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Abstract. Let R be a commutative ring with unity. The

R-algebra G = G(A,M,N,B) is a generalized matrix algebra deőned

by the Morita context (A,B,M,N, ξMN,ΩNM). In this article, we

study generalized Lie derivation and show that every generalized

Lie derivation on a generalized matrix algebra has the standard

form under certain assumptions.

Historical development

There has been a great deal of work concerning characterizations of
Lie derivations on rings and algebras. The őrst characterization of Lie
derivations was obtained by Martindale [8] in 1964 who proved that every
Lie derivation on the primitive ring can be written as a sum of derivation
and an additive mapping of a ring to its center that maps commutators into
zero, i.e, Lie derivation has the standard form. Cheung [5] established the
structures of commuting maps and Lie derivation on triangular algebras.
Benkovic [4] proved that under certain conditions each generalized Lie
derivation of a triangular algebra is the sum of a generalized derivation
and a central map which vanishes on all commutators. Following the
well-established approach and the sophisticated computational method
by Cheung [5], several authors studied the different linear mappings on
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generalized matrix algebras for example [3, 6, 9] and the bibliographic
content existing therein. Recently, Li and Wei [6] studied the structure
of derivations as well as Lie derivations on generalized matrix algebras
and proved that it has a standard form. Further, Mokhtari and Vishki [9]
presented several sufficient conditions assuring the properness (standard
from) of Lie derivations on certain generalized matrix algebras.

The paper is organized as follows. Section 2 is about the basic results
and deőnitions which are subsequently used in the article. Section 3
contains the key results of this article and in this section we compute the
structure of generalized Lie derivation on generalized matrix algebras as
well as we show that every generalized Lie derivation takes standard form
under speciőc restrictions. Further, Example 1 shows that generalized
Lie derivation fails to have the standard form if some speciőc restrictions
do not satisfy. In sections 4 and 5, we consider a classical example of
generalized matrix algebras for the direct application of our result and we
draw attention to some potential problems for future research respectively.

1. Basic deőnitions and preliminaries

Let A be an R-algebra over a commutative ring with unity and Z(A)
be the center of A. An R-linear map L : A → A is called a derivation (resp.
Lie derivation) on A if L(ab) = L(a)b+ aL(b) (resp. L([a, b]) = [L(a), b] +
[a,L(b)]) holds for all a, b ∈ A. An R-linear map Lg : A → A is called a
generalized derivation (resp. generalized Lie derivation) on A associated
with a derivation (rep. Lie derivation) L on A if Lg(ab) = Lg(a)b+ aL(b)
(resp. Lg([a, b]) = [Lg(a), b] + [a,L(b)]) holds for all a, b ∈ A.

A Morita context consists of two unital R-algebras A and B, two
bimodules (A,B)-bimodule M and (B,A)-bimodule N, and two bimodule
homomorphisms called the bilinear pairings ξMN : M ⊗

B

N −→ A and

ΩNM : N⊗
A

M −→ B satisfying the following commutative diagrams:

M⊗
B

N⊗
A

M
ξMN⊗IM

//

IM⊗ΩNM

��

A⊗
A

M

∼=

��

M⊗
B

B
∼=

// M

and N⊗
A

M⊗
B

N
ΩNM⊗IN

//

IN⊗ξMN

��

B⊗
B

N

∼=

��

N⊗
A

A
∼=

// N .
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If (A,B,M,N, ξMN,ΩNM) is a Morita context, then the set

[

A M
N B

]

=

{[

a m
n b

]

a ∈ A,m ∈ M, n ∈ N, b ∈ B

}

forms an R-algebra under matrix addition and matrix-like multiplication,
where at least one of the two bimodules M and N is distinct from zero.
Such an R-algebra is usually called a generalized matrix algebra of order
2 and is denoted by

G = G(A,M,N,B) =

[

A M
N B

]

.

This kind of algebra was őrst introduced by Morita in [10]. All associative
algebras with nontrivial idempotents are isomorphic to generalized matrix
algebras. Most common examples of generalized matrix algebras are full
matrix algebras over a unital algebra and triangular algebras [3, 12]. Also,
if the bilinear pairings ξMN and ΩNM are zero, then G is called a trivial
generalized matrix algebra and if N = 0, then G is called a triangular
algebra.

The center of G is

Z(G) =

{[

a 0
0 b

]

am = mb, na = bn ∀ m ∈ M, n ∈ N

}

.

Deőne two natural projections πA : G → A and πB : G → B by

πA

([

a m
n b

])

= a and πB

([

a m
n b

])

= b. Moreover, πA(Z(G)) ⊆ Z(A)

and πB(Z(G)) ⊆ Z(B) and there exists a unique algebraic isomorphism
ζ : πA(Z(G)) → πB(Z(G)) such that am = mζ(a) and na = ζ(a)n for all
a ∈ πA(Z(G)),m ∈ M and n ∈ N.

Let 1A (resp.1B) be the identity of the algebra A (resp.B) and let

I be the identity of generalized matrix algebra G, e =

[

1A 0
0 0

]

, f =

I − e =

[

0 0
0 1B

]

and G11 = eGe, G12 = eGf , G21 = fGe, G22 = fGf .

Thus G = eGe+ eGf + fGe+ fGf = G11 +G12 +G21 +G22 where G11

is subalgebra of G isomorphic to A, G22 is subalgebra of G isomorphic
to B, G12 is (G11,G22)-bimodule isomorphic to M and G21 is (G22,G11)-
bimodule isomorphic to N. Also, πA(Z(G)) and πB(Z(G)) are isomorphic to
eZ(G)e and fZ(G)f respectively. Then there is an algebra isomorphisms
ζ : eZ(G)e → fZ(G)f such that am = mζ(a) and na = ζ(a)n for all
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m ∈ eGf and n ∈ fGe. Now we should mention some important results
which are used subsequently in this article:

Lemma 1 ([6, Propostion 4.1]). Let G = G(A,M,N,B) be a generalized
matrix algebra over a commutative ring R. Let L be Lie derivation on G.
Then Lie derivation has the form

L

([

a m
n b

])

=

[

δ1(a)−mn0 −m0n+ δ4(b) am0 + τ2(m) + τ3(n)−m0b
n0a+ ν2(m) + ν3(n)− bn0 µ1(a) + n0m+ nm0 + µ4(b)

]

,

where a ∈ A; b ∈ B; m,m0 ∈ M; n, n0 ∈ N and δ1 : A → A, δ4 : B →
Z(A), τ2 : N → M, τ3 : N → M, ν2 : M → N, ν3 : N → N, µ1 : A →
Z(B), µ4 : B → B are R-linear maps satisfying the following conditions:

1) δ1 is Lie derivation of A and δ1(mn) = −δ4(nm)+τ2(m)n+mν3(n);
2) µ4 is Lie derivation of B and µ4(nm) = µ1(mn)+nτ2(m)+ν3(n)m;
3) δ4([b1, b2]) = 0 for all b1, b2 ∈ B and µ1([a1, a2]) = 0 for all a1, a2 ∈

A;
4) τ2(am) = aτ2(m) + δ1(a)m − mµ1(a) and τ2(mb) = τ2(m)b +

mµ4(b)− δ4(b)m;
5) ν3(na) = ν3(n)a+ nδ1(a)− µ1(a)n and ν3(bn) = ν4(b)n− nδ4(b) +

bν3(n);
6) 2τ3(n) = 0 and 2ν2(m) = 0.

Lemma 2. [9, Proposition 1 (2.3)] Let G = G(A,M,N,B) be a generalized
matrix algebra over a commutative ring R. A R-linear map τ on G is
center valued and vanishes at commutators if and only if it has the following
form

τ

([

a m
n b

])

=

[

l1(a) + p4(b) 0
0 q1(a) + l4(b)

]

where l1 : A → Z(A), p4 : B → Z(A), q1 : A → Z(B) and l4 : B →
Z(B) are R-linear maps vanishing at commutators, having the following
properties:

1) l1(a) + q1(a) ∈ Z(G) and p4(b) + l4(b) ∈ Z(G) for all a ∈ A, b ∈ B,
2) l1(mn) = p4(nm) and q1(mn) = l4(nm) for all m ∈ M, n ∈ N.

Lemma 3. [3, Theorem 2.1] Let G = G(A,M,N,B) be a generalized
matrix algebra over a commutative ring R. An additive map Φ : G → G

is a generalized derivation on G if and only if Φ has the following form

Φ

([

a m
n b

])

=

[

∆1(a)−mn0 −m0
′n am0 + T2(m)−m0

′b
n0

′a− bn0 + V3(n) nm0 + n0
′m+ U4(b)

]

,
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where a ∈ A; b ∈ B; m,m0,m0
′ ∈ M; n, n0, n0

′ ∈ N and ∆1 : A →
A, T2 : M → M, V3 : N → N, U4 : B → B are R-linear maps satisfying the
following conditions:

1) ∆1 is generalized derivation of A and ∆1(mn) = T2(m)n+mν3(n);

2) U4 is generalized derivation of B and U4(nm) = V3(n)m+ nτ2(m);

3) T2(am) = ∆1(a)m+ aτ2(m) and T2(mb) = T2(m)b+mµ4(b);

4) V3(na) = V3(n)a+ nδ1(a) and V3(bn) = U4(b)n+ bν3(n).

2. Key results

In this section, we make an attempt to establish the structure of generalized
Lie derivation on generalized matrix algebras as follows:

Theorem 1. Let G = G(A,M,N,B) be a generalized matrix algebra over
a commutative ring R. An additive map Lg : G → G is a generalized Lie
derivation on G if and only if Lg has the following form

Lg

([

a m
n b

])

=

[

p1(a)−mn0 −m′
0n+ p4(b) am0 + r2(m) + r3(n)−m′

0b
n′
0a+ s2(m) + s3(n)− bn0 q1(a) + n′

0m+ nm0 + q4(b)

]

,

where a ∈ A; b ∈ B; m,m0,m0
′ ∈ M; n, n0, n0

′ ∈ N and p1 : A → A, p4 :
B → Z(A), s2 : N → M, s3 : N → M, r2 : M → N, r3 : N → N, q1 : A →
Z(B), q4 : B → B are R-linear maps satisfying the following conditions:

1) p1 is generalized Lie derivation of A and p1(mn) = −p4(nm) +
r2(m)n+ms3(n);

2) q4 is generalized Lie derivation of B and q4(nm) = q1(mn)+nr2(m)+
s3(n)m;

3) p4([b1, b2]) = 0 for all b1, b2 ∈ B and q1([a1, a2]) = 0 for all a1, a2 ∈
A;

4) r2(am) = ar2(m)+p1(a)m−mq1(a) and r2(mb) = r2(m)b+mq4(b)−
p4(b)m;

5) s3(na) = s3(n)a+ np1(a)− q1(a)n and s3(bn) = q4(b)n− np4(b) +
bs3(n);

6) 2r3(n) = 0 and 2s2(m) = 0.
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Proof. Suppose that generalized Lie derivation takes the following form
as

Lg

[

a m
n b

]

=

[

p1(a) + p2(m) + p3(n) + p4(b) r1(a) + r2(m) + r3(n) + r4(b)
s1(a) + s2(m) + s3(n) + s4(b) q1(a) + q2(m) + q3(n) + q4(b)

]

where p1 : A → A, p2 : M → A, p3 : N → A, p4 : B → A; r1 : A → M, r2 :
M → M, r3 : N → M, r4 : B → M; s1 : A → N, s2 : M → N, s3 : N → N, s4 :
B → N and q1 : A → B,q2 : M → B, q3 : N → B, q4 : B → B are R-linear
maps. As Lg is the generalized Lie derivation with Lie derivation L deőned
by Lg([G1, G2]) = [Lg(G1), G2] + [G1,L(G2)] for all G1, G2 ∈ G.

Now we assume that

G1 =

[

a 0
0 0

]

and G2 =

[

0 m
0 0

]

,

then

Lg

([

0 am
0 0

])

=

[

Lg

([

a 0
0 0

])

,

[

0 m
0 0

]]

+

[[

a 0
0 0

]

,L

([

0 m
0 0

])]

=⇒

[

p2(am) r2(am)
s2(am) q2(am)

]

=

[[

p1(a) r1(a)
s1(a) q1(a)

]

,

[

0 m
0 0

]]

+

[[

a 0
0 0

]

,

[

−mn0 τ2(m)
ν2(m) n0m

]]

=

[

−ms1(a) p1(a)m−mq1(a)
0 s1(a)m

]

+

[

−amn0 +mn0a aτ2(m)
−ν2(m)a 0

]

.

On comparing both sides, we get p2(am) = −ms1(a)− amn0 +mn0a,
r2(am) = p1(a)m−mq1(a) + aτ2(m), s2(am) = −ν2(m)a and q2(am) =
s1(a)m. Now, if we take a = 1, then we őnd that p2(m) = −mn′

0, r2(m) =
p1(1)m−mq1(1)+τ2(m) and q2(m) = n′

0m, where s1(1) = n′
0. Again, if we

consider G1 =

[

0 m
0 0

]

and G2 =

[

a 0
0 0

]

, then we have r2(m) = τ2(m).

Similarly, if G1 =

[

0 m
0 0

]

and G2 =

[

0 0
0 b

]

, then we have p2(mb) =

−mbn0, r2(mb) = r2(m)b + mµ4(b) − δ4(b)m, s2(mb) = −bs2(m) and
q2(mb) = q2(m)b−bq2(m)+bn0m. On substituting b = 1, we get p2(m) =
−mn0, mµ4(1) = δ4(1)m, 2s2(m) = 0 and q2(m) = n0m. Also for
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G1 =

[

0 0
0 b

]

and G2 =

[

0 m
0 0

]

, we őnd that r2(mb) = τ2(m)b+mq4(b)−

p4(b)m.

Again, we suppose that G1 =

[

0 0
n 0

]

and G2 =

[

a 0
0 0

]

, we get

Lg

([

0 0
na 0

])

=

[

Lg

([

0 0
n 0

])

,

[

a 0
0 0

]]

+

[[

0 0
n 0

]

,L

([

a 0
0 0

])]

=⇒

[

p3(na) r3(na)
s3(na) q3(na)

]

=

[[

p3(n) r3(n)
s3(n) q3(n)

]

,

[

a 0
0 0

]]

+

[[

n 0
0 0

]

,

[

δ1(a) am0

n0a µ1(a)

]]

=

[

p3(n)a− ap3(n) −ar3(n)
s3(n)a 0

]

+

[

−am0n 0
nδ1(a)− µ1(a)n nam0

]

.

This leads to p3(na) = p3(n)a− ap3(n)− am0n, r3(na) = −ar3(n),
s3(na) = s3(n)a + nδ1(a) − µ1(a)n, q3(na) = nam0. On putting a = 1,
we have p3(n) = m0n, 2r3(n) = 0, nδ1(a) − µ1(a)n = 0, q3(n) = nm0.

For G1 =

[

a 0
0 0

]

and G2 =

[

0 0
n 0

]

, we have s3(na) = ν3(n)a+ np1(a)−

q1(a)n.

On similar pattern, if G1 =

[

0 0
0 b

]

and G2 =

[

0 0
n 0

]

, then we őnd

that p3(bn) = r4(b)n, r3(bn) = −τ3(n)b, s3(bn) = q4(b)n − np4(b) +
bν3(n), and q3(bn) = −nr4(b) + bnm0 − nm0b. Putting b = 1 leads
to p3(n) = r4(1)n, r3(n) = −τ3(n), s3(n) = q4(1)n − np4(1) + ν3(n),

and q3(n) = nm′
0, where r4(1) = −m′

0. Further with G1 =

[

0 0
n 0

]

and

G2 =

[

0 0
0 b

]

, it follows that s3(n) = ν3(n).

On assuming G1 =

[

a 0
0 0

]

and G2 =

[

0 0
0 b

]

, we obtain that

Lg

([

0 0
0 0

])

=

[

Lg

([

a 0
0 0

])

,

[

0 0
0 b

]]

+

[[

a 0
0 0

]

,L

([

0 0
0 b

])]

=⇒

[

0 0
0 0

]

=

[[

p1(a) r1(a)
s1(a) q1(a)

]

,

[

0 0
0 b

]]

+

[[

a 0
0 0

]

,

[

δ4(b) −m0b
−bn0 µ4(b)

]]

=

[

0 r1(a)b
−bs1(a) [q1(a), b]

]

+

[

[a, δ4(b)] −amob
bn0a 0

]

.
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On comparing both sides, we get [a, δ4(b)] = 0, r1(a)b = am0b, bs1(a) =
bn0a, and [q1(a), b] = 0. This implies that r1(a) = am0, s1(a) = n0a,

and q1(a) ∈ Z(B). Similarly, if G1 =

[

0 0
0 b

]

and G2 =

[

a 0
0 0

]

, then

p4(b) ∈ Z(A), r4(b) = −m0b, and s4(b) = −bn0.

Let us consider G1 =

[

a1 0
0 0

]

and G2 =

[

a2 0
0 0

]

. Then

[

p1([a1, a2]) r1([a1, a2])
s1([a1, a2]) q1([a1, a2])

]

= Lg

([

[a1, a2] 0
0 0

])

=

[

Lg

([

a1 0
0 0

])

,

[

a2 0
0 0

]]

+

[[

a1 0
0 0

]

,L

([

a2 0
0 0

])]

=

[[

p1(a1) r1(a1)
s1(a1) q1(a1)

]

,

[

a2 0
0 0

]]

+

[[

a1 0
0 0

]

,

[

δ1(a) am0

n0a µ1(a)

]]

=

[

[p1(a1), a2] −a2r1(a1)
s1(a1)a2 0

]

+

[

[a1, δ1(a2)] a1a2m0

−n0a2a1 0

]

.

Equating both sides, we őnd that p1([a1, a2]) = [p1(a1), a2] + [a1, δ1(a2)],
r1([a1, a2]) = −a2r1(a1) + a1a2m0, s1([a1, a2]) = s1(a1)a2 − n0a2a1 and
q1([a1, a2]) = 0.

In similar manner, if G1 =

[

0 0
0 b1

]

and G2 =

[

0 0
0 b2

]

, then we

arrive at p4([b1, b2]) = 0, r4([b1, b2]) = r4(b1)b2 + m0b2b1, s4([b1, b2]) =
−b2s4(b1)− b1b2n0 and q4([b1, b2]) = [q4(b1), b2] + [b1, µ4(b2)].

Suppose that G1 =

[

0 m
0 0

]

and G2 =

[

0 0
n 0

]

, this implies that

[

p1(mn)− p4(nm) r1(mn)− r4(nm)
s1(mn)− s4(nm) q1(mn)− q4(nm)

]

= Lg

([

mn 0
0 −nm

])

=

[

Lg

([

0 m
0 0

])

,

[

0 0
n 0

]]

+

[[

0 m
0 0

]

,L

([

0 0
n 0

])]

=

[

r2(m)n 0
s2(m)n− np2(m) −nr2(m)

]

+

[

mν3(n) mnm0 +m0nm
0 −ν3(n)m

]

.

On comparing both sides we get p1(mn)− p4(nm) = r2(m)n+mν3(n),
r1(mn)− r4(nm) = mnm0+m0nm, s1(mn)− s4(nm) = s2(m)n−np2(m)
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and q1(mn) − q4(nm) = −nr2(m) − ν3(n)m. Similarly, if G1 =

[

0 0
n 0

]

and G2 =

[

0 m
0 0

]

, then we have −p1(mn) + p4(nm) = −ms3(n) −

τ2(m)n, −r1(mn) + r4(nm) = p3(n)m−mp3(n), −s1(mn) + s4(nm) =
−nmn0 − n0mn and −q1(mn) + q4(nm) = s3(n)m+ nτ2(m).

Conversely, suppose that Lg has following form and satisőes condition
(1) to (6)

Lg

([

a m
n b

])

=

[

p1(a)−mn0 −m′
0n+ p4(b) am0 + r2(m) + r3(n)−m′

0b
n′
0a+ s2(m) + s3(n)− bn0 q1(a) + n′

0m+ nm0 + q4(b)

]

.

Then it is easy to prove that Lg([G1, G2]) = [Lg(G1), G2] + [G1,L(G2)].
Hence Lg is generalized Lie derivation on G.

If M is faithful but no restriction on N, then the condition
p4([b1, b2]) = 0 and q1([a1, a2]) = 0 can be dropped.

Theorem 2. Let G = G(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. An additive map Lg : G → G is a
generalized Lie derivation on G if and only if Lg has the following form

Lg

([

a m
n b

])

=

[

p1(a)−mn0 −m′
0n+ p4(b) am0 + r2(m)−m′

0b
n′
0a+ s3(n)− bn0 q1(a) + n′

0m+ nm0 + q4(b)

]

,

where a ∈ A; b ∈ B; m,m0,m0
′ ∈ M; n, n0, n0

′ ∈ N and p1 : A → A, p4 :
B → Z(A), s2 : N → M, s3 : N → M, r2 : M → N, r3 : N → N, q1 : A →
Z(B), q4 : B → B are R-linear maps satisfying the following conditions:

1) p1 is generalized Lie derivation of A and p1(mn) = −p4(nm) +
r2(m)n+ms3(n);

2) q4 is generalized Lie derivation of B and q4(nm) = q1(mn)+nr2(m)+
s3(n)m;

3) r2(am) = ar2(m)+p1(a)m−mq1(a) and r2(mb) = r2(m)b+mq4(b)−
p4(b)m;

4) s3(na) = s3(n)a+ np1(a)− q1(a)n and s3(bn) = q4(b)n− np4(b) +
bs3(n).
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Proof. It is sufficient to show that if M is faithful, then p4([b1, b2]) = 0
and q1([a1, a2]) = 0. For any a1, a2 ∈ A, it follows that

r2([a1, a2]m) = [a1, a2]r2(m) + p1([a1, a2])m−mq1([a1, a2]).

On the other hand, we have

r2([a1, a2]m) = r2(a1a2m− a2a1m)

= r2(a1a2m)− r2(a2a1m)

= a1r2(a2m) + p1(a1)a2m− a2mq1(a1)− a2r2(a1m)

− p1(a2)a1m+ a1mq1(a2)

= a1{a2r2(m) + p1(a2)m−mq1(a2)}+ p1(a1)a2m− a2mq1(a1)

− a2{a1r2(m) + p1(a1)m−mq1(a1)} − p1(a2)a1m+ a1mq1(a2)

= [a1, a2]r2(m) + [p1(a1), a2]m+ [a1, p1(a2)]m.

It follows that mq1([a1, a2]) = 0. Note that M is faithful as right B-module,
then this leads to q1([a1, a2]) = 0 for all a1, a2 ∈ A.

Similarly, with r2(mb) = r2(m)b+mq4(b)− p4(b)m, we can prove that
p4([b1, b2]) = 0 for all b1, b2 ∈ B.

The following result provides us a simple way to verify whether a
generalized Lie derivation has non standard form.

Theorem 3. Let G = G(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. Then generalized Lie derivation Lg

has standard form if and only if πA(Lg(B)) ⊆ πA(Z(G)), πB(Lg(A)) ⊆
πB(Z(G)) and p4(nm) + q1(mn) ∈ Z(G) where A and B is treated as
subalgebras of G.

Proof. Let us assume Lg has standard form, i.e., Lg = Φ+ τ, where Φ is
an additive generalized derivation and τ(G) ⊆ Z(G). By Lemma 2, we
know that

τ

([

a m
n b

])

=

[

l1(a) + p4(b) 0
0 q1(a) + l4(b)

]

.

Also, by Lemma 3

Φ

([

a m
n b

])

=

[

∆1(a)−mn0 −m0
′n am0 + T2(m)−m0

′b
n0

′a− bn0 + V3(n) nm0 + n0
′m+ U4(b)

]

.
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In view of Theorem 2, we obtain that p1 = ∆1 + l1; s3 = V3; r2 = T2 and
q4 = U4 + l4. For any b ∈ B, we get

p4(b) = πA

(

Lg

([

0 0
0 b

]))

∈ πA(Z(G))

and for any a ∈ A, we have

q1(a) = πB

(

Lg

([

a 0
0 0

]))

∈ πB(Z(G)).

This shows that every generalized Lie derivation on G can be written as a
sum of generalized derivation and a central mapping. Now it is easy to
verify that p4(nm) + q1(mn) ∈ Z(G) for all m ∈ M and n ∈ N.

Conversely, let us take p4(B) ⊆ πA(Z(G)) and q1(A) ⊆ πB(Z(G)). Now
we deőne

Φ

[

a m
n b

]

=

[

p1(a)−mn0−m′
0n−ζ−1(q1(a)) am0 + r2(m)−m′

0b
n′
0a+ s3(n)− bn0 n′

0m+nm0+q4(b)−ζ(p4(b))

]

and

τ

[

a m
n b

]

=

[

ζ−1(q1(a)) + p4(b) 0
0 q1(a) + ζ(p4(b))

]

.

It can be easily seen that Φ is a generalized derivation and τ(G) ⊆ Z(G).
Also, deőne maps l1 : A → Z(A) and l4 : B → Z(B) by l1(a) =

ζ−1(q1(a)) and l4(b) = ζ(p4(b)) respectively. Now it is obvious that l1(a)+
q1(a) ∈ Z(G) and p4(b) + l4(b) ∈ Z(G) for all a ∈ A and b ∈ B. Further,
we have l1(mn) = ζ−1(q1(mn)) = p4(nm) and l4(nm) = ζ(p4(nm)) =
q1(mn) for all m ∈ M and n ∈ N.

The following example shows that the restrictions in Theorem 3 are
necessary and cannot be removed.

Example 1. Let G = G(A,M,N,B) be a generalized matrix algebra

where A = B =

{[

p a
0 p

]

p, a ∈ R

}

and N = 0, M = T2(R), the ring of

2× 2 upper triangular matrices over R. Deőne a map Lg : G → G such
that

Lg

















p a u v
0 p 0 w
0 0 q b
0 0 0 q

















= L

















p a u v
0 p 0 w
0 0 q b
0 0 0 q

















=









0 b w 0
0 0 0 u
0 0 0 a
0 0 0 0









.
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Then Lg is a generalized Lie derivation associated with Lie derivation
L : G → G. But Lg has no standard form. For any x, y ∈ G, it can be
easily seen that Lg([x, y]) = [Lg(x), y] + [x,L(y)]. This implies that Lg is
a generalized Lie derivation with associated Lie derivation L on G. Note
that

πA(Z(G)) = πB(Z(G)) =

{[

t 0
0 t

]

t ∈ R

}

.

Since πA(Lg(B)) =

[

0 v
0 0

]

/∈ πA(Z(G)) and hence in view of Theorem 3,

Lg has no standard form.

3. Applications

In particular, if N = 0 in Theorem 3, then we can have following result:

Corollary 1. Let T = Tri(A,M,B) be a 2-torsion free triangular algebra
over a commutative ring R. Then generalized Lie derivation Lg has stan-
dard form if and only if πA(Lg(B)) ⊆ πA(Z(T)), and πB(Lg(A)) ⊆ πB(Z(T))
where A and B is treated as subalgebras of T.

4. For future research

Now we would like to end this article by proposing several potential
questions. Given the consideration of Lie derivations and Lie triple deriva-
tions, now we discuss a more general class of maps. Deőne the sequence
of polynomials:

p1(x1) = x1

p2(x1, x2) = [pn(x1), x2] = [x1, x2]

p3(x1, x2, x3) = [pn(x1, x2), x3] = [[x1, x2], x3]

...

pn(x1, x2, x3, · · · , xn) = [pn(x1, x2, x3, · · · , xn−1), xn].

The polynomial pn(x1, x2, x3, · · · , xn) is called n-th commutator where
n ⩾ 2. A map L : A → A is said to be a Lie n-derivation on A if

L(pn(x1, x2, x3, · · · , xn))

=

i=n
∑

i=1

pn(x1, x2, x3, · · · , xi−1,L(xi), xi+1, · · · , xn)
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for all x1, x2, x3, · · · , xn ∈ A. The concept of Lie n-derivation was őrst
introduced by Abdullaev [1] on certain von Neumann algebras. Obviously,
any Lie 2-derivation is Lie derivation and Lie 3-derivation is Lie triple
derivation. Lie derivations, Lie triple derivations and Lie n-derivations are
collectively referred to as Lie-type derivations.

Further, A map GL : A → A is said to be a generalized Lie n-derivation
on A if there exists a Lie n-derivation L such that

GL(pn(x1, x2, x3, · · · , xn))

= pn(GL(x1), x2, x3, · · · , xi−1, xi, xi+1, · · · , xn)

+
i=n
∑

i=2

pn(x1, x2, x3, · · · , xi−1,L(xi), xi+1, · · · , xn)

for all x1, x2, x3, · · · , xn ∈ A. Obviously, any generalized Lie 2-derivation
is generalized Lie derivation and generalized Lie 3-derivation is generalized
Lie triple derivation. These type of Lie derivations, Lie triple derivations
and Lie n-derivation collectively known as generalized Lie-type derivations.

Recently, many authors studied Lie n-derivation on various kind of
algebras [2,4,7,11,13] and references therein. In the year 2014, Wang and
Wang [13] studied multiplicative Lie n-derivation on generalized matrix
algebras and proved that it has standard form under certain assumptions.
Furthermore, Qi [11] characterized Lie n-derivation on reŕexive algebras
and obtained that it has the standard form, i.e, it can be expressed as
the sum of derivation and linear functional vanishing at every (n− 1)-
th commutator on reŕexive algebras. Lin [7] carried out the study of
multiplicative generalized Lie n-derivation on triangular algebras and
proved that every multiplicative Lie n-derivation can be written as sum of
additive generalized derivation and a central mapping annihilating (n− 1)-
th commutator on triangular algebras under some limitations. Now it is
natural to raise a question:

Question 1. What is the most general form of generalized Lie type
derivations on generalized matrix algebras and which constraints are needed
to apply on generalized matrix algebras?

Conclusions

In this article, we realize the structure of generalized Lie derivations
on generalized matrix algebras. Further, we demonstrate that generalized
Lie derivations has a proper form under speciőc restrictions on generalized
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matrix algebras and moreover we come up with an example showing that
these speciőc restrictions are necessary. For an immediate outcome of
results, we take a particular case of generalized matrix algebras named as
triangular algebras into the consideration. In the end of this article, we
try to draw the attention of readers towards the obvious queries related
to the theme of article.
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