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Abstract. For the algebras in the title, their prime, primitive

and maximal spectra are explicitly described. For each prime ideal

an explicit set of generators is given. An explicit description of all

the containments between primes is obtained.

Introduction

Let K be a field of characteristic zero, K∗ := K \ {0}, N = {0, 1, 2, . . .}
and N+ = {1, 2, . . .}.

The goal of the paper. Let H be the 3-dimensional Heisenberg Lie
algebra and b be the Borel subalgebra of sl2. The semidirect products of
Lie algebras s = sl2⋉H and a := b⋉H are called the Schrödinger algebra
and the 1-spatial ageing algebra, respectively. Clearly, a ⊆ s. Let U(s) and
A = U(a) be the universal enveloping algebras of the Lie algebras s and
a. Then A ⊆ U(s).

Let gl2 be the Lie algebra of 2 × 2 matrices over K and U(gl2) be
its universal enveloping algebra. The aim of the paper is for the alge-
bras A and U(gl2) to classify their prime, primitive and maximal ideals
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2 Prime spectrum of 1-spatial ageing algebra and U(gl2)

(Theorem 1, Corollary 1, Corollary 3, Theorem 2, Corollary 5 and Corol-
lary 4.(1)). For each prime ideal an explicit (finite) set of generators is
given. All the containments between primes are explicitly described, i.e.,
the Zariski–Jacobson topology on the spectra are described. In [6], the
prime, completely prime, maximal and primitive ideals of the algebra
U(s) are classified. Generating sets are given for all prime ideals of U(s)
apart from an explicit set {I′n |n ∈ N+} (see [6, Theorem 3.3]). Primitive
ideals of U(s) with nonzero-central charge were described by Dubsky, Lü,
Mazorchuk and Zhao [13] in the following way: Each such ideal is the anni-
hilator of a simple highest weight U(s)-module with nonzero central charge.
The prime ideals of the quantum spatial ageing algebra are classified in [3].
Modules over the Schrödinger algebra are studied in [9, 12–14,17,19–21].
In [4], simple weight s-modules are classified.

The prime spectrum of the algebra A. Recall that sl2 = KF ⊕
KH ⊕ KE where [H,E] = 2E, [H,F ] = −2F and [E,F ] = H and
b := KH ⊕ KE is its Borel subalgebra. The 3-dimensional Heisenberg
Lie algebra H = KX ⊕ KY ⊕ KZ where [X,Y ] = Z and Z is a central
element of H. As an abstract algebra, the algebra A is generated by the
elements H, E, X, Y and Z subject to the defining relations:

[H,E] = 2E, [H,X] = X, [H,Y ] = −Y,

[E,X] = 0, [E, Y ] = X, [X,Y ] = Z,

and Z is a central element of A. Recall that the algebra A is the subalgebra
of U(s) generated by the elements H,E,X, Y and Z and the algebra A is
isomorphic to the enveloping algebra U(a) of the solvable Lie subalgebra a.
By [18, Theorem 8.3.36], all prime ideals of the algebra A are completely
prime.

Let H ′ := H + Z−1XY − 1
2 and E′ := E − 1

2Z
−1X2. Then [H ′, E′] =

2E′. It was proved in [6] that the algebra AZ (the localization of A at the
powers of the central element Z) is a tensor product of three algebras

AZ = K[Z±1]⊗K[H ′][E′;σ]⊗A1 (1)

where K[H ′][E′;σ] is a skew polynomial algebra where σ(H ′) = H ′ − 2
and A1 := K〈X, Y 〉 is the Weyl algebra, [X, Y ] = 1, where X := Z−1X.
The algebras A and AZ are Noetherian algebras of Gelfand–Kirillov
dimension 5.

Let E := E′Z = EZ − 1
2X

2 and H := H ′Z + 1
2Z = HZ + XY .

Then E is a normal element of the algebra A, i.e., EA = AE . In fact,
EH = (H − 2)E , EE = EE , EY = Y E , EX = XE and EZ = ZE .
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Let P := {p ∈ Spec (K[Z,H]) | ht (p) = 1}. Recall that every height
1 prime ideal p is generated by a simple irreducible polynomial which
is unique up to multiplicative non-zero constant. Let Ā := A/(E) and
Ã := A/(E , Z). For an element a ∈ A, let ā = a + (E) ∈ Ā and ã =
a+ (E , Z) ∈ Ã.

In the diagram below,
q

|
p

means p ( q, and
H...
G

means obvious inclusions

between the sets of primes in sets G and H.

Theorem 1. The set of prime ideals of the algebra A (together with
all possible containments between the primes) is given in the following
diagram:

{
(Y,E, p) | p ∈ Max (K[H])

}

(Y,E)

(Y ) (E)
{
(X, q′) | q′ ∈ Q′

}

(X)

(Z)

{A ∩ (E , p0)Z | p0 ∈ P0}{(E , p1) | p1 ∈ P1}{(E , q)}

(E) {(q)}

{0

{(E ,m) |m ∈ M}

(2)
where q′ ∈ Q′ := Max (K[Z ′]) \ {(Z ′)} and Z ′ := EY 2, q ∈ Q :=
Max (K[Z]) \ {(Z)}, p0 ∈ P0 := {p′0 ∈ P | p′0 6= (Z), p′0 ⊆ (Z,H)},
p1 ∈ P1 := P \ (P0 ⊔ {(q′)| q′ ∈ Max (K[Z])}) and the set M := {m ∈
Max (K[Z,H]) |Z /∈ m}. Furthermore, let p0 ∈ P0, then p0 = (f) for
some irreducible polynomial f = a0(Z) + a1(Z)H + · · · + an(Z)H

n ∈
K[Z,H] \ (K ∪KZ) with a0(0) = 0 and (see Theorem 3.(2)), then

A ∩ (E , f)Z =

{
(E , f̄red), if f̃red /∈ (X),

(E , f̄red, Z−1f̄redX), if f̃red ∈ (X),
(3)

see (9) for the definition of fred.
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The prime spectrum of U(gl2). The Lie algebra gl2 is the direct
product of the Lie algebra sl2 and a 1-dimensional Lie algebra KZ. So, Z is
a central element of the algebra U := U(gl2). Clearly, U = U(sl2)⊗K[Z] is
a tensor product of algebras. Hence, Z(U) = Z(U(sl2))⊗K[Z] = K[∆, Z]
where ∆ = 4FE +H2 + 2H is the Casimir element of U(sl2).

Theorem 2. Let K be a field of characteristic zero. Then the set of prime
ideals of the algebra U = U(gl2) and all the containments between primes
are given in the following diagram:

(In)

(∆− λn)

(In, q)

(∆− λn, q)

(q) {(p) | p ∈ H1}

{(m) |m ∈ H2}

0

(4)

where n ∈ N+, λn := n2 − 1, In is the annihilator of the simple n-
dimensional U(sl2)-module, q ∈ Max (K[Z]), and the set H1 := {p ∈
Spec (K[Z,∆]) | ht(p) = 1, p ∩ K[Z] = 0, p 6= (∆ − λn) for all n ∈ N+},
and H2 := Max (K[Z,∆]) \ {(∆− λn, q) |n ∈ N+, q ∈ Max (K[Z])}.

1. Prime ideals of the algebra A

In this section, classifications of prime, primitive and maximal ideals
of the algebra A are given (Theorem 1, Corollary 3 and Corollary 1).
Moreover, for each of the prime ideals of A an explicit set of generators is
given.

For an algebra R, let Spec (R) be the set of its prime ideals. The set
(Spec (R),⊆) is a partially ordered set (poset) with respect to inclusion
of prime ideals. Each element r ∈ R determines two maps from R to R,
r· : x 7→ rx and ·r : x 7→ xr where x ∈ R. An element a ∈ R is called a
normal element if Ra = aR.

Proposition 1 ([3]). Let R be a Noetherian ring and s be an element
of R such that Ss := {si | i ∈ N} is a left denominator set of the ring
R and (si) = (s)i for all i > 1 (e.g., s is a normal element such that
ker(·sR) ⊆ ker(sR·)). Then Spec (R) = Spec(R, s) ⊔ Specs(R) where
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Spec(R, s) := {p ∈ Spec (R) | s ∈ p}, Specs(R) := {q ∈ Spec (R) | s /∈ q}
and

(a) the map Spec (R, s) → Spec (R/(s)), p 7→ p/(s), is a bijection with
the inverse q 7→ π−1(q) where π : R → R/(s), r 7→ r + (s),

(b) the map Specs(R) → Spec (Rs), p 7→ S−1
s p, is a bijection with the

inverse q 7→ σ−1(q) where σ : R → Rs := S−1
s R, r 7→ r

1 .
(c) For all p ∈ Spec (R, s) and q ∈ Specs(R), p 6⊆ q.

Since Z is a central element of A, by Proposition 1, we have the disjoint
union

Spec (A) = Spec (A/(Z)) ⊔ Spec (AZ). (5)

We identify the sets of prime ideals in (5) via the bijections given in
the statements (a) and (b) of Proposition 1. The factor algebra A/(Z)
is studied in [7] where a classification of prime ideals of A/(Z) is given,
see [7, Theorem 2.5]. By [7, Theorem 2.5], the set of prime ideals of A
containing the element Z contains precisely the ideals in (2) over (Z). So,
it remains to describe the set Spec(AZ), i.e., the set of prime ideals of A
that do not contain the central element Z.

For an element a ∈ AZ , we denote by (a)Z the ideal of AZ generated
by the element a. Clearly, (E)Z = (E′)Z . Let AZ,E be the localization of
the algebra AZ at the powers of the element E . Notice that E′ and E are
normal elements of AZ . Clearly, AZ,E′ = AZ,E . By Proposition 1,

Spec (AZ) = Spec (AZ/(E)Z) ⊔ Spec (AZ,E). (6)

Now, by (1), the factor algebra

AZ/(E)Z ≃ K[Z±1, H ′]⊗A1 = K[Z±1,H]⊗A1 (7)

is a tensor product of algebras. By (1), the localized algebra

AZ,E = K[Z±1]⊗K[H ′][E′±1;σ]⊗A1

= K[Z±1]⊗K[H ′][E±1;σ]⊗A1 (8)

is a tensor product of algebras where the algebras K[H ′][E±1;σ] and A1

are central simple algebras.

The algebra A is a Noetherian domain. Let Frac(A) be its skew field
of fractions. The next lemma describes the centres of the algebras A and
Frac (A).
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Lemma 1. Z(A) = K[Z] and Z(Frac(A)) = K(Z).

Proof. By (8), Z(AZ,E) = K[Z±1]. Since K[Z] ⊆ Z(A) ⊆ Z(AZ,E) ∩ A =
K[Z±1] ∩ A = K[Z], we have Z(A) = K[Z]. The second equality in the
lemma follows directly from (8).

Next, we represent the factor algebra A/(E) as an iterated Ore exten-
sion. It follows from this fact that (E)Z ∩ A = (E).

Lemma 2. A/(E) ≃ Λ[Y ; δ1][H ; δ2] is an iterated Ore extension over the
commutative domain Λ := K[E,X,Z]/(E) where the derivations δ1 and
δ2 are defined in the proof. In particular, (E) is a completely prime ideal
of A and (E)Z ∩ A = (E).

Proof. Notice that A =
⊕

i,j∈NK[E,X,Z]Y iHj . Since E is a normal

element of A, we have (E) = EA =
⊕

i,j∈N EK[E,X,Z]Y iHj . Hence,
A/(E) ≃ Λ[Y ; δ1][H ; δ2] where δ1 is the derivation of Λ defined by the rule

δ1(E) = −X, δ1(X) = −Z, δ1(Z) = 0

and δ2 is the derivation of the algebra Λ[Y ; δ1] defined by the rule δ2(E) =
2E, δ2(X) = X, δ2(Z) = 0 and δ2(Y ) = −Y .

Since E = EZ − 1
2X

2 is an irreducible polynomial in K[E,X,Z], the
factor algebra Λ = K[E,X,Z]/(E) is a domain. Then the iterated Ore
extension A/(E) is a domain, i.e., (E) is a completely prime ideal of A.
Now, let u ∈ (E)Z ∩ A. Then Ziu ∈ (E) for some i ∈ N. Since (E) is
a completely prime ideal of A and Z /∈ (E), we have u ∈ (E). Hence,
(E)Z ∩ A = (E).

Let Γ := K[E,Z]. Then Λ = Γ ⊕ ΓX is a free Γ-module of rank 2.
Clearly, XΛ = ΓEZ⊕ΓX (since E = EX− 1

2X
2) and ZiΛ = ZiΓ⊕ZiΓX

for all i ∈ N. So, in the algebra (see Lemma 2)

Ā := A/(E) = (Γ⊕ ΓX)[Y ; δ1][H; δ2]

it is very easy to decide whether an element belongs to the left ideal
XĀ or the left ideal ZiĀ. Clearly,

⋂
i>0 Z

iĀ = 0. So, for every nonzero
element a ∈ Ā, there is a unique natural number d = vZ(a) such that
a ∈ ZdĀ \ Zd+1Ā. The map Z· : Ā → Ā, b 7→ Zb is an injection.
Therefore, Z−v(a)a ∈ Ā and vZ(Z

−vZ(a)a) = 0. The element

ared := Z−vZ(a)a (9)
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is called the reduced form of a. Since E = EZ− 1
2X

2, we have the equality
of ideals (E , Z) = (Z,X2) in A. By Lemma 2,

Ã := A/(E , Z) = A/(Z,X2) ≃
K[E,X]

X2K[E,X]
[Y ; δ1][H; δ2].

The element X ∈ Ã is a normal element: XY = Y X and XH = (H−1)X
in Ã. Clearly, X2 = 0, (X)2 = (X2) = 0 in Ã and

Ã/(X) ≃ A/(X) ≃ K[E][Y ; δ1][H; δ2]

is a domain. Therefore, the set of left zero divisors of Ã is equal to the
set of right zero divisors of Ã and is equal to the ideal (X) of Ã since
the left/right Ã-module (X) is isomorphic to Ã. The set C

Ã
of regular

elements (i.e., nonzero divisors) of Ã is equal to Ã \ (X). The algebra Ã
is an epimorphic image of Ā.

The next lemma is used in the proof of Theorem 3.

Lemma 3. H2 ≡ ΦZ mod (E) where Φ := H2Z+2HXY +2EY 2−XY .

Proof. Using the defining relations of A,

H2 = (HZ +XY )2 = H2Z2 + 2HXY Z + (XY )2

= H2Z2 + 2HXY Z +X2Y 2 −XY Z

= (H2Z2 + 2HXY Z + 2EY 2Z −XY Z)− 2EY 2Z +X2Y 2

= ΦZ − 2EY 2,

and the result follows.

The next theorem is a key result in finding explicit generators for
prime ideals of the algebra A. In general, as a rule, it is not possible to
find explicit generators for a prime ideal of the form A ∩ P where P is a
prime ideal of a localization S−1A of A.

Theorem 3. Let f = a0(Z) + a1(Z)H + a2(Z)H
2 + · · · + an(Z)H

n ∈
K[Z,H] \ (K ∪KZ) where all ai(Z) ∈ K[Z] and a0(Z) 6= 0. Then

1) A∩ (E , f)Z = (E , f) iff a0(0) 6= 0 iff f /∈ (Z,H) where (Z,H) is the
maximal ideal of the polynomial algebra K[Z,H] generated by the
elements Z and H.

2) Suppose, in addition, that a0(0) = 0. Let d = vZ(f̄), f̄red = Z−df̄
and f̃red is the image of the element f̄red under the epimorphism
Ā → Ã.
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(a) If f̃red /∈ (X) then A ∩ (E , f)Z = (E , f̄red).
(b) If f̃red ∈ (X) then we have A∩(E , f)Z = (E , f̄red, Z

−1f̄redX) =
(E , f̄red) + Z−1f̄redXA.

Proof. 1. The equality A ∩ (E , f)Z = (E , f) holds iff the image f̃ ∈ Ã of
the element f under the epimorphism A → Ā → Ã is a nonzero divisor,
i.e., f̃ /∈ (X). By Lemma 3, f̄ = a0(0) + a1(0)XY (since H = HZ +XY ).
So, f̃ /∈ (X) iff a0(0) 6= 0.

2. Clearly, (E , f)Z = (E , f̄red)Z and f̃red 6= 0 in Ã since vZ(f̄) = 0.
(a) If f̃red /∈ (X) then A ∩ (E , f)Z = A ∩ (E , f̄red)Z = (E , f̄red), by

statement 1.
(b) If f̃red ∈ (X) then f̃red = αX for some nonzero element α ∈ A/(X)

since
ÃX = A/(X) ·X

(as (X)2 = 0 in Ã). The element α is unique since the left A/(X)-module
A/(X) ·X is free of rank 1. If a ∈ A∩(E , f̄red)Z \(E , f̄red) then the element
ā = a+ (E) ∈ Ā is a product ā = Z−if̄redb for some b ∈ Ā with vZ(b) = 0
where i = vZ(f̄redb) > 1. We may assume that vZ(ā) = 0. The image b̃ of
the element b in Ã is a nonzero one since vZ(b) = 0. Since f̃redb̃ = 0 in Ã
and f̃red 6= 0, the element b̃ ∈ Ã is a zero divisor, i.e., b̃ ∈ XÃ. Therefore,
b̃ = Xβ for a nonzero element β ∈ A/(X) since X · Ã = X · A/(X) (as
(X)2 = 0 in Ã). Now,

Ziā = f̄redb ≡ f̃redb̃ ≡ αX ·Xβ ≡ α2EZβ ≡ 0 mod (ZĀ).

Since the image of the element α2Eβ in the domain A/(X) is a nonzero
one, we must have i = 1 (since vZ(ā) = 0 and vZ(Z

ia) = i+ vZ(a) = i).
Therefore,

ā = Z−1f̄redb ∈ Z−1f̄red(XĀ+ ZĀ) ⊆ Z−1f̄redXĀ+ f̄redĀ.

This means that A∩ (E , f)Z = A∩ (E , f̄red)Z = (E , f̄red) +Z−1f̄redXĀ =
(E , f̄red, Z

−1f̄redX).

Example. Let f = H. Then p0 = (f) ∈ P0 and A ∩ (E , p0)Z =
(E ,H, HX + 2EY ): Clearly, p0 ∈ P0. Then f̄red = f̄ = H = HZ +XY
and Z−1f̄redX = Z−1(ZHX +X2Y ) = HX + Z−12EZY = HX + 2EY .
Now, the result follows from Theorem 1.

Example. Let f = Z+ZH+H2. Then p0 = (f) ∈ P0 and A∩(E , p0)Z =
(E , 1 +H + 2EY 2): Clearly, p0 ∈ P0 and f̄ = Z + ZH +X2Y 2 = Z(1 +
H+ 2EY 2). Hence, f̄red = 1 +H+ 2EY 2. Now, the result follows from
Theorem 1.
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Example. Let f = Z2+ZH+H2. Then p0 = (f) ∈ P0 and A∩(E , p0)Z =
(E , Z +H+ 2EY 2): Clearly, p0 ∈ P0 and f̄ = Z2 +ZH+X2Y 2 = Z(Z +
H+2EY 2). Hence, f̄red = Z+H+2EY 2. Since f̃red = XY +2EY 2 /∈ (X),
we have the result, by Theorem 1.

Example. Let f = Z2 + H3. Then p0 = (f) ∈ P0 and A ∩ (E , p0)Z =
(E , Z + 2EXY, 1 + 4E2Y ): Clearly, p0 ∈ P0 and f̄ = Z2 + X3Y 3 =
Z2 + 2ZEXY . Then f̄red = Z + 2EXY . Since f̃red = 2EXY ∈ (X),
Z−1f̄redX = 1 + Z−12EX2Y = 1 + Z−12E · 2ZEY = 1 + 4E2Y . Now,
the result follows from Theorem 1.

Proof of Theorem 1. By (5) and (6), the set Spec (A) is a disjoint
union of the sets Spec (A/(Z)), Spec (AZ/(E)Z) and Spec (AZ,E). Recall
that we view these sets as subsets of Spec (A). We have seen above
that Spec (A/(Z)) contains precisely the prime ideals over (Z) in the
diagram (2).

(i) The set (as a subset of Spec (A)) Spec (AZ,E) is equal to {0} ⊔
{(q) | q ∈ Q} where Q = Max (K[Z])\{(Z)}: By (8), each nonzero element
of Spec (AZ,E) is equal to A ∩ (q)Z,E for some q ∈ Q. We have to show
that A ∩ (q)Z,E = qA. The ideal (q) = qA is a completely prime ideal of
A since, by (1),

A/Aq ≃ AZ/AZq ≃ K[Z±1]/(q)Z ⊗K[H ′][E ;σ]⊗A1, (10)

a domain. Hence, (q) = A ∩ (q)Z . By (10), A ∩ (q)Z,E = A ∩ (q)Z , and so
(q) = A ∩ (q)Z,E , as required.

Let us describe the set Spec (AZ/(E)Z). By (7), we see that the set
Spec (AZ/(E)Z) (as a subset of Spec (A)) consists of the elements: (E) =
A ∩ (E)Z (by Lemma 2), A ∩AZ(E ,m) where m ∈ M, and A ∩AZ(E , p)
where p is a prime, height 1 ideal of K[Z,H] such that p 6= (Z). The last
set of prime ideals is equal to the set {A ∩ (E , p0)Z , A ∩ (E , p1)Z | p0 ∈
P0, p1 ∈ P1}.

(ii) For all m ∈ M, (E ,m) = A ∩ (E ,m)Z is a maximal (completely
prime) ideal of A: The element Z is a unit of the field Fm := K[Z,H]/(m).
Therefore, by (1),

A/(E ,m) ≃ AZ/(E ,m)Z ≃ Fm ⊗A1, (11)

a simple domain. Hence, the ideal (E ,m) = A ∩ (E ,m)Z is a maximal
(completely prime) ideal of A.
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(iii) For every q ∈ Q, the ideal (E , q) = A∩ (E , q)Z of A is completely
prime: The element Z is a unit of the field Lq := K[Z]/q. By (1),

A/(E , q) ≃ AZ/(E , q)Z ≃ Lq ⊗K[H ′]⊗A1, (12)

a domain. Hence, the ideal (E , q) = A ∩ (E , q)Z is a completely prime
ideal.

(iv) For all p1 ∈ P1, A ∩ (E , p1)Z = (E , p1): This follows form Theo-
rem 3.(1).

(v) Let p0 ∈ P0, then (p0) = (f) for some irreducible polynomial
f ∈ K[Z,H] \ (K ∪KZ) as in Theorem 3 with a0(0) = 0. Then (3) holds:
This follow from Theorem 3.(2).

So, we have proved that the diagram (2) contains precisely all the
prime ideals of the algebra A.

(vi) All the containments between primes are given in (2): Repeating
twice Proposition 1.(c), we see that possible inclusions between prime
ideals P1, P2 and P3 of the three sets Spec (A/(Z)), Spec (AZ/(E)Z) and
Spec (AZ,E), respectively, can only possibly be P1 ⊃ P2, P1 ⊃ P3 or
P2 ⊃ P3. It is easy to see that we have the inclusions between prime ideals
as in the diagram (2) (see also below for details). Clearly, the only possible
inclusions P1 ⊃ P3 and P2 ⊃ P3 are as in the diagram (2).

It remains to sort out inclusions of the type P1 ⊃ P2. By the statement
(ii), P2 is not equal to the maximal ideal (E ,m) where m ∈ M. By
the very definition the elements Z, E and H belong to the ideal (X).
Hence, (X) ⊇ (E). It remains to consider the case where P2 is of type
A∩ (E , p)Z where p ∈ P0 ∪P1. Clearly, (X) ⊇ A∩ (E , p0)Z for all p0 ∈ P0

(since Z, E ,H ∈ (X)) and P1 6⊇ A ∩ (E , p1) for all P1 = (Y,E, p) where
p ∈ Max (K[H]) and all p1 ∈ P1 since P1 ⊇ (X) and Z,H ∈ (X) (and
so the maximal ideal of K[Z,H] generated by the elements Z and H is
contained in (X) and, therefore, in all P1 = (Y,E, p); clearly, the ideal
of K[Z,H] generated by Z, H and P1 is (1)). So, all inclusions between
primes are as in (2).

As a corollary of Theorem 1 we obtain a classification of maximal
ideals of A.

Corollary 1. The set of maximal ideals of A is equal to {(X, q′) | q′ ∈
Q′} ⊔ {(Y,E, p) | p ∈ Max (K[H ])} ⊔ {(E ,m) |m ∈ M} where Q′ and M
are defined in Theorem 1

Proof. The corollary follows from Theorem 1.
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Corollary 2. Not every nonzero prime ideal of the algebra A meets the
centre.

Proof. The statement follows from (2).

The set Prim(A) of primitive ideals of the algebra A. An ideal
of a ring R is called a primitive ideal if it is the annihilator of a simple
left R-module. The set of primitive ideals of R is denoted by Prim (R). A
prime ideal P of a ring R is said to be locally closed if the set {P} is locally
closed in the topological space Spec (R) where Spec (R) is equipped with
Zariski–Jacobson topology [8, II.1.1]. A prime ideal P of a Noetherian

K-algebra R is said to be rational if the field Z
(
Frac(R/P )

)
is algebraic

over K where Frac(R/P ) is the left (right) quotient ring of the Noetherian
prime algebra R/P . We say that the Dixmier–Moeglin equivalence holds
for a Noetherian K-algebra A if for each prime ideal P of A we have the
following equivalences:

P is locally closed ⇐⇒ P is primitive ⇐⇒ P is rational.

The next corollary describes the set of primitive ideals Prim (A) of
the algebra A.

Corollary 3. Prim (A) = Max (A) ⊔ {(Y ), (E), (Z)} ⊔ {(q) | q ∈ Q}.

Proof. Since A is a universal enveloping algebra of a finite dimensional
Lie algebra it satisfies the Dixmier–Moeglin equivalence. By [8, Lemma
II.7.7], a prime ideal P in a ring R is locally closed iff the intersection of all
prime ideals properly containing P is also an ideal properly containing P .
Clearly, all the maxial ideals are primitive ideals. By (2), the set of locally
closed prime ideals is Max (A) ⊔ {(Y ), (E), (Z)} ⊔ {(q) | q ∈ Q}. Then
the corollary follows from the Dixmier–Moeglin equivalence for A.

The semicentre of A. Recall that A = U(a) is the enveloping algebra
of the solvable Lie algebra a. For each λ ∈ HomK(a,K), let Aλ := {a ∈
A | adx(a) = λ(x)a, ∀x ∈ a}. Any nonzero element a ∈ Aλ is called a
semi-invariant with weight λ. The sum of the Aλ is direct and is denoted
by Sz(A) which contains the centre of A. Sz(A) is called the semicentre
of A, which is a commutative domain, (see [15, Corollary 4.6]).

Proposition 2. Sz(A) = K[Z, E ].
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Proof. It is clear that Z and E are semi-invariants of the algebra A. Since
Z(Frac(A)) = K(Z), by [10, Proposition 16.(c)], Sz(A) is a polynomial
algebra over K. Since ind (a) = 1 where ind (a) is the index of the Lie

algebra a and deg(Z) + deg(E) = 3 = 1
2

(
dim a+ ind (a)

)
, by [10, Lemma

17] and [16, Theorem 1.1], we have Sz(A) = K[Z, E ], as required.

The factor algebra A/(Z − λ). For λ ∈ K∗, let A(λ) := A/(Z − λ).

Lemma 4. A(λ) ≃ K[Hλ][Eλ;σ] ⊗ A1 where Hλ = H + λ−1XY − 1
2 ,

Eλ = E − 1
2λ

−1X2, σ is the automorphism of the algebra K[Hλ] defined
by σ(Hλ) = Hλ − 2 and A1 = K〈λ−1X,Y 〉 is the first Weyl algebra.

Proof. Notice that the element Z + (Z − λ) = λ + (Z − λ) ∈ A(λ) is
an invertible element, so A(λ) ≃ AZ/(Z − λ)Z . Then the lemma follows
from (1).

Whittaker A(λ)-modules. Let U+ = K[H][E;σ] where σ(H) =
H − 2. Then U+ is the ‘positive’ part of the enveloping algebra U = U(sl2).

Lemma 5. For α ∈ K, let M = U+/U+(E − α) be the left U+-module.
Then M is a simple module iff α 6= 0.

For µ, δ ∈ K, let

W (µ, δ) := A(λ)/A(λ)(E − µ,X − δ),

a left A(λ)-module. We call W (µ, δ) the Whittaker A(λ)-module of type
(µ, δ). The following proposition is a simplicity criterion of the module
W (µ, δ).

Proposition 3. W (µ, δ) is a simple A(λ)-module iff δ2 − 2λµ 6= 0.

Proof. Let U ′+ = K[Hλ][Eλ;σ] where σ(Hλ) = Hλ − 2. By Lemma 4,
A(λ) = U ′+ ⊗A1. Then

W (µ, δ) = A(λ)/A(λ)(Eλ +
1

2
λ−1X2 − µ,X − δ)

= A(λ)/A(λ)(Eλ +
1

2
λ−1δ2 − µ,X − δ)

≃ U ′+/U ′+(Eλ +
1

2
λ−1δ2 − µ)⊗A1/A1(X − δ).

Let W ′ := U ′+/U ′+(Eλ + 1
2λ

−1δ2 − µ). Notice that A1/A1(X − δ) is a

simple A1-module with End
(
A1/A1(X − δ)

)
= K. Then W (µ, δ) is a

simple A(λ)-module iff W ′ is simple U ′+-module iff 1
2λ

−1δ2 − µ 6= 0, i.e.
δ2 − 2λµ 6= 0, by Lemma 5.
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2. Prime ideals of the universal enveloping

algebra U(gl
2
)

In this section, we describe the prime, maximal, completely prime and
primitive ideals of the enveloping algebra U(gl2) (Theorem 2, Corollary 4
and Corollary 5). Recall that the Lie algebra gl2 is the direct product of
the Lie algebra sl2 and a 1-dimensional Lie algebra KZ. So, Z is a central
element of the algebra U := U(gl2). Clearly, U = U(sl2)⊗K[Z] is a tensor
product of algebras. Hence, Z(U) = Z(U(sl2))⊗K[Z] = K[∆, Z] where
∆ = 4FE +H2 + 2H is the Casimire element of U(sl2). The algebra

U = K[Z,∆, H][E,F ;σ, a =
1

4
(∆−H2 − 2H)] (13)

is a generalized Weyl algebra (GWA) where σ(Z) = Z, σ(∆) = ∆ and
σ(H) = H − 2, see [1, 2] for the definition of GWAs and classification of
ideals of GWAs. Clearly, U is a free module over its centre K[Z,∆].

Proof of Theorem 2. Let Z = K[Z,∆].
(i) For each prime ideal p of Z, the ideal (p) = pU of U is a completely

prime ideal : The statement (i) follows from the fact that the factor algebra

U/pU ≃ Z/p[H][E,F ;σ, a] (14)

is a GWA which is a domain.
(ii) For all non-zero prime ideals P of U , P ∩ Z 6= 0: The localization

of the algebra U at the set Z \ {0} is the simple generalized Weyl algebra
K(Z,∆)[H][E,F ;σ, a], since the element a is irreducible in the Dedekind
domain K(Z,∆)[H] and the group 〈σ〉 acts freely on Max (K(Z,∆)[H]),
see the description of all the ideals in [2]. Now, the statement (ii) is
obvious.

Till the end of the proof of the theorem P is a nonzero prime ideal of
U . Then P ′ := Z ∩ P ∈ Spec (Z). Let T := K[Z] \ {0}. Then

T−1U = K(Z)⊗ U = K(Z)[∆, H][E,F ;σ, a]

is the universal enveloping algebra of sl2 over the field K(Z). Then

Spec (U) =
⊔

q∈Max (K[Z])

Spec (U/qU) ⊔ Spec (T−1U).

Let Lq := K[Z]/q, a finite field extension of K. For every q ∈ Max (K[Z]),
the algebra

U/qU = Lq ⊗ U = Lq[∆, H][E,F ;σ, a]

is a GWA. Using the classification of the ideals of the algebra U in [2],
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(a) the set Spec (U/qU), as a part of Spec (U), is identified with the set

{(q), (∆− λn, q), (In, q), (m) |n ∈ N+,m ∈ Max (Z) and q ⊆ m},

where n ∈ N+, λn := n2 − 1, and In is the annihilator of the simple
n-dimensional U(sl2)-module,

(b) the set Spec (T−1U), as a part of Spec (U), is identified with the set

{0, (∆− λn), (In), (p), (m) |n ∈ N+, p ∈ H1 and m ∈ H2}.

Hence, the set of prime ideals is as in (4). The inclusions in (4) are
obvious.

The next corollary classifies all the maximal and completely prime
ideals of U .

Corollary 4. 1) Max (U) = {(In, q) |n ∈ N+, q ∈ Max (K[Z])} ⊔
{(m) |m ∈ H2} where H2 = Max (K[Z,∆]) \ {(∆ − λn, q) |n ∈
N+, q ∈ Max (K[Z])}.

2) The set of completely prime ideals of U is equal to Spec (U) \
{(In), (In, q) |n > 2; q ∈ Max (K[Z])}.

Proof. 1. Statement 1 follows from (4).

2. For all n ∈ N+ and q ∈ Max (K[Z]), U/(In) = K[Z] ⊗ U/In ≃
K[Z]⊗Mn(K) and

U/(In, q) ≃ K[Z]/q⊗ U/In ≃ K[Z]/q⊗Mn(K).

For all P ∈ Spec (U) \ {(In), (In, q) |n > 2, q ∈ Max (K[Z])}, U/P ≃
Z/P ′[H][E,F ;σ, a] is a GWA which is a domain. Now statement 2 is
obvious.

The next corollary describes the set of primitive ideals of U .

Corollary 5. The set of primitive ideals of U is equal to Max (U) ⊔
{(∆− λn, q) |n ∈ N+, q ∈ Max (K[Z])}.

Proof. The maximal ideals are prime. For all n∈ N+ and q ∈ Max(K[Z]),
the factor algebra U/(∆ − λn, q) ≃ K[Z]/q[H][E,F ;σ, a] is a GWA for
which zero ideal is primitive. Let P be a prime ideal of U which does not
belong to the union in the corollary, then the centre of the algebra U/P
contains a transcendental element over K. Hence, the ideal P cannot be
primitive.
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