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Conjugate Laplacian eigenvalues

of co-neighbour graphs

S. Paul

Communicated by D. Simson

Abstract. Let G be a simple graph of order n. A vertex
subset is called independent if its elements are pairwise non-adjacent.
Two vertices in G are co-neighbour vertices if they share the same
neighbours. Clearly, if S is a set of pairwise co-neighbour vertices of a
graph G, then S is an independent set of G. Let c = a+b

√
m and c =

a−b
√
m, where a and b are two nonzero integers and m is a positive

integer such that m is not a perfect square. In [M. Lepović, On
conjugate adjacency matrices of a graph, Discrete Mathematics, 307,
730ś738, 2007], the author defined the matrix Ac(G) = [cij ]n to be
the conjugate adjacency matrix of G, if cij = c for any two adjacent
vertices i and j, cij = c for any two nonadjacent vertices i and j,

and cij = 0 if i = j. In [S. Paul, Conjugate Laplacian matrices of
a graph, Discrete Mathematics, Algorithms and Applications, 10,
1850082, 2018], the author defined the conjugate Laplacian matrix
of graphs and described various properties of its eigenvalues and
eigenspaces. In this article, we determine certain properties of the
conjugate Laplacian eigenvalues and the eigenvectors of a graph
with co-neighbour vertices.

1. Introduction and Preliminaries

In this article, we consider only finite simple graphs, i.e, graphs on
a finite number of vertices without multiple edges or loops. A graph is
denoted by G = (V (G), E(G)), where V (G) is its vertex set and E(G) is
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its edge set. The order of G is the number n = |V (G)| and its size is the
number m = |E(G)|. The set of vertices adjacent to v ∈ V (G), denoted
by NG(v), refers to the neighbourhood of v. For a subset S of V (G), G[S]
denotes the induced subgraph on S (i.e., the maximal subgraph of G on
S). For other graph theoretic terms we follow [7]. If V (G) = {1, 2, . . . , n},
then the adjacency matrix of G, is defined to be A(G) = [aij ]n, where

aij =

{
1, if i and j are adjacent,
0, otherwise.

The matrix of vertex degrees of G is the diagonal matrix D(G) of order
n, whose i-th diagonal entry is the degree of the vertex i, which is defined
as the number of lines incident on i. A vertex with degree 1 is called a
pendent vertex and the vertex which is adjacent to a pendent vertex is
known as quasi-pendent vertex. The matrix L(G) = D(G)−A(G), is the
Laplacian matrix of G. In literature, an extensive study has been done on
adjacency and Laplacian matrices of graphs (see [2ś6,8, 13,15]).

Let c = a + b
√
m, where a and b are two nonzero integers and m

is a positive integer such that m is not a perfect square. The number
c = a− b

√
m is called the conjugate number of c. In [9], Lepović gives the

following definition.

Definition 1.1. [9] If G is a graph of order n, then the matrix Ac(G) =
[cij ]n is called the conjugate adjacency matrix of G, where

cij =







c, if i and j are adjacent,
c, if i and j are nonadjacent,
0, if i=j.

An extensive study on the eigenvalues of Ac(G) has been done by the
author in [9ś12]. With this inspiration, in [14], we defined the conjugate
Laplacian matrix of a graph as follows. Let dci =

∑

ij∈E(G) c+
∑

ij ̸∈E(G) c

to be the conjugate degree of a vertex i in a graph G, and let Dc(G)
be the diagonal matrix with dci as the i-th diagonal entry. If both c and
c are positive, then the matrix Lc(G) = Dc(G) − Ac(G) is called the
conjugate Laplacian matrix of G. Thus with every conjugate Laplacian
matrix, there is an associated real constant c such that both c and c are
positive. Hence for the rest of the paper, whenever we discuss any result
involving conjugate Laplacian matrix, it is understood that the respective
constant and its conjugate are both positive.

Let σc(G) denotes the conjugate Laplacian spectrum of G. From now
onwards by ‘eigenvalues’ and ‘eigenvectors’ we mean conjugate Laplacian
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eigenvalues and conjugate Laplacian eigenvectors (if not mentioned oth-
erwise). As already observed in [14], since the row sums and the column
sums of Lc(G) are zero, 0 ∈ σc(G) with 1n = (1, 1, . . . , 1

︸ ︷︷ ︸
n

)T as a corre-

sponding eigenvector. Moreover, it was also shown in [14] that 0 is a simple
eigenvalue of Lc(G).

Since Lc(G) = Qc(G).Qc(G)T , it is a singular positive semidefinite
matrix, where Qc(G) is defined as follows.

Definition 1.2. [14] Let G denotes the complement of G and (i, j) denotes
an oriented edge that originates at i and terminates at j. Suppose each
edge of G and G is assigned an orientation, which is arbitrary but fixed.
The vertex edge incidence matrix Qc(G) = [qci,e] is a n × n(n−1)

2 matrix
with rows labeled by the vertices of G and columns labeled by the edges in
G or G, satisfying

qci,e =







√
c, if e = (i, j) ∈ E(G), for some j;

−√
c, if e = (j, i) ∈ E(G), for some j;√

c, if e = (i, j) ∈ E(G), for some j;

−
√
c, if e = (j, i) ∈ E(G), for some j.

The following important observation is obtained in [14].

Lemma 1.1. [14] Let G be a graph and p, q be two non adjacent vertices
in it. If c = a+ b

√
m, and b > 0, then

ρc(G+ pq) ⩾ ρc(G).

Remark 1.1. Observe that Lc(Kn) = cL(Kn). Hence by Lemma 1.1 we
have ρc(G) ⩽ cn, when b > 0.

Let 0 = αc
1(G) < αc

2(G) ⩽ . . . ⩽ αc
n(G) = ρc(G) denotes the eigen-

values of Lc(G). The second smallest eigenvalue of L(G) is called the
algebraic connectivity and has been studied extensively in literature (see
[2, 8, 13]). The following lower bound of the second smallest eigenvalue of
Lc(G) has been obtained in [14]

Lemma 1.2. [14] Let G be a graph and c = a + b
√
m. If b > 0, then

αc
2(G) ⩾ nc and αc

2(G) ⩾ nc.

A vertex subset is called independent if its elements are pairwise non-
adjacent. Two vertices in V (G) are co-neighbour vertices if they share the
same neighbours. Clearly, if S ⊂ V (G) is a set of pairwise co-neighbour
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vertices of a graph G, then S is an independent set of G. A cluster of
order k of G is a set S of k pairwise co-neighbour vertices [13]. The degree
of a cluster is the cardinality of the shared set of neighbours, i.e., the
common degree of each vertex in the cluster. An l-cluster is a cluster of
degree l. In Section 2, we discuss the conjugate Laplacian spectrum of a
graph with k pairwise co-neighbour vertices.

2. Conjugate Laplacian spectrum of a graph with

co-neighbour vertices

Here we discuss the conjugate Laplacian spectrum of a graph with
co-neighbour vertices. A vector X ∈ R

n is called Faria vector [13], if there
are only two nonzero entries in X which are 1 and -1, respectively. We
first observe the following result for graphs with pendent vertices.

Theorem 2.1. Let p and q, respectively be the number of pendent ver-
tices and the number of quasi-pendent vertices of a graph G. Then na−
(n− 2)b

√
m is an eigenvalue of G with multiplicity at least p− q.

Proof. Let 1, 2, . . . , q be the quasi-pendent vertices of G and suppose they
are adjacent to r1, r2, . . . , rq pendent vertices, respectively. Suppose i and
j are pendent vertices of G, adjacent to a common quasi-pendent vertex.
Let X be a Faria vector with X(i) = 1 = −X(j). Then it can be easily
verified that X is an eigenvector of Lc(G), corresponding to the eigenvalue
na−(n−2)b

√
m. In this way, we can generate (r1−1)+(r2−1)+. . .+(rq−1)

linearly independent eigenvectors of Lc(G) corresponding to the pendent
vertices for the eigenvalue na − (n − 2)b

√
m. Hence the multiplicity of

na − (n − 2)b
√
m as an eigenvalue of Lc(G) is at least

∑q
i=1(ri − 1) =

∑q
i=1 ri − q = p− q.

Let k be an integer greater than 1. Then the following result generalizes
Theorem 2.1, for graphs with an l-cluster of order k.

Theorem 2.2. Let G be a graph with an l-cluster S of order k. Then
na− (n− 2l)b

√
m is an eigenvalue of G with multiplicity at least k − 1.

Proof. Let S = {v1, v2, . . . , vk} be the l-cluster. Assuming NG(v1) =
{vk+1, vk+2, . . . , vk+l}, we have

Lc(G) =





lcIk + (n− k − l)cIk + cL(Kk) −c1k1
T
l −c1k1

T
n−k−l

−c1l1
T
k

−c1n−k−l1
T
k B



 ,

(1)
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where B =

(
kcIl 0l×(n−k−l)

0(n−k−l)×l 0(n−k−l)×(n−k−l)

)

+ Lc(G− S).

It can be verified that the first k rows of the matrix Lc(G)−
(
na−(n−

2l)b
√
m
)
I are equal. Therefore, rank

(
Lc(G) − (na − (n − 2l)b

√
m)I

)
⩽

n− (k − 1). Hence, the null space of Lc(G)− (na− (n− 2l)b
√
m)I has

dimension not less than k − 1. Hence (na− (n− 2l)b
√
m is an eigenvalue

of Lc(G) with multiplicity at least k − 1.

Remark 2.1. Let X ∈ R
k \ {0k} with XT1k = 0. Then taking into

account the labeling of the vertices in Theorem 2.2 and from (1) we have,

Lc(G)

(
X

0n−k

)

=

( (

lcIk + (n− k − l)cIk + c(kIk − Jk)
)

X

0n−k

)

=

( (

na− (n− 2l)b
√
m
)

X

0n−k

)

=
(

na− (n− 2l)b
√
m
)(

X

0n−k

)

, (2)

which lists k− 1 linearly independent eigenvectors of Lc(G) corresponding
to na− (n− 2l)b

√
m as desired by Theorem 2.2.

As an immediate application of Theorem 2.2, we consider a complete
bipartite graph Kr,s. Since every pair of vertices in a partition are co-
neighbours, we have sc+ rc is an eigenvalue with multiplicity at least s−1
and rc + sc is an eigenvalue with multiplicity at least r − 1. Therefore,
taking into account that

1) the trace of Lc(Kr,s) is 2rsc+ (r2 − r)c+ (s2 − s)c,
2) 0 is a simple eigenvalue of Lc(Kr,s),

the unknown eigenvalue is (r + s)c. Thus

σc(Kr,s) =
{

0, sc+ rc, . . . , sc+ rc
︸ ︷︷ ︸

s−1

, rc+ sc, . . . , rc+ sc
︸ ︷︷ ︸

r−1

, (r + s)c
}

.

Suppose G be a graph and S ⊂ V (G) be a cluster of order k. Let Gk be
the supergraph obtained from G by adding p edges between distinct pairs
of vertices in S, where 1 ⩽ p ⩽

k(k−1)
2 . In [1], this operation is denoted

by Gk = G + Gk, where Gk is the subgraph of Gk induced by S, i.e.,
Gk = Gk[S]. We note that V (Gk) = V (G) and E(Gk) = E(G) ∪ E(Gk).
In Fig. 1, a graph G with a 4-cluster of order 3, S = {1, 2, 3}, and a graph
G3 = G+G3, with G3 = G3[S] are depicted.
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Figure 1. A graph G with a 4-cluster of order 3, S = {1, 2, 3} and the graphs
G3 = G+G3, and G3 = G3[S].

As observed in [1], despite the labeling of S, the operation produces
isomorphic graphs. In the following part of this section, we show that
at least n − k + 1 eigenvalues of Lc(G) are also eigenvalues of Lc(Gk)
and that σc(Gk) is completely characterized from σc(G) and σc(Gk). The
following lemma will be useful in doing so.

Lemma 2.1. If

M =

(
Lc(Gk)− cL(Kk) 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

)

, (3)

then Lc(Gk) = Lc(G) +M and Lc(G)M = MLc(G).

Proof. The proof follows immediately from the structure of Lc(G) and
M, and taking into account that Lc(Gk)L(Kk) = L(Kk)L

c(Gk).

Corollary 2.1. Let G be a graph and S = {v1, v2 . . . , vk} ⊂ V (G) be
an l-cluster of order k, sharing the l neighbours {vk+1, vk+2, . . . , vk+l}. If
Gk is a graph with V (Gk) = S and M be the matrix defined in (3), then
reordering the n eigenvalues βi in σ(M), we obtain

σc(Gk) = {αi + βi : i = 1, 2, . . . , n}, (4)

where α1, . . . , αn ∈ σc(G). Moreover,

Lc(Gk)Lc(G) = Lc(G)Lc(Gk). (5)
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We are now able to discuss the dependence of σc(Gk) on σc(G) and
σc(Gk).

Theorem 2.3. Let G be a graph with an l-cluster S of order k. As-
sume that Gk is a graph with V (Gk) = S, Gk = G + Gk and Λ =
{(

na− (n− 2l)b
√
m
)

+ µ− ck : µ ∈ σc(Gk) \ {0}
}

is a multiset. Then

σc(Gk) overlaps σc(G) in n− k + 1 places and the elements of Λ are the
remaining eigenvalues in σc(Gk).

Proof. Let S = {v1, v2 . . . , vk} ⊂ V (G) be the cluster, sharing the l

neighbours {vk+1, vk+2, . . . , vk+l}. Let M be the matrix in (3). Since
Lc(Gk) commutes with L(Kk), so 0 ∈ σ(M) with multiplicity n− k + 1,
and using (4), it is immediate that n− k+ 1 eigenvalues of Lc(G) overlap
the eigenvalues of Lc(Gk). We just need to prove that the elements of Λ
are the remaining eigenvalues in Lc(Gk).

By (5), the matrices Lc(G) and Lc(Gk) are simultaneously diagonal-
izable. Let U be one of the n chosen common eigenvectors of Lc(Gk)
and Lc(G) corresponding to eigenvalues λ and λ′, respectively. Partition-
ing U conformally with respect to Lc(G) (or Lc(Gk)), we can assume

that U =





X

Y

Z



 . Now from Lc(Gk)U = λU, Lc(G)U = λ′U and

Lc(Gk) = Lc(G) +M, we obtain the following system of equations:

lcX + (n− k− l)cX +Lc(Gk)X − c(1T
l Y )1k − c(1T

n−k−lZ)1k = λX, (6)

lcX +(n− k− l)cX + cL(Kk)X − c(1T
l Y )1k − c(1T

n−k−lZ)1k = λ′X, (7)

(
−c(1T

kX)1l + kcY

−c(1T
kX)1n−k−l

)

+ Lc(G− S)

(
Y

Z

)

= λ

(
Y

Z

)

, (8)

(
−c(1T

kX)1l + kcY

−c(1T
kX)1n−k−l

)

+ Lc(G− S)

(
Y

Z

)

= λ′

(
Y

Z

)

. (9)

Subtracting (7) from (6), we obtain

(

Lc(Gk)− cL(Kk)
)

X = (λ− λ′)X. (10)

If λ = λ′, then λ ∈ σc(Gk) ∩ σc(G) and (10) yields
(

Lc(Gk) −

cL(Kk)
)

X = 0. Since Lc(Gk) commutes with L(Kk), so the multiplicity
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of 0 in σ
(

Lc(Gk)− cL(Kk)
)

is 1. This implies that X = γ1k, where γ is

a nonzero scalar.

If λ ≠ λ′, then (10) is equivalent to
(

Lc(Gk) − cL(Kk)
)

X = βX,

with β = λ − λ′ ≠ 0. This implies that 1T
kX = 0. Moreover, (8) and

(9) yield

(
Y

Z

)

=

(
0

0

)

. Thus X ≠ 0, is an eigenvector of Lc(Gk) −

cL(Kk) orthogonal to 1k, and U =

(
X

0

)

, where X is an eigenvector of

Lc(Gk)− cL(Kk) corresponding to eigenvalue β ̸= 0. From (7), it can be
seen that λ′ = na− (n− 2l)b

√
m and so λ = (na− (n− 2l)b

√
m) + β.

From the above analysis, we may conclude that Lc(G) and Lc(Gk)

share two types of eigenvectors. The eigenvectors





γ1k

Y

Z



 correspond

to the eigenvalues λ ∈ σc(Gk) ∩ σc(G) and the eigenvectors

(
X

0

)

correspond to the eigenvalues (na− (n− 2l)b
√
m) + β of Lc(Gk), where

(na − (n − 2l)b
√
m) ∈ σc(G) and β ∈ σ(Lc(Gk) − cL(Kk)) \ {0}. Thus

β = µ − kc, where µ ∈ σc(Gk) \ {0}. Since Lc(Gk) has k − 1 non zero
eigenvalues µi, for i = 1, 2, . . . , k − 1, we have k − 1 shared eigenvectors
(

Xi

0

)

, for i = 1, 2, . . . , k−1. Therefore, by (4) of Corollary 2.1, we have

n−k+1 shared eigenvectors





γ1k

Y

Z



 which are orthogonal to

(
Xi

0

)

,

for i = 1, 2, . . . , k − 1. Since both Lc(G) and Lc(Gk) are of order n, so
the eigenvalues in σc(Gk) which can be different from the eigenvalues in
σc(G) are just the k − 1 elements of Λ.

Remark 2.2. Let G be a graph with an l-cluster S of order k. Consider
two graphs Gk and G′

k defined on S. From the proof of Theorem 2.3,
we conclude that σc(Gk) and σc(G′k) overlap in n− k + 1 places, where
Gk = G+Gk and G′k = G+G′

k. Furthermore, the remaining eigenvalues
of Gk and G′k, (na − (n − 2l)b

√
m) + µ − ck (with µ ∈ σc(Gk) − {0})

and (na− (n− 2l)b
√
m) + µ′ − ck (with µ′ ∈ σc(G′

k)− {0}), respectively,
replace k − 1 of the positions of the eigenvalue (na− (n− 2l)b

√
m) of G

(see Remark 2.1).
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If we consider the graph G = Kr,s on the vertices {v1, v2, . . . , vr+s}
and a graph Gr, such that V (Gr) = S, where S = {v1, v2, . . . , vr} (an
s-cluster of order r in G), then we have the following result.

Theorem 2.4. If c = a+ b
√
m, where b > 0, r ⩽ s, G = Kr,s and Gr is

a graph defined on the vertex subset of r pairwise co-neighbours of G, then
the graphs G and Gr = G+Gr have the same largest eigenvalue (r + s)c
and the same second smallest eigenvalue sc+ rc.

Proof. Since the degree of the cluster is s, we have

na− (n− 2s)b
√
m = (r + s)a− (r − s)b

√
m = rc+ sc.

By Theorem 2.3, σc(Gr) = Λ ∪
(

σc(G) \ {rc+ sc, . . . , rc+ sc
︸ ︷︷ ︸

r−1

}
)

, where

Λ = {sc+ µ : µ ∈ σc(Gr) \ {0}}, with rc ⩽ µ ⩽ rc (see Remark 1.1 and
Lemma 1.2). Since

σc(G) =
{

0, sc+ rc, . . . , sc+ rc
︸ ︷︷ ︸

s−1

, rc+ sc, . . . , rc+ sc
︸ ︷︷ ︸

r−1

, (r + s)c
}

,

σc(Gr) = Λ ∪
{

0, sc+ rc, . . . , sc+ rc
︸ ︷︷ ︸

s−1

, (r + s)c
}

. Therefore, the largest

eigenvalue of G and Gr is (r + s)c. Again, since sc + rc ⩽ rc + sc, the
second smallest eigenvalue of G and Gr is sc+ rc.
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