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Approximating length-based invariants

in atomic Puiseux monoids

H. Polo

Communicated by V. Mazorchuk

Abstract. A numerical monoid is a coőnite additive sub-

monoid of the nonnegative integers, while a Puiseux monoid is an

additive submonoid of the nonnegative cone of the rational numbers.

Using that a Puiseux monoid is an increasing union of copies of

numerical monoids, we prove that some of the factorization invari-

ants of these two classes of monoids are related through a limiting

process. This allows us to extend results from numerical to Puiseux

monoids. We illustrate the versatility of this technique by recovering

various known results about Puiseux monoids.

Introduction

A monoid M is atomic provided that every nonunit element can be
represented as a product of őnitely many irreducibles. If for each nonunit
element of M such a representation is unique, up to permutation, then M
is called a unique factorization monoid (UFM). For example, the positive
integers with the standard product is a UFM by the Fundamental Theorem
of Arithmetic. Factorization theory studies how far is an atomic monoid
from being a UFM, and several algebraic invariants have been introduced
to quantify this deviation (see [15] and references therein).

Numerical monoids, that is, coőnite additive submonoids of the non-
negative integers, have been signiőcantly investigated in the context of
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factorization theory; much of the recent literature has focused on the com-
putational aspects of their factorization invariants (see, for example, [2]).
Since numerical monoids are őnitely generated, calculating factorization
invariants in this setting is highly tractable [10]. This motivated the imple-
mentation of a GAP [13] package, numericalsgps [9], to assist researchers
in the area. Thus, numerical monoids constitute an ideal framework to
study factorization invariants.

Additive submonoids of the nonnegative cone of Q are natural gen-
eralizations of numerical monoids. A systematic investigation of these
monoids started just a few years ago in [16] and, consequently, we do not
know much about their factorization invariants. The crux of this article is
to study the set of lengths (and related factorization invariants) of Puiseux
monoids through their representation as increasing unions of copies of
numerical monoids.

1. Preliminary

In this section, we introduce the concepts and notation necessary to
follow our exposition. General references for factorization theory can be
found in [14].

Throughout this article, we let N and N0 denote the set of positive and
nonnegative integers, respectively, while we denote by R the set R ∪ {∞}.
For nonnegative integers m and n, let Jm,nK be the set of integers between
m and n, i.e.,

Jm,nK := {k ∈ N0 | m ⩽ k ⩽ n}.

Given a subset S of the rational numbers, we let S⩾t denote the set of
nonnegative elements of S that are greater than or equal to t. In the same
way we deőne S>t and S<t. For a positive rational number q, the relatively
prime positive integers n and d for which q = n

d
are denoted by n(q) and

d(q), respectively.

A monoid M is reduced if the only invertible element of M is the
identity. From now on we assume that all monoids here are commutative,
cancellative, and reduced. Let M be a monoid, which is written additively,
and set M• := M \ {0}. An element x ∈ M• is an atom provided
that x cannot be expressed as the sum of two elements of M•. We let
A(M) represent the set of atoms of M . In addition, we say that an atom
a′ ∈ A(M) is stable if the set {a ∈ A(M) | n(a) = n(a′)} has inőnite
cardinality. Now for a subset S ⊆ M , we denote by ⟨S⟩ the minimal
submonoid of M including S, and if M = ⟨S⟩ then it is said that S is
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a generating set of M . The monoid M is atomic with the proviso that
M = ⟨A(M)⟩.

Deőnition 1.1. A numerical monoid is an additive submonoid of N0

whose complement in N0 is őnite.

Numerical monoids are őnitely generated and, therefore, atomic with
őnitely many atoms. Moreover, it is well known that given a subset S of N,
the submonoid ⟨S⟩ of N0 is a numerical monoid if and only if gcd(S) = 1.
For an introduction to numerical monoids and for their many applications,
we refer the reader to [11] and [1], respectively.

Deőnition 1.2. A Puiseux monoid is an additive submonoid of Q⩾0.

Puiseux monoids are natural generalizations of numerical monoids.
However, Puiseux monoids have a complex atomic structure: while some
of them have no atoms at all (e.g., ⟨1/2n | n ∈ N0⟩), some others have a
dense set of atoms in a real interval (e.g., ⟨[1, 2) ∩Q⟩). Unlike numerical
monoids, Puiseux monoids are not necessarily őnitely generated. Readers
can őnd a survey about the atomic properties of Puiseux monoids in [5].

The factorization monoid of M , denoted by Z(M), is the free commu-
tative monoid on A(M). The elements of Z(M) are called factorizations,
and if z = a1 + · · · + an is an element of Z(M) for a1, . . . , an ∈ A(M)
then it is said that |z| := n is the length of z. The unique monoid homo-
morphism π : Z(M) → M satisfying that π(a) = a for all a ∈ A(M) is
called the factorization homomorphism of M . For all x ∈ M , there are
two important sets associated with x:

ZM (x) := π−1(x) ⊆ Z(M) and LM (x) := {|z| : z ∈ ZM (x)},

which are called the set of factorizations of x and the set of lengths of
x, respectively; we omit subscripts when M is clear from the context. In
addition, the collection L(M) := {L(x) | x ∈ M} is called the system of

sets of lengths of M . The system of sets of lengths of Puiseux monoids
was őrst studied in [17]. See [12] for a survey about sets of lengths and
the role they play in factorization theory.

We now introduce unions of sets of lengths and local elasticities. The
elasticity of a monoid M is an invariant introduced by Valenza [24] in
the context of algebraic number theory, and it is deőned by ρ(M) :=

sup{ρM (x) | x ∈ M}, where ρM (0) := 1 and ρM (x) := sup LM (x)
inf LM (x) if x ≠ 0.

The monoid M has accepted elasticity provided that there exists x ∈ M
such that ρ(x) = ρ(M). The elasticity of Puiseux monoids has been studied
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in [18,21]. Now for a positive integer n, we denote by Un(M) the set of
positive integers m for which there exist a1, . . . , an, a

′
1, . . . , a

′
m ∈ A(M)

such that a1+· · ·+an = a′1+· · ·+a′m. It is said that Un(M) is the union of

sets of lengths of M containing n. It is also said that ρn(M) := sup Un(M)
is the nth local elasticity of M . Unions of sets of lengths were introduced
in [8].

A factorization invariant that is closely related to the set of lengths is
the set of distances or delta set. For a nonzero element x ∈ M it is said
that d ∈ N is a distance of x on condition that LM (x)∩ [l, l+d] = {l, l+d}
for some l ∈ LM (x). The set of distances of x, denoted by ∆M (x), is the
set consisting of all the distances of x. In addition, the set

∆(M) :=
⋃

x∈M

∆M (x)

is called the set of distances of M . Although the set of distances of
numerical monoids has received some attention lately (see, for instance, [3,
4]), the set of distances of Puiseux monoids does not seem to be investigated
yet.

2. Set of lengths and elasticity

An atomic Puiseux monoid M can be represented as an increasing
union of copies of numerical monoids: the monoid M contains a minimal
set of generators, namely A(M), by [14, Proposition 1.1.7]. Consequently,
given an ordering a1, a2, . . . of the elements of A(M), we have the sequence
(Ni)i⩾1 with Ni = ⟨a1, . . . , ai⟩ for all i ∈ N. Clearly, M =

⋃

i⩾1Ni and
Ni is isomorphic to a numerical monoid for each i ∈ N by [19, Theorem
4.2]. This representation has been used to manufacture Puiseux monoids
satisfying certain properties. Consider the following examples.

Example 2.1. In [21, Section 6] the authors constructed a bifurcus
Puiseux monoid, that is, a Puiseux monoid M satisfying that 2 ∈ L(x) for
all x ∈ M• \ A(M). To achieve this, take a collection of prime numbers
{pj,n | j,n ⩾ 1} such that pj,n ⩾ max(13, 2j) for all j, n ∈ N and, recur-
sively, deőne an increasing sequence of őnitely generated Puiseux monoids
in the following manner: take N0 = ⟨1/2, 1/3⟩, and assuming that Nj−1

was already deőned for some j ∈ N, let xj,1, xj,2, . . . be the elements of
Nj−1 with no length 2 factorization. Then take

Nj = Nj−1 +

〈

xj,n
2

−
1

pj,n
,
xj,n
2

+
1

pj,n

∣

∣

∣

∣

n ⩾ 1

〉

.
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Observe that Nj provides a length 2 factorization for the elements of Nj−1

that did not have one before. Now take M =
⋃

i⩾0Ni. The monoid M is
bifurcus; the reader can check the details of the proof in [21, Theorem
6.2]. One of the key features of this construction is that A(Ni) ⊆ A(Ni+1)
for every i ∈ N0.

Example 2.2. In [18] the author proved that there exists a Puiseux
monoid without 0 as a limit point that has no őnite local elasticities.
With this purpose, she pieces together a Puiseux monoid M by creating a
strictly increasing sequence of őnite subsets of positive rationals (Ai)i⩾1

satisfying the following three conditions:
• d(Ai) consists of odd prime numbers,
• d(maxAi) = max d(Ai), and
• Ai minimally generates the Puiseux monoid Ni = ⟨Ai⟩.

Then the author takes M =
⋃

i⩾1Ni, where A(Ni) ⊆ A(Ni+1) ⊆ A(M)
and prove that (ρ2(Ni))i⩾1 is an increasing sequence that does not stabilize.
Since A(Ni) ⊆ A(M) for each i ∈ N, it follows that ρ2(M) = ∞. For
details see [18, Proposition 3.6].

This representation of Puiseux monoids can help us not only to provide
sophisticated examples but also to study some factorization invariants in
these monoids.

Deőnition 2.3. Let (Mi)i⩾1 be an increasing sequence of atomic Puiseux
monoids. We say that (Mi)i⩾1 is an approximation of the Puiseux monoid
M =

⋃

i⩾1Mi provided that A(Mi) ⊆ A(Mi+1) for each i ∈ N. If Mi

is őnitely generated for every i ∈ N then we call (Mi)i⩾1 a numerical

approximation of M .

Remark 2.4. Given an approximation (Mi)i⩾1 of a Puiseux monoid M ,
it is not hard to see that M is atomic with A(M) =

⋃

i⩾1A(Mi).

We prove that, given an approximation of a Puiseux monoid, we can
compute its sets of lengths and related factorization invariants by łpassing
to the limitž in a sense that will become clear soon. Using this approach
we can provide alternative proofs to some known results about the sets of
lengths of Puiseux monoids.

Theorem 2.5. Let M be a Puiseux monoid with an approximation
(Mi)i⩾1, and let x be an element of M . Then, for some j ∈ N, the following
statements hold:

1) ZM (x) =
⋃

i⩾j ZMi
(x) and Z(M) =

⋃

i⩾1 Z(Mi).
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2) LM (x) =
⋃

i⩾j LMi
(x).

3) ρM (x) = limi ρMi+j
(x) and ρ(M) = limi ρ(Mi).

4) ρm(M) = limi ρm(Mi) for each m ∈ N.

Proof. Let j, r, s ∈ N such that x ∈ Mj and j ⩽ r ⩽ s. Since A(Mr) ⊆
A(Ms), the inclusion ZMr(x) ⊆ ZMs(x) holds. Now if z ∈ ZMi

(x) for
some i ∈ N then z ∈ ZM (x) by Remark 2.4. Conversely, if z = a1 + · · ·+
an ∈ ZM (x) with a1, . . . , an ∈ A(M) then there exists k ∈ N⩾j such
that ai ∈ A(Mk) for each i ∈ J1, nK. Consequently, z ∈ ZMk

(x). Hence
ZM (x) =

⋃

i⩾j ZMi
(x). For all y ∈ M , let j(y) ∈ N such that y ∈ Mj(y).

Thus,

Z(M) =
⋃

y∈M

ZM (y) =
⋃

y∈M

⋃

i⩾j(y)

ZMi
(y) =

⋃

i⩾1

Z(Mi),

from which (1) follows. It is easy to see that (2) readily follows from (1).

If x = 0 then the őrst part of (3) clearly follows, so there is no loss in
assuming that x ≠ 0. Since LMr(x) ⊆ LMs(x) ⊆ LM (x), the inequalities
ρMr(x) ⩽ ρMs(x) ⩽ ρM (x) hold, which implies that limi ρMi+j

(x) exists

(in R) and limi ρMi+j
(x) ⩽ ρM (x). For the reverse inequality, note that if

LM (x) is unbounded then ρM (x) = ∞. In this case, for each n ∈ N, there
exists z = a1 + · · ·+ al ∈ ZM (x) with a1, . . . , al ∈ A(M) satisfying that
l > n. By virtue of (2), there exists k ∈ N⩾j such that l ∈ LMk

(x). Since
LMi+j

(x) ⊆ LMi+j+1(x) for each i ∈ N, we have limi ρMi+j
(x) = ∞. On

the other hand, if LM (x) is bounded then, for some h ∈ N⩾j , we have

ρM (x) =
sup LM (x)

inf LM (x)
=

sup
⋃

i⩾j LMi
(x)

inf
⋃

i⩾j LMi
(x)

=
max LMh

(x)

min LMh
(x)

= ρMh
(x) ⩽ lim

i→∞
ρMi+j

(x).

Next we prove that ρ(M) = limi ρ(Mi). We already established that,
for each i ∈ N, the inequality ρMi

(y) ⩽ ρMi+1(y) holds for all y ∈ Mi.
Consequently, ρ(Mi) ⩽ ρ(Mi+1) for each i ∈ N which, in turn, implies that
limi ρ(Mi) exists (in R). By deőnition, ρ(M) ⩾ ρM (y) for all y ∈ M . Now
őx j ∈ N, and let y′ ∈ Mj . Since ρM (y′) ⩾ ρMj

(y′), the inequality ρ(M) ⩾
ρMj

(y′) holds for all y′ ∈ Mj , which implies that ρ(M) ⩾ ρ(Mj). This,
in turn, implies that ρ(M) ⩾ limi ρ(Mi). To prove the reverse inequality,
observe that, for all y ∈ M , we have ρM (y) = limi ρMi+j(y)

(y) ⩽ limi ρ(Mi).
This implies that ρ(M) ⩽ limi ρ(Mi), and (3) holds.
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For all i ∈ N, the inclusions Um(Mi) ⊆ Um(Mi+1) ⊆ Um(M) hold.
Consequently, sup Um(Mi) ⩽ sup Um(Mi+1) ⩽ sup Um(M) which, in
turn, implies that limi ρm(Mi) exists (in R) and limi ρm(Mi) ⩽ ρm(M).
Now if Um(M) is unbounded then for each N ∈ N there exist x ∈ M
and z, z′ ∈ ZM (x) such that |z| > N and |z′| = m. Since there exists
j ∈ N such that z, z′ ∈ ZMj

(x), the inequality ρm(Mj) > N holds. This
implies that limi ρm(Mi) = ∞. Then there is no loss in assuming that
k := sup Um(M) is a positive integer. Let x ∈ M such that |z| = k and
|z′| = m for some z, z′ ∈ ZM (x). Since z, z′ ∈ ZMj

(x) for some j ∈ N, our
argument follows.

Corollary 2.6. [21, Theorem 3.2] Let M be an atomic Puiseux monoid.

If 0 is a limit point of M• then ρ(M) = ∞. Otherwise, ρ(M) = supA(M)
inf A(M) .

Proof. Let (Ni)i⩾1 be a numerical approximation of M . If 0 is a limit
point of M• then, for each n ∈ N, there exists j ∈ N such that ρ(Nj) > n
by [7, Theorem 2.1], which implies that limi ρ(Ni) = ∞ since (ρ(Ni))i⩾1

is nondecreasing. Now if 0 is not a limit point of M• then

ρ(M) = lim
i→∞

ρ(Ni) = lim
i→∞

maxA(Ni)

minA(Ni)
=

supA(M)

inf A(M)
,

where the second equality follows from [7, Theorem 2.1].

Corollary 2.7. [21, Theorem 3.4] Let M be an atomic Puiseux monoid
satisfying that ρ(M) < ∞. Then the elasticity of M is accepted if and
only if A(M) has both a maximum and a minimum.

Proof. Let (Ni)i⩾1 be a numerical approximation of M . To tackle the
direct implication, note that for some x ∈ M , j ∈ N, and L, l ∈ LM (x) we
have

supA(M)

inf A(M)
= ρ(M) = ρM (x) =

L

l
= ρNj

(x) =
maxA(Nj)

minA(Nj)
,

where the last equality follow from [7, Theorem 2.1]. The reverse implica-
tion follows from [14, Theorem 3.1.4] and the fact that, for some j ∈ N,
the monoid Nj contains the minimum and maximum of A(M).

Corollary 2.8. [18, Proposition 3.1] If an atomic Puiseux monoid M
contains a stable atom a ∈ A(M) then ρk(M) is inőnite for all sufficiently
large k.
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Proof. Let (Ni)i⩾1 be a numerical approximation of M , and suppose
without loss of generality that a ∈ N1. For each j ∈ N, there exists
k ∈ N such that the inequality ρd(a)(Nj+k) > ρd(a)(Nj) holds since Nj is
őnitely generated. Therefore, limi ρd(a)(Ni) = ∞. By Theorem 2.5, we have
ρd(a)(M) = ∞. Our argument follows after [14, Proposition 1.4.2].

3. Set of distances and length density

It is straightforward to construct a Puiseux monoid M with an ap-
proximation (Mi)i⩾1 such that ∆(M) ̸=

⋃

i⩾1∆(Mi). Consequently, the
approach we used in Theorem 2.5 to compute invariants like the set of
lengths is not going to work for the set of distances. However, using limits
of sets we can obtain a result similar to Theorem 2.5.

Deőnition 3.1. Let (Si)i⩾1 be a sequence of sets, and let lim infi Si and
lim supi Si be the sets

lim inf
i→∞

Si :=
⋃

i⩾1

⋂

j⩾i

Sj and lim sup
i→∞

Si :=
⋂

i⩾1

⋃

j⩾i

Si.

We say that limi Si exists and is equal to lim infi Si provided that

lim inf
i

Si = lim sup
i

Si.

Observe that Deőnition 3.1 is consistent with the notation used in
Theorem 2.5 since if (Si)i⩾1 is an increasing sequence then limi Si = ∪i⩾1Si

as the reader can easily prove.

Proposition 3.2. Let M be a Puiseux monoid with an approximation
(Mi)i⩾1, and let x be an element of M . Then ∆M (x) ⊆ lim infi∆Mi

(x)
and ∆(M) ⊆ lim infi∆(Mi).

Proof. Let d ∈ ∆M (x). Then there exist factorizations z, z′ ∈ ZM (x)
satisfying that |z′| − |z| = d and [|z|, |z′|] ∩ LM (x) = {|z|, |z′|}. Let k ∈ N

such that z, z′ ∈ ZMk
(x). By virtue of Theorem 2.5, we have that d ∈

∆Mh
(x) for all h ∈ N⩾k which, in turn, implies that d ∈

⋂

j⩾k ∆Mj
(x).

Then d ∈ lim infi∆Mi
(x). Finally, let d ∈ ∆(M). By deőnition, there exists

x ∈ M• such that d ∈ ∆M (x). As we already showed, d ∈
⋂

j⩾k ∆Mj
(x)

for some k ∈ N. Consequently, d ∈
⋂

j⩾k ∆(Mj), from which our result
follows.

Proposition 3.2 can be useful when analyzing the set of lengths of
particular classes of atomic Puiseux monoids. Consider the following
examples.
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Example 3.3. Let r ∈ Q<1 such that the rational cyclic monoid over
r, that is, Sr := ⟨rn | n ∈ N0⟩, is atomic. Then n(r) > 1 by [20,
Theorem 6.2]. Fix i ∈ N, and consider the numerical monoid Ni =
⟨n(r)i, n(r)i−1

d(r), . . . , d(r)i⟩. By virtue of [22, Corollary 20], we have
∆(Ni) = {d(r) − n(r)}. It is not hard to see that (d(r)−iNi)i⩾1 is a
numerical approximation of Sr. Therefore, ∆(Sr) ⊆ {d(r) − n(r)} by
Proposition 3.2. Following a similar reasoning we obtain that if r > 1 and
Sr is atomic then the inclusion ∆(Sr) ⊆ {n(r)− d(r)} holds. This result
was őrst proved in [6, Theorem 3.3].

Example 3.4. Let B be a nonempty subset of Q>0 \ N such that for
all b, b′ ∈ B with b ̸= b′ we have n(b) > 1, gcd(d(b), d(b′)) = 1, and
|n(b) − d(b)| = |n(b′) − d(b′)|. Set MB := ⟨bn | b ∈ B, n ∈ N0⟩. Now
given an ordering b1, b2, . . . of the elements of B, let Bi = {b1, . . . , bi}
and set MBi

:= ⟨bn | b ∈ Bi, n ∈ N0⟩ for each i ∈ N. The sequence
(MBi

)i⩾1 is an approximation of MB by [23, Proposition 3.5]. Moreover,
for each i ∈ N, ∆(MBi

) = {|n(b1)−d(b1)|} by [23, Theorem 4.9]. Therefore,
∆(MB) ⊆ {|n(b1)− d(b1)|} by Proposition 3.2.

Remark 3.5. Example 3.4 extends part (2) of [23, Theorem 4.9] to a
larger class of Puiseux monoids.

The next example shows that, in general, ∆(M) ̸= lim infi∆(Mi).

Example 3.6. Consider the rational cyclic monoid Sr with r ∈ Q>1 \ N.
For each i ∈ N, set

Mi :=
〈{

r2k | k ∈ N0

}

∪
{

r2j−1 | j ∈ J1, iK
}

〉

.

It is not hard to prove that (Mi)i⩾1 is an approximation of Sr. Now őx
i ∈ N, and let xi = n(r)2r2i ∈ Mi. Clearly, z = n(r)2r2i and z′ = d(r)2r2i+2

are two factorizations of xi in Mi.

Claim 1. z′ = d(r)2r2i+2 ∈ ZMi
(xi) is the factorization of minimum

length of xi in Mi.

Proof. Let z′′ =
∑n

k=0 ckr
sk ∈ ZMi

(xi) with coefficients c0, . . . , cn ∈ N0

and exponents s0, . . . , sn ∈ {2k | k ∈ N0} ∪ {2j − 1 | j ∈ J1, iK}, and
assume by contradiction that z′′ is a factorization of minimum length of xi
in Mi satisfying that z′′ ̸= z′. There is no loss in assuming that sl < sr for
l < r, [rsl , rsl+1 ]∩A(Mi) = {rsl , rsl+1} for all l ∈ J0, n−1K and st = 2i+2
for some t ∈ J0, nK. Note that ck < n(r)sk+1−sk for each k ∈ J0, nK;
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otherwise, using the transformation n(r)sk+1−skrsk = d(r)sk+1−skrsk+1 we
can generate a new factorization z∗ ∈ ZMi

(xi) such that |z∗| < |z′′|, which
is a contradiction. Now let m be the smallest nonnegative integer such
that cm ̸= 0, and consider the equation

n
∑

k=m

ckr
sk = d(r)2r2i+2. (3.1)

If m < t then after clearing denominators in Equation (3.1) we generate
a contradiction with the fact that cm < n(r)sm+1−sm . We obtain a similar
contradiction for the case where m ⩾ t as the reader can verify. Therefore,
there exists exactly one factorization of minimum length of xi in Mi,
namely z′.

Now let z∗ =
∑n

k=0 ckr
sk ∈ ZMi

(xi) with coefficients c0, . . . , cn ∈ N0 and
exponents s0, . . . , sn ∈ {2k | k ∈ N0} ∪ {2j − 1 | j ∈ J1, iK}. Suppose,
without loss of generality, that sl < sr for l < r and [rsl , rsl+1 ]∩A(Mi) =
{rsl , rsl+1} for every l ∈ J0, n− 1K. Note that in the proof of Claim 1, we
established that if ck < n(r)sk+1−sk for each k ∈ J0, nK then z∗ = z′.

Claim 2. If |z∗| < |z| = n(r)2 then z∗ = z′.

Proof. If ck < n(r)sk+1−sk for each k ∈ J0, nK then we are done by our
previous observation. By contradiction, assume that z∗ ≠ z′. Using the
transformation

n(r)sk+1−skrsk = d(r)sk+1−skrsk+1 (3.2)

we can generate from z∗ a new factorization z1 ∈ ZMi
(xi) such that |z1| <

|z∗|. Then either z1 = z′ or we can again apply the transformation (3.2)
to obtain a new factorization z2 ∈ ZMi

(xi) such that |z2| < |z1|, and so
on. This procedure stops since there is no strictly decreasing sequence of
nonnegative integers. Then there exist factorizations z∗ = z0, z1, . . . , zm =
z′ such that |zj | > |zj+1| for every j ∈ J0,m− 1K. It should be noted that
the transformation (3.2) increases the exponent of r, which means that
ck = 0 for all sk > 2i + 2, where k ∈ J0, nK. This implies that at some
point in the aforementioned procedure we applied the transformation
n(r)2r2i = d(r)2r2i+2, but this contradicts that |z∗| < |z| = n(r)2.

Because of Claim 2, n(r)2 − d(r)2 ∈ ∆(Mi) for every i ∈ N. Conse-
quently, we have that n(r)2 − d(r)2 ∈ lim infi∆(Mi). However, we know
that ∆(Sr) = {n(r) − d(r)} by [6, Corollary 3.4]. Therefore, ∆(Sr) ̸=
lim infi∆(Mi).
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Example 3.6 is rather complicated, but notice that an approximation
(Mi)i⩾1 of a Puiseux monoid M satisfying that ∆(M) ̸= lim infi∆(Mi)
does never stabilize, which means that, in particular, M is not őnitely
generated. On the other hand, rational cyclic monoids are perhaps the
non-őnitely generated Puiseux monoids with more tractable factorization
invariants (see [6]).
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