \alpha^{m_{j}+r_{j}-1}
\end{array}\right)\left(\begin{array}{ll}
x_{1 j} \alpha^{m_{j}+r_{j}-3} & x_{1 j} \alpha^{m_{j}+r_{j}-4} \\
x_{1 j} \alpha^{m_{j}+r_{j}-2} & x_{1 j} \alpha^{m_{j}+r_{j}-3}
\end{array}\right) \\
& \cdots\left(\begin{array}{ll}
x_{1 j} \alpha^{3} & x_{1 j} \alpha^{2} \\
x_{1 j} \alpha^{4} & x_{1 j} \alpha^{3}
\end{array}\right)\left(\begin{array}{cc}
x_{1 j} \alpha & x_{1 j} \\
x_{1 j} \alpha^{2} & x_{1 j} \alpha
\end{array}\right), \\
\xi_{i j}= & \left(\begin{array}{cc}
x_{i j} \alpha^{p_{i j}-1} & x_{i j} \alpha^{p_{i j}-2} \\
x_{i j} \alpha^{p_{i j}} & x_{i j} \alpha^{p_{i j}-1}
\end{array}\right)\left(\begin{array}{cc}
x_{i j} \alpha^{p_{i j}-3} & x_{i j} \alpha^{p_{i j}-4} \\
x_{i j} \alpha^{p_{i j}-2} & x_{i j} \alpha^{p_{i j}-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{i j} \alpha & x_{i j} \\
x_{i j} \alpha^{2} & x_{i j} \alpha
\end{array}\right), \\
\tau_{u}= & \left(\begin{array}{cc}
x_{u} \alpha^{q_{u}-1} & x_{u} \alpha^{q_{u}-2} \\
x_{u} \alpha^{q_{u}} & x_{i} \alpha^{q_{u}-1}
\end{array}\right)\left(\begin{array}{cc}
x_{u} \alpha^{q_{u}-3} & x_{u} \alpha^{q_{u}-4} \\
x_{u} \alpha^{q_{u}-2} & x_{u} \alpha^{q_{u}-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{u} \alpha & x_{u} \\
x_{u} \alpha^{2} & x_{u} \alpha
\end{array}\right)
\end{aligned}
$$

and

$$
\eta_{v}=\left(\begin{array}{cc}
y_{v} \alpha^{p_{v}-1} & y_{v} \alpha^{p_{v}-2} \\
z & y_{v} \alpha^{p_{v}-1}
\end{array}\right)\left(\begin{array}{l}
y_{v} \alpha^{p_{v}-3} \\
y_{v} \alpha^{p_{v}-2} \\
y_{v} \alpha^{p_{v}-4} \\
y_{v}-3
\end{array}\right) \cdots\left(\begin{array}{cc}
y_{v} & z \\
x_{v} \alpha & y_{v}
\end{array}\right)
$$

where z is any point in $X_{n} \backslash \operatorname{im}(\alpha)$.
For each $j=1,2, \ldots, s$, let

$$
\beta_{j}=\xi_{1 j} \xi_{2 j} \cdots \xi_{k_{j} j}
$$

then each element $x \in \Omega_{j}$ appears exactly once either as an upper entry or as a middle entry of a 3 -path in the product β_{j}. Moreover, with the sole exception of $x=x_{1 j} \alpha^{m_{j}-1}$, an element $x \in \Omega_{j}$ appearing as a lower entry or a middle entry never subsequently reappears as an upper or middle entry. Hence each $x \neq x_{1 j} \alpha^{m_{j}+r_{j}-1}$ in Ω_{j} is moved by exactly one of the 3 -paths appearing in the product β_{j} and moreover, it is moved to $x \alpha$. The exceptional element $x_{1 j} \alpha^{m_{j}+r_{j}-1}$ is moved to $x_{1 j} \alpha^{m_{j}-1}$ by the first 3 -path in the product $\xi_{1 j}$ and then is moved, by either

$$
\left(\begin{array}{cc}
x_{1 j} \alpha^{m_{j}-1} & x_{1 j} \alpha^{m_{j}-2} \\
x_{1 j} \alpha^{m_{j}} & x_{1 j} \alpha^{m_{j}-1}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
x_{1 j} \alpha^{m_{j}} & x_{1 j} \alpha^{m_{j}-1} \\
x_{1 j} \alpha^{m_{j}+1} & x_{1 j} \alpha^{m_{j}}
\end{array}\right)
$$

to $x_{1 j} \alpha^{m_{j}}\left(=x_{1 j} \alpha^{m_{j}+r_{j}}\right)$. Thus, $x \beta_{j}=x \alpha$ for every $x \in \Omega_{j}$, while $x \beta_{j}=x$ for every $x \in X_{n} \backslash \Omega_{j}$. Since the orbits $\Omega_{j}(1 \leqslant j \leqslant s)$ are pairwise disjoint, we have a product $\beta_{1} \beta_{2} \cdots \beta_{s}$ of 3 -paths such that

$$
x \beta_{1} \beta_{2} \cdots \beta_{s}=\left\{\begin{array}{lll}
x \alpha & \text { if } & x \in \cup_{j=1}^{s} \Omega_{j}, \\
x & \text { if } & x \in X_{n} \backslash \cup_{j=1}^{s} \Omega_{j} .
\end{array}\right.
$$

Similarly, if

$$
\gamma=\tau_{1} \tau_{2} \cdots \tau_{l}
$$

then each point $x \in \Phi$ appears either as an upper entry or a middle entry of a 3-path in the product γ. Moreover, each $x \in \Phi$ that appears as a lower entry or a middle entry never subsequently reappears as an upper or middle entry. Hence each $x \in \Phi$ is moved to $x \alpha$ by exactly one of the 3 -paths appearing in the product γ. Thus, $x \gamma=x \alpha$ for each $x \in \Phi$ while $x \gamma=x$ for each $x \in X_{n} \backslash \Phi$.

Also, if

$$
\delta=\eta_{1} \eta_{2} \cdots \eta_{c}
$$

then, again, we can observe that the product δ is such that $x \delta=x \alpha$ for each $x \in \cup_{v=1}^{c} \Theta_{v}$ and $x \delta=x$ for each $x \in X_{n} \backslash \cup_{v=1}^{c} \Theta_{v}$. Hence, it follows that

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{s} \gamma \delta
$$

a product of 3-paths in Sing_{n}.
Let us denote the number of 3-paths in the products $\xi_{i j}, \tau_{u}$ and η_{v} by $\#\left(\xi_{i j}\right), \#\left(\tau_{u}\right)$ and $\#\left(\eta_{v}\right)$, respectively (we shall also use similar notation in the sequel). Then, counting the number of points appearing at the top of each product $\xi_{i j}, \tau_{i}$ and η_{j}, we have $\#\left(\xi_{i j}\right)=\frac{1}{2}\left|Z_{i}\left(\Omega_{j}\right)\right|, \#\left(\tau_{u}\right)=\frac{1}{2}\left|Y_{u}(\Phi)\right|$ and $\#\left(\eta_{v}\right)=\frac{1}{2}\left(\left|\Theta_{v}\right|+1\right)$. And so,

$$
\#\left(\beta_{j}\right)=\frac{1}{2} \sum_{i=1}^{k_{j}}\left|Z_{i}\left(\Omega_{j}\right)\right|=\frac{1}{2}\left|\Omega_{j}\right|
$$

so that,

$$
\#\left(\beta_{1} \beta_{2} \cdots \beta_{s}\right)=\frac{1}{2} \sum_{j=1}^{s}\left|\Omega_{j}\right|, \quad \#(\gamma)=\frac{1}{2} \sum_{u=1}^{l}\left|Y_{u}(\Phi)\right|
$$

and

$$
\#(\delta)=\frac{1}{2} \sum_{v=1}^{c}\left(\left|\Theta_{v}\right|+1\right)=\frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c\right)
$$

Using these, while noting that

$$
\sum_{j=1}^{s}\left|\Omega_{j}\right|+\sum_{v=1}^{c}\left|\Theta_{v}\right|+\sum_{u=1}^{l}\left|Y_{u}(\Phi)\right|=n-(a+t)
$$

we have

$$
\#(\alpha)=\frac{1}{2}(n+c-(a+t))=\frac{1}{2}(n+c(\alpha)-f(\alpha))=\frac{g(\alpha)}{2}
$$

Case 2. $0=l(\alpha)<e(\alpha)$. As in Case 1, each $Z_{i}\left(\Omega_{j}\right)\left(i=1,2, \ldots, k_{j}\right)$ and each $Y_{u}(\Phi)(u=1,2, \ldots, l)$ is of even size. Let $e(\alpha)=e$ and arrange the cyclic orbits such that

$$
\Theta_{1}, \Theta_{2}, \ldots, \Theta_{e}
$$

are of even sizes and

$$
\Theta_{e+1}, \Theta_{e+2}, \ldots, \Theta_{c}
$$

are of odd sizes. Then, corresponding to each $Z_{i}\left(\Omega_{j}\right)\left(i=1,2, \ldots, k_{j}\right)$, $Y_{u}(\Phi)(u=1,2, \ldots, l)$ and $\Theta_{v}(v=e+1, e+2, \ldots, c)$, we define, respectively, products $\xi_{i j}, \tau_{u}$ and η_{v} of 3 -paths as in Case 1 . While if e is even, then corresponding to the even size cyclic orbits $\Theta_{v}(v=1,2, \ldots, e)$, we define a product $\eta_{v} \eta_{v+1}(v=1,2, \ldots, e-1)$ of 3 -paths by

$$
\begin{aligned}
& \eta_{v} \eta_{v+1} \\
& =\left(\begin{array}{cc}
y_{v} \alpha^{p_{v}-1} & y_{v} \alpha^{p_{v}-2} \\
z & y_{v} \alpha^{p_{v}-1}
\end{array}\right)\left(\begin{array}{ll}
y_{v} \alpha^{p_{v}-3} & y_{v} \alpha^{p_{v}-4} \\
y_{v} \alpha^{p_{v}-2} & y_{v} \alpha^{p_{v}-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
z & y_{v+1} \alpha^{p_{v+1}-1} \\
y_{v} & z
\end{array}\right) \\
& \left(\begin{array}{cc}
y_{v+1} \alpha^{p_{v+1}-2} & y_{v+1} \alpha^{p_{v+1}-3} \\
y_{v+1} \alpha^{p_{v+1}-1} & y_{v+1} \alpha^{p_{v+1}-2}
\end{array}\right) \cdots\left(\begin{array}{cc}
y_{v+1} \alpha^{2} & y_{v+1} \alpha \\
y_{v+1} \alpha^{3} & y_{v+1} \alpha^{2}
\end{array}\right)\left(\begin{array}{cc}
y_{v+1} & z \\
x_{v+1} \alpha & y_{v+1}
\end{array}\right)
\end{aligned}
$$

where z is any point in $X_{n} \backslash \operatorname{im}(\alpha)$.
If e is odd, then for each $v=1,2, \ldots, e-2$, we define the product $\eta_{v} \eta_{v+1}$ of 3 -paths as above and for $v=e$ we define the product η_{e} of 3 -paths by

$$
\begin{gathered}
\eta_{e}=\left(\begin{array}{cc}
y_{e} \alpha^{p_{e}-1} & y_{e} \alpha^{p_{e}-2} \\
z & y_{e} \alpha^{p_{e}-1}
\end{array}\right)\left(\begin{array}{ll}
y_{e} \alpha^{p_{e}-3} & y_{e} \alpha^{p_{e}-4} \\
y_{e} \alpha^{p_{e}-2} & y_{e} \alpha^{p_{e}-3}
\end{array}\right) \\
\cdots\left(\begin{array}{cc}
y_{e} \alpha & y_{e} \\
y_{e} \alpha^{2} & y_{e} \alpha
\end{array}\right)\left(\begin{array}{cc}
y_{e} & z \\
y_{e} \alpha & y_{e}
\end{array}\right),
\end{gathered}
$$

where again z is any chosen point in $X_{n} \backslash \operatorname{im}(\alpha)$. It is then not difficult to observe that

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{s} \gamma \delta
$$

where

$$
\beta_{j}=\xi_{1 j} \xi_{2 j} \cdots \xi_{k_{j} j}, \quad \gamma=\tau_{1} \tau_{2} \cdots \tau_{l}, \quad \text { and } \quad \delta=\eta_{1} \eta_{2} \cdots \eta_{c}
$$

Also,

$$
\#\left(\eta_{v} \eta_{v+1}\right)=\frac{1}{2}\left(\left|\Theta_{v}\right|+\left|\Theta_{v+1}\right|+2\right)
$$

and

$$
\#\left(\eta_{e}\right)=\frac{1}{2}\left(\left|\Theta_{e}\right|+2\right)
$$

Thus, we have

$$
\#(\delta)= \begin{cases}\frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c\right) & \text { if } e \text { is even } \\ \frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c+1\right) & \text { if } e \text { is odd }\end{cases}
$$

And therefore

$$
\#(\alpha)= \begin{cases}\frac{1}{2}(n+c-(a+t)) & \text { if } e \text { is even } \\ \frac{1}{2}(n+c-(a+t)+1) & \text { if } e \text { is odd }\end{cases}
$$

That is

$$
\#(\alpha)=\left\lceil\frac{1}{2}(n+c(\alpha)-f(\alpha))\right\rceil=\left\lceil\frac{g(\alpha)}{2}\right\rceil
$$

Case 3. $0=e(\alpha)<l(\alpha)$. Here, corresponding to each odd size subset $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$, we define, respectively, products $\xi_{i j}$ (while noting that $\left.\left|Z_{1}\left(\Omega_{j}\right)\right|>1\right)$ and τ_{u} of 3-paths by

$$
\xi_{i j}=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
x_{1 j} \alpha^{m_{j}+r_{j}-1} & x_{1 j} \alpha^{m_{j}+r_{j}-2} \\
x_{1 j} \alpha^{m_{j}-1} & x_{1 j} \alpha^{m_{j}+r_{j}-1}
\end{array}\right) & \text { if } i=1, \\
\ldots\left(\begin{array}{ll}
x_{1 j} \alpha^{2} & x_{1 j} \alpha \\
x_{1 j} \alpha^{3} & x_{1 j} \alpha^{2}
\end{array}\right)\left(\begin{array}{cc}
x_{1 j} \alpha & x_{1 j} \\
x_{1 j} \alpha^{2} & x_{1 j} \alpha
\end{array}\right) & \\
\left(\begin{array}{cc}
x_{i j} \alpha^{p_{i j}-1} & x_{i j} \alpha^{p_{i j}-2} \\
x_{i j} \alpha^{p_{i j}} & x_{i j} \alpha^{p_{i j}-1}
\end{array}\right) & \text { if } i \neq 1 \\
\ldots\left(\begin{array}{ll}
x_{i j} \alpha^{2} & x_{i j} \alpha \\
x_{i j} \alpha^{3} & x_{i j} \alpha^{2}
\end{array}\right)\left(\begin{array}{cc}
x_{i j} & x_{1 j} \\
x_{i j} \alpha & x_{i j}
\end{array}\right) &
\end{array}\right.
$$

and

$$
\tau_{u}=\left(\begin{array}{cc}
x_{u} \alpha^{q_{u}-1} & x_{u} \alpha^{q_{u}-2} \\
x_{u} \alpha^{q_{u}} & x_{u} \alpha^{q_{u}-1}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{u} \alpha^{2} & x_{u} \alpha \\
x_{u} \alpha^{3} & x_{u} \alpha^{2}
\end{array}\right)\left(\begin{array}{cc}
x_{u} \alpha & x_{u} \\
x_{u} \alpha^{2} & x_{u} \alpha
\end{array}\right)
$$

if $\left|Y_{u}(\Phi)\right|>1$, otherwise, if $\left|Y_{u}(\Phi)\right|=1$, define τ_{u} by

$$
\tau_{u}=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
x_{u} & x_{1} \\
x_{u} \alpha & x_{u}
\end{array}\right) & \text { if } 1<u \leqslant l \\
\left(\begin{array}{cc}
x_{u} & z \\
x_{u} \alpha & x_{u}
\end{array}\right) & \text { if } 1=u \leqslant l
\end{array}\right.
$$

where z is chosen to be any point of $X_{n} \backslash \operatorname{im}(\alpha)$ distinct from x_{i} which appeared in a standard orbit of α. Note that this choice of z is possible sine $\alpha \notin E$.

For the subsets $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$ of even sizes and the cyclic orbits Θ_{v}, we define respectively, the products $\xi_{i j}, \tau_{u}$ and η_{v} as in Case 1. Then, here too, we can observe that, if

$$
\beta_{j}=\xi_{1 j} \xi_{2 j} \cdots \xi_{k_{j} j}, \quad \gamma=\tau_{1} \tau_{2} \cdots \tau_{l}, \quad \text { and } \quad \delta=\eta_{1} \eta_{2} \cdots \eta_{c}
$$

then

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{s} \gamma \delta
$$

and that

$$
\begin{gathered}
\#\left(\beta_{j}\right)=\frac{1}{2} \sum_{i=1}^{k_{j}}\left(\left|Z_{i}\left(\Omega_{j}\right)\right|+z_{i j}\right)=\frac{1}{2}\left(\left|\Omega_{j}\right|+\sum_{i=1}^{k_{j}} z_{i j}\right) \\
\#(\gamma)=\frac{1}{2} \sum_{u=1}^{l}\left(\left|Y_{u}(\Phi)\right|+y_{u}\right)
\end{gathered}
$$

and

$$
\#(\delta)=\frac{1}{2} \sum_{v=1}^{c}\left(\left|\Theta_{v}\right|+c\right)
$$

These give

$$
\begin{aligned}
\#(\alpha) & =\frac{1}{2}\left(\sum_{j=1}^{s}\left|\Omega_{j}\right|+\sum_{u=1}^{l}\left|Y_{u}(\Phi)\right|+\sum_{v=1}^{c}\left|\Theta_{v}\right|+\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}+c\right) \\
& =\frac{1}{2}\left(n+c-(a+t)+\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}\right) \\
& =\frac{1}{2}(n+c(\alpha)-f(\alpha)+l(\alpha)) \\
& =\frac{1}{2}(g(\alpha)+m(\alpha)) .
\end{aligned}
$$

Case 4. $0<l(\alpha)=e(\alpha)$. If $Z_{1}\left(\Omega_{j}\right)$ is of odd size, we define a product $\xi_{1 j}$ of 3 -paths by

$$
\begin{aligned}
\xi_{1 j}= & \left(\begin{array}{cc}
x_{1 j} \alpha^{m_{j}+r_{j}-1} & x_{1 j} \alpha^{m_{j}+r_{j}-2} \\
x_{1 j} \alpha^{m_{j}-1} & x_{1 j} \alpha^{m_{j}+r_{j}-1}
\end{array}\right)\left(\begin{array}{ll}
x_{1 j} \alpha^{m_{j}+r_{j}-3} & x_{1 j} \alpha^{m_{j}+r_{j}-4} \\
x_{1 j} \alpha^{m_{j}+r_{j}-2} & x_{1 j} \alpha^{m_{j}+r_{j}-3}
\end{array}\right) \\
& \ldots\left(\begin{array}{cc}
x_{1 j} \alpha^{2} & x_{1 j} \alpha \\
x_{1 j} \alpha^{3} & x_{1 j} \alpha_{2}
\end{array}\right)\left(\begin{array}{cc}
x_{1 j} & y_{v} \\
x_{1 j} \alpha & x_{1 j}
\end{array}\right),
\end{aligned}
$$

otherwise if $Z_{1}\left(\Omega_{j}\right)$ is of even size, we define a product $\xi_{1 j}$ of 3 -paths as in Case 1. Corresponding to each $Z_{i}\left(\Omega_{j}\right)(i \neq 1)$ and $Y_{u}(\Phi)$ of odd sizes, define products $\xi_{i j}$ and τ_{u} of 3-paths, respectively, by

$$
\xi_{i j}=\left(\begin{array}{cc}
x_{i j} \alpha^{p_{i j}-1} & x_{i j} \alpha^{p_{i j}-2} \\
x_{i j} \alpha^{p_{i j}} & x_{i j} \alpha^{p_{i j}-1}
\end{array}\right)\left(\begin{array}{cc}
x_{i j} \alpha^{p_{i j}-3} & x_{i j} \alpha^{p_{i j}-4} \\
x_{i j} \alpha^{p_{i j}-2} & x_{i j} \alpha^{p_{i j}-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{i j} & y_{v} \\
x_{i j} \alpha & x_{i j}
\end{array}\right)
$$

and

$$
\tau_{u}=\left(\begin{array}{cc}
x_{u} \alpha^{q_{u}-1} & x_{u} \alpha^{q_{u}-2} \\
x_{u} \alpha^{q_{u}} & x_{u} \alpha^{q_{u}-1}
\end{array}\right)\left(\begin{array}{ll}
x_{u} \alpha^{q_{u}-3} & x_{u} \alpha^{q_{u}-4} \\
x_{u} \alpha^{q_{u}-2} & x_{u} \alpha^{q_{u}-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
x_{u} & y_{v} \\
x_{u} \alpha & x_{u}
\end{array}\right)
$$

where the points y_{v}, appearing as upper entries of the last 3-paths in these products, ranges (distinctively) from the even cyclic orbits Θ_{v} $(v=1,2, \ldots, e(\alpha))$.

Now corresponding to each $Z_{i}\left(\Omega_{j}\right)(i \neq 1)$ and $Y_{u}(\Phi)$ of even sizes as well as each cyclic orbit Θ_{v} of odd size, the products $\xi_{i j}, \tau_{u}$ and Θ_{v} of 3-paths are respectively defined as in Case 1 . For the cyclic orbits Θ_{v} $(v=1,2, \ldots, e(\alpha))$ of even sizes, we define products η_{v} of 3 -paths by

$$
\eta_{v}=\left(\begin{array}{cc}
y_{v} \alpha^{p_{j}-1} & y_{v} \alpha^{p_{v}-2} \\
y_{v} & y_{v} \alpha^{p_{v}-1}
\end{array}\right)\left(\begin{array}{l}
y_{v} \alpha^{p_{v}-3} \\
y_{v} \alpha^{p_{v-2}} \\
y_{v} \alpha^{p_{v}-4} \\
y_{v} \alpha^{p_{v}-3}
\end{array}\right) \cdots\left(\begin{array}{cc}
y_{v} \alpha & z \\
y_{v} \alpha^{2} & y_{j} \alpha
\end{array}\right)
$$

where z is the middle entry of the last 3 -path, in the (already defined) product corresponding to the odd subset $Z_{i}\left(\Omega_{j}\right)$ or $Y_{u}(\Phi)$, to which y_{v} is an upper entry. As in the earlier cases, it can be observed that

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{s} \gamma \delta
$$

where

$$
\beta_{j}=\xi_{1 j} \xi_{2 j} \cdots \xi_{k_{j} j}, \quad \gamma=\tau_{1} \tau_{2} \cdots \tau_{l} \quad \text { and } \quad \delta=\eta_{1} \eta_{2} \cdots \eta_{c}
$$

Also, observing the points appearing at the top of the products $\xi_{i j}, \tau_{i}$ and η_{i}, we have

$$
\begin{aligned}
& \#\left(\xi_{i j}\right)=\left\{\begin{array}{lll}
\frac{1}{2}\left|Z_{i}\left(\Omega_{j}\right)\right| & \text { if } & \left|Z_{i}\left(\Omega_{j}\right)\right| \text { is even } \\
\frac{1}{2}\left(\left|Z_{i}\left(\Omega_{j}\right)\right|+1\right) & \text { if } & \left|Z_{i}\left(\Omega_{j}\right)\right| \text { is odd }
\end{array}\right. \\
& \#\left(\tau_{u}\right)=\left\{\begin{array}{lll}
\frac{1}{2}\left|Y_{u}(\Phi)\right| & \text { if } & \left|Y_{u}(\Phi)\right| \text { is even } \\
\frac{1}{2}\left(\left|Y_{u}(\Phi)\right|+1\right) & \text { if } & \left|Y_{u}(\Phi)\right| \text { is odd }
\end{array}\right.
\end{aligned}
$$

and

$$
\#\left(\eta_{v}\right)= \begin{cases}\frac{1}{2}\left|\Theta_{v}\right| & \text { if } \quad\left|\Theta_{v}\right| \text { is even } \\ \frac{1}{2}\left(\left|\Theta_{v}\right|+1\right) & \text { if }\left|\Theta_{v}\right| \text { is odd }\end{cases}
$$

Thus, $\#\left(\beta_{v}\right)=\frac{1}{2} \sum_{i=1}^{k_{j}}\left(\left|Z_{i}\left(\Omega_{j}\right)\right|+z_{i j}\right)=\frac{1}{2}\left(\left|\Omega_{j}\right|+\sum_{i=1}^{k_{j}} z_{i j}\right)$, \#($\left.\gamma\right)=$ $\frac{1}{2} \sum_{u=1}^{l}\left(\left|Y_{u}(\Phi)\right|+y_{u}\right)$ and $\#(\delta)=\frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c-e\right)$. Hence,

$$
\begin{aligned}
\#(\alpha) & =\frac{1}{2}\left(\sum_{j=1}^{s}\left|\Omega_{j}\right|+\sum_{u=1}^{l}\left|Y_{u}(\Phi)\right|+\sum_{v=1}^{c}\left|\Theta_{v}\right|+\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}+c-e\right) \\
& =\frac{1}{2}\left(n-(a+t)+\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}+c-e\right) \\
& =\frac{1}{2}(n-f(\alpha)+l(\alpha)+c(\alpha)-e(\alpha)) \\
& =\frac{1}{2}(n+c(\alpha)-f(\alpha)) \quad(\text { since } l(\alpha)=e(\alpha)) \\
& =\frac{g(\alpha)}{2}
\end{aligned}
$$

Case 5. $0<l(\alpha)<e(\alpha)$. Here, corresponding to each $Z_{i}\left(\Omega_{j}\right)$ and each $Y_{u}(\Phi)$ of odd sizes and exactly $l(\alpha)$ cyclic orbits Θ_{v} of even sizes, we define,
respectively, products $\xi_{i j}, \tau_{u}$ and η_{v} as described in Case 4. Corresponding to the even sizes subsets $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$, as well as the odd sizes cyclic orbits Θ_{v}, we define, respectively, the products $\xi_{i j}, \tau_{u}$ and η_{v} as described in Case 1. For the remaining $e(\alpha)-l(\alpha)$ cyclic orbits Θ_{v} of even sizes, we define the products η_{v} as described in Case 2. It is then easily seen that, if

$$
\beta_{j}=\xi_{1 j} \xi_{2 j} \cdots \xi_{k_{j} j}, \quad \gamma=\tau_{1} \tau_{2} \cdots \tau_{l}, \quad \text { and } \quad \delta=\eta_{1} \eta_{2} \cdots \eta_{c}
$$

then

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{s} \gamma \delta
$$

and that

$$
\begin{gathered}
\#\left(\beta_{j}\right)=\frac{1}{2} \sum_{i=1}^{k_{j}}\left(\left|Z_{i}\left(\Omega_{j}\right)\right|+z_{i j}\right)=\frac{1}{2}\left(\left|\Omega_{j}\right|+\sum_{i=1}^{k_{j}} z_{i j}\right) \\
\#(\gamma)=\frac{1}{2} \sum_{u=1}^{l}\left(\left|Y_{u}(\Phi)\right|+y_{u}\right)
\end{gathered}
$$

and

$$
\#(\delta)=\left\{\begin{array}{cc}
\frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c\right. & \text { if } e(\alpha)-l(\alpha) \text { is even } \\
\left.-\left(\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}\right)\right) & \text { if } e(\alpha)-l(\alpha) \text { is odd. } \\
\frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c\right. & \\
\left.-\left(\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}\right)+1\right) &
\end{array}\right.
$$

Thus, in this case we have

$$
\#(\alpha)= \begin{cases}\frac{1}{2}(n+c-(a+t)) & \text { if } e(\alpha)-l(\alpha) \text { is even } \\ \frac{1}{2}(n+c-(a+t)+1) & \text { if } e(\alpha)-l(\alpha) \text { is odd }\end{cases}
$$

That is $\#(\alpha)=\left\lceil\frac{1}{2}(n+c(\alpha)-f(\alpha))\right\rceil=\left\lceil\frac{g(\alpha)}{2}\right\rceil$.
Case 6. $0<e(\alpha)<l(\alpha)$. Here, corresponding to each cyclic orbits Θ_{v} of even size and exactly $e(\alpha)$ subsets $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$ of odd sizes, we define,
respectively, products $\eta_{v}, \xi_{i j}$ and τ_{u} as described in Case 4. Corresponding to the even sizes subsets $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$, as well as the odd sizes cyclic orbits Θ_{v}, we define, respectively, the products $\xi_{i j}, \tau_{u}$ and η_{v} as described in Case 1. For the remaining $l(\alpha)-e(\alpha)$ subsets $Z_{i}\left(\Omega_{j}\right)$ and $Y_{u}(\Phi)$ of odd sizes, we define, respectively, the products $\xi_{i j}$ and τ_{u} as described in Case 3. Then, it is easily seen that, if

$$
\beta_{j}=\xi_{1 j} \xi_{2 j} \cdots \xi_{k_{j} j}, \quad \gamma=\tau_{1} \tau_{2} \cdots \tau_{l} \quad \text { and } \quad \delta=\eta_{1} \eta_{2} \cdots \eta_{c}
$$

then

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{s} \gamma \delta
$$

and that

$$
\begin{gathered}
\#\left(\beta_{j}\right)=\frac{1}{2} \sum_{i=1}^{k_{j}}\left(\left|Z_{i}\left(\Omega_{j}\right)\right|+z_{i j}\right)=\frac{1}{2}\left(\left|\Omega_{j}\right|+\sum_{i=1}^{k_{j}} z_{i j}\right) \\
\#(\gamma)=\frac{1}{2} \sum_{u=1}^{l}\left(\left|Y_{u}(\Phi)\right|+y_{i}\right) \quad \text { and } \quad \#(\delta)=\frac{1}{2}\left(\sum_{v=1}^{c}\left|\Theta_{v}\right|+c-e\right) .
\end{gathered}
$$

Thus here,

$$
\begin{aligned}
\#(\alpha) & =\frac{1}{2}\left(n-(a+t)+\sum_{j=1}^{s} \sum_{i=1}^{k_{j}} z_{i j}+\sum_{u=1}^{l} y_{u}+c-e\right) \\
& =\frac{1}{2}(n+c(\alpha)-f(\alpha)+l(\alpha)-e(\alpha))=\frac{1}{2}(g(\alpha)+m(\alpha))
\end{aligned}
$$

Hence in all cases we have expressed $\alpha \in \operatorname{Sing}_{n}$ as a product of

$$
\left\lceil\frac{1}{2}(g(\alpha)+m(\alpha))\right\rceil
$$

3 -paths and so the proof of the theorem is now complete.
Example 3. Let $\alpha \in \operatorname{Sing}_{22}$ be the map given in Example 1. Then $g(\alpha)=$ $22+3-3=22$ and $m(\alpha)=2$, so that α can be expressed as a product of $k(\alpha)=\left\lceil\frac{1}{2}(22+2)\right\rceil=123$-paths in Sing 22 . The processes of decomposition described in the proof of Theorem 2 give $\alpha=\xi_{11} \xi_{12} \xi_{21} \xi_{22} \tau_{1} \tau_{2} \eta_{1} \eta_{2} \eta_{3}$ where $\xi_{11}=\left(\begin{array}{ll}4 & 3 \\ 1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right), \xi_{12}=\left(\begin{array}{cc}5 & 18 \\ 4 & 5\end{array}\right), \xi_{21}=\left(\begin{array}{ll}8 & 7 \\ 6 & 8\end{array}\right)\left(\begin{array}{ll}6 & 1 \\ 7 & 6\end{array}\right), \xi_{22}=\left(\begin{array}{cc}9 & 20 \\ 7 & 9\end{array}\right), \tau_{1}=\left(\begin{array}{ll}13 & 12 \\ 14 & 13\end{array}\right)$, $\tau_{2}=\left(\begin{array}{ll}10 & 12 \\ 11 & 10\end{array}\right), \eta_{1}=\left(\begin{array}{cc}15 & 17 \\ 1 & 15\end{array}\right)\left(\begin{array}{cc}16 & 1 \\ 17 & 16\end{array}\right), \eta_{2}=\left(\begin{array}{cc}19 & 5 \\ 18 & 19\end{array}\right)$ and $\eta_{3}=\left(\begin{array}{ll}21 & 9 \\ 20 & 21\end{array}\right)$.

In the next lemma we obtain the maximum value of $g(\alpha)+m(\alpha)$ in Sing $_{n}$.

Lemma 1. Let $n \geqslant 3$ and Sing_{n} be the semigroup of all singular self-maps of X_{n}. Then $\max \left\{g(\alpha)+m(\alpha): \alpha \in \operatorname{Sing}_{n}\right\}=2(n-1)$.

Proof. From [6, Lemma 2.5], we have

$$
\max \left\{g(\alpha): \alpha \in \operatorname{Sing}_{n}\right\}=\left\lfloor\frac{3}{2}(n-1)\right\rfloor
$$

and from (4), the maximum value of $m(\alpha)$ is attained by making $l(\alpha)$ as large as possible while keeping $e(\alpha)$ as small as possible. It is clear that any map $\alpha \in \operatorname{Sing}_{n}$ of height one has $l(\alpha)=n-1$ and $e(\alpha)=0$, which are the maximum and least possible values of $l(\alpha)$ and $e(\alpha)$ respectively. Thus,

$$
\max \left\{m(\alpha): \alpha \in \operatorname{Sing}_{n}\right\}=n-1
$$

Now, for a map $\alpha \in \operatorname{Sing}_{n}$ of height one, $g(\alpha)=n-1$ and so,

$$
\max \left\{g(\alpha)+m(\alpha): \alpha \in \operatorname{Sing}_{n}\right\} \geqslant 2(n-1)
$$

Next, we show the opposite inequality, that is,

$$
\max \left\{g(\alpha)+m(\alpha): \alpha \in \operatorname{Sing}_{n}\right\} \leqslant 2(n-1)
$$

Suppose for some $\beta \in \operatorname{Sing}_{n}, g(\beta)+m(\alpha)>2(n-1)$. Then, since $m(\beta) \leqslant$ $n-1$, we must have $g(\beta)>n-1$. Also, $g(\beta)<\left\lceil\frac{3}{2}(n-1)\right\rceil$, for if $g(\beta)=\left\lceil\frac{3}{2}(n-1)\right\rceil$, then $m(\beta)=0$ and $g(\beta)+m(\beta)=\left\lceil\frac{3}{2}(n-1)\right\rceil \leqslant 2(n-1)$ for all $n \geqslant 3$, which is a contradiction to the choice of $\beta \in \operatorname{Sing}_{n}$. It then follows that $g(\alpha)+m(\alpha) \leqslant 2(n-1)$ for all $\alpha \in \operatorname{Sing}_{n}$.

Let P be the set of all 3 -paths in Sing_{n}, and for each positive integer k write $P^{[k]}$ for the set of all product of elements in P of length k or less. That is $P^{[k]}=P \cup P^{2} \cup \cdots \cup P^{k}$. Then, from Theorem 2 and Lemma 1 we deduce the following.

Corollary 1. For each $n \geqslant 3$, we have $\operatorname{Sing}_{n} \subseteq P^{[n-1]}$.
Remark 1. At the moment, we do not know whether the formula obtained in Theorem 2 is best possible, that is whether there is a number smaller then $\left\lceil\frac{1}{2}(g(\alpha)+m(\alpha))\right\rceil$ expressing $\alpha \in \operatorname{Sing}_{n}$ as a product of 3-paths.

References

[1] Ayik, G., Ayik, H., and Howie, H. M., (2005), On factorisations and generators in transformations semigroups, Semigroup Forum, 70(2), 225-237.
[2] Garba, G. U., (1990), Nilpotent in partial one-one order-preserving transformations, Semigroup Forum, 48, 37-49.
[3] Garba, G. U., and Imam, A. T., (2016), Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92, 645-658.
[4] Higgins, P. M., (1994), Idempotent depth in semigroups of order-preserving mappings, Proc. Roy. Soc. Edinburgh, 124A, 1045-1058.
[5] Howie, J. M., (1966), The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41, 707-716.
[6] Howie, J. M., (1980), Products of idempotents in a finite full transformation semigroup, Proc. Roy. Soc. Edinburgh, 86A, 243-254.
[7] Iwahori, N., (1977), A length formula in a semigroup of mappings, J. Fac. Sci. Univ. Tokyo, sect. 1A, 24, 255-260.
[8] Saito, T., (1989), Products of idempotents in finite full transformation semigroups, Semigroup forum, 39, 295-309.
[9] Schein, B. M., (1975), Products of idempotents of order-preserving transformations of arbitrary chains, Semigroup forum, 11, 297-309.
[10] Yang, X., (1999), Products of idempotents of defect 1 in certain semigroups of transformation, Comm. Algebra, 27(7), 3557-3568.

Contact information

A. T. Imam	Department of Mathematics, Ahmadu Bello University Zaria, Nigeria M. J. $\operatorname{Mail}(s):$ atimam@abu.edu.ng
	Department of Mathematics and Computer Science, Sule Lamido University Jigawa, Nigeria \quad-Mail $(s):$ mjibrahim@slu.edu.ng

Received by the editors: 17.02.2021
and in final form 12.05.2021.

