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Quasi semiprime multiplication modules

over a pullback of a pair of Dedekind domains
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Abstract. The main purpose of this article is to classify

all indecomposable quasi semiprime multiplication modules over

pullback rings of two Dedekind domains and establish a connection

between the quasi semiprime multiplication modules and the pure-

injective modules over such rings. First, we introduce and study

the notion of quasi semiprime multiplication modules and classify

quasi semiprime multiplication modules over local Dedekind do-

mains. Second, we get all indecomposable separated quasi semiprime

multiplication modules and then, using this list of separated quasi-

semiprime multiplication modules, we show that non-separated

indecomposable quasi semiprime multiplication R-modules with

őnite-dimensional top are factor modules of őnite direct sums of

separated indecomposable quasi semiprime multiplication modules.

Introduction

The idea of investigating a mathematical structure via its representa-

tions in simpler structures is commonly used and often successful. One

of the aims of the modern representation theory is to solve classiőcation

problems for subcategories of modules over a unitary ring R. The reader is

referred to [1], [34, Chapters 1 and 14], [37] and [2] for a detailed discussion

problems, their representation types (őnite, tame, or wild), and useful

computational reduction procedures, see [23] and [36].
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Let v1 : R1 −→ R̄ and v2 : R2 −→ R̄ be a homomorphism of two

local Dedekind domains Ri, i = 1, 2, onto a common őeld R̄. Denote the

pullback

R = {(r1, r2) ∈ R1 ⊕R2 : v1(r1) = v2(r2)}

by (R1
v1−→ R̄

v2←− R2), where R̄ = R1/J(R1) = R2/J(R2). Then R is a

ring under coordinate-wise multiplication. Denote the kernel of vi, i = 1, 2,

by Pi. Then

Ker(R −→ R̄) = P = P1 × P2, R/P ∼= R̄ ∼= R2/P2,

and P1P2 = P2P1 = 0

(so R is not a domain). Furthermore, for i ≠ j, 0 −→ Pi −→ R −→ Rj −→

0 is a exact sequence of R-modules (see [24]).

A commutative ring R is local if it has a unique maximal ideal. If R is

commutative and S is a multiplicative closed subset of R, then we denote

by S−1R the localization of R with respect to S. If P is a prime ideal of

R and S = R \ P we write S−1R as RP .

We know that every module is an elementary substructure of a pure-

injective module. In fact, there is a minimal pure-injective elementary

extension of each module M , denoted by h(M), called the pure-injective

hull of M and it is unique up to isomorphism őxing M . The class of pure-

injectives is closed under direct summands and őnite direct sums, but an

inőnite direct sum of pure-injectives need not be pure-injective. Observe

that any őnite module is pure-injective. In a sense, then, pure-injective

modules are model theoretically typical: for example, classiőcation of the

complete theories of R-modules reduces to classifying the (complete theo-

ries of) pure-injectives. Also, for some rings, łsmall" (őnite-dimensional,

őnitely generated, . . . ) modules are classiőed and in many cases this

classiőcation can be extended to give a classiőcation of (indecomposable)

pure-injective modules. Indeed, there is sometimes a strong connection

between inőnitely generated pure-injective modules and families of őnitely

generated modules. Therefore, pure-injective modules are very important

(see [22] and [32]). One point of this paper is to introduce a subclass of

pure-injective modules.

Modules over pullback rings have been studied by several authors (see

for example, [3,5,7,9ś16,19,29] and [39]). The important work of Levy [25]

provides a classiőcation of all őnitely generated indecomposable modules

over Dedekind-like rings. L. Klingler [20] extended this classiőcation to

lattices over certain non-commutative Dedekind-like rings, and Klingler
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and J. Haefner ([17], [18]) classiőed lattices over certain non-commutative

pullback rings, which they called special quasi triads. Common to all

these classiőcations is the reduction to a łmatrix problem" over a division

ring (see [31], [34] and [35] for background on matrix problems and their

applications).

In the present article, we introduce a new class of R-modules, called

quasi-semiprime multiplication modules (see Deőnition 3), and we study

it in detail from the classiőcation problem point of view. We are mainly

interested in case either R is a Dedekind domain or R is a pullback of

two local Dedekind domains. First, we give a complete description of the

quasi-semiprime multiplication modules over a local Dedekind domain. Let

R be a pullback of two local Dedekind domains over a common factor őeld.

Next, the main purpose of this paper is to give a complete description

of the indecomposable quasi-semiprime multiplication R-modules with

őnite-dimensional top over R/Rad(R) (for any module M we deőne its

top as M/Rad(R)M).

The classiőcation is divided into two stages: the description of all

indecomposable separated quasi semiprime multiplication R-modules and

then, using this list of separated quasi semiprime multiplication modules,

we show that non-separated indecomposable quasi semiprime multiplica-

tion R-modules with őnite-dimensional top are factor modules of őnite

direct sums of separated indecomposable quasi semiprime multiplication

R-modules. Then we use the classiőcation of separated indecomposable

quasi semiprime multiplication modules from Section 3, together with

results of Levy [26] on the possibilities for amalgamating őnitely generated

separated modules, to classify the non-separated indecomposable quasi

semiprime multiplication modules M with őnite-dimensional top. We will

see that the non-separated modules may be represented by certain amalga-

mation chains of separated indecomposable quasi semiprime multiplication

modules and where adjacency corresponds to amalgamation in the socles

of these separated quasi semiprime multiplication modules.

For the sake of completeness, we state some deőnitions and notations

used throughout. We have identiőed all indecomposable quasi-semiprime

multiplication modules over a local Dedekind domain and so in this article

all rings are commutative with identity and all modules unitary. Let R

be the pullback ring as mentioned in the beginning of introduction. An

R-module S is deőned to be separated if there exist Ri-modules Si, i = 1, 2,

such that S is a submodule of S1⊕S2 (the latter is made into an R-module

by setting (r1, r2)(s1, s2) = (r1s1, r2s2)). Equivalently, S is separated if
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it is a pullback of an R1-module and an R2-module and then, using the

same notation for pullbacks of modules as for rings, S = (S/P2S −→

S/PS ←− S/P1S) [24, Corollary 3.3] and S ⊆ (S/P2S)⊕ (S/P1S). Also,

S is separated if and only if P1S ∩ P2S = 0 [24, Lemma 2.9].

If R is a pullback ring, then every R-module is a epimorphic im-

age of a separated R-module, indeed every R-module has a łminimalž

such representation: a separated representation of an R-module M is

an epimorphism ϕ : S −→ M of R-modules where S is separated and,

if ϕ admits a factorization ϕ = (S
f
−→ S′ −→ M) with S′ separated,

then f is one-to-one. The module K = Ker(ϕ) is then an R̄-module,

since R̄ = R/P and PK = 0 [24, Proposition 2.3]. An exact sequence

0 −→ K −→ S −→ M −→ 0 of R-modules with S separated and K an

R̄-module is a separated representation of M if and only if PiS ∩K = 0

for each i and K ⊆ PS [24, Proposition 2.8]. Every module M has a

separated representation, which is unique up to isomorphism [24, Theo-

rem 2.8]. Moreover, R-homomorphisms lift to a separated representation,

preserving epimorphisms and monomorphisms [24, Theorem 2.6].

Deőnition 1. (a) If R is a ring and N is a submodule of an R-module

M , the ideal {r ∈ R : rM ⊆ N} is denoted by (N : M). Then

(0 : M) is the annihilator of M .

(b) (i) A proper submodule N of a module M over a commutative

ring R is said to primary submodule (resp., prime submodule)

if whenever rm ∈ N , for some r ∈ R, m ∈M , then m ∈ N or

rn ∈ (N : M) for some n (resp., m ∈ N or r ∈ (N : M)), so

Rad(N : M) = P (resp., (N : M) = P ′) is a prime ideal of R,

and N is said to be P -primary (resp., P ′-prime) submodule.

The set of all primary submodules (resp., prime submodules)

in an R-module M is denoted pSpec(M) (resp., Spec(M)).

(ii) A proper submodule N of a module M over commutative ring

R is said to be 2-absorbing, if abm ∈ N for some a, b ∈ R and

m ∈M , then ab ∈ (N :R M) or am ∈ N or bm ∈ N (see [30]).

(c) A proper ideal I of a commutative ring R is called semiprime, if

ak ∈ I for some a ∈ R and a positive integer k, then a ∈ I.

(d) A proper submodule N of an R-module M is called to be semiprime,

if for a ∈ R and m ∈ M , akm ∈ N for some positive integer k

implies that am ∈ N . The set of all semiprime submodules in an

R-module M is denoted by seSpec(M).
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(e) An R-module M is deőned to be a multiplication module if for each

submodule N of M , N = IM , for some ideal I of R. In this case,

we can take I = (N : M).

(f) An R-module M is deőned to be a weak multiplication module if

Spec(M) = ∅ or for every prime submodule N of M , N = IM , for

some ideal I of R (see [10]).

(g) An R-module M is deőned to be a primary multiplication module if

pSpec(M) = ∅ or for every primary submodule N of M , N = IM ,

for some ideal I of R (see [12]).

(h) An R-module M is deőned to be a semiprime multiplication module

if for every semiprime submodule N of M , N = IM , for some ideal

I of R (see [13]).

(i) A submodule N of an R-module M is called a pure submodule, if

any őnite system of equations over N which is solvable in M is also

solvable in N . A submodule N of an R-module M is called relatively

divisible (or an RD-submodule) in M if rN = N ∩ rM for all r ∈ R

(see [22, 23, 38] and [32]).

(j) A module M is pure-injective if it has the injective property relative

to all pure exact sequences (see [32,38]).

Remark 1.

(i) An R-module is pure-injective if and only if it is algebraically compact

(see [22] and [39]).

(ii) Let R be a Dedekind domain, M an R-module and N a submodule

of M . Then N is pure in M if and only if IN = N ∩ IM for each

ideal I of R. Moreover, N is pure in M if and only if N is an

RD-submodule of M [38].

1. Quasi semiprime multiplication modules over a local

Dedekind domain

The aim of this section is to classify quasi semiprime multiplication

modules over a local Dedekind domain. First, we collect basic properties

concerning quasi semiprime multiplication modules.

Deőnition 2. Let R be a commutative ring and M be an R-module. A

proper submodule N of M is said to be quasi semiprime, if (N : M) is a

semiprime ideal of R. The set of all quasi semiprime submodules in an

R-module M is denoted by qsSpec(M).
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An R-module M is called to be quasi semiprime, if its zero submodule

is a quasi-semiprime submodule of M .

prime submodules ⇒ semiprime submodules ⇒ quasi-semiprime

submodules

Example 1. (quasi semiprime submodule that is not semiprime)

Consider Z-module M = Z × Z and the submodule N = ⟨(4, 0)⟩. Then

(N : M) = 0 is a semiprime ideal of Z. Thus N is a quasi semiprime

submodule, but N is not a semiprime submodule of M . Because 22(1, 0) ∈

N , but 2(1, 0) ̸∈ N .

Example 2. (semiprime submodule that is not prime) Consider

Z-module M = Z30. Let N = ⟨6⟩ is a submodule of M . Then N is a

semiprime submodule of M , but it is not a prime submodule of M .

Proposition 1. Let M be an R-module. Then

(i) Let K ⊂ N be submodules of M . Then N is a quasi semiprime

submodule of M if and only if N/K is a quasi semiprime submodule

of M/K.

(ii) If N is a quasi semiprime submodule of M , then M/N is a quasi

semiprime R-module.

Proof. The proof is straightforward.

Lemma 1. Let M be an R-module, N a quasi semiprime submodule of

M and I an ideal of R with I ⊂ (0 : M). Then N is a quasi semiprime

submodule of M as an R/I-module.

Proof. By Proposition 1, M/N is a quasi semiprime R-module. Let (a+

I)k ∈ (N :R/I M) for some a+ I ∈ R/I and k ∈ N, so ak ∈ (N :R M) =

(0 :R M/N). Hence a ∈ (0 :R M/N) = (N :R M) since M/N is a quasi

semiprime module, so a+ I ∈ (N :R/I M), as needed.

Deőnition 3. Let R be a commutative ring. An R-module M is said

to be a quasi semiprime multiplication module, if qsSpec(M) = ∅ or for

every quasi semiprime submodule N of M , N = IM , for some ideal I of

R.

Lemma 2. Let M be a quasi semiprime multiplication module over a

commutative ring R. Then the following hold:
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(i) If I is an ideal of R and N a non-zero R-submodule of M with

I ⊆ (N : M), then M/N is a quasi semiprime multiplication R/I-

module.

(ii) If N is a submodule of M , then M/N is a quasi semiprime multi-

plication R-module.

(iii) Every direct summand of M is a quasi semiprime multiplication

R-module.

Proof. (i) Let K/N be a quasi semiprime submodule of M/N . Then by

Proposition 1, K is a quasi semiprime submodule of M , then K = (K :

M)M . An inspection will show that K/N = (K/N :R/I M/N)M/N .

(ii) Take I = 0 in (i).

(iii) Apply (ii).

Lemma 3. Let R and R′ be any commutative rings, f : R → R′ a

surjective homomorphism and M an R′-module. Then the following hold:

(i) If M is a quasi semiprime R-module, then M is a quasi semiprime

R′-module.

(ii) If N is a quasi semiprime R-submodule of M , then N is a quasi

semiprime R′-submodule of M .

(iii) If M is a quasi semiprime multiplication R′-module, then M is a

quasi semiprime multiplication R-module.

Proof. (i) It is obvious.

(ii) Clearly, M/N is a quasi semiprime R-module, so M/N is a quasi

semiprime R′-module by (i), hence N is a quasi semiprime R′-submodule

of M .

(iii) Let N be a quasi semiprime R-submodule of M . Then N is a quasi

semiprime R′-submodule of M by (ii), so N = I ′M for some ideal I ′ of

R′. Set I = f−1(I ′). Then I is an ideal of R and f(I) = f(f−1(I ′)) = I ′;

hence IM = f(I)M = I ′M = N . Therefore, M is a quasi semiprime

multiplication R-module.

Remark 2. (i) Assume that M is a divisible quasi semiprime multiplica-

tion module over an integral domain R and let N be a proper submodule

of M . Then M divisible module gives (N :R M) = 0; so N = 0. Thus

every divisible quasi-semiprime multiplication module over R is simple.

(ii) We know that if N is a semiprime submodule of an R-module M ,

then (N :R M) is a semiprime ideal of R; so every semiprime submodule

is aquasi-semiprime submodule. Let R be a local Dedekind domain with

unique maximal ideal P = Rp. By [6, Lemma 2.6], every non-zero proper
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submodule L of E = E(R/P ), the injective hull of R/P is of the form L =

An = (0 :E Pn) (n ⩾ 1), L = An = Ran and PAn+1 = An. Hence no An

is a semiprime submodule of E, for if n is a positive integer then P 3An+3 =

An, but PAn+3 = An+2 ⊈ An. So it is a semiprime multiplication module.

Since for any n, (An :R E) = 0, hence for any n, An is a quasi semiprime

submodule of E. If E is a quasi semiprime multiplication module, then

An = (An : E)E = 0, a contradiction. Hence a semiprime multiplication

module need not be a quasi semiprime multiplication module. For R-

module Q(R), we know that for any non-zero submodule L of Q(R), we

have (L : Q(R)) = 0 is a semiprime (prime) ideal of R. Similarly, Q(R) is

not a quasi-semiprime multiplication module.

(iii) Let R be a local Dedekind domain with unique maximal ideal

P = Rp. Consider the divisible modules E = E(R/P ), the injective hull of

R/P , and Q(R), the őeld of fractions of R. By [6, Lemma 2.6], E has non-

zero proper submodules and Q(R) has the non-zero proper submodule R.

Therefore these modules are not quasi semiprime multiplication modules

by (ii). Moreover, the cyclic modules R and R/Pn are quasi semiprime

multiplication modules since they are multiplication modules.

multiplication modules ⇒ quasi-semiprime multiplication modules ⇒

semiprime multiplication modules ⇒ weak multiplication modules

Thus, the class of quasi semiprime multiplication modules contains

the class of semiprime multiplication modules, and the class semiprime

multiplication modules contains the class weak multiplication modules.

Proposition 2. Let M be a quasi semiprime multiplication module over

an integral domain R (with is not a őeld). Then M is either torsion or

torsion-free.

Proof. Assume that T (M) is the torsion submodule of M and T (M) ̸= M .

Then T (M) is a prime submodule (so a quasi semiprime submodule) of

M with (T (M) : M) = 0 by [28, Lemma 3.8]. It follows that T (M) =

(T (M) : M)M = 0. Thus M is a torsion-free module and this complete

the proof.

If R is a local Dedekind domain with unique maximal ideal P , then if

p ∈ P \ P 2 then the ideal generated by p is P and hence for each n, we

have Pn = pnR. Moreover, every non-zero element of R has the form upm

where u is a unit in R. Also, if u is a unit in R, then Pn = uPn for all

positive integer n and the set of all proper ideals of R is {0, P, P 2, · · · }.
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Lemma 4. Let R be a local Dedekind domain with a unique maximal

ideal P = Rp. Then the following hold:

(i) If I is a semiprime ideal of R, then I = 0 or I = P .

(ii) If M is a quasi semiprime multiplication module, then qsSpec(M) ̸=

∅.

Proof. (i) The ideals 0 and P are semiprime (prime). If I = Pn with

n ⩾ 2, then pn ∈ I, but p ̸∈ I. Then Pn is not a semiprime ideal for all

n ⩾ 2.

(ii) Let qsSpec(M) = ∅. Since Spec(M) ⊆ qsSpec(M) = ∅, it follows

from [27, Lemma 1.3 and Proposition 1.4] that M is a torsion divisible

R-module with PM = M and M is not őnitely generated. By an argument

like that in [6, Proposition 2.7], M ∼= E(R/P ), which is a contradiction

by Remark 2.

Theorem 1. Let R be a local Dedekind domain with a unique maximal

ideal P = Rp. Then the following is a complete list, up to isomorphism,

of the indecomposable quasi semiprime multiplication modules:

(i) R;

(ii) R/Pn (n ⩾ 1) the indecomposable torsion module.

Proof. First, we note that each of the preceding modules is indecomposable

(by [5, Proposition 1.3]) and quasi semiprime multiplication module by

Remark 2.

Now let M be an indecomposable quasi semiprime multiplication

module, and choose any non-zero element a ∈ M . Let h(a) = sup{n |

a ∈ PnM} (so h(a) is a non-negative integer or ∞). Also, (0 : a) =

{r ∈ R | ra = 0}, thus (0 : a) is an ideal of the form Pn or 0. Because

(0 : a) = Pm+1 implies that Pma ̸= 0 and P (Pma) = 0, we can choose a

so that (0 : a) = P or 0. Now we consider the various possibilities for h(a)

and (0 : a).

If h(a) = n, (0 : a) = 0, (resp. h(a) = n, (0 : a) = P ), then by a similar

argument like that in [8, Theorem 2.12, Case 2] (resp. [8, Theorem 2.12,

Case 3]), we get M ∼= R (resp. M ∼= R/Pn+1). So we may assume that

h(a) =∞. If (0 : a) = P (resp. (0 : a) = 0), then by an argument like that

in [6, Proposition 2.7, Case 2] (resp. [8, Theorem 2.12, Case 3]), we get

M ∼= E(R/P ) (resp. M ∼= Q(R)) that is a contradiction by Remark 2.

Corollary 1. Let M be a quasi semiprime multiplication module over a

local Dedekind domain with maximal ideal P = Rp.

(i) M ̸= R is a direct sum of copies of R/Pn (n ⩾ 1);
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(ii) Every quasi semiprime multiplication R-module not isomorphic to

R is pure-injective.

Proof. (i) Let N denote the indecomposable summand of M . Then by

Lemma 2, N is an indecomposable quasi semiprime multiplication module.

Now the assertion follows from Theorem 1.

(ii) Apply [5, Proposition 1.3].

2. The separated quasi semiprime multiplication modules

Throughout this section, we shall assume unless otherwise stated, that

R = (R1
v1−→ R̄

v2←− R2) (1)

is the pullback of two local Dedekind domains R1, R2 with maximal

ideals P1, P2 generated, respectively, by p1, p2, P denotes P1 ⊕ P2 and

R1/P1
∼= R2/P2

∼= R/P ∼= R̄ is a őeld. In particular, R is a commutative

Noetherian local ring with unique maximal ideal P . The other prime ideals

of R are easily seen to be P1⊕ 0 and 0⊕P2. Let r = (a, b) ∈ R with a ≠ 0

and b ̸= 0. Then we can write a = (pn1 , p
m
2 ) for some positive integers m,n,

so ann(a) = 0; hence Ra ∼= R. If a = (0, pm2 ) for some positive integer

m, then ann(a) = P1 ⊕ 0 and so R(0, pm2 ) ∼= R/(P1 ⊕ 0) ∼= R2. Similarly,

R(pn1 , 0)
∼= R/(0 ⊕ P2) ∼= R1. The other ideals I of R are of the form

I = Pn
1 ⊕ Pm

2 = (⟨pn1 ⟩, ⟨p
m
2 ⟩) for some positive integers m,n.

Remark 3 ([11, Remark 3.1]). Let R be the pullback ring as in (1) and

T be an R-module of a separated module S = (S1
f1
−→ S̄

f2
←− S2), with

projection maps πi : S → Si. Set T1 = {t1 ∈ S1 : (t1, t2) ∈ T for some

t2 ∈ S2} and T2 = {t2 ∈ S2 : (t1, t2) ∈ T for some t1 ∈ S1}.

Then for each i, i = 1, 2, Ti is an Ri-submodule of Si and T ⩽ T1⊕T2.

Moreover, we can deőne a mapping π́1 = π1|T : T → T1 by sending (t1, t2)

to t1; hence T1
∼= T/(0⊕Ker(f2)∩T ) ∼= T/(T ∩P2S) ∼= (T +P2S)/P2S ⊆

S/P2S. So we may assume that T1 is a submodule of S1. Similarly, we

may assume that T2 is a submodule of S2 (note that Ker(f1) = P1S1 and

Ker(f2) = P2S2).

Lemma 5. Let R be a pullback ring as in (1). Then the ideals 0, P1 ⊕ 0,

0⊕ P2 and P1 ⊕ P2 are semiprime.

Proof. Let (a, b)n ∈ 0 for some (a, b) ∈ R and n ∈ N, then an = 0 and

bn = 0. Thus a = 0 and b = 0 since 0 is semiprime ideal of Ri, i = 1, 2, so
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0 is semiprime ideal of R. Since P1 ⊕ 0, 0⊕ P2 and P1 ⊕ P2 are prime, so

they are semiprime.

Proposition 3. Let R be a pullback ring as in (1). Then the following

hold:

(i) If T is a quasi semiprime submodule of a non-zero separated R-

module S = (S/P2S = S1
f1
−→ S̄

f2
←− S/P1S = S2), then T1 is

a quasi semiprime submodule of S1 and T2 is a quasi semiprime

submodule of S2.

(ii) If T is a quasi semiprime submodule of a non-zero separated R-

module S = (S/P2S = S1
f1
−→ S̄

f2
←− S/P1S = S2), then (T :R S) =

0 or P1 ⊕ 0 or 0⊕ P2 or P1 ⊕ P2.

(iii) Let T be a quasi semiprime submodule of a non-zero separated R-

module S = (S/P2S = S1
f1
−→ S̄

f2
←− S/P1S = S2) with Si is

a quasi semiprime multiplication Ri-module, for each i = 1, 2. If

(T :R S) = 0, then T = 0 and Si ̸= 0, for each i = 1, 2.

Proof. (i) Let an1 ∈ (T1 :R1
S1) where a1 ∈ R1 and n ∈ N. Since (T1 :R1

S1) ⊆ P1, then (an1 , 0) ∈ R because v1(a
n
1 ) = 0 = v2(0). Let (s1, s2) ∈ S.

Since an1s1 ∈ P1S1 ∩ T1 and 0 ∈ P2S2 ∩ T2 and f1(a
n
1s1) = 0 = f2(0), so

(an1 , 0)(s1, s2) ∈ T . Hence (a1, 0)
n ∈ (T :R S), and so (a1, 0) ∈ (T :R S)

since (T :R S) is a semiprime ideal of R. Therefore we get a1 ∈ (T1 :R1
S1).

Thus T1 is a quasi semiprime submodule of S1. Similarly, T2 is a quasi

semiprime submodule of S2.

(ii) Since T is a quasi semiprime submodule of S, so (T :R S) is a

semiprime ideal of R. Hence the assertion follows from Lemma 5.

(iii) First we show that (T1 :R1
S1) = 0 and (T2 :R2

S2) = 0. By

assumption, either S1 ≠ 0 or S2 ̸= 0. Suppose that S1 ≠ 0 . Assume to

the contrary, 0 ̸= r1 ∈ (T1 :R1
S1) ⊆ P1 (so v1(r1) = 0 = v2(0); hence

(r1, 0) ∈ R). Therefore r1S1 ⊆ T1. Let (s1, s2) ∈ S. Then (r1, 0)(s1, s2) =

(r1s1, 0) ∈ T since f1(r1s1) = 0 = f2(0) and T is separated; hence

0 ̸= (r1, 0)S ⊆ T that is a contradiction. So (T1 :R1
S1) = 0. If S2 = 0, then

S = (P1 ⊕ 0)S, and so (0⊕ P2)S = 0. Therefore 0 ̸= (0 :R S) ⊆ (T :R S)

which is a contradiction. So S2 ̸= 0. Similarly, S2 ̸= 0 gives (T2 :R2
S2) = 0.

Now S1 is a quasi semiprime multiplication R1-module gives T1 = 0.

Similarly, T2 = 0. Thus T = 0.

Proposition 4. Let S is any non-zero separated quasi-semiprime multi-

plication module over a pullback ring as in (1). Then qsSpec(S) ̸= ∅.
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Proof. Let π be the projection map of R onto R1. By Lemma 4 (ii),

qsSpec(S1) ̸= ∅, so there is a quasi-semiprime submodule T1 of S1. Then

by Lemma 3, T1 = T/(0 ⊕ P2)S is a quasi semiprime R-submodule of

S1
∼= S/(0 ⊕ P2)S; so T is a quasi semiprime R-submodule of S by

Proposition 1 (i) and hence qsSpec(S) ̸= ∅.

Theorem 2. Let S = (S/P2S = S1
f1
−→ S̄ = S/PS

f2
←− S2 = S/P1S)

be any separated module over the pullback ring as (1). Then S is a quasi

semiprime multiplication R-module if and only if Si is a quasi semiprime

multiplication Ri-module, i = 1, 2.

Proof. Let S be a separated quasi semiprime multiplication R-module.

First suppose that S̄ = 0. Then by [5, Lemma 2.7(i)], S = S1⊕S2; hence Si

is a quasi semiprime multiplication Ri-module by Lemma 2 (iii), for each

i = 1, 2. So we may assume that S̄ ̸= 0. Since (0⊕ P2) ⊆ ((0⊕ P2)S : S),

Lemma 2 gives S1
∼= S/(0 ⊕ P2)S is a quasi semiprime multiplication

R/(0⊕P2) ∼= R1-module. Similarly, S2 is a quasi semiprime multiplication

R2-module.

Conversely, assume that each Si is a quasi semiprime multiplication

Ri-module and let T be a quasi semiprime submodule of S. We split the

proof into three cases for (T :R S) (see Lemma 5).

Case 1. (T :R S) = 0. By Proposition 3 (iii), T = 0 = (T :R S)S, as

required.

Case 2. (T :R S) = P1 ⊕ 0. Then T1 = P1S1 and T2 = 0 since S1 and

S2 are quasi semiprime multiplication. We show that T = (P1⊕0)S. Since

(T :R S) = P1 ⊕ 0, then (T :R S)S = (P1 ⊕ 0)S ⊆ T . Let t = (t1, 0) ∈ T .

Then t1 = p1s1 for some s1 ∈ S1. Hence there exist s2 ∈ S2 such that

(s1, s2) ∈ S; so t = (p1s1, 0) = (p1, 0)(s1, s2) ∈ (P1 ⊕ 0)S and so T =

(P1 ⊕ 0)S. Similarly, if (T :R S) = 0⊕ P2, we get T = (0⊕ P2)S.

Case 3. (T :R S) = P1 ⊕ P2. Then (T1 :R1
S1) = P1, and (T2 :R2

S2) = P2. Now by Proposition 3(i), T1 = P1S1 since S1 is quasi-semiprime

multiplication. Similarly, T2 = P2S2. We have (T :R S)S = (P1 ⊕ P2)S ⊆

T , we show that T ⊆ (P1 ⊕ P2)S. Let (t1, t2) ∈ T . Then t1 = p1s1 for

some p1 ∈ P1, s1 ∈ S1, and t2 = p2s2 for some p2 ∈ P2, s2 ∈ S2. Thus

there exists v2 ∈ S2 such that (s1, v2) ∈ S and there exists v1 ∈ S1

such that (v1, s2) ∈ S. We have (t1, t2) = (p1s1, p2s2) = (p1, 0)(s1, v2) +

(0, p2)(v1, s2) ∈ (P1 ⊕ P2)S. So T = (P1 ⊕ P2)S and hence S is a quasi

semiprime multiplication R-module.
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Lemma 6. Let R be the pullback ring as in (1). Then, up to isomorphism,

the following separated R-modules are indecomposable quasi semiprime

multiplication modules:

(1) S = (R1 −→ R̄←− R2);

and for all positive integers m,n,

(2) S = (R1/P
n
1 −→ R̄←− R2/P

m
2 );

(3) S = (R1 −→ R̄←− R2/P
m
2 );

(4) S = (R1/P
n
1 −→ R̄←− R2).

Proof. By [5], these modules are indecomposable, quasi semiprime multi-

plicativity follows from Theorem 1 and Theorem 2.

Theorem 3. Let S = (S1
f1
−→ S̄

f2
←− S2) be an indecomposable separated

quasi semiprime multiplication module over the pullback ring as (1). Then

S is isomorphic to one of the modules listed in Lemma 6.

Proof. Let S = (S1
f1
−→ S̄

f2
←− S2) be a non-zero indecomposable sepa-

rated quasi semiprime multiplication R-module. If S = R, we are done.

So we may assume that S ̸= R. First note that qsSpec(S) ̸= ∅ by Propo-

sition 4. Next we show that S̄ ≠ 0. If T is a quasi semiprime submodule

of S, then Ti is a quasi semiprime submodule of Si by Proposition 3(i);

so Ti ≠ Si for each i, because if T1 = S1, then (T1 :R1
S1) = R1 is a quasi

semiprime ideal of R1 that is a contradiction by Lemma 4 (i)). Now, we

consider the various possibilities for (T :R S).

Case 1. (T :R S) = 0. If S̄ = 0, then S = S1 ⊕ S2 by [5, Lemma

2.7(i)]; hence either S1 = 0 or S2 = 0 (since S is indecomposable) that is

a contradiction by Proposition 3(iii). Thus S̄ ̸= 0.

Case 2. (T :R S) = P = P1 ⊕ P2. It follows that PS ⊆ T ̸= S, so

PS ̸= S.

Case 3. (T :R S) = P1 ⊕ 0. Then since S is a quasi semiprime

multiplication, T = (P1⊕ 0)S which implies that T1 = P1S1 = PS/P2S ̸=

S1 = S/P2S; hence PS ̸= S. Similarly, when (T :R S) = 0⊕ P2, we get

S ̸= PS.

By Theorem 2, Si is a quasi semiprime multiplication Ri-module, for

each i = 1, 2. Choose t ∈ S1 ∪ S2 with t̄ ̸= 0 and let o(t) denote the least

positive integer k such that P kt = 0 if there is such k and if no such

k, o(t) = ∞ and o(t) is minimal among such t. Assume t ∈ S2, and so

write t = t2 and m = k = o(t2). Now pick t1 ∈ S1 with t̄1 = t̄2 = t̄ and

o(t1) = n minimal. If o(t2) = m (resp. o(t1) = n), then R2t2 ∼= R2/P
m
2

(resp. R1t1 ∼= R1/P
n
1 ) is pure in S2 (resp. is pure in S1). If o(t1) = ∞
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(resp. o(t2) =∞), then R1t1 ∼= R1 (resp. R2t2 ∼= R2) is pure in S1 (resp. is

pure in S2), see [5, Theorem 2.9]. Let M̄ be the R̄-subspace of S̄ generated

by t̄. Then M̄ ∼= R̄. Let M = (R1t1 = M1 −→ M̄ ←−M2 = R2t2). Then

M is an R-submodule of S which is a direct summand of S; so S = M

since S is indecomposable [5, Theorem 2.9]. Therefore S is one of the

modules listed (2)ś(4) in the Lemma 6, as required.

Corollary 2. Let R be the pullback ring as in (1). Then every separated

quasi semiprime multiplication R-module not isomorphic to R is pure-

injective.

Proof. Apply Theorem 2 and [5, Lemma 2.9].

3. Non-separated quasi semiprime multiplication modules

We continue to use the notion already established, so R is the pullback

ring as in (1). In this section, we őnd the indecomposable non-separated

quasi semiprime multiplication modules with őnite-dimensional top. It

turns out that each can be obtained by amalgamating őnitely many

separated indecomposable quasi semiprime multiplication modules.

We need the following lemma proved in [7, Lemma 3.1].

Lemma 7. Let R be the pullback ring as in (1) and let M be any R-

module. Let 0 −→ K
i
−→ S

ϕ
−→M −→ 0 be a separated representation of

M . Then

(i) If N is a non-zero submodule of M , then 0 −→ K −→ ϕ−1(N) =

T −→ N −→ 0 is a separated representation of N .

(ii) If M is non-separated, then PnM ̸= 0 and K ⊆ PnS for all positive

integers n.

Proposition 5. Let R be the pullback ring as in (1) and let M be any

R-module. Let 0 −→ K −→ S −→M −→ 0 be a separated representation

of M . Then

(i) If S has a submodule T with (T :R S) = 0, then M is separated.

(ii) If S has a submodule T with (T :R S) = P1⊕0, then M is separated.

(iii) If S has a submodule T with (T :R S) = 0⊕P2, then M is separated.

Proof. (i) (0 :R S) = 0 since (0 :R S) ⊆ (T :R S). Let r = (r1, r2) ∈

(0 :R M). Then rM = rS/K = 0, sorS ⊆ K which implies that rPS ⊆

PK = 0. It follows that r1p1 = 0 and r2p2 = 0; hence r = 0 (since

Ri is a domain, for each i = 1, 2). Thus (0 :R M) = 0. It follows that
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(P1 ⊕ 0)M ̸= 0 and (0⊕ P2)M ≠ 0. Let m ∈ (P1 ⊕ 0)M ∩ (0⊕ P2)M . If

m = 0, we are done. So suppose that m ̸= 0. Then there exists x ∈ S

such that m = ϕ(x). Since ϕ−1(Rm) = ϕ−1(ϕ(Rx)) = Rx and Rm ̸= 0,

0 −→ K −→ Rx −→ Rm −→ 0 is a separated representation of Rm with

K ⊆ P (Rx) by Lemma 7. By hypothesis, there exist m1,m2 ∈M such that

m = (ps1, 0)m1 = (0, pt2)m2 for some integers s, t. Then (p1, 0)m = 0 =

(0, p2)m gives Pm = 0 and so ϕ(Px) = 0; hence ϕ(P1x) = ϕ(P2x) = 0.

Since ϕ is one-to-one on PiS for each i, we get Px = 0; so K ⊆ P (Rx) = 0.

Thus M is a separated R-module.

(ii) Since (0 :R S) ⊆ (T :R S) = P1 ⊕ 0, either (0 :R S) = 0 or (0 :R
S) = Pm

1 ⊕0 for some positive integer m. If (0 :R S) = 0, then we are done

by (i). So suppose that (0 :R S) = Pm
1 ⊕ 0. As Pm

1 ⊕ 0 ⊆ ((0⊕ P2)S :R S)

and 0⊕ P2 ⊆ ((0⊕ P2)S :R S), we get Pm
1 ⊕ P2 ⊆ ((0⊕ P2)S :R S)), and

so (Pm
1 ⊕ P2)S ⊆ ((0 ⊕ P2)S :R S)S ⊆ (0 ⊕ P2)S. It then follows from

Lemma 7 that K ⊆ PmS ⊆ (Pm
1 ⊕ P2)S ⊆ (0⊕ P2)S; hence K = 0 since

K ∩ (0⊕ P2)S = 0. Thus M is separated.

(iii) It is similar to (i).

Theorem 4. Let R be the pullback ring as in (1) and M be any non-

separated R-module. Let 0 −→ K −→ S −→ M −→ 0 be a separated

representation of M . Then S is quasi semiprime multiplication if and only

if M is quasi semiprime multiplication.

Proof. Assume that S is a quasi-semiprime multiplication R-module. Then

S ∼= M/K is quasisemiprime multiplication by Lemma 2(ii). Conversely,

suppose that M is a quasi semiprime multiplication R-module, and let T be

a quasi semiprime submodule of S. Since M is non-separated, (T :R S) = P

by Lemma 5(ii) and Proposition 5. Hence we have K ⊆ PS ⊆ T by

Lemma 7. By Proposition 1, T/K is a quasi semiprime submodule of

S/K; so T/K = P (S/K) = (PS + K)/K) = PS/K since M is quasi

semiprime multiplication, and hence T = PS. Thus S is a quasi semiprime

multiplication R-module.

Proposition 6. Let R be the pullback ring as in (1). Then

(i) The R-module E(R/P ), the injective hull of R/P , is not a quasi

semiprime multiplication module.

(ii) Let 0 −→ K −→ S −→ M −→ 0 be a separated representation of

a quasi semiprime multiplication non-separated R-module M with

M/PM őnite dimensional over R̄. Then qsSpecR(M) ̸= ∅.
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Proof. (i) Let, for a contradiction, that this is not the case. Assume that

L is a non-zero submodule of E(R/P ) described in [10, Proposition 3.1],

say L = E1 + An. Then (L :R E(R/P )) = 0; so L is a quasi semiprime

submodule of E(R/P ) since 0 is a semiprime ideal of R by Lemma 5,

which implies that L = 0 that is a contradiction, and this completes the

proof.

(ii) By Proposition 4, qsSpecR(S) ̸= ∅ and so S has a quasi semiprime

submodule T . Since M is non-separated, (T :R S) = P by Lemma 5 and

Proposition 5. By an argument like that in Theorem 4, we get K ⊆ T .

Now by Proposition 1(i), T/K is a quasi-semiprime submodule S/K ∼= M ;

hence qsSpecR(M) ̸= ∅.

Proposition 7. Let R be the pullback ring as in (1) and M be an inde-

composable quasi semiprime multiplication non-separated R-module with

őnite dimensional top over R̄. Let 0 −→ K −→ S −→ M −→ 0 be a

separated representation of M . Then the following hold:

(i) R do not occur among the direct summands of S.

(ii) S has őnite-dimensional top and is pure-injective.

(iii) S is a direct sum of őnitely many indecomposable quasi semiprime

multiplication modules.

Proof. (i) If S = R ⊕ T for some submodule T of S, then K ⊆ T since

Soc(R) = 0; so M ∼= T/K ⊕ R that is a contradiction since M is inde-

composable and non-separated.

(ii) By [5, Proposition 2.6(i)], S/PS ∼= M/PM ; so S is őnite-dimen-

sional top. By Theorem 4, S is quasi semiprime multiplication. Now the

assertion follows from Corollary 2 and (i).

(iii) If dimR̄ M/PM = n with n ⩾ 0, then by (ii), dimR̄ S/PS = n.

By Theorem 3 and (i), we can write S =
⊕n

i=1 S
i where for each i,

S is a separated R-module as described in (2)ś(4) of Lemma 6 (see

[5, p. 4055]).

Let R be a pullback ring as in (1). Let M be any R-module and let

0 −→ K −→ S −→M −→ 0 be a separated representation of M . We have

shown already that if M is indecomposable quasi-semiprime multiplication

with M őnite-dimensional top then S is a direct sum of just őnitely

many indecomposable separated quasi semiprime multiplication modules

and these are known by Theorem 3. In any separated representation

0 −→ K
i
−→ S

ϕ
−→M −→ 0 the kernel of the map ϕ to M is annihilated

by P , hence is contained in the socle of the separated module S. Thus M
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is obtained by amalgamation in the socles of the various direct summands

of S. This explains Proposition 7 (i): the module R has zero socle and

so cannot be amalgamated with any other direct summands of S and

hence cannot occur in a separated (hence łminimalž) representation. So

the questions are: does this provide any further condition on the possible

direct summands of S? How can these summands be amalgamated in

order to form M? For the case of őnitely generated R-modules M these

questions are answered by Levy’s description [25], see also [26, ğ 11].

Levy shows that the indecomposable őnitely generated R-modules are

of two non-overlapping types which he calls deleted cycle and block cycle

types. It is the modules of deleted cycle type which are most relevant to us.

Such a module is obtained from a direct summand, S, of indecomposable

separated modules by amalgamating the direct summands of S in pairs

to form a chain but leaving the two ends unamalgamated. Reŕecting

the fact that the dimension over R̄ of the socle of any őnitely generated

indecomposable separated module is ⩽ 2 each indecomposable summand of

S may be amalgamated with at most two other indecomposable summands.

Consider the indecomposable separated R-modules S(n,m) = (R1/P
n
1 →

R̄← R2/P
m
2 ) with n,m ⩾ 2 (it is generated over R by ((1 +Pn

1 , 1+Pm
2 ).

Actually, separated indecomposable R-modules also include R1/P
n
1 for

n ⩾ 2 which can be regarded up to isomorphism as S(n, 1) = (R1/P
n
1 →

R̄← R2/P2). Similarly, for m ⩾ 2, S(1,m) = (R1/P1 → R̄← R2/P
m
2 ) is

a separated indecomposable R-module. Moreover,R1,R2 and R themselves

can be viewed as separated indecomposable R-modules, corresponding to

the cases n = ∞ and m = 1, n = 1 and m = ∞, n = m = ∞. Deleted

cycle indecomposable R-modules are introduced as follows.

Let S be a direct sum of őnitely many modules S(i) = S(ni,1, ni,2)

(with i < s a non-negative integer). Here ni,j ⩾ 2 for every j < s and

j = 1, 2, with two possible exceptions i = 0, j = 1 and i = s − 1 and

j = 2, where the values ni,j = 1 or ∞ are allowed. Then amalgamate the

direct summands in S by identifying the P2-part of the socle of S(i) and

the P1-part of the socle S(i+ 1) for every i < s− 1. For instance, given

the separated modules S1 = (R1 → R̄← R2/P
3
2 ) = Ra with P 3

2 a = 0 and

S1 = (R1/P
7
1 → R̄← R2/P

2
2 ) = Ra with P 7

1 a
′ = 0 = P 2

2 a
′. Then one can

form the non-separated module (S1⊕S2)/(R(p22a−p
6
1a

′) = Rc+Rc′ where

c = a+R(p22a− p61a
′), c′ = a′+R(p22a− p61a

′), P 3
2 c = 0 = P 7

1 c
′ = P 2

2 c and

P 2
2 c = P 6

1 c
′ which is obtained by identifying the P2-part of the socle of

S1 with the P1-part of the socle of S2. We will use that same description,

but with quasi semiprime multiplication separated modules in place of
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the őnitely generated ones, gives us the non-zero indecomposable quasi

semiprime multiplication non-separated R-modules. As a consequence,

any non-zero indecomposable quasi semiprime multiplication separated

module with 1-dimensional socle may occur only at one of the ends of the

amalgamation chain (see [5, Proposition 3.4]). It remains to show that the

modules obtained by these amalgamations are, indeed, indecomposable

quasi semiprime multiplication. We do that now and thus complete the

classiőcation of the indecomposable quasi semiprime multiplication non-

separated modules with őnite-dimensional top.

Theorem 5. Let R = (R1 −→ R̄←− R2) be the pullback ring of two local

Dedekind domains R1, R2 with common factor őeld R̄. Then the class

of indecomposable non-separated quasi-semiprime multiplication modules

with őnite-dimensional top up to isomorphism, are the following:

(i) The indecomposable modules of őnite length (apart from R/P which

is separated), that is, M =
∑s

i=1Rai with pns

1 as = 0 = pm1

2 a1,

p
ni−1

1 ai = p
mi+1−1
2 ai+1 (1 ⩽ i ⩽ s − 1), mi, ni ⩾ 2 except for

m1 ⩾ 1, ns ⩾ 1.

(ii) M = R/Pn
2 +

∑s−1
i=1 Rai with p

ms−1

2 as−1, p
n−1
2 b0, p1a0 = 0 = p2b0

and pmi−1
2 ai = pi+1−1

1 ai+1 for all 1 ⩽ i ⩽ s− 2, R/Pn
2
∼= Rb0, where

n,mi, ni ⩾ 2 except for ms−1 ⩾ 1.

(iii) M = R/Pn
1 +

∑s−1
i=1 Rai with p

ns−1

1 as−1 = 0, pn−1
1 a0 = Pm1−1

2 a1,

and pni−1
1 ai = p

mi+1−1
2 ai+1 for all 1 ⩽ i ⩽ s − 2, R/Pn

1
∼= Ra0,

where n,mi, ni ⩾ 2 except for ns−1 ⩾ 1.

(iv) M = R/Pn
2 +

∑s−2
i=1 Rai + R/P r

1 with pn1

2 b0 = pn1−1
1 a1, p

r1
1 a0 =

p
ms−2−1
2 as−2, and pmi−1

2 ai = p
ni+1−1
1 ai+1 for all 1 ⩽ i ⩽ s − 3,

where R/Pn
2
∼= Rb0, R/P r

1
∼= Ra0, and n,mi, ni, r ⩾ 2.

Proof. Let 0 −→ K −→ S −→M −→ 0 be a separated representation of

M . By Proposition 7(iii), S is a direct sum of őnitely many indecompos-

able quasi semiprime multiplication separated modules. We know already

that every indecomposable quasi semiprime multiplication non-separated

module has one of these forms so it remains to show that the modules ob-

tained by these amalgamation are, indeed, indecomposable quasi semiprime

multiplication modules. Since a quotient of any quasi semiprime multipli-

cation R-module is quasi semiprime multiplication by Lemma 2(ii), they

are quasi semiprime multiplication. The indecomposability follows from

[26, ğ 1.9].
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Corollary 3. Let R = (R1 −→ R̄ ←− R2) be the pullback ring of two

local Dedekind domains R1, R2 with common factor őeld R̄. Then

(i) Every indecomposable quasi semiprime multiplication module with

őnite-dimensional top is pure-injective.

(ii) This article comprises the classiőcation of indecomposable quasi

semiprime multiplication modules with őnite-dimensional top over

k-algebra k[x, y : xy = 0](x,y).
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