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Abstract. Our purpose in this paper is to characterize

skew PBW extensions over several weak symmetric rings. As a

consequence of our treatment, we extend results in the literature

concerning the property of symmetry for commutative rings and

skew polynomial rings.

Introduction

A ring R is said to be Armendariz (the term was introduced by
Rege and Chhawchharia [43]) if whenever polynomials f(x) =

∑s
i=0 aix

i

and g(x) =
∑t

j=0 bjx
j in R[x] (the commutative polynomial ring in the

indeterminate x with coefficients in R) satisfy f(x)g(x) = 0, then aibj = 0,
for all i, j. In the context of the well-known Ore extensions (also called
skew polynomial rings) introduced by Ore [41], for an endomorphism σ
and a σ-derivation δ of R, Moussavi and Hashemi [38] defined R to be
(σ, δ)-skew Armendariz if for f(x) =

∑s
i=0 aix

i and g(x) =
∑t

j=0 bjx
j in

R[x;σ, δ] satisfying f(x)g(x) = 0, then aix
ibjx

j = 0, for each i, j.
Of interest for this paper, a ring R is called (i) reduced, if a2 = 0

implies a = 0, for all a ∈ R; (ii) (Lambek [26]) symmetric, if abc = 0 then
acb = 0, for all a, b, c,∈ R; (iii) reversible, if ab = 0 implies ba = 0, for all
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a, b ∈ R; (iv) semicommutative, if ab = 0 then aRb = 0, for all a, b ∈ R
(Bell [7] defined the following: a ring R is said to satisfy the IFP, insertion

of factors property, if rR(a), the right annihilator of a in R, is an ideal for
all a ∈ R. Sometimes, a semicommutative ring is also called a ring with
IFP property). It is known that the implications reduced ⇒ symmetric ⇒
reversible ⇒ semicommutative hold, but, in general, the converse of each
one of these implications is false (see Marks [36] for a detailed discussion).

Of course, commutative rings are symmetric. Reduced rings are sym-
metric as we can appreciate in Anderson and Camillo [2]. Nevertheless,
there are many nonreduced commutative (so symmetric) rings. Now, if R
is Armendariz, then the ring R[x] over R is symmetric if and only if R is
symmetric (Huh et al. [20] and Kim and Lee [24]). In the noncommutative
case, there are results concerning this property over (σ, δ)-skew Armen-
dariz rings (see Ouyang and Chen [42]). There, the authors defined weak
symmetric rings and weak (σ, δ)-symmetric rings for the context of Ore
extensions R[x;σ, δ], where R is an associative ring with identity. They
proved that for every (σ, δ)-compatible and reversible ring R (following
Annin [3], for an endomorphism σ and a σ-derivation δ of R, R is called
σ-compatible, if for every a, b ∈ R, we have ab = 0 if and only if aσ(b) = 0 -
necessarily the endomorphism σ is injective -, and R is called δ-compatible,
if for each a, b ∈ R, ab = 0 implies aδ(b) = 0. If R is both σ-compatible and
δ-compatible, R is called (σ, δ)-compatible), R is weak symmetric if and
only if R[x;σ, δ] is weak symmetric, and for every semi-commutative ring
R, R is weak (σ, δ)-symmetric if and only if R[x] is weak (σ, δ)-symmetric,
where σ and δ are the extended maps of σ and δ over R[x], respectively.

Having in mind all above results and with the aim of establishing
more general results about the symmetry property in the context of
noncommutative rings more general than (iterated) Ore extensions of
injective type (i.e., when σ is an injective endomorphism of R), in this paper
we are interested in the skew Poincaré-Birkhoff-Witt (PBW) extensions

introduced by Gallego and Lezama [13] with the aim of generalizing the
PBW extensions defined by Bell and Goodearl [8]. In section 1, we will
say some words about these objects. For the moment, we describe the
structure of the article.

The paper is organized as follows. In section 1, we recall some results
about skew PBW extensions which will be useful in the rest of the paper.
In section 2, we consider the notions of Σ-rigid rings and (Σ,∆)-compatible
rings which are key throughout the article. Next, in section 3, we present
some results about nilpotent elements of skew PBW extensions, and then
characterize these extensions over weak symmetric rings. In section 4, we
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investigate skew PBW extensions over weak (Σ,∆)-symmetric rings. The
results presented in sections 3 and 4 generalize those presented by Ouyang
and Chen [42] for Ore extensions of injective type. Finally, section 5
presents examples where the results obtained in sections 3 and 4 can be
illustrated.

Throughout the paper, the word ring means an associative ring (not
necessarily commutative) with identity. The letters k and k will denote a
commutative ring and a field, respectively. N denotes the set of natural
numbers including 0, and C denotes the set of complex numbers. Finally,
for a ring R, nil(R) represents the set of nilpotent elements of R.

1. Skew PBW extensions

As we said in the Introduction, skew PBW extensions were defined by
Gallego and Lezama [13] with the aim of extending the PBW extensions
introduced in [8] (which include the classical commutative polynomial
rings, universal enveloping algebra of a Lie algebra, and others). Ore
extensions of injective type are strictly contained in skew PBW extensions
(this is not possible for original PBW extensions; see [32], for a list of
noncommutative rings which are skew PBW extensions but not iterated
Ore extensions). Several ring and module theoretical properties of skew
PBW extensions have been established by different people (e.g., Acosta [1],
Artamonov [4], Hamidizadeh et al. [15], Hashemi et al. [17], [18], [19],
Lezama et al. [14], [22], [27], [28], [29], [30], [31], [32], [33], Louzari [35],
Niño et al. [39], [40], Tumwesigye et al. [54], Zambrano [55], and the
authors [49], [50], [52], [53]). A book containing research results about
these extensions has recently been published (see Fajardo et al. [11]).

Skew PBW extensions also generalize another families of noncommu-
tative rings introduced in the literature, and share remarkable examples
with another classes of noncommutative algebras . Let us mention briefly
some of these algebras (see Fajardo et al. [11] for a detailed reference
of each one of these families): (i) universal enveloping algebras of finite
dimensional Lie algebras; (ii) PBW extensions introduced by Bell and
Goodearl [8]; (iii) almost normalizing extensions defined by McConnell
and Robson [37]; (iv) solvable polynomial rings introduced by Kandri-
Rody and Weispfenninig [23]; (v) diffusion algebras defined by Isaev et
al. [21]; (vi) 3-dimensional skew polynomial algebras defined by Bell and
Smith, and studied by Rosenberg [51] (cf. [46]); (vii) the kind of Ore
extensions studied by Artamonov et al. [5]; (viii) some deformations of
algebras appearing in mathematical physics (cf. Gavrilik and Klimik [12]).
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The advantage of skew PBW extensions is that they do not require the
coefficients to commute with the variables and, moreover, the coefficients
need not come from a field (see Definition 1). In fact, the skew PBW
extensions share well-known groups of algebras such as some types of
G-algebras introduced by Apel [6] and some PBW algebras defined by
Bueso et al. [10] (both G-algebras and PBW algebras take coefficients in
fields and assume that coefficientes commute with variables), Auslander-
Gorenstein rings, some Calabi-Yau and skew Calabi-Yau algebras, some
Artin-Schelter regular algebras, some Koszul and augmented Koszul alge-
bras, quantum polynomials, some quantum universal enveloping algebras,
and others (see Suárez et al. [52] and [53] for more details).

As we can appreciate, skew PBW extensions include several examples
of noncommutative rings, which means that a theory of symmetry for
these extensions will cover several treatments in the literature and will
establish similar results for algebras not considered before. Formulate this
theory is the objective of the present paper.

Next, we recall some results about skew PBW extensions which are
useful for the rest of the paper.

Definition 1 ([13], Definition 1). Let R and A be rings. We say that A is
a skew PBW extension (also known as σ-PBW extension) over R, which
is denoted by A := σ(R)〈x1, . . . , xn〉, if the following conditions hold:

(i) R is a subring of A sharing the same multiplicative identity element.
(ii) there exist elements x1, . . . , xn ∈ A such that A is a left free R-

module, with basis

Mon(A) := {xα = xα1

1 · · ·xαn
n | α = (α1, . . . , αn) ∈ N

n},

and x01 · · ·x
0
n := 1 ∈ Mon(A).

(iii) For each 1 6 i 6 n and any r ∈ R \ {0}, there exists an element
ci,r ∈ R \ {0} such that xir − ci,rxi ∈ R.

(iv) For any elements 1 6 i, j 6 n, there exists di,j ∈ R \ {0} such that
xjxi − di,jxixj ∈ R + Rx1 + · · · + Rxn, i.e., there exist elements

r
(i,j)
0 , r

(i,j)
1 , . . . , r

(i,j)
n ∈ R with xjxi−di,jxixj = r

(i,j)
0 +

∑n
k=1 r

(i,j)
k xk.

Since Mon(A) is a left R-basis of A, the elements ci,r and di,j are
unique, ([13], Remark 2).

Proposition 1 ([13], Proposition 3). Let A be a skew PBW extension

over R. For each 1 6 i 6 n, there exist an injective endomorphism

σi : R → R and an σi-derivation δi : R → R such that xir = σi(r)xi+δi(r),
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for each r ∈ R. From now on, we will write Σ := {σ1, . . . , σn}, and

∆ := {δ1, . . . , δn}.

Remark 1 ([13], section 3). Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW
extension over R.

(i) Consider the families Σ and ∆ in Proposition 1. Throughout
the paper, for any element α = (α1, . . . , αn) ∈ N

n, we will write σα :=
σα1

1 ◦· · ·◦σαn
n , δα = δα1

1 ◦· · ·◦δαn
n , where ◦ denotes composition, and |α| :=

α1+· · ·+αn. If β = (β1, . . . , βn) ∈ N
n, then α+β := (α1+β1, . . . , αn+βn).

(ii) Given the importance of monomial orders in the proofs of the
results presented in section 3, next we recall some key facts about these
for skew PBW extensions.

Let � be a total order defined on Mon(A). If xα � xβ but xα 6= xβ , we
will write xα ≻ xβ . If f is a nonzero element of A, then f can be expressed
uniquely as f = a0 + a1X1 + · · · + amXm, with ai ∈ R, Xi = xαl =
xαi1

1 · · ·xαin
n , and Xm ≻ · · · ≻ X1 (eventually, we will use expressions

as f = a0 + a1Y1 + · · · + amYm, with ai ∈ R, and Ym ≻ · · · ≻ Y1).
With this notation, we define lm(f) := Xm, the leading monomial of f ;
lc(f) := am, the leading coefficient of f ; lt(f) := amXm, the leading term

of f ; exp(f) := exp(Xm) = αm, the order of f . Note that deg(f) :=
max{deg(Xi)}

m
i=1. Finally, if f = 0, then lm(0) := 0, lc(0) := 0, lt(0) := 0.

We also consider X ≻ 0 for any X ∈ Mon(A). Thus, we extend � to
Mon(A) ∪ {0}.

Following Gallego and Lezama, [13], Definition 11, if � is a total order
on Mon(A), we say that � is a monomial order on Mon(A) if the following
conditions hold:

• For every xβ , xα, xγ , xλ ∈ Mon(A), we have the implication xβ �
xα ⇒ lm(xγxβxλ) � lm(xγxαxλ) (the total order is compatible with
multiplication).

• xα � 1, for every xα ∈ Mon(A).
• � is degree compatible, i.e., |β| � |α| ⇒ xβ � xα.
Monomial orders are also called admissible orders. The condition (iii)

of the previous definition is needed in the proof of the fact that every
monomial order on Mon(A) is a well order, that is, there are not infinite
decreasing chains in Mon(A) (see [13], Proposition 12). The importance of
considering monomial orders on Mon(A) can be appreciated in Lezama et
al. [13] and [22] where the Gröbner theory for left ideals and left modules
of skew PBW extensions was studied.

The following result is similar to the established by Bueso et al. [10],
Proposition 2.4, for PBW rings.



“adm-n3” — 2021/11/8 — 20:27 — page 81 — #83

A. Reyes, H. Suárez 81

Proposition 2 ([13], Theorem 7). If A is a polynomial ring with coef-

ficients in R with respect to the set of indeterminates {x1, . . . , xn}, then

A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension if and only if the following

conditions hold:

(1) for each xα ∈ Mon(A) and every 0 6= r ∈ R, there exist unique

elements rα := σα(r) ∈ R \ {0}, pα,r ∈ A, such that xαr = rαx
α +

pα,r, where pα,r = 0, or deg(pα,r) < |α| if pα,r 6= 0. If r is left

invertible, so is rα.

(2) For each xα, xβ ∈ Mon(A), there exist unique elements cα,β ∈ R
and pα,β ∈ A such that xαxβ = cα,βx

α+β + pα,β, where dα,β is left

invertible, pα,β = 0, or deg(pα,β) < |α+ β| if pα,β 6= 0.

Remark 2 ([44], Proposition 2.9 and Remark 2.10). Consider A =
σ(R)〈x1, . . . , xn〉 a skew PBW extension over R.

(a) If α = (α1, . . . , αn) ∈ N
n and r is an element of R, then

xαr = xα1

1 xα2

2 · · ·x
αn−1

n−1 xαn
n r

= xα1

1 · · ·x
αn−1

n−1

( αn
∑

j=1

xαn−j
n δn(σ

j−1
n (r))xj−1

n

)

+ xα1

1 · · ·x
αn−2

n−2

(αn−1
∑

j=1

x
αn−1−j
n−1 δn−1(σ

j−1
n−1(σ

αn
n (r)))xj−1

n−1

)

xαn
n

+ xα1

1 · · ·x
αn−3

n−3

(αn−2
∑

j=1

x
αn−2−j
n−2 δn−2(σ

j−1
n−2(σ

αn−1

n−1 (σαn
n (r))))xj−1

n−2

)

× x
αn−1

n−1 xαn
n

+ · · ·+ xα1

1

( α2
∑

j=1

xα2−j
2 δ2(σ

j−1
2 (σα3

3 (σα4

4 (· · · (σαn
n (r))))))xj−1

2

)

× xα3

3 xα4

4 · · ·x
αn−1

n−1 xαn
n

+ σα1

1 (σα2

2 (· · · (σαn
n (r))))xα1

1 · · ·xαn
n ,

σ0
j := idR for 1 6 j 6 n.

(b) If ai, bj ∈ R and Xi := xαi1

1 · · ·xαin
n , Yj := x

βj1

1 · · ·x
βjn
n , when we

compute every summand of aiXibjYj we obtain products of the
coefficient ai with several evaluations of bj in σ’s and δ’s depending
on the coordinates of αi.
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2. Σ-rigid rings and (Σ,∆)-compatible rings

In this section, we consider some results concerning Σ-rigid rings and
(Σ,∆)-compatible rings, and their relation with skew PBW extensions.
For the next definition, consider the notation in Remark 1 (i).

Definition 2 ([44], Definition 3.2). Let R be a ring and Σ a non-empty
and finite family of endomorphisms of R. Σ is called a rigid endomorphisms

family if rσα(r) = 0 implies r = 0, where r ∈ R and α ∈ N
n. R is said to

be Σ-rigid if there exists a rigid endomorphisms family Σ of R.

The motivation to define Σ-rigid rings was to generalize the rigid rings
introduced by Krempa [25]. Now, if Σ is a rigid endomorphisms family
of R, then every element σi ∈ Σ is a monomorphism. In fact, Σ-rigid
rings are reduced rings: if R is a Σ-rigid ring and r2 = 0 for r ∈ R, then
we have the equalities 0 = rσα(r2)σα(σα(r)) = rσα(r)σα(r)σα(σα(r)) =
rσα(r)σα(rσα(r)), i.e., rσα(r) = 0 and so r = 0, that is, R is reduced.
With this in mind, we consider the finite family of injective endomorphisms
Σ and the family ∆ of Σ-derivations in a skew PBW extension A over
R (Proposition 1). The notion of rigidness with another ring theoretical
properties such as minimal prime ideals, Armendariz, McCoy, Baer, quasi-
Baer, p. p and p. q have been investigated for skew PBW extensions (c.f.
Reyes et al. [40], [45], [50]).

Recall that if A is a skew PBW extension of R where the the elements
di,j are invertible in R, then R is Σ-rigid if and only if A is a reduced ring,
see [44], Proposition 3.5.

Proposition 3 ([44], Lemma 3.3 and Corollary 3.4). If R is a Σ-rigid

ring and a, b ∈ R, then:

(1) If ab = 0 then aσα(b) = σα(a)b = 0, for any α ∈ N
n.

(2) If ab = 0 then aδβ(b) = δβ(a)b = 0, for any β ∈ N
n.

(3) If ab = 0 then aσα(δβ(b)) = aδβ(σα(b)) = 0, for every α, β ∈ N
n.

(4) If aσθ(b) = σθ(a)b = 0 for some θ ∈ N
n, then ab = 0.

(5) If A is a skew PBW extension over R, the equality ab = 0 implies

axαbxβ = 0, for any elements a, b ∈ R and every α, β ∈ N
n.

Next, we present the notion of (Σ,∆)-compatible rings which was
introduced independently by Hashemi et al. [17] and the authors [48].

Definition 3 ([17], Definition 3.1; [48] , Definition 3.2). Consider a ring R
with a finite family of endomorphisms Σ and a finite family of Σ-derivations
∆. Following the notation established in Remark 1 (i), we have: R is said to
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be Σ-compatible if for each a, b ∈ R, aσα(b) = 0 if and only if ab = 0, where
α ∈ N

n; R is said to be ∆-compatible if for each a, b ∈ R, ab = 0 implies
aδβ(b) = 0, where β ∈ N

n. If R is both Σ-compatible and ∆-compatible,
then R is called (Σ,∆)-compatible.

Remark 3. • From [17], Lemma 3.5 or [48], Proposition 3.4, we
know that every Σ-rigid ring is a (Σ,∆)-compatible ring. The
converse is false as we can see in [48], Example 3.6. Nevertheless,
both notions coincide when the ring is assumed to be reduced: if
A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension over R, then the
following statements are equivalent: (1) R is reduced and (Σ,∆)-
compatible. (2) R is Σ-rigid. (3) A is reduced ([17], Lemma 3.5; [48],
Theorem 3.9).

• (Σ,∆)-compatible rings extend the compatible rings defined by
Annin [3] and the notion of (σ, δ)-compatible ring introduced in [16].
As a matter of fact, (Σ,∆)-compatible rings have been very useful
in the characterization of different radicals (Wedderburn radical,
lower nil radical, Levitzky radical, upper nil radical, the set of all
nilpotent elements, the sum of all nil left ideals) and another ring
and module theoretical properties of skew PBW extensions (e.g.,
Hashemi et al. [15], [18], [19], and Reyes and Suárez [45], [50]).

Proposition 4 ([17], Lemma 3.3; [48], Proposition 3.8). Let R be a

(Σ,∆)-compatible ring. For every a, b ∈ R, we have:

(1) if ab = 0, then aσθ(b) = σθ(a)b = 0, for each θ ∈ N
n.

(2) If σβ(a)b = 0 for some β ∈ N
n, then ab = 0.

(3) If ab = 0, then σθ(a)δβ(b) = δβ(a)σθ(b) = 0, for every θ, β ∈ N
n.

Different examples of skew PBW extensions over (Σ,∆)-compatible
rings can be found in [17], [45], and [49].

3. Weak symmetric rings

Ouyang and Chen [42], Definition 1, introduced the notion of weak
symmetric ring in the following way: a ring R is called a weak symmetric

ring if abc ∈ nil(R) implies acb ∈ nil(R), for every elements a, b, c ∈ R.
They proved that this notion extends the concept of symmetric ring, that
is, all symmetric rings are weak symmetric ([42], Proposition 2.1). However,
the converse of the assertion is false, i.e., there exists a weak symmetric
ring which is not symmetric ([42], Example 2.2).

With the aim of studying these notions of symmetry in the case of
skew PBW extensions, we start with four results (Lemmas 1 and 2 and
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Theorems 1 and 2) about nilpotent elements in skew PBW extensions.
Our Lemmas 1 and 2 generalize [42], Lemmas 2.7 and 2.8, respectively.

Lemma 1. If R is a (Σ,∆)-compatible and reversible ring and a, b ∈ R,

then ab ∈ nil(R) implies that aσα(δβ(b)) and aδβ(σα(b)) are elements of

nil(R), where α, β ∈ N
n.

Proof. We follow the arguments presented in [42], Lemma 2.7. By assump-
tion, there exists a positive integer k such that (ab)k = 0. Consider the
following equalities:

(ab)k = abab · · · ababab (k times)

= abab · · · ababaσα(δβ(b)) (Proposition 4 (3))

= aσα(δβ(b))ababab · · · abab (R is reversible)

= aσα(δβ(b))abab · · · abaσα(δβ(b)) (Proposition 4 (3))

= aσα(δβ(b))aσα(δβ(b))abab · · · ab (R is reversible)

Continuing in this way, we guarantee that the element aσα(δβ(b)) belongs
to nil(R). For the element aδβ(σα(b)) the reasoning is completely similar.

Lemma 2. If R is a (Σ,∆)-compatible ring and a, b ∈ R, then aσθ(b) ∈
nil(R) implies ab ∈ nil(R), where θ ∈ N

n.

Proof. Following the argument developed in [42], Lemma 2.8, since we
have that aσθ(b) ∈ nil(R), then there exists a positive integer k satisfying
(aσθ(b))k = 0. We have the following assertions:

(aσθ(b))k = aσθ(b)aσθ(b) · · · aσθ(b)aσθ(b) (k times)

= aσθ(b)aσθ(b) · · · aσθ(b)ab (Σ-compatibility)

= aσθ(b)aσθ(b) · · · aσθ(b)σθ(ab) (Proposition 4 (1))

= aσθ(b)aσθ(b) · · · aσθ(bab) (σθ is an endomorphism of R)

= aσθ(b)aσθ(b) · · · abab (Definition of Σ-compatibility).

If we continue in this way, we can see that the element ab ∈ nil(R), which
concludes the proof.

We recall from Liu and Zhao [34], Lemma 3.1, that if R is a semicom-
mutative ring, then nil(R) is an ideal of R. Our Theorem 1 generalizes [42],
Lemma 2.10. We need to assume that the elements di,j of Definition 1 (iv)
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are central in R. With the purpose of abbreviating, we will write o.t.l.t to
mean other terms less than in the sense of monomial orders (Definition 1
(ii)).

Theorem 1. If A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension over

a (Σ,∆)-compatible and reversible ring R, then for every element f =
∑m

i=0 aiXi ∈ A, f ∈ nil(A) if and only if ai ∈ nil(R), for each 0 6 i 6 m.

Proof. We fix a total order � on Mon(A). Let f ∈ A be given as above
and suppose that f ∈ nil(A) with X1 ≺ X2 ≺ · · · ≺ Xm. Consider the
notation established in Proposition 2. There exists a positive integer k
such that fk = (a0 + a1X1 + · · ·+ amXm)k = 0. Inductively, one can see
that for fk,

fk =

{

am

k−1
∏

l=1

σlαm(am)dlαm,αm
xkαm

}

+ o.t.l.t exp(xkαm),

whence 0 = lc(fk) = am
∏k−1

l=1 σlαm(am)dlαm,αm
, and since the elements

d’s are central in R and left invertible, 0 = lc(fk) = am
∏k−1

l=1 σlαm(am).
Using the Σ-compatibility of R, we obtain am ∈ nil(R). Now, since

fk = ((a0 + a1X1 + · · ·+ am−1Xm−1) + amXm)k

= ((a0 + a1X1 + · · ·+ am−1Xm−1) + amXm)

× ((a0 + a1X1 + · · ·+ am−1Xm−1) + amXm)

· · · ((a0 + a1X1 + · · ·+ am−1Xm−1) + amXm) (k times)

= [(a0 + a1X1 + · · ·+ am−1Xm−1)
2

+ (a0 + a1X1 + · · ·+ am−1Xm−1)amXm

+ amXm(a0 + a1X1 + · · ·+ am−1Xm−1) + amXmamXm]

· · · ((a0 + a1X1 + · · ·+ am−1Xm−1) + amXm)

= (a0 + a1X1 + · · ·+ am−1Xm−1)
k + h,

where h is an element of A which involves products of monomials with
the term amXm on the left and the right, by Remark 2 and having in
mind that am ∈ nil(R), which is an ideal of R (remember that reversible
implies semicommutative), the expression for fk reduces to fk = (a0 +
a1X1 + · · ·+ am−1Xm−1)

k. Using a similar reasoning as above, one can
prove that

fk = am−1

k−1
∏

l=1

σl(αm−1)(am−1)dl(αm−1),αm−1
xkαm−1 + o.t.l.t exp(xkαm−1).
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Hence lc(fk) = am−1
∏k−1

l=1 σlαm−1(am−1)dlαm−1,αm−1
, and so am−1 ∈

nil(R). If we repeat this argument, it follows that ai ∈ nil(R), for 0 6 i 6
m.

Conversely, suppose that ai ∈ nil(R), for every i. If ki is the minimum
integer positive such that akii = 0, for every i, let k := max{ki | 1 6 i 6 n}.
It is clear that aki = 0, for all i. Let us prove that f (m+1)k+1 = 0, and
hence, f ∈ nil(A). Since the expression for f have m+ 1 terms, when we
realize the product f (m+1)k+1 we have sums of products of the form

ai,1Xi,1ai,2Xi,2 · · · ai,(m+1)kXi,(m+1)kai,(m+1)k+1Xi,(m+1)k+1. (1)

Note that there are exactly (m + 1)(m+1)k+1 products of the form (1).
Now, since when we compute f (m+1)k+1 every product as (1) involves at
least k elements ai, for some i, then every one of these products is equal
to zero by Remark 2 and the (Σ,∆)-compatibility of R (more exactly,
Proposition 4). In this way, every term of f (m+1)k+1 is equal to zero, and
hence f ∈ nil(A).

The next theorem generalizes [42], Theorem 2.11. Let nil(R)A := {f ∈
A | f = a0 + a1X1 + · · ·+ amXm, ai ∈ nil(R)}.

Theorem 2. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over

a reversible and (Σ,∆)-compatible ring R. If we have the elements f =
∑m

i=0 aiXi, g =
∑t

j=0 bjYj, and h =
∑l

k=0 ckZk of A, and r is any element

of R, then we have the following assertions:

(1) fg ∈ nil(A) ⇔ aibj ∈ nil(R), for all i, j.
(2) fgr ∈ nil(A) ⇔ aibjr ∈ nil(R), for all i, j.
(3) fgh ∈ nil(A) ⇔ aibjck ∈ nil(R), for all i, j, k.

Proof. Again, we fix a total order on Mon(A). (1) As we see in the proof
of Theorem 1, nil(A) ⊆ nil(R)A. With this in mind, consider two elements
f, g ∈ A given by f =

∑m
i=0 aiXi and g =

∑t
j=0 bjYj with fg ∈ nil(A).

Let Xi := xαi1

1 · · ·xαin
n , Yj := x

βj1

1 · · ·x
βjn
n , for all i, j. We have

fg =
m+t
∑

k=0

(

∑

i+j=k

aiXibjYj

)

∈ nil(A) ⊆ nil(R)A,

and lc(fg) = amσαm(bt)dαm,βt
∈ nil(R). Since the elements di,j are in the

center of R, then dαm,βt
are also in the center of R, whence amσαm(bt) ∈

nil(R), and by Lemma 2 it follows that ambt ∈ nil(R). The idea is to
prove that apbq ∈ nil(R), for p+ q > 0. We proceed by induction. Suppose
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that apbq ∈ nil(R), for p+ q = m+ t,m+ t− 1,m+ t− 2, . . . , k + 1, for
some k > 0. By Lemma 1, we obtain apXpbqYq ∈ nil(R)A for these values
of p+ q. In this way, it is sufficient to consider the sum of the products
auXubvYv, where u+ v = k, k− 1, k− 2, . . . , 0. Fix u and v. Consider the
sum of all terms of fg having exponent αu + βv. From Remark 2 and the
assumption fg ∈ nil(A), we know that the sum of all coefficients of all
these terms can be written as

auσ
αu(bv)dαu,βv

+
∑

αu′+βv′=αu+βv

au′σαu′ (σ′s and δ′s evaluated in bv′)dαu′ ,βv′
∈ nil(R).

(2)
As we assumed before, apbq ∈ nil(R) for p+ q = m+ t,m+ t−1, . . . , k+1,
so Lemma 1 guarantees that the product ap(σ

′s and δ′s evaluated in bq),
for any order of σ′s and δ′s, is an element of nil(R). Since R is reversible,
then (σ′s and δ′s evaluated in bq)ap ∈ nil(R). In this way, multiplying (2)
on the right by ak, and using the fact that the elements d’s are in the
center of R, we obtain that the sum

auσ
αu(bv)akdαu,βv

+
∑

αu′+βv′=αu+βv

au′σαu′ (σ′s and δ′s evaluated in bv′)akdαu′ ,βv′
(3)

is an element of nil(R), whence, auσ
αu(b0)ak ∈ nil(R). Since u+v = k and

v = 0, then u = k, so akσ
αk(b0)ak ∈ nil(R), from which akσ

αk(b0) ∈ nil(R)
and hence akb0 ∈ nil(R) by Lemma 2. Therefore, we now have to study
the expression (2) for 0 6 u 6 k − 1 and u+ v = k. If we multiply (3) on
the right by ak−1, then

auσ
αu(bv)ak−1dαu,βv

+
∑

αu′+βv′=αu+βv

au′σαu′ (σ′s and δ′s evaluated in bv′)ak−1dαu′ ,βv′

is also an element of nil(R). Using a similar reasoning as above, we can
see that the element auσ

αu(b1)ak−1dαu,β1
belongs to nil(R). Since the

elements d’s are central and left invertible, auσ
αu(b1)ak−1 ∈ nil(R), and

using the fact u = k − 1, we have ak−1σ
αk−1(b1) ∈ nil(R), from which

ak−1b1 ∈ nil(R). Continuing in this way we prove that aibj ∈ nil(R), for
i+ j = k. Therefore aibj ∈ nil(R), for 0 6 i 6 m and 0 6 j 6 t.

Conversely, for the elements f, g above, suppose that aibj ∈ nil(R).
From Lemma 1 we know that aσα(δβ(b)) and aδβ(σα(b)) are elements



“adm-n3” — 2021/11/8 — 20:27 — page 88 — #90

88 Skew PBW extensions over symmetric rings

of nil(R), for every α, β ∈ N
n. Now, Remark 2 implies that when we

compute every summand of aiXibjYj we obtain products of the coeffi-
cient ai with several evaluations of bj in σ’s and δ’s depending of the
coordinates of αi, and since aσi(δ

βi(b)) and aδβi(σαi(b)) are elements
of nil(R), then every coefficient of each term of the expansion fg given

by fg =
∑m+t

k=0

(

∑

i+j=k aiXibjYj

)

is an element of nil(R). Therefore,

Theorem 1 implies that the product fg is an element of R.
(2) Let g = b0+b1Y1+ · · ·+btYt be an element of A with Yt ≻ · · · ≻ Y1.

Then

gr = (b0 + b1Y1 + · · ·+ btYt)r = b0r + b1Y1r + · · ·+ btYtr

= b0r + b1(σ
β1(r)Y1 + pβ1,r) + · · ·+ bt(σ

βt(r)Yt + pβt,r)

= b0r + b1σ
β1(r)Y1 + b1pβ1,r + · · ·+ btσ

βt(r)Yt + btpβt,r

where pβj ,r = 0, or deg(pβj ,r) < |α| if pβj ,r 6= 0, for j = 1, . . . , t (Proposi-

tion 2). Note that lc(gr) = btσ
βt(r). Then,

fgr = (a0 + a1X1 + · · ·+ amXm)(b0r + b1σ
β1(r)Y1 + b1pβ1,r

+ · · ·+ btσ
βt(r)Yt + btpβt,r)

= a0b0r + a0b1σ
β1(r)Y1 + a0b1pβ1,r + · · ·+ a0btσ

βt(r)Yt + a0btpβt,r

+ a1X1b0r + a1X1b1σ
β1(r)Y1 + a1X1b1pβ1,r

+ · · ·+ a1X1btσ
βt(r)Yt + a1X1btpβt,r

+ · · ·+ amXmb0r + amXmb1σ
β1(r)Y1 + amXmb1pβ1,r

+ · · ·+ amXmbtσ
βt(r)Yt + amXmbtpβt,r

Equivalently,

fgr = a0b0r + a0b1σ
β1(r)Y1 + a0b1pβ1,r + · · ·+ a0btσ

βt(r)Yt + a0btpβt,r

+ a1[σ
α1(b0r)X1 + pα1,b0r] + a1[σ

α1(b1σ
β1(r))X1 + pα1,b1σ

β1 (r)]Y1

+ a1[σ
α1(b1) + pα1,b1 ]pβ1,r + · · ·+ a1[σ

α1(btσ
βt(r))X1 + pα1,btσβt (r)]Yt

+ a1[σ
α1(bt)X1 + pα1,bt ]pβt,r + · · ·+ am[σαm(b0r) + pαm,b0r]

+ am[σαm(b1σ
β1(r)X1 + pα1,b1σ

β1 (r)]Y1 + am[σαm(b1)Xm+pαm,b1 ]pβ1,r

+ · · ·+ am[σαm(btσ
βt(r))Xm + pαm,btσβt (r)]Yt

+ am[σαm(bt)Xm + pαm,bt ]pβt,r,

whence lc(fgr) = amσαm(btσ
βt(r)), and since R is Σ-compatible, Lemma 2

implies that ambtr ∈ nil(R). Now, Lemma 1 guarantees that every term
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of any polynomial containing the product ambtr in the expression above
for fgr is an element of nil(R)A. In this way, using an monomial order we
can repeat this argument for the next monomial of fgr less than lc(fgr),
and continuing this process until the first monomial to obtain that the
elements aibjr are in nil(R), for all i, j.

Conversely, suppose that aibjr ∈ nil(R), for every i, j, as above. As
we saw above,

gr = (b0 + b1Y1 + · · ·+ btYt)r = b0r + b1Y1r + · · ·+ btYtr

= b0r + b1(σ
β1(r)Y1 + pβ1,r) + · · ·+ bt(σ

βt(r)Yt + pβt,r)

= b0r + b1σ
β1(r)Y1 + b1pβ1,r + · · ·+ btσ

βt(r)Yt + btpβt,r

where pβj ,r = 0, or deg(pβj ,r) < |α| if pβj ,r 6= 0, for j = 1, . . . , t. Since

aibjr ∈ nil(R), for every i, j, Lemma 1 implies that aibjσ
α(δβ(r)) and

aibjδ
β(σα(r)) are elements of nil(R), for every α, β ∈ N

n. In this way,
Remark 2 applied to expression above for the product fgr implies that
every one of these summands have coefficients in nil(R), and since nil(R) is
an ideal of R because R is reversible, Theorem 1 shows that fgr ∈ nil(A).

(3) The equivalence follows from (1) and (2) considering the product
gh as the only element p ∈ A.

Remark 4. About Theorem 2 (1) we have the following observation.
In [48], Definition 4.1, the authors introduced the following condition: if
A is a skew PBW extension of R, we say that R satisfies the condition
(SA1) if whenever fg = 0 for f = a0 + a1X1 + · · · + amXm and g =
b0+ b1Y1+ · · ·+ btYt elements of A, then aibj = 0, for every i, j. It is clear
that Theorem 2 extends this condition.

The next theorem generalizes [42], Theorem 2.12.

Theorem 3. If A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension over a

reversible and (Σ,∆)-compatible ring R, then R is weak symmetric if and

only if A is weak symmetric.

Proof. Since a subring of a weak symmetric ring is also a weak symmetric
ring, we will only prove one implication. Suppose that R is a weak sym-
metric ring. If f =

∑s
i=0 aiXi, g =

∑t
j=0 bjYj and h =

∑l
k=0 ckZk are ele-

ments of A with fgh ∈ nil(A), then Theorem 2 implies that aibjck ∈ nil(r),
for every i, j, k, and hence aickbj ∈ nil(R), for each i, j, k, since R is weak
symmetric. Finally, Theorem 2 shows that fhg ∈ nil(A).
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Corollary 1. If R is a Σ-rigid ring, then R is weak symmetric if and

only if A is weak symmetric.

Proof. Since we have the implications reduced ⇒ symmetric ⇒ weak
symmetric, then the assertion follows from Theorem 3.

Corollary 2 ([42], Corollaries 2.13 and 2.14). Let R be a reversible ring.

Then we have the following:

(1) R is weak symmetric if and only if R[x] is weak symmetric.

(2) If R is σ-compatible, then R is weak symmetric if and only if R[x;σ]
is weak symmetric.

(3) If R is δ-compatible, then R is weak symmetric if and only if the

differential polynomial ring R[x;σ] is weak symmetric.

(4) Let α be an endomorphism and δ and α-derivation of R. If R is

α-rigid, then R is weak symmetric if and only if R[x;α, δ] is weak

symmetric.

With the aim of establishing Theorems 4 and 6, we need to formulate a
criterion which allows us to extend the family Σ of injective endomorphisms,
and the family of Σ-derivations ∆ of the ring R to the ring A. For the
next proposition consider the injective endomorphisms σi ∈ Σ, and the
σi-derivations δi ∈ ∆ (1 6 i 6 n) formulated in Proposition 1 (compare
with Artamonov [4], where the derivations of skew PBW extensions were
computed partially).

Proposition 5 ([47], Theorem 5.1). Let A = σ(R)〈x1, . . . , xn〉 be a

skew PBW extension over R. Suppose that σiδj = δjσi, δiδj = δjδi,

and δk(di,j) = δk(r
(i,j)
l ) = 0, for 1 6 i, j, k, l 6 n, where di,j and r

(i,j)
l are

as in Definition 1. If σk : A → A and δk : A → A are the functions given

by σk(f) := σk(a0) + σk(a1)X1 + · · ·+ σk(am)Xm and δk(f) := δk(a0) +
δk(a1)X1 + · · ·+ δk(am)Xm, for every f = a0 + a1X1 + · · ·+ amXm ∈ A,

respectively, and σk(r) := σk(r), for every 1 6 k 6 n and each r ∈ R, then

σk is an injective endomorphism of A and δk is a σk-derivation of A, for

each k. Let Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn}.

With Proposition 5 in our hands, we formulate Theorem 4 which ex-
tends [42], Theorem 2.17. With this aim, consider the skew PBW extension
A′ induced by injective endomorphisms and derivations established in
Proposition 5, i.e., A′ = σ(A)〈x′1, . . . , x

′

n〉. We remark that using algo-
rithms established in Acosta et al. [1] or Fajardo et al. [11], one can prove
that A′ is a left free A-module considering adequate relations between the
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indeterminates x′1, . . . , x
′

n, that is, A′ is certainly a skew PBW extension
over A. For the sets of injective endomorphisms Σ and Σ-derivations ∆
formulated in Proposition 5, consider a definition of (Σ,∆)-compatible
in a similar way to the Definition 3. Suppose that the elements di,j in
Definition 1 (iv) are central in R, for all i, j.

Theorem 4. If A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension over

a Σ-rigid ring R, then A is weak symmetric if and only if A′ is weak

symmetric.

Proof. As we saw in section 4, if R is Σ-rigid, then R is reduced, or
equivalently, A is reduced whence A is reversible. The aim is to show
that A is (Σ,∆)-compatible. From [48], Theorem 3.9, we know that R is
(Σ,∆)-compatible.

We fix a total order on Mon(A). Consider elements f = a0 + a1X1 +
· · ·+ amXm, g = b0 + b1Y1 + · · ·+ btYt in A with fg = 0 and let us see
that aibj = 0, for every i, j. Since

fg = (a0 + a1X1 + · · ·+ amXm)(b0 + b1Y1 + · · ·+ btYt)

=

m+t
∑

k=0

(

∑

i+j=k

aiXibjYj

)

,

then lc(fg) = amσαm(bt)dαm,βt
= 0 whence amσαm(bt) = 0 (dαm,βb

are
central and left invertible), and by Proposition 3 (4), ambt = 0. The idea
is to prove that apbq = 0, for p+ q > 0. We proceed by induction. Suppose
that apbq = 0, for p+ q = m+ t,m+ t− 1,m+ t− 2, . . . , k + 1, for some
k > 0. By Proposition 3 (5) we obtain apXpbqYq = 0 for these values of
p + q. In this way we only consider the sum of the products auXubvYv,
where u+ v = k, k − 1, k − 2, . . . , 0. Fix u and v. Consider the sum of all
terms of fg having exponent αu+βv. From Remark 2 and the assumption
fg = 0, the sum of all coefficients of all these terms can be written as

auσ
αu(bv)dαu,βv

+
∑

αu′+βv′=αu+βv

au′σαu′ (σ′s and δ′s evaluated in bv′)dαu′ ,βv′
= 0. (4)

By assumption, we know that apbq = 0 for p+q = m+t,m+t−1, . . . , k+1.
So, Proposition 3 (3) guarantees that ap(σ

′s and δ′s evaluated in bq), for
any order of σ′s and δ’s, is equal to zero. In this way, the expression
[(σ′s and δ′s evaluated in bq)ap]

2 is equal to zero, and hence we obtain
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the equality (σ′s and δ′s evaluated in bq)ap = 0 (R is reduced). In this
way, multiplying (4) by ak, and using the fact that the elements di,j in
Definition 1 (iv) are in the center of R,

auσ
αu(bv)akdαu,βv

+
∑

αu′+βv′=αu+βv

au′σαu′ (σ′s and δ′s evaluated in bv′)akdαu′ ,βv′
= 0,

(5)
whence, auσ

αu(b0)ak = 0. Since u + v = k and v = 0, then u = k, so
akσ

αk(b0)ak = 0, i.e., [akσ
αk(b0)]

2 = 0, from which akσ
αk(b0) = 0 and

akb0 = 0 by Proposition 3 (4). Therefore, we now have to study the
expression (4) for 0 6 u 6 k− 1 and u+ v = k. If we multiply (5) by ak−1

we obtain

auσ
αu(bv)ak−1dαu,βv

+
∑

αu′+βv′=αu+βv

au′σαu′ (σ′s and δ′s evaluated in bv′)ak−1dαu′ ,βv′
= 0.

(6)
By using a similar reasoning, we can show that auσ

αu(b1)ak−1dαu,β1
= 0.

Then auσ
αu(b1)ak−1 = 0, and using the fact u = k−1, [ak−1σ

αk−1(b1)]
2 =

0, which imply ak−1σ
αk−1(b1) = 0 (R is reduced), that is, ak−1b1 = 0.

Continuing in this way we prove that aibj = 0 for i+j = k. Hence aibj = 0,
for 0 6 i 6 m and 0 6 j 6 t, and therefore aiσ

α(bj) = aiδ
β(bj) = 0, for

all α, β ∈ N
n, since R is (Σ,∆)-compatible. In this way, when we consider

the expressions

fσα(g) = (a0 + a1X1 + · · ·+ amXm)(σα(b0) + σα(b1)Y1+· · ·+σα(bt)Yt)

=
m+t
∑

k=0

(

∑

i+j=k

aiXiσ
α(bj)Yj

)

=
m+t
∑

k=0

(

∑

i+j=k

ai[σ
αi(σα(bj))Xi + pαi,σα(bj)]Yj

)

=

m+t
∑

k=0

(

∑

i+j=k

aiσ
αi(σα(bj))XiYj + aipαi,σα(bj)Yj

)

=
m+t
∑

k=0

(

∑

i+j=k

aiσ
αi(σα(bj))[dαi,βj

xαi+βj + pαi,βj
] + aipαi,σα(bj)Yj

)
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and

fδβ(g) = (a0 + a1X1 + · · ·+ amXm)(δβ(b0) + δβ(b1)Y1 + · · ·+ δβ(bt)Yt)

=

m+t
∑

k=0

(

∑

i+j=k

aiXiδ
β(bj)Yj

)

=

m+t
∑

k=0

(

∑

i+j=k

ai[σ
αi(δβ(bj))Xi + pαi,δβ(bj)]Yj

)

,

or equivalently,

fδβ(g) =

m+t
∑

k=0

(

∑

i+j=k

aiσ
αi(δβ(bj))XiYj + aipαi,δβ(bj)Yj

)

=

m+t
∑

k=0

(

∑

i+j=k

aiσ
αi(δβ(bj))[dαi,βj

xαi+βj + pαi,βj
] + aipαi,δβ(bj)Yj

)

,

Remark 2 implies that fσα(g) = fδβ(g) = 0, for every α, β ∈ N
n. In a

similar way, if we start with the equality fσα(g) = 0, then we can show
that fg = 0, which means that A is (Σ,∆)-compatible. In this way, since
we have showed that A is reversible and (Σ,∆)-compatible, the assertion
follows from Theorem 3.

4. Weak (Σ,∆)-symmetric rings

Ouyang and Chen [42], Definition 2, introduced the notion of weak
(α, δ)-symmetric ring in the following way: a ring R with an endomorphism
σ and an σ-derivation δ is said to be weak σ-symmetric provided that
abc ∈ nil(R) if and only if acσ(b) ∈ nil(R), for any elements a, b, c ∈ R.
R is said to be weak δ-symmetric, if for a, b, c ∈ R, abc ∈ nil(R) implies
acδ(b) ∈ nil(R). If R is both weak σ-symmetric and weak δ-symmetric, R is
called a weak (Σ,∆)-symmetric ring. With respect to the relation between
weak symmetric rings and weak (α, δ)-symmetric rings, there is an example
of a weak symmetric ring which is not weak (α, δ)-symmetric, see [42],
Example 3.2. Note that for every subring S of a weak (α, δ)-symmetric
ring R which satisfies α(S) ⊆ S and δ(S) ⊆ S, it follows that S is also a
weak (α, δ)-symmetric ring. With these definitions in mind, we present in
a natural way the notion of weak (Σ,∆)-symmetric ring for a ring R with
a family of endomorphisms Σ and a family of Σ-derivations ∆.

Definition 4. Let R be a ring with a finite family of endomorphisms of R
and a finite family of Σ = {σ1, . . . , σn}-derivations ∆ = {δ1, . . . , δn}. R is
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called weak Σ-symmetric, if abc ∈ nil(R) implies that acσi(b) ∈ nil(R), for
every i and each elements a, b, c ∈ R. R is said to be weak ∆-symmetric,
if abc ∈ nil(R) implies acδi(b) ∈ nil(R), for every i and each elements
a, b, c ∈ R. In the case R is both weak Σ-symmetric and weak ∆-symmetric,
we say that R is a weak (Σ,∆)-symmetric ring.

Definition 5. If R is a ring with a family of endomorphisms of R and a
family of Σ = {σ1, . . . , σn}-derivations ∆ = {δ1, . . . , δn}, then an ideal I
of R is said to be an weak-symmetric ideal, if abc ∈ nil(R) implies that
acσi(b), acδi(b) ∈ nil(R), for each i and every elements a, b, c ∈ I.

The next proposition extends [42], Proposition 3.6.

Proposition 6. If R is an Abelian ring (i.e., every idempotent element

is central) with σi(e) = e and δi(e) = 0, for any idempotent element e of

R, where σi ∈ Σ and δi ∈ ∆, then the following statements are equivalent:

(1) R is a weak (Σ,∆)-symmetric ring.

(2) eR and (1− e)R are weak (Σ,∆)-symmetric ideals.

Proof. We use similar arguments to those presented in [42], Proposition
3.6. (1) ⇒ (2) It is clear. (2) ⇒ (1) Consider elements a, b, c ∈ R with
abc ∈ nil(R). It follows that eaebec, (1 − e)a(1 − e)b(1 − e)c ∈ nil(R).
By assumption, eR and (1 − e)R are weak (Σ,∆)-symmetric ideals, so
eaecσi(eb) = eacσi(b) ∈ nil(R) and (1 − e)a(1 − e)cσi((1 − e)b) = (1 −
e)acσi(b) ∈ nil(R). This fact shows that acσi(b) ∈ nil(R), for every i,
and hence R is weak Σ-symmetric. Now, since for any r ∈ R, δi(er) =
σi(e)δi(r)+δi(e)r = eδi(r), for every i, the assumptions on R imply that if
abc ∈ nil(R), then ea(eb)(ec), (1− e)a(1− e)b(1− e)c ∈ nil(R). Therefore
eaecδi(eb) = eacδi(b), (1−e)a(1−e)cδi((1−e)b) = (1−e)acδi(b) ∈ nil(R).
In this way, acδi(b) ∈ nil(R), for every i, which means that R is weak
∆-symmetric, and so R is weak (Σ,∆)-symmetric.

For the next theorem, Theorem 5, we need some preliminary facts
and the Proposition 7 which concerns about quotients of skew PBW
extensions: consider A = σ(R)〈x1, . . . , xn〉 a skew PBW extension over
R. Let Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn} such as in Proposition 1.
Following [28], section 2, if I is an ideal of R, I is called Σ-invariant

(∆-invariant), if it is invariant under each injective endomorphism σi
(σi-derivation δi) of Σ (∆), that is, σi(I) ⊆ I (δi(I) ⊆ I), for every i. If I
is both Σ and ∆-invariant ideal, we say that I is (Σ,∆)-invariant.
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Proposition 7 ([28], Proposition 2.6). If A = σ(R)〈x1, . . . , xn〉 is a skew

PBW extension over R and I is a (Σ,∆)-invariant ideal of R, then the

following statements hold:

(1) IA is an ideal of A and IA∩R = I. IA is a proper ideal of A if and

only if I is proper in R. Moreover, if σi is bijective and σi(I) = I,
for every i, then IA = AI.

(2) If I is proper and σi(I) = I, for every 1 6 i 6 n, then A/IA is a

skew PBW extension of R/I. In fact, if I is proper and A is bijective,

then A/IA is a bijective skew PBW extension of R/I.

From Proposition 7 we can see that if I is (Σ,∆)-invariant, then over
R := R/I it is induced a systems (Σ,∆) of endomorphisms Σ and Σ-
derivations ∆ defined by σi(r + I)) = σi(r) + I and δi(r + I) = δi(r) + I,
for 1 6 i 6 n. We keep the variables x1, . . . , xn of the extension A to
the extension A/IA if no confusion arises. For quotients of skew PBW
extensions, we consider the notion of weak (Σ,∆)-symmetric in the natural
way following Definition 4.

Our next theorem generalizes [42], Theorem 3.7.

Theorem 5. Let I be an (Σ,∆)-invariant and weak (Σ,∆)-symmetric

ideal of R. If I ⊆ nil(R), then R/I is a weak (Σ,∆)-symmetric ring if

and only if R is a weak (Σ,∆)-symmetric ring.

Proof. Consider elements a, b, c ∈ R such that (a + I)(b + I)(c + I) ∈
nil(R/I). There exists a positive integer m with (abc)m ∈ I. Since I ⊆
nil(R) it follows that abc ∈ nil(R). By assumption, R is weak (Σ,∆)-
symmetric, so acσi(b), acδi(b) ∈ nil(R), for i = 1, . . . , n. Hence (a+ I)(c+
I)(σi(b) + I), (a + I)(c + I)(δi(b) + I) ∈ nil(R/I), that is, (a + I)(c +
I)σi(b + I), (a + I)(c + I)δi(b + I) ∈ nil(R/I). Therefore R/I is weak
(Σ,∆)-symmetric.

Conversely, suppose that R/I is a weak (Σ,∆)-symmetric ring. Con-
sider elements a, b, c ∈ R with abc ∈ nil(R). It is clear that (a + I)(b +
I)(c+ I) ∈ nil(R/I). Since R/I is weak (Σ,∆)-symmetric, we have that
(a + I)(c + I)(σi(b) + I) = (acσi(b) + I), (a + I)(c + I)(δi(b) + I) =
(acδi(b) + I) ∈ nil(R/I), for i = 1, . . . , n. This means that for every
i there exist positive integers p = p(i), q = q(i) depending on i, such
that (acσi(b))

p, (acδi(b))
q ∈ I. In this way, acσi(b), acδi(b) ∈ I because

I ⊆ nil(R) which shows that R is a weak (Σ,∆)-symmetric ring.

The next theorem extends [42], Theorem 3.9.
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Theorem 6. If A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension over a

(Σ,∆)-compatible and reversible ring R, then R is a weak (Σ,∆)-symmetric

ring if and only if A is a weak (Σ,∆)-symmetric ring, where the sets of

injective endomorphisms Σ and Σ-derivations ∆ of A are as in Proposi-

tion 5.

Proof. If A is a weak (Σ,∆)-symmetric ring, then it is clear that R is weak
(Σ,∆)-symmetric ring because σi(R), δi(R) ⊆ R, for every i = 1, . . . , n.

Conversely, suppose that R is weak (Σ,∆)-symmetric ring. Consider
the elements f =

∑s
i=0 aiXi, g =

∑t
j=0 bjYj and h =

∑l
k=0 ckZk of A.

From Theorem 2 we know that aibjck ∈ nil(R), for all i, j, k, whence
aickσl(bj), aickδl(bj) ∈ nil(R), for l = 1, . . . , n, since R is weak (Σ,∆)-
symmetric. Again, Theorem 2 implies that fhσi(g), fhδi(g) ∈ nil(A), that
is, A is a weak (Σ,∆)-symmetric ring.

Corollary 3 ([42], Corollary 3.10). Let R be a reversible ring. Then R is

a weak symmetric ring if and only if R[t] is weak symmetric.

5. Examples

The importance of the results presented in this paper is appreciated
when we can apply them to algebraic structures more general than skew
polynomial rings. In this way, our aim in this section is to provide several
examples of noncommutative rings which are skew PBW extensions but
not skew polynomial rings. Our list of examples is not exhaustive, so
another algebraic structures can be found in [11] or [32].

Let us start with universal enveloping algebras of finite-dimensional
Lie algebras over fields. If g is a finite dimensional Lie algebra over
k with basis {x1, . . . , xn}, then the universal enveloping algebra of g,
denoted by U(g), is the algebra generated by the indeterminates x1, . . . , xn
subject to the relations xir − rxi = 0 ∈ k, for every element r ∈ k, and
xixj − xjxi = [xi, xj ] ∈ g, where [xi, xj ] ⊆ k + kx1 + · · · + kxn, for
all 1 6 i, j 6 n. Since these enveloping algebras are PBW extensions
over k in the sense of Bell and Goodearl [8] (note that these authors
presented another examples of enveloping rings related to enveloping
universal algebras), of course are skew PBW extensions also over the field
k ([32], section 3.1). As it is well-known, in general, these algebras are
not skew polynomial rings even including non-zero trivial derivations, so
it is not possible to apply the results obtained by Ouyang and Chen [42]
to guarantee the symmetry of these objects. Of course, it is easy to see
that this kind of algebras satisfy the assumptions considered in sections 3
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and 4, so we can guarantee its symmetry by using the results obtained in
these sections.

Another family of rings which include the universal enveloping algebra
U(sl(2, k)), the dispin algebra U(osp(1, 2)) and the Woronowicz’s algebra
Wν(sl(2, k)), is called the family of 3-dimensional skew polynomial alge-

bras. These algebras were introduced by Bell and Smith [9] and are very
important in noncommutative algebraic geometry (Rosenberg [51]). We
recall its definition and classification.

Definition 6 ([51], Definition C4.3). A 3-dimensional skew polynomial

algebra A is a k-algebra generated by the variables x, y, z restricted to
relations yz − αzy = λ, zx− βxz = µ, and xy − γyx = ν, such that

1) λ, µ, ν ∈ k+ kx+ ky + kz, and α, β, γ ∈ k \ {0};
2) Standard monomials {xiyjzl | i, j, l > 0} are a k-basis of the algebra.

From Definition 6, it is clear that these algebras are skew PBW exten-
sions over the field k, that is, A ∼= σ(k)〈x, y, z〉.

Proposition 8 ([51], Theorem C.4.3.1). If A is a 3-dimensional skew

polynomial algebra, then A is one of the following algebras:

(a) if |{α, β, γ}| = 3, then A is defined by the relations yz − αzy =
0, zx− βxz = 0, xy − γyx = 0.

(b) if |{α, β, γ}| = 2 and β 6= α = γ = 1, then A is one of the following

algebras:

(i) yz − zy = z, zx− βxz = y, xy − yx = x;
(ii) yz − zy = z, zx− βxz = b, xy − yx = x;
(iii) yz − zy = 0, zx− βxz = y, xy − yx = 0;
(iv) yz − zy = 0, zx− βxz = b, xy − yx = 0;
(v) yz − zy = az, zx− βxz = 0, xy − yx = x;
(vi) yz − zy = z, zx− βxz = 0, xy − yx = 0,
where a, b are any elements of k. All nonzero values of b give iso-

morphic algebras.

(c) If |{α, β, γ}| = 2 and β 6= α = γ 6= 1, then A is one of the following

algebras:

(i) yz − αzy = 0, zx− βxz = y + b, xy − αyx = 0;
(ii) yz − αzy = 0, zx− βxz = b, xy − αyx = 0.

In this case, b is an arbitrary element of k. Again, any nonzero

values of b give isomorphic algebras.

(d) If α = β = γ 6= 1, then A is the algebra defined by the relations

yz − αzy = a1x+ b1, zx − αxz = a2y + b2, xy − αyx = a3z + b3.
If ai = 0 (i = 1, 2, 3), then all nonzero values of bi give isomorphic

algebras.
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(e) If α = β = γ = 1, then A is isomorphic to one of the following

algebras:

(i) yz − zy = x, zx− xz = y, xy − yx = z;
(ii) yz − zy = 0, zx− xz = 0, xy − yx = z;
(iii) yz − zy = 0, zx− xz = 0, xy − yx = b;
(iv) yz − zy = −y, zx− xz = x+ y, xy − yx = 0;
(v) yz − zy = az, zx− xz = z, xy − yx = 0;

Parameters a, b ∈ k are arbitrary, and all nonzero values of b generate

isomorphic algebras.

As we said before, every 3-dimensional skew polynomial algebra is
a skew PBW extension. Nevertheless, some of these algebras cannot
be expressed as skew polynomial rings even in the case of non-trivial
derivations. One of the illustrative examples of this fact is the Dispin

algebra U(osp(1, 2)), which is the enveloping algebra of the Lie superalgebra
osp(1, 2) ([51], Definition C4.1). By definition, Dispin algebra is generated
by the indeterminates x, y, z over a field k satisfying the relations yz−zy =
z, zx+ xz = y and xy − yx = x (the algebra (b)(i) above with β = −1).
As can be seen, it appears that this algebra is not a skew polynomial
ring of automorphism type but it is a skew PBW extension. Hence, the
symmetry of this algebra follows from the results presented in sections 3
and 4.

The quantum algebra U ′

q(so3) is another example of a skew PBW
extension which cannot be expressed as skew polynomial ring of auto-
morphism type. This algebra was introduced by Gavrilik and Klimik [12]
and is a nonstandard q-deformation of the universal enveloping algebra
U(so3) of the Lie algebra so3. More exactly, given q ∈ k \ {0}, U ′

q(so3) is
defined as the algebra generated by the intederminates I1, I2, and I3 over k
satisfying the relations I2I1−qI1I2 = −q

1

2 I3, I3I1−q−1I1I3 = q−
1

2 I2, and
I3I2−qI2I3 = −q−

1

2 I1. From its definition, one can think that this algebra
is not a skew polynomial of automorphism type since the commutation
rule of two indeterminates involves the third ring but one can check that
U ′

q(so3)
∼= σ(k)〈I1, I2, I3〉.

Finally, diffusion algebras arose in physics as a possible way to un-
derstand a large class of 1-dimensional stochastic process, see Isaev et
al. [21]. A diffusion algebra A with parameters aij ∈ C \ {0}, 1 6 i, j 6 n
is an algebra over C generated by variables x1, . . . , xn subject to relations
aijxixj − bijxjxi = rjxi − rixj , whenever i < j, bij , ri ∈ C, for all i < j,
such that the indeterminates x’s form a C-basis of the algebra A. In the
applications to physics the parameters aij are strictly positive reals and
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the parameters bij are positive reals as they are unnormalised measures of
probability. As we can see, these algebras are not skew polynomial rings
over C[x1, . . . , xn] but are skew PBW extensions over this ring satisfying
the conditions imposed in theorems presented in sections 3 and 4, so we
can assert their symmetry.
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