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Coarse structures on groups

defined by conjugations

I. Protasov and K. Protasova

Abstract. For a group G, we denote by
↔

G the coarse space

on G endowed with the coarse structure with the base {{(x, y) ∈
G×G : y ∈ xF } : F ∈ [G]<ω}, xF = {z−1xz : z ∈ F}. Our goal is to

explore interplays between algebraic properties of G and asymptotic

properties of
↔

G. In particular, we show that asdim
↔

G= 0 if and

only if G/ZG is locally finite, ZG is the center of G. For an infinite

group G, the coarse space of subgroups of G is discrete if and only

if G is a Dedekind group.

1. Introduction

Given a set X, a family E of subsets of X × X is called a coarse

structure on X if
• each E ∈ E contains the diagonal △X , △X = {(x, x) ∈ X : x ∈ X};
• if E, E′ ∈ E then E ◦E′ ∈ E and E−1 ∈ E , where E ◦E′ = {(x, y) :
∃z((x, z) ∈ E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};

• if E ∈ E and △X ⊆ E′ ⊆ E then E′ ∈ E ;
A subfamily E ′ ⊆ E is called a base for E if, for every E ∈ E , there

exists E′ ∈ E ′ such that E ⊆ E′. For x ∈ X, A ⊆ X and E ∈ E , we denote

E[x] = {y ∈ X : (x, y) ∈ E}, E[A] =
⋃

a∈A

E[a], EA[x] = E[x] ∩A

and say that E[x] and E[A] are balls of radius E around x and A.
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The pair (X, E) is called a coarse space [13] or a ballean [10], [12].

A coarse space (X, E) is called finitary, if for each E ∈ E , there exists
a natural number n such that |E[x]| < n for each x ∈ X.

Let G be a group of permutations of a set X. We denote by XG the
set X endowed with the coarse structure with the base

{{(x, gx) : g ∈ F} : F ∈ [G]<ω, id ∈ F}.

By [7, Theorem 1], for every finitary coarse structure (X, E), there
exists a group G of permutations of X such that (X, E) = XG. For more
general results and applications see [8] and the survey [9].

Let (X, E) be a coarse space. We define an equivalence ∼ on X by
x ∼ y if and only if there exists E ∈ E such that y ∈ E[x], so X is a
disjoint union of connected components. If there is only one connected
component then (X, E) is called connected.

Now let G be a group. For x, g ∈ G and F ⊆ G, we denote xg = g−1xg,
xF = {xy : y ∈ F}, F g = {yg : y ∈ F}.

We denote by
↔

G the coarse structure on G endowed with the coarse
structure with the base {{(x, y) ∈ G × G : y ∈ xF } : F ∈ [G]<ω}.

Evidently, each connected component A of
↔

G is of the form aG, a ∈ A.

We endow G with the discrete topology and identify the Stone-Čech
compactification βG of G with the set of all ultrafilters on G. For A ⊆ G,
Ā denotes the set {p ∈ βG : A ∈ p} and the family {Ā : A ⊆ G} forms a
base for open sets of βG. The family of all free ultrafilters on G is denoted
by G∗. By the universal property of βG, every mapping f : G → K, K is
a compact Hausdorff space, can be extended to the continuous mapping
fβ : βG → K.

The action G on G by conjugations extends to the action G on βG :
if g ∈ G, p ∈ βG then pg = {g−1Pg : P ∈ g}. We use this dynamical
approach to the conjugacy in groups initiated in [11].

In section 2 and 3, we characterize groups G such that the coarse

space
↔

G is discrete, n-discrete and cellular. In section 4, we show that

every finitary coarse space admits an asymorphic embedding to
↔

G for an
appropriate choice of a group G. In section 5, we characterize groups with
discrete space of subgroups. We conclude with section 6 on the direct

union of connected components of
↔

G.
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2. Discreteness

Let (X, E) be a coarse space. We say that a subset B of X is bounded

if there exist a finite subset F of X and E ∈ E such that B ⊆ E[F ] and
note that the family of all bounded subset of X is a bornology, i.e. an
ideal in the Boolean algebra of subsets of X containing all finite subsets.

We say that a subset A of X is

• discrete if, for every E ∈ E , there exists a bounded subset B of X
such that EA[a] = {a} for each a ∈ A \B;

• n-discrete, n ∈ N if, for every E ∈ E , there exists a bounded subset
B of X such that |EA[a]| 6 n for each a ∈ A \B.

Theorem 1. For an infinite group G, the following conditions are equiv-

alent

(i) G is Abelian;

(ii) pG = {p} for each p ∈ G∗;

(iii)
↔

G is discrete.

Proof. The equivalence (i) ⇔ (ii) is proved in [11, Proposition 1.1],
(i) ⇒ (iii) is evident.

(iii) ⇒ (ii). We assume that px 6= p for some p ∈ G∗, x ∈ G and pick
P ∈ p such that P x ∩ P = ∅. Let B be a finite subset of X. We take

a ∈ P \B and note that ax 6= a so
↔

G is not discrete.

Theorem 2. For a group G, the following conditions are equivalent

(i) pG is finite for each p ∈ G∗;

(ii) there exists a natural number n such that |pG| 6 n for each p ∈ G∗;

(iii) there exists a natural number m such that |aG| 6 m for each

a ∈ G∗;

(iv) the commutant [G,G] of G is finite.

Proof. See Theorem 3.1 in [11].

Theorem 3. Given a group G, the coarse space
↔

G is n-discrete for some

n ∈ N if and only if [G,G] is finite.

Proof. We assume that
↔

G is n-discrete and show that [G,G] is finite. To
apply Theorem 2, it suffices to prove that |pG| 6 n for each p ∈ G∗.

We assume the contrary: there exists p ∈ G∗ and g1, . . . , gn+1 ∈ G
such that the ultrafilters pg1 , . . . , pgn+1 are distinct. We choose P ∈ p such
that the subsets P g1 , . . . , P gn+1 are pairwise disjoint. Given an arbitrary
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bounded subset B of G, we pick a ∈ P \B. Then ag1 , . . . , agn+1 are distinct

so
↔

G is not n-discrete.

On the other hand, if [G,G] is finite then there exists m ∈ N such that
|aG| 6 m for each a ∈ G, see Theorem 2(iii).

We recall that G is an FC-group if the set aG is finite for each a ∈ G.

Clearly, G is an FC-group if and only if each connected component of
↔

G
is bounded.

We note that each connected component of
↔

G is discrete if and only
if every element g ∈ G centralizes all but finitely many elements of each
conjugacy class.

In the initial version of this paper, we asked whether G is an FC-group

provided that each connected component of
↔

G is discrete? G. Bergman
answered this question negatively.

Theorem 4. There exists a group G such that every element of G cen-

tralizes all but finitely many element of each conjugacy class and gG is

infinite for each nonindentily element g ∈ G.

Proof. We follow the original Bergman’s exposition.

Claim 1. Suppose X is a metric space such that, for every x ∈ X and
constant C > 0, the number of elements of X within distance 6 C of
x is finite. Suppose also that X has a group G of distance-preserving
permutations each of which moves only finitely many elements. Then
every g ∈ G centralizes all but finitely many elements of each conjugacy
class hG.

Given g, h ∈ G \ {e}, let us choose C > 0 such that the finite subset
of X consisting of the elements moved by g and the elements moved by
h has all elements within distance 6 C each other. Since elements of
G are distance-preserving, for every conjugate hf , f ∈ G, the elements
moved by hf are also within distance 6 C of each other. Hence, if any of
the elements moved by hf has distance > 2C from each element moved
by g, then the set of elements moved by hf must be disjoint from the
set moved by g, so hf and g commute. So, if hf and g do not commute,
the elements moved by hf must lie within distance 6 2C of an arbitrary
chosen element x moved by g. But the number of elements lying within
that distance of x if finite, so there are only finitely many posibilities for
the permutation hf .
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Claim 2. For X and G as in Claim 1, if X is infinite and G is transitive
on X, then every nonidentify element g ∈ G has infinite conjugacy class gG.

Given finitely many conjugates g1, . . . , gn of g, we shall find another.
Let Y by the finite subset of X consisting of all elements moved by any
g1, . . . , gn, and again choose C > 0 such that the distances between the
element of Y are all 6 C. Since X is infinite, the hypothesis of Claim
1 imply that distances among points of X are unbounded, so as G is
transitive on X, we can find h ∈ G carries a point moved by g to a point
at distance > 2C from point of Y . Hence, the set of point moved by gh,
namely, the translate by h of the set moved by g, is not contained in Y ,
so gh /∈ {g1, . . . , gn}. So, the conjugacy class of g is indeed infinite.

It remains to give an example of X and G with above properties.

Let X be the set of all sequences (a1, a2, . . . ) of 0’s and 1’s such that
almost all the ai are 0. Metrize X by letting d((a1, a2, . . . ), (b1, b2, . . . ))
be the greatest n such that an 6= bn, or 0 if (a1, a2, . . . ) = (b1, b2, . . . ).
That there are only finitely many elements distances C of any element of
X is clear.

Let G be the group of all distance-preserving permutations of X which
move only finitely many elements. We shall show that G is transitive by
constructing, for any (a1, a2, . . . ) ∈ X an element g ∈ G which carries
(0, 0, . . . ) to (a1, a2, . . . ). Choose n such that ai = 0 for all i > n. Let g
carries each element (b1, b2, . . . ) which likewise has bi = 0 for all i > n
to (b1 + a1, b2 + a2, . . . ), while fixing all other elements (b1, b2, . . . ). The
verification of g ∈ G, and that g carries (0, 0, . . . ) to (a1, a2, . . . ) are
straightforward.

G. Bergman noticed that the group G constructed in the proof of
Theorem 4 can be described as the direct limit G0 −→ G1 −→ · · · −→
Gn −→ . . . , where G0 is trivial and Gn+1 = (Gn × Gn) ⋋ Z2, with Z2

acting on Gn × Gn by interchanging the two coordinates, and with Gn

embedded in Gn+1 by sending g to ((g, e), e).

We show that the answer to our question is affirmative provided that
G is finitely generated. Let F be a finite subset of G such that F = F−1,
e ∈ F , e is the identity of G and F generates G. We assume that each

connected component of
↔

G is discrete, take an arbitrary element g ∈ G
and show that gG is finite. We act on g by conjugations from x ∈ F , write
each gx as a word in F of minimal length, delete duplicates (i.e. words
which define the same elements) and get a subset A0. Then we repeat this
procedure for each element g ∈ A0 and get a subset A1, A0 ⊆ A1. Since
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F is finite, by the assumption there exists n ∈ N such that An+1 = An.
This means that gG = An.

3. Cellularity

A coarse space (X, E) is called cellular if E has a base consisting of
equivalence relations. By [12, Theorem 3.1.3], (X, E) is cellular if and only
if asdim (X, E) = 0.

Applying Theorem 3.1.2 from [12] we get

(1)
↔

G is cellular if and only if, for every finitely generated subgroup
H of G, there exists a finite subset F of G such that gH ⊆ gF for each
g ∈ G.

We recall that a group G is locally normal if each finite subset of
G is contained in some finite normal subgroup and use the following
characterization [2]

(2) G is an FC-group if and only if G/ZG is locally normal and each
element of G is contained in finitely generated normal subgroup, ZG is
the center of G.

A group G is called locally finite if each finite subset of G generates a
finite subgroup.

Theorem 5. For a group G,
↔

G is cellular if and only if G/ZG is locally

finite.

Proof. We suppose that
↔

G is cellular and show

(3) for every element a ∈ G of infinite order there exists n ∈ N such
that an ∈ ZG.

We denote by A the subgroup of G generated by a and use (1) to
choose a finite subset F of G such that gA ⊆ gF for each g ∈ G. Let
|F | = n. Since |gA| 6 n, akg = gak for some k 6 m. We put n = m!.

By (1), every finitely generated subgroup H of G is an FC-group.
By (3), H/(H ∩ ZG) is a torsion group. Applying (2), we conclude that
H/(H ∩ ZG) is finite. Hence, G/ZG is locally finite.

Now let G/ZG is locally finite. We take an arbitrary finitely generated
subgroup H of G, choose a set h1, . . . , hn of representatives of right cosets
of H by H ∩ ZG, put F = {h1, . . . , hn} and note that gH = gF for each

g ∈ G. Applying (1), we conclude that
↔

G is cellular.

Remark 1. Every finitely generated subgroup of a group G is an FC-
group if and only if gH is finite for each g ∈ G and every finitely generated



“adm-n3” — 2021/11/8 — 20:27 — page 71 — #73

I . Protasov, K. Protasova 71

subgroup H . If G/ZG is locally finite then every finitely generated subgroup
H of G is an FC-group. We show that the converse statement does not
hold. Let H =

⊕
i<ω Hi be the direct sum of ω copies of Z2. We partition

ω into consecutive intervals {Wi : i < ω} of length |Wi| = i+ 1. Then we
take an automorphism a of H acting on each

⊕
{Hm : m ∈ Wi} as the

cyclic permutations of coordinates, denote by A the cyclic group generated
by A and consider the semidirect product G = H ⋋A. Then every finitely
generated subgroup of G is an FC-group but an /∈ ZG for each n ∈ N so
G/ZG is not locally finite.

4. Asymorphic embeddings

Let (X, E), (X ′, E ′) be coarse spaces. A mapping f : X −→ X ′ is
called macro-uniform if, for every E ∈ E , there exists E′ ∈ E ′ such that
f(E[x]) ⊆ E′[f(x)] for each x ∈ X. We say that an injective mapping
f : X −→ X ′ is an asymorphic embedding if f : X −→ X ′ and f−1 :
f(X) −→ X are macro-uniform.

Theorem 6. Every finitary coarse space (X, E) admits an asymorphic

embedding to
↔

G for an appropriate choice of a group G.

Proof. We represent (X, E) as the coarse space XH for some group H of
permutations of X, see [7, Theorem 1]. We consider {0, 1}X as a group
with point-wise addition mod 2. For h ∈ H and χ ∈ {0, 1}X , we put
χh(y) = χ(h−1y). Then we define a semidirect product G = {0, 1}X ⋋H
by

(χ, h)(χ′, h′) = (χ+ χ′

h, hh
′)

and note that the mapping f : X −→ {0, 1}X , f(x) is the characteristic

function of {x} is an asymorphic embedding of (X, E) into
↔

G.

If a subset A of a coarse space (X, E) is the union of n discrete subsets
then A is n-discrete.

Theorem 7. Let G be a countable group. Then every n-discrete subset A

of
↔

G can be partitioned into n discrete subsets.

Proof. Use arguments proving this statement in the case of a connected
coarse space with a linearly ordered base [6, Theorem 1.2].

Theorem 8. There exists a group G such that
↔

G has 2-discrete subset

which cannot be finitely partitioned into discrete subsets.
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Proof. By Theorem 6.3 from [3], there exists 2-discrete finitary coarse
space on ω which cannot be finitely partitioned into discrete subspaces.
Apply Theorem 6.

5. The space of subgroups

For a group G we denote by S (
↔

G) the set S(G) of all subgroups of G
endowed with the coarse structure with the base

{{(X,Y ) ∈ S(G)× S(G) : Y ∈ XF } : F ∈ [G]<ω},

XF = {g−1Xg : g ∈ F}.
We recall that G is a Dedekind group if each subgroup of G is normal.

A non-abelian Dedekind group is called Hamiltonian. By [1],
(4) G is Hamiltonian if and only if G is isomorphic to Q8 × P , where

Q8 is the quaternion group, P is an Abelian group without of elements of
order 4.

Theorem 9. For an infinite group G, S(
↔

G) is discrete if and only if G
is a Dedekind group.

Proof. If each subgroup of G is normal then, evidently, S(G) is discrete.

We assume that S(
↔

G) is discrete and consider two cases.
Case 1: G has an element of infinite order. First, we show that every

infinite cyclic subgroup of G is invariant. We suppose the contrary and
choose an infinite cyclic subgroup A, A = 〈a〉 and z ∈ G such that z−1az /∈

A. Since S (
↔

G) is discrete, there exists m ∈ N such that z−1〈an〉z = 〈an〉
for each n > m. By the same reason, there exists k ∈ N such that
z−1〈aan〉z = 〈aan〉 for each n > k. We take an arbitrary n such that n > m,
n > k. Then z−1an+1z = (z−1az)(z−1anz) ∈ 〈an+1〉, z−1anz ∈ 〈an〉, so
z−1anz ∈ A, contradicting the choice of A and z.

Second, we take an arbitrary element a ∈ G of infinite order and show
that a ∈ ZG. Assuming the contrary, we get z ∈ G such that z−1az 6= a.
By above paragraph z−1az = a−1, so z−2az2 = a and (anz)(anz) =

anz2z−1anz = anz2a−n = z2 for each n ∈ N. Since S(
↔

G) is discrete, there
exists m ∈ N such that

z−1(〈anz〉〈z2〉)z = 〈anz〉〈z2〉

for each n > m. Hence,

z−1(anz)z = a−nz ∈ 〈anz〉〈z2〉
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and a2n ∈ 〈z〉, contradicting z−1a2nz = a−2n.
If b is an element of finite order and a is an element of infinite order

then ab has an infinite order because a ∈ ZG, so ab ∈ ZG, b ∈ ZG, and G
is Abelian.

Case 2: Every element of G has a finite order. We prove that G is a
Dedekind group provided that the following condition holds

(5) for every finite subset K of G containing the identity e, there exists
a ∈ G, a 6= e such that K ∩ 〈a〉 = {e}.

We suppose the contrary and choose b ∈ G, z ∈ G such that z−1bz /∈

〈b〉. Since S(
↔

G) is discrete, by (5), there exists a ∈ G, a 6= e such that

z−1bz〈b〉 ∩ 〈a〉 = {e}, z−1〈a〉z = 〈a〉,

b−1〈a〉b = 〈a〉, z−1〈b〉〈a〉z = 〈b〉〈a〉.

Then z−1baz = (z−1bz)(z−1az) ∈ 〈b〉〈a〉, z−1bz ∈ 〈b〉〈a〉 and z−1bz ∈ 〈b〉,
contradicting the choice of b and z.

We denote by π(G) the set of all prime divisors of orders of elements
of G and put Xn = {g ∈ G : gn = e}. If G is not a Dedekind group, by
(5), π(G) is finite and Xp is finite for each p ∈ π(G). We prove that G is
layer-finite: Xn is finite for each n ∈ N. It suffices to verify that Xpn is
finite for all p ∈ π(G), n ∈ N. We suppose that Xpm is finite but Xpm+1 is
infinite. Then there exists a sequence (an)n∈ω in G and a ∈ G such that
|an| = pm+1, |a| = pm and 〈an〉 ∩ 〈ak〉 = 〈a〉 for all distinct n, k ∈ N. We
denote by H the subgroup of G generated by the set {an : n ∈ ω} and

put M = H/〈a〉. Since S (
↔

M) is discrete, applying (5) and (4) to M , we
conclude that M has an infinite Abelian subgroup of exponent p. By the
Gr

..
un’s lemma (see [5], p. 398), H has an infinite Abelian subgroup of

exponent p, so Xp is infinite and we get a contradiction.
Thus, our assumption that G is not a Dedekind group gives G is layer-

finite and π(G) is finite. Since G is infinite, by the Chernikov’s theorem
[4], G has a central quasi-cyclic p-group A, A = ∪n∈ω〈an〉, apn+1

= an.

We take c, z ∈ G such that z−1cz 6= 〈c〉, |c| = qm, q ∈ π(G). Since S (
↔

G)
is discrete, there exists k ∈ N such that, for each n > k, we have

z−1〈anc〉z = 〈anc〉, an(z
−1cz) ∈ 〈anc〉.

If q 6= p then z−1cz ∈ 〈c〉, contradicting the choice of c and z. If q = p
and n > 2m, n > k then (anc)

pm = ap
m

n , |ap
m

n | > pm and z−1cz ∈ 〈ap
m

n 〉.
Since A is central, z−1cz = c and z−1cz ∈ 〈c〉, contradicting the choice of
z, c. The proof is completed.



“adm-n3” — 2021/11/8 — 20:27 — page 74 — #76

74 Coarse structures on groups

Remark 2. Let G be a transitive group of permutations of a set X,
St(x) = {g ∈ G : gx = x}, x ∈ X. Then the natural mapping x 7→ St(x)

is an asymorphic embedding of the finitary coarse space XG into S (
↔

G).

If (
↔

G) is cellular then applying (1) we see that S (
↔

G) is cellular.

Question 1. Is
↔

G cellular provided that S (
↔

G) is cellular?

6. The direct union of connected components

Let (X, E) be a coarse space, {Xα : α < κ} is the set of all connected
components of (X, E). We say that (X, E) is the direct union of {Xα : α <
κ} if, for each E ∈ E , there exists α1, . . . , αn such that E[x] = {x} for
each x ∈ Xα, α < κ, α /∈ {α1, . . . , αn}.

If a group G is either Abelian or the set of conjugacy classes of G is

finite then
↔

G is the direct union of conjugacy classes.
For every natural number n, G. Bergman used HNN -extensions to

construct a group G such that G has an infinite center (so the number of
conjugacy classes of G is infinite) and only n conjugacy classes of G are

not singletons. Also, he proved that if
↔

G is the direct union of conjugacy
classes then all but finely many conjugacy classes are singletons.
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