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Abstract. We give a lower bound on multiplicative orders

of certain elements in defined by Conway towers of finite fields of

characteristic 2 and also formulate a condition under that these

elements are primitive.

Introduction

Elements with high multiplicative order are often needed in several
applications that use finite fields [11]. Ideally we want to have a possibility
to obtain a primitive element for any finite field. However, if we have not
any factorization of the order of finite field multiplicative group, it is not
known how to rich the goal. That is why one considers less ambitious
question: to find an element with provable high order. It is sufficient in
this case to obtain a lower bound on the order. The problem is considered
both for general and special finite fields [1, 3, 7, 12, 13].

Another less ambitious, but supposedly more important question is
to find primitive elements for a class of special finite fields. A polynomial
algorithm that find a primitive element in a finite field of small character-
istic is described in [8]. However, the algorithm relies on two unproved
assumptions and is not supported by any computational example. Our
paper can be considered as a step towards this direction. We give a lower
bound on multiplicative orders of certain elements in binary recursive
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extensions of finite fields defined by Conway [4,5,14] and also formulate a
condition under that these elements are primitive. Fq denotes finite field
with q elements.

The following finite fields of characteristic 2 are considered:

c−1 = 1, L−1 = F2(c−1) = F2,

for i > −1, Li+1 = Li(ci+1), where ci+1 satisfies the equation

c2i+1 + ci+1 +
i

∏

j=−1

cj = 0.

So, the following tower of finite fields arises:

L−1 = F2(c−1) = F2 ⊂ L0 = F2(c0) ⊂ L1 = L0(c1) ⊂ L2 = L1(c2) ⊂ . . .

Such a construction is very attractive from the point of view of applications,
since one can perform operations with finite field elements recursively,
and therefore effectively [9].

It is easy to verify directly the following facts: element c0 is primitive
in L0, and element c1 is primitive in L1. On the other hand, H. Lenstra
[10, Exercise 2] showed: if i > 2, then element ci is not primitive in Li.
Some primitive elements for the fields L2, L3, L4 are found in [2] using
SageMath. Therefore, for i > 2, the following questions arise: 1) what is
a lower bound on the multiplicative order O(ci) of element ci; 2) what
elements are primitive in the fields Li. We partially answer the questions
in Theorems 3, 4 and Corollaries 2, 3, 4, 5.

1. Preliminaries

Observe that, for i > 0, the number of elements of the multiplicative
group L∗

i = Li\{0} equals 22
i+1

− 1. If to denote the Fermat numbers by

Nj = 22
j

+ 1 (j > 0), then the cardinality of L∗

i is
∏i

j=0Nj . We will use

for k > 0 the denotation ak =
∏k

j=0 cj .

Lemma 1 ([6, Section 1.3.2]). For i > 1, Ni =
∏i−1

j=0Nj + 2.

Lemma 2 ([6, Section 1.3.2]). Any two Fermat numbers are coprime.

Lemma 3. For j > 2, a divisor α > 1 of the number Nj is of the form

α = l · 2j+2 + 1, where l is a positive integer.
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Proof. The result obtained by Euler and Lucas (see [6, theorem 1.3.5])
states: for j > 2, a prime divisor of Nj is of the form l · 2j+2 + 1, where l
is a positive integer. Clearly, a product of two numbers of the specified
form is a number of the same form. Hence, the result follows.

Lemma 4. For i > 2 and 1 6 j 6 i− 1, gcd(Ni + 1, Nj) = 1.

Proof. By lemma 1, Ni +1 =
∏i−1

j=0Nj +3. A common divisor of numbers

Ni + 1 and
∏i−1

j=0Nj divides their difference that equals 3. As N0 = 3,

gcd(Ni + 1,
∏i−1

j=0Nj) = 3. Since, by lemma 2, numbers Nj are coprime,
gcd(Ni + 1, Nj) = 1 for i > 2 and 1 6 j 6 i− 1.

Lemma 5. For i > 1, the equations

(ci)
Ni = ai−1 (1)

and

(ai)
Ni = (ai−1)

Ni+1. (2)

are true.

Proof. First show that (1) holds. Indeed, note that ci is a root of equation
x2 + x+ ai−1 = 0 over the field Li−1. One can verify directly, that ci + 1
is also a root of this equation. Then ci and ci + 1 are conjugates [11] over

Li−1 = F
22i

, that is (ci)
22

i

= ci+1. Therefore, (ci)
22

i
+1 = (ci+1)ci = ai−1,

and (1) is true. Applying (1) shows that (ai)
Ni = (ciai−1)

Ni = (ai−1)
Ni+1.

Hence, (2) is true as well.

If uj is a sequence of integers and s > t, then we will consider below
the empty product

∏t
j=s uj = 1.

Lemma 6. For k > 0 and i > k, the following equations are true:

(ci)
∏k

j=0
Ni−j = (ai−k−1)

∏k
j=1

(Ni−j+1) (3)

and

(ai)
∏k

j=0
Ni−j = (ai−k−1)

∏k
j=0

(Ni−j+1) (4)

Proof. We will proceed by induction on k. For k = 0 (and for i > 1), (3)
and (4) coincide with (1) and (2) respectively.

Now, suppose that (3) and (4) hold for k − 1, namely

(ci)
∏k−1

j=0
Ni−j = (ai−(k−1)−1)

∏k−1

j=1
(Ni−j+1) (5)
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and

(ai)
∏k−1

j=0
Ni−j = (ai−(k−1)−1)

∏k−1

j=0
(Ni−j+1). (6)

Then, applying (5) and (2), we obtain

(ci)
∏k

j=0
Ni−j =

(

(ci)
∏k−1

j=0
Ni−j

)Ni−k

=
(

(ai−k)
Ni−k

)

∏k−1

j=1
(Ni−j+1)

= (ai−k−1)
∏k

j=1
(Ni−j+1).

Hence, (3) is true for k. Analogously, exploiting (6) and (2) shows that

(ai)
∏k

j=0
Ni−k =

(

(ai)
∏k−1

j=0
Ni−k

)Ni−k

=
(

(ai−k)
Ni−k

)

∏k−1

j=0
(Ni−j+1)

= (ai−k−1)
∏k

j=0
(Ni−j+1),

and (4) is true for k as well. This completes the induction and the proof.

Lemma 7. Let K ⊂ L be a tower of fields. Let x ∈ L\K and m be the

smallest positive integer, satisfying the condition xm ∈ K. If xn ∈ K for

a positive integer n, then m|n.

Proof. One may write n = um+v, where 0 6 v < m. Then xn = (xm)u·xv,
and, therefore, xv ∈ K. As m is the smallest positive integer with the
condition xm ∈ K and v < m, we have v = 0, and the result follows.

Lemma 8. Let u > 1 and l be a positive integer. If (cu)
l ∈ Lu−1, then

(l, Nu) > 1.

Proof. (1) implies that (cu)
Nu = au−1 ∈ Lu−1. By Lemma 7, if d is the

smallest positive integer with (cu)
d ∈ Lu−1, then d|Nu and d|l. Clearly,

d > 1, and hence, (l, Nu) > d > 1.

Lemma 9. Let L1 ⊂ L2 be a tower of fields and b ∈ L∗

2. Let br = a ∈ L∗

1

and r be the smallest positive integer with br ∈ L∗

1. Then O(b) = r ·O(a).

Proof. Since bO(b) = 1 ∈ L∗

1, the inequality O(b) > r holds. Write O(b) =
sr + t, where s is a positive integer and 0 6 t < r. Then

1 = bO(b) = bsr+t = asbt.

Hence, bt = a−s ∈ L∗

1. By definition of r, it is possible only for t = 0.
Therefore, as = 1, s > O(a) and O(b) = sr > r · O(a). From the other
side, br·O(a) = aO(a) = 1, and thus O(b) = r ·O(a).
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Theorem 1. The relation (ci)
∏k

j=0
Ni−j ∈ Li−k−1\Li−k−2 holds for i > 2

and 0 6 k 6 i− 1.

Proof. Applying (3), we see that

(ci)
∏k

j=0
Ni−j = (ci−k−1)

∏k
j=1

(Ni−j+1)(ai−k−2)
∏k

j=1
(Ni−j+1). (7)

Obviously, (ci−k−1)
∏k

j=1
(Ni−j+1) ∈ Li−k−1 and (ai−k−2)

∏k
j=1

(Ni−j+1) ∈
Li−k−2. Hence, the product on the right hand of (7) belongs to Li−k−1.
For 1 6 j 6 k, by Lemma 4, gcd(Ni−j + 1, Ni−k−1) = 1, and thus

gcd(
∏k

j=1(Ni−j + 1), Ni−k−1) = 1. Then, by Lemma 8, the relation

(ci−k−1)
∏k

j=1
(Ni−j+1) /∈ Li−k−2 is true. Therefore, the element

(ci−k−1)
∏k

j=1
(Ni−j+1)(ai−k−2)

∏k
j=1

(Ni−j+1)

does not belong to Li−k−2.

Theorem 2. The relation (ai)
∏k

j=0
Ni−j ∈ Li−k−1\Li−k−2 holds for i > 2

and 0 6 k 6 i− 1.

Proof. Using (4), we have

(ai)
∏k

j=0
Ni−j = (ci−k−1)

∏k
j=0

(Ni−j+1)(ai−k−2)
∏k

j=0
(Ni−j+1). (8)

Observe that (ci−k−1)
∏k

j=0
(Ni−j+1) ∈ Li−k−1 and (ai−k−2)

∏k
j=0

(Ni−j+1) ∈
Li−k−2. Thus, the product on the right hand of (8) belongs to Li−k−1.
For 0 6 j 6 k, by Lemma 4, gcd(Ni−j + 1, Ni−k−1) = 1, and therefore

gcd(
∏k

j=0(Ni−j +1), Ni−k−1) = 1. So, the relation (ci−k−1)
∏k

j=0
(Ni−j+1) /∈

Li−k−2 holds by Lemma 8. Hence, the element

(ci−k−1)
∏k

j=0
(Ni−j+1)(ai−k−2)

∏k
j=0

(Ni−j+1)

does not belong to Li−k−2.

2. Lower bound on multiplicative orders of elements

We give in this section in Corollary 2 a lower bound on multiplicative
orders of elements ci, ai and also formulate in Corollary 3 a condition
under that these elements are primitive.

Theorem 3. For i > 2, the following statements hold:
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(a) O(ci) =
∏i

j=1 αj, where αj |Nj, αj > 1;

(b) O(ai) =
∏i

j=1 βj, where βj |Nj, βj > 1.

Proof. (a) Define recursively the sequence αi, . . . , α1 of positive integers
as follows. αi is the smallest integer satisfying the relation (ci)

αi ∈ Li−1.
If αi,. . . ,αi−j , where 0 6 j 6 i− 2, are already known, then αi−j−1 is the
smallest positive integer such that the relation

{(ci)
∏i

k=i−j αk}αi−j−1 ∈ Li−j−2

holds.

Since the cardinality of the group L∗

i is
∏i

j=0Nj and the cardinality

of the group L∗

i−1 is
∏i−1

j=0Nj , we have that the number of elements of
the factor-group L∗

i /L
∗

i−1 equals Ni. If d is the coset of ci in the factor-
group, then αi = O(d) and, as a consequence of Lagrange’s theorem for
finite groups, αi|Ni. Clearly, αi > 1. By Theorem 2 (ci)

Ni ∈ Li−1\Li−2,
and thus (ci)

αi ∈ Li−1\Li−2. Indeed, if to suppose that (ci)
αi ∈ Li−2,

then [(ci)
αi ]Ni/αi = (ci)

Ni ∈ Li−2, a contradiction. Hence, by Lemma 9,
O(ci) = αiO((ci)

αi).

Analogously, one can show that αi−j−1|Ni−j−1 (αi−j−1 > 1) and

{(ci)
∏i

k=i−j αi−k}αi−j−1 ∈ Li−j−2\Li−j−3. By Lemma 9,

O((ci)
αi...αi−j ) = αi−j−1O((ci)

αi...αi−jαi−j−1).

From (3), we deduce that

(ci)
∏i−1

j=0
Ni−j = ((a0)

N1+1)
∏i−2

j=1
(Ni−j+1) = 1.

Thus, O(ci)|
∏i−1

j=0Ni−j and O(ci) = αi . . . α1.

(b) The proof is analogues to the previous one, using Theorem 2
instead of Theorem 1.

Corollary 1. For i > 2, O(cic0) = N0O(ci) and O(aia0) = N0O(ai).

Proof. Note that O(c0) = N0. Since, by Theorem 3, O(ci) divides
∏i

j=1Nj , and lemma 2 implies that gcd(
∏i

j=1Nj , N0) = 1, we have
gcd(O(ci), O(c0)) = 1. Therefore, O(cic0) = O(ci)O(c0), and the result
for cic0 follows. The proof for aia0 = aic0 is analogous.

Corollary 2. The multiplicative order of the elements ci and ai equals
∏i

j=1Nj for 2 6 i 6 4 and is at least
∏4

j=1Nj ·
∏i

j=5(2
j+2 + 1) for i > 5.
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Proof. Consider the formulas for the multiplicative order of ci and ai given
in Theorem 3. For 1 6 j 6 4 the Fermat numbers N1 = 5, N2 = 17,
N3 = 257, N4 = 65537 are prime [6, table 1.3]. Therefore, αj = βj = Nj

for 1 6 j 6 4. By Lemma 3, αj , βj > 2j+2 + 1 for j > 5.

Theorem 4. Let i > 5. If, for 5 6 j 6 i, the αj = Nj is the smallest

positive integer satisfying the condition (cj)
αj ∈ Lj−1, then O(ai) =

O(ci) =
∏i

j=1Nj.

Proof. First prove the theorem for element ai. Note that αj is the smallest
positive integer with (cj)

αj ∈ Lj−1 iff αj is the smallest positive integer
with (aj)

αj ∈ Lj−1. We will proceed by induction on i > 5.
For i = 5, we have from (2) that (a5)

N5 = (a4)
N5+1. Thus, by Lemma 9,

O(a5) = N5O((a4)
N5+1). We have O(a4) =

∏4
j=1Nj by Corollary 2 and

gcd(N5 + 1,
∏4

j=1Nj) = 1 by Lemma 4. Use the well known fact that
raising an element of a group to a power relatively prime to its order
does not change the order. One deduces that O((a4)

N5+1) = O(a4) and
O(a5) =

∏5
j=1Nj .

Now, assume that the statement of the theorem is true for i−1. For i, we
have from (2) that (ai)

Ni = (ai−1)
Ni+1. Therefore, by Lemma 9, O(ai) =

NiO((ai−1)
Ni+1). As O(ai−1) =

∏i−1
j=1Nj by the induction assumption

and gcd(Ni + 1,
∏i−1

j=1Nj) = 1 by Lemma 4, one obtains, analogously to

the previous, that O((ai−1)
Ni+1) = O(ai−1) and O(ai) =

∏i
j=1Nj . This

completes the induction
To complete the proof, observe that, by equality (1) and Lemma 9,

O(ci) = NiO(ai−1) = O(ai).

Remark that, if the condition of Theorem 4 is true, then the following
chain of cyclic subgroups arises:

〈ci〉 = 〈ai〉 ⊃ 〈ci−1〉 = 〈ai−1〉 ⊃ · · · ⊃ 〈c2〉 = 〈a2〉 ⊃ 〈a1〉 .

At the same time, 〈a1〉 6= 〈c1〉, because O(c1) = 15, O(a1) = O(c1c0) = 5.
Theorem 4 and Corollary 1 imply the following corollary.

Corollary 3. Let i > 5. If, for 5 6 j 6 i, the αj = Nj is the smallest

positive integer with (cj)
αj ∈ Lj−1, then cic0 and aia0 are primitive.

Proof. Since O(cic0) = O(aia0) =
∏i

j=0Nj , the result follows.

Theorem 5. For 5 6 j 6 11, the number αj = Nj is the smallest positive

integer with (cj)
αj ∈ Lj−1.
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Proof. Note that to prove the fact: Nj is the smallest positive integer with

(cj)
αj ∈ Lj−1, it is enough to verify c

Nj/p
j /∈ Lj−1 for any prime divisor p

of Nj . Really, if element cj in the power Nj/p does not belong to Lj−1,
then element cj in the power of any divisor Nj/(pq) of Nj/p does not
belong to Lj−1 as well.

For 5 6 j 6 11, the Fermat numbers Nj are completely factored into
primes [6]. These factorizations are provided in Appendix. By equation
(1), (ci)

Ni = ai−1 ∈ Li−1. We have verified for 5 6 j 6 11, using the
factorizations and computer calculations, that αj = Nj is the smallest
positive integer with (cj)

αj ∈ Lj−1.

Corollary 4. For 2 6 i 6 11, the multiplicative order of elements ci and

ai equals
∏i

j=1Nj.

Proof. The result in the case 2 6 i 6 4 follows from Corollary 2. The
result in the case 5 6 i 6 11 follows from Theorem 4 and Theorem 5.

As a consequence of Corollary 1 and Corollary 4, one obtains the
following corollary.

Corollary 5. For 2 6 i 6 11, the elements cic0 and aia0 are primitive.

Let us consider, for example, the multiplicative group of the field L2.
The multiplicative order of element c2 is O(c2) = 5 ·17 = 85. Element c2c0
is primitive, namely O(c2c0) = 3 · 5 · 17 = 255. Since c2 + c1 + 1 = (c2)

5,
the order of element c2 + c1 + 1 is O(c2 + c1 + 1) = 17.

Appendix

N5 = 641 · 6700417,

N6 = 274177 · 67280421310721,

N7 = 59649589127497217 · 5704689200685129054721,

N8 = 1238926361552897 · P62,

where P62 is prime with 62 decimal digits

P62 = 93461639715357977769163558199606896584051237541638188580

280321,

N9 = 7455602825647884208337395736200454918783366342657

· 2424833 · P99,
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where P99 is prime with 99 decimal digits

P99 = 74164006262753080152478714190193747405994078109751902390

5821316144415759504705008092818711693940737,

N10 = 45592577 · 6487031809

· 4659775785220018543264560743076778192897 · P252,

where P252 is prime with 252 decimal digits

P252 = 1304398744054881897274847687965099039466085308416118921

8689529577683241625147186357414022797757310489589878392

8842923844831149032913798729088601617946094119449010595

9067101305319061710183544916096191939124885381160807122

99672322806217820753127014424577,

N11 = 319489 · 974849 · 167988556341760475137

· 3560841906445833920513 · P564,

where P564 is prime with 564 decimal digits

P564 = 1734624471791475554302589708643097783774218447236640846

4934701906136357919287910885759103833040883717798381086

8451546421940712978306134189864280826014542758708589243

8736855639731189488693991585455066111474202161325570172

6056413939436694579322096866510895968548270538807264582

8554151936401912464931182546092879815733057795573358504

9822792800909428725675915189121186227517143192297881009

7925103603549691727991266352735878323664719315477709142

7745377038294584918917590325110939381322486044298573971

6507110592444621775425407069130470346646436034913824417

23306598834177.
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