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Abstract. Let KG be the modular group algebra of an

arbitrary group G over a field K of characteristic p > 0. In this

paper we give some improvements of upper Lie nilpotency index

tL(KG) of the group algebra KG. It can be seen that if KG is Lie

nilpotent, then its lower as well as upper Lie nilpotency index is at

least p+1. In this way the classification of group algebras KG with

next upper Lie nilpotency index tL(KG) upto 9p− 7 have already

been classified. Furthermore, we give a complete classification of

modular group algebra KG for which the upper Lie nilpotency index

is 10p− 8.

1. Introduction

Let KG be the group algebra of a group G over a field K of charac-
teristic p > 0. The group algebra KG can be regarded as a associated
Lie algebra of KG, via the Lie commutator [x, y] = xy − yx, ∀x, y ∈ KG.
Set [x1, x2, ...xn] = [[x1, x2, ...xn−1], xn], where x1, x2, ...xn ∈ KG. The
nth lower Lie power KG[n] of KG is the associated ideal generated by the
Lie commutators [x1, x2, ...xn], where KG[1] = KG. By induction, the nth

upper Lie power KG(n) of KG is the associated ideal generated by all the
Lie commutators [x, y], where x ∈ KG(n−1), y ∈ KG and KG(1) = KG.
KG is said to be upper Lie nilpotent (lower Lie nilpotent) if there exists m
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such that KG(m) = 0 (KG[m] = 0). The minimal non-negative integer m

such that KG(m) = 0 and KG[m] = 0 is known as the upper Lie nilpotency
index and lower Lie nilpotency index of KG, denoted by tL(KG) and
tL(KG) respectively. It is well known that, if KG is Lie nilpotent, then
p+1 ⩽ tL(KG) ⩽ |G′|+1 (see [21,23]). According to Bhandari and Passi
[1], if p > 3 then tL(KG) = tL(KG). In this direction a recent result can
be seen in [17]. The subgroup D(m),K(G) = G ∩ (1 +KG(m)),m ⩾ 1 is

called the mth Lie dimension subgroup of G and by Passi [11], we have

D(m),K(G) =
∏

(i−1)pj⩾m−1

γi(G)p
j

.

Let pd(m) = |D(m),K(G) : D(m+1),K(G)|, m ⩾ 2. If KG is Lie nilpotent
such that |G′| = pn, then according to Jenning’s theory [20], we have
tL(KG) = 2 + (p − 1)Σm⩾1 md(m+1) and Σm⩾2 d(m) = n. Shalev [19]
initiated the study of group algebras with maximum Lie nilpotency index.
This problem was completed by [6]. Results on the next smaller Lie
nilpotency index can be easily seen in [4ś7]. In [3], Bovdi and Kurdics
discussed the upper and lower Lie nilpotency index of a modular group
algebra of metabelian group G and determine the nilpotency class of the
group of units. Recently, we have some results on classification of Lie
nilpotent group algebras of Lie nilpotency index upto 14 (see [2,8,22,24]).
Furthermore, group algebras with minimal Lie nilpotency index p+1 have
been classified by Sharma and Bist [21]. A complete description of the Lie
nilpotent group algebras with next possible nilpotency indices 2p, 3p− 1,
4p − 2, 5p − 3, 6p − 4, 7p − 5, 8p − 6 and 9p − 7 is given in [13ś16, 18].
In this article, we will classify group algebras with upper Lie nilpotency
index 10p− 8. For a prime p and positive integer x, ϑp′(x) is the maximal
divisor of x which is relatively prime to p. Also S(n,m) denotes the small
group number m of order n from the Small Group Library-Gap [9]. We
use the following lemma throughout our paper.

2. Preliminaries

Lemma 1. ([19]) Let K be a field with CharK = p > 0 and G be a
nilpotent group such that |G′| = pn and exp(G′) = pl.

1) If d(l+1) = 0 for some l < pm, then d(pm+1) ⩽ d(m+1).
2) If d(m+1) = 0, then d(s+1) = 0 for all s ⩾ m with ϑp′(s) ⩾ ϑp′(m)

where ϑp′(x) is the maximal divisor of x which is relatively prime
to p.
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3. Main Results

Theorem 1. Let G be a group and K be a field of characteristics p > 0
such that KG is Lie nilpotent. Then tL(KG) = 10p− 8 if and only if one
of the following condition satisfied:

1) G′ ∼= C72 × (C7)
2 and γ3(G) ⊆ G′7;

2) G′ ∼= C72 × C7, γ3(G) ∼= C7 and |γ3(G) ∩G′7| = 1;
3) G′ ∼= C72 × C7, γ4(G) ⊆ G′7 ⊆ γ3(G) ∼= (C7)

2 and γ5(G) = 1;
4) G′ ∼= C52 × (C5)

4, G′5 ⊆ γ3(G) and γ4(G) = 1;
5) G′ ∼= (C5)

6, |G′5 ∩ γ3(G)| = 1, γ3(G) ∼= C5 and γ4(G) = 1;
6) G′ ∼= (C52)

2 × C5 and γ3(G) ⊆ G′2;
7) G′ ∼= C52 × (C5)

3, either |G′5 ∩ γ3(G)| = 1, γ3(G) ∼= C5 or G′5 ⊆
γ3(G) ∼= (C5)

2;
8) G′ ∼= (C5)

5, |G′5 ∩ γ3(G)| = 1, γ3(G) ∼= (C5)
2 and γ4(G) = 1;

9) G′ is one of the groups S(3125, 2), S(3125, 40), S(3125, 41),
S(3125, 42), S(3125, 43), S(3125, 44), S(3125, 73) or S(3125, 74),
G′5 ⊆ ζ(G′), G′′ ⊆ ζ(G′), G′5 ⊆ γ3(G) ∼= (C5)

2, γ4(G) ∼= C5 and
γ5(G) = 1;

10) G′ ∼= C52 × (C5)
2, either |G′5 ∩ γ3(G)| = 1, γ3(G) ∼= (C5)

2 or
G′5 = γ3(G) ∼= C5 or G′5 ⊆ γ3(G) ∼= (C5)

3;
11) G′ ∼= C8 × (C2)

3, γ3(G) ⊆ G′2, γ3(G) ∼= C4 and γ4(G) = 1;
12) G′ ∼= (C4)

2 × (C2)
2, γ3(G) ⊆ G′2 and γ4(G) = 1;

13) G′ ∼= C4 × (C2)
4, G′2 ⊆ γ3(G) ∼= C4 and γ4(G) = 1;

14) G′ is one of the groups S(64, 199) to S(64, 201) or S(64, 215) to
S(64, 245), γ3(G) ⊆ G′2 and γ4(G) ∼= C2;

15) G′ is one of the groups S(64, 264) or S(64, 265), either G′2 ⊆
γ3(G) ∼= C4 or |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2;

16) G′ is one of the groups S(64, 247) or S(64, 248), G′2 = γ3(G) ∼= C4,
γ4(G) ∼= C2 and γ5(G) = 1;

17) G′ ∼= S(64, 263), |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= C4, γ4(G) ∼= C2 and
γ5(G) = 1;

18) G′ ∼= C8 × C4, either G′2 ⊆ γ3(G) ∼= C4 × C2 or γ3(G) ⊆ G′2,
γ3(G) ∼= C4;

19) G′ ∼= C8 × (C2)
2 and G′2 ⊆ γ3(G) ∼= C4 × C2;

20) G′ ∼= (C4)
2 × C2, either |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= C4 or |G′2 ∩

γ3(G)| = 4, γ3(G) ∼= C4 × C2;
21) G′ ∼= C4 × (C2)

3, |G′2 ∩ γ3(G)| = 2 and γ3(G) ∼= C4 × C2;
22) G′ is one of the groups S(32, 4), S(32, 5) or S(32, 12), γ3(G) ⊆

G′2 ∼= C4 × C2, γ4(G) ⊆ G′4γ3(G)2 ∼= C2 and γ5(G) = 1;
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23) G′ is one of the groups S(32, 22) to S(32, 26), either |G′2∩γ3(G)| = 2,
γ3(G) ∼= C4 or G′2 ⊆ γ3(G) ∼= C4 × C2, γ4(G) ⊆ G′4γ3(G)2 ∼= C2,
γ5(G) = 1;

24) G′ is one of the groups S(32, 37) or S(32, 38), either |G′2∩γ3(G)| = 2,
γ3(G) ∼= (C2)

2 or G′2 ⊆ γ3(G) ∼= C4×C2, γ4(G) ⊆ G′4γ3(G)2 ∼= C2,
γ5(G) = 1;

25) G′ is one of the groups S(32, 46) to S(32, 48), either |G′2∩γ3(G)| = 1,
γ3(G) ∼= C4 or G′2 ⊆ γ3(G) ∼= C4 × C2, γ4(G) ⊆ G′4γ3(G)2 ∼= C2,
γ5(G) = 1;

26) G′ ∼= (Cp)
4, |G′p ∩ γ3(G)| = 1, γ3(G) ∼= (Cp)

3, γ4(G) ∼= (Cp)
2 and

γ5(G) ∼= Cp for p ⩾ 5;
27) G′ ∼= C9 × (C3)

2, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)
2 or G′3 ⊆

γ3(G) ∼= (C3)
3;

28) G′ ∼= (C3)
4, |G′3 ∩ γ3(G)| = 1 and γ3(G) ∼= (C3)

3;
29) G′ ∼= C8 × C2, either γ3(G) ∼= C2, |G′2 ∩ γ3(G)| = 1 or G′2 ⊆

γ3(G) ∼= C4 × C2;
30) G′ ∼= C4 × (C2)

2 and G′2 ⊆ γ3(G) ∼= C4 × C2;
31) G′ ∼= ((Cp×Cp)⋊Cp)×Cp, γ3(G) ∼= (Cp)

3, γ4(G) ∼= (Cp)
2, γ5(G) ∼=

Cp and γ6(G) = 1 for p ⩾ 5;
32) G′ ∼= (C9)

2 and G′3 ⊆ γ3(G) ∼= (C3)
3;

33) G′ ∼= C9 × (C3)
2, either |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)

2 or G′3 ⊆
γ3(G) ∼= (C3)

3;
34) G′ ∼= (C3)

4, |G′3 ∩ γ3(G)| = 1 and γ3(G) ∼= (C3)
3;

35) G′ ∼= (Cp)
5, γ3(G) ∼= (Cp)

3 and |G′p ∩ γ3(G)| = 1 for p ⩾ 5;
36) G′ ∼= (C9)

2 × C3 and G′3 ⊆ γ3(G) ∼= (C3)
3;

37) G′ ∼= C9 × (C3)
3, either |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)

2 or G′3 ⊆
γ3(G) ∼= (C3)

3;
38) G′ ∼= (C3)

5, |G′3 ∩ γ3(G)| = 1 and γ3(G) ∼= (C3)
3;

39) G′ ∼= (C4)
2 × C2, either G′2 ⊆ γ3(G) ∼= (C2)

3 or |G′2 ∩ γ3(G)| = 2,
γ3(G) ∼= (C2)

2 or |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2;
40) G′ ∼= C4 × (C2)

3, either G′2 ⊆ γ3(G) ∼= (C2)
3 or |G′2 ∩ γ3(G)| = 1,

γ3(G) ∼= (C2)
2;

41) G′ ∼= (C2)
5, |G′2 ∩ γ3(G)| = 1 and γ3(G) ∼= (C2)

3;
42) G′ ∼= S(32, 2), γ3(G) ⊆ G′2, γ4(G) ∼= C2 and γ5(G) = 1;
43) G′ is one of the groups S(32, 22) to S(32, 26), γ4(G) ∼= C2, γ5(G)=1,

|G′2 ∩ γ3(G)| = 2 and γ3(G) ∼= (C2)
2;

44) G′ is one of the groups S(32, 46) to S(32, 48), γ4(G) ∼= C2, γ5(G)=1,
either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

2 or G′2 ⊆ γ3(G) ∼= (C3)
3;
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45) G′ is one of the groups S(243, 2), S(243, 33), S(243, 34) or S(243, 36),
either G′3 ⊆ γ3(G) ∼= (C3)

3 or |G′3 ∩ γ3(G)| = 3, γ3(G) ∼= (C3)
2,

γ4(G) ∼= C3, γ5(G) = 1;
46) G′ ∼= ⟨a, b, c, d, e⟩ = ⟨c, d⟩ × ⟨a, b⟩, where ⟨c, d⟩ ∼= Cp × Cp and

⟨a, b, e| = ap = bp = ep = 1, [b, a] = e⟩ is abelian group of order p3

and exponent p, γ3(G) ∼= (Cp)
3, γ4(G) ∼= Cp and γ5(G) = 1 for p ⩾ 5;

47) G′ ∼= (C9)
2 × (C3)

2, γ3(G) ⊆ G′3 and γ4(G) = 1;
48) G′ ∼= C9 × (C3)

4, either γ3(G) ∼= C3, γ4(G) = 1, |G′3 ∩ γ3(G)| = 1
or G′3 ⊆ γ3(G) ∼= (C3)

2, γ4(G) = 1;
49) G′ is one of the groups S(729, 422) or S(729, 502), G′3 ⊆ γ3(G) ∼=

(C3)
2, |G′3 ∩ γ4(G)| = 1, γ4(G) ∼= C3 and γ5(G) = 1;

50) G′ is one of the groups S(729, 423) or S(729, 424), G′3 ⊆ γ3(G) ∼=
(C3)

2, γ4(G) ∼= C3 and γ5(G) = 1;
51) G′ is one of the groups S(729, 103), S(729, 105), S(729, 417),

S(729, 418), S(729, 420) or S(729, 421), G′3 = γ3(G) ∼= (C3)
2,

γ4(G) ∼= C3 and γ5(G) = 1;
52) G′ is one of the groups S(729, 416), S(729, 419), S(729, 499) or

S(729, 500), G′3 ⊆ γ3(G) ∼= (C3)
2, γ4(G) ∼= C3 and γ5(G) = 1;

53) G′ ∼= C9 × (C3)
6, γ3(G) ⊆ G′3 ∼= C3 and γ4(G) = 1;

54) G′ ∼= (C4)
2 × (C2)

3 and γ3(G) ∼= G′2;
55) G′ ∼= C4 × (C2)

5, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2 or G′2 ⊆
γ3(G) ∼= (C2)

2;
56) G′ ∼= C9 × (C3)

5, either γ3(G) ∼= C3, |G
′3 ∩ γ3(G)| = 1 or G′3 ⊆

γ3(G) ∼= (C3)
2;

57) G′ ∼= (Cp)
7, |G′p ∩ γ3(G)| = 1 and γ3(G) ∼= (Cp)

2 for p ⩾ 5;
58) G′ is one of the groups S(128, 2157) to S(128, 2162) or S(128, 2304),

G′2 ⊆ γ3(G) ∼= (C2)
2, γ4(G) ∼= C2 and γ5(G) = 1;

59) G′ is one of the groups S(128, 2323) to S(128, 2325), |G′2∩γ3(G)| =
2, γ3(G) ∼= (C2)

2, γ4(G) ∼= C2 and γ5(G) = 1;
60) G′ is one of the groups S(128, 2151) to S(128, 2156), S(128, 2302)

or S(128, 2303), G′2 = γ3(G) ∼= (C2)
2, γ4(G) ∼= C2 and γ5(G) = 1;

61) G′ is one of the groups S(128, 2320) to S(128, 2322), G′2 ⊆ γ3(G) ∼=
(C2)

2, γ4(G) ∼= C2 and γ5(G) = 1;
62) G′ is one of the groups S(2187, 5874), S(2187, 5876), S(2187, 9102)

to S(2187, 9105), G′3 = γ3(G) ∼= (C3)
2, γ4(G) ∼= C3 and γ5(G) = 1;

63) G′ is one of the groups S(2187, 9100), S(2187, 9101), S(2187, 9306)
or S(2187, 9307), G′3 ⊆ γ3(G) ∼= (C3)

2, γ4(G) ∼= C3 and γ5(G) = 1;
64) G′ is one of the groups S(2187, 5867), S(2187, 5870), S(2187, 5872)

or S(2187, 9096) to S(2187, 9099), G′3 = γ3(G) ∼= (C3)
2, γ4(G) ∼= C3

and γ5(G) = 1;
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65) G′ is one of the groups S(2187, 9094), S(2187, 9095), S(2187, 9303)
or S(2187, 9304), G′3 ⊆ γ3(G) ∼= (C3)

2, γ4(G) ∼= C3 and γ5(G) = 1;
66) G′ ∼= ⟨a, b, c, d, e, f, g : ap=bp=cp=dp=ep=fp=gp=1, [b, a]=c⟩,

γ3(G) ∼= (Cp)
2, γ4(G) ∼= Cp and γ5(G) = 1 for p ⩾ 3;

67) G′ ∼= ⟨a, b, c, d, e, f, g : ap = bp = cp = dp = ep = fp = gp =
1, [b, a] = e, [d, c] = e⟩, γ3(G) ∼= (Cp)

2, γ4(G) ∼= Cp and γ5(G) = 1
for p ⩾ 3;

68) G′ ∼= (C4)
3, γ3(G) ⊆ G′2 and γ4(G) = 1;

69) G′ ∼= (C4)
2×(C2)

2, either |G′2∩γ3(G)| = 1, γ3(G) ∼= C2 or γ3(G) ∼=
(C2)

2 or G′2 ⊆ γ3(G) ∼= (C2)
3;

70) G′ ∼= (C2)
6, |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

3 and γ4(G) = 1;
71) G′ ∼= C9 × (C3)

4, either γ3(G) ∼= (C3)
2, |G′2 ∩ γ3(G)| = 1 or G′3 ⊆

γ3(G) ∼= (C3)
3;

72) G′ ∼= (Cp)
6, |G′p ∩ γ3(G)| = 1, γ3(G) ∼= (Cp)

3, γ4(G) ∼= Cp and
γ5(G) = 1 for p ⩾ 5;

73) G′ is one of the groups S(64, 199) to S(64, 201), |G′2 ∩ γ3(G)| = 2,
γ3(G) ∼= (C2)

2, γ4(G) ∼= C2 and γ5(G) = 1;
74) G′ is one of the groups S(64, 264) or S(64, 265), |G′2 ∩ γ3(G)| = 1,

γ3(G) ∼= (C2)
2, γ4(G) ∼= C2 and γ5(G) = 1;

75) G′ is one of the groups S(64, 56) to S(64, 59), γ3(G) ⊆ G′2, γ3(G) ∼=
(C2)

2, γ4(G) ∼= C2 and γ5(G) = 1;
76) G′ is one of the groups S(64, 193) to S(64, 198), |G′2 ∩ γ3(G)| = 2,

γ3(G) ∼= (C2)
2, γ4(G) ∼= C2 and γ5(G) = 1;

77) G′ is one of the groups S(64, 56) to S(64, 59), γ3(G) ⊆ G′2, γ3(G) ∼=
(C2)

3, γ4(G) ∼= C2 and γ5(G) = 1;
78) G′ is one of the groups S(64, 193) to S(64, 198) and G′2 ⊆ γ3(G) ∼=

(C2)
3;

79) G′ is one of the groups S(729, 103) to S(729, 106), S(729, 416)
to S(729, 420), S(729, 499) or S(729, 500), G′3 ⊆ γ3(G) ∼= (C3)

3,
γ4(G) ∼= C3 and γ5(G) = 1;

80) G′ is one of the groups S(729, 103), S(729, 105), S(729, 417),
S(729, 418), S(729, 420) or S(729, 421), |G′3 ∩ γ3(G)| = 3, γ3(G) ∼=
(C3)

2, γ4(G) ∼= C3 and γ5(G) = 1;
81) G′ is one of the groups S(729, 104) or S(729, 106), γ3(G) ⊆ G′2,

γ3(G) ∼= (C3)
2, γ4(G) ∼= C3 and γ5(G) = 1;

82) G′ is one of the groups S(729, 416), S(729, 419), S(729, 499) or
S(729, 500), |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)

2, γ4(G) ∼= C3 and
γ5(G) = 1;

83) G′ ∼= ϕ2(1
5) × (1), γ3(G) ∼= (Cp)

3, |G′p ∩ γ3(G)| = 1, γ4(G) ∼= Cp

and γ5(G) = 1 for p ⩾ 5;
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84) G′ ∼= (C4)
2 × C2, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

2 or |G′2 ∩
γ3(G)| = 2, γ3(G) ∼= (C2)

3 or G′2 ⊆ γ3(G) ∼= (C2)
4;

85) G′ ∼= C4 × (C2)
3, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

3 or G′2 ⊆
γ3(G) ∼= (C2)

4;
86) G′ ∼= (C2)

4, |G′2 ∩ γ3(G)| = 1 and γ3(G) ∼= (C2)
4;

87) G′ ∼= C9×(C3)
3, either γ3(G) ∼= (C3)

3, |G′3∩γ3(G)| = 1 or γ3(G) ∼=
(C3)

4, G′3 ⊆ γ3(G);
88) G′ ∼= (Cp)

5, γ3(G) ∼= (Cp)
4 and |G′p ∩ γ3(G)| = 1 for p ⩾ 5;

89) G′ ∼= S(32, 2), |G′2 ∩ γ3(G)| = 4, γ3(G) ∼= (C2)
3, γ4(G) ∼= C2 and

γ5(G) = 1;
90) G′ ∼= S(243, 32), |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)

3 and γ4(G) ∼= C3;
91) G′ ∼= (Cp)

10, γ3(G) = 1 and |G′3 ∩ γ4(G)| = 1 for p > 0;
92) G′ ∼= (Cp)

9, γ3(G) ∼= Cp, |G
′p∩γ3(G)| = 1 and γ4(G) = 1 for p ⩾ 3;

93) G′ ∼= C4 × (C2)
7, γ3(G) ⊆ G′2 ∼= C2 and γ4(G) = 1;

94) G′ ∼= (C2)
9, γ3(G) ∼= C2, |G

′2 ∩ γ3(G)| = 1 and γ4(G) = 1;
95) G′ ∼= (Cp)

8, γ3(G) ∼= (Cp)
2, |G′p ∩ γ3(G)| = 1 and γ4(G) = 1 for

p ⩾ 3;
96) G′ ∼= (C2)

8, |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)
2 and γ4(G) = 1 for

p ⩾ 5;
97) G′ ∼= C4 × (C2)

6, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2 or G′2 ⊆
γ3(G) ∼= (C2)

2 for p ⩾ 5;
98) G′ ∼= (C4)

2 × (C2)
4, γ3(G) ⊆ G′2 and γ4(G) = 1;

99) G′ ∼= (Cp)
7, γ3(G) ∼= Cp ×Cp ×Cp and |G′p ∩ γ3(G)| = 1 for p ⩾ 3;

100) G′ ∼= (C4)
3 × C2, γ3(G) ⊆ G′2 and γ4(G) = 1;

101) G′ ∼= (C4)
2 × (C2)

3, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2 or |G′2 ∩
γ3(G)| = 2, γ3(G) ∼= C2 × C2 or G′2 ⊆ γ3(G) ∼= (C2)

3, γ4(G) = 1;
102) G′ ∼= C4 × (C2)

5, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)
2 or G′2 ⊆

γ3(G) ∼= (C2)
3;

103) G′ ∼= (C2)
7, |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

3 and γ4(G) = 1;
104) G′ ∼= (Cp)

6, |G′p ∩ γ3(G)| = 1 and γ3(G) ∼= (Cp)
4 for p ⩾ 3;

105) G′ ∼= (C4)
3, γ3(G) ⊆ G′2 and γ4(G) = 1;

106) G′ ∼= (C4)
2×(C2)

2, either |G′2∩γ3(G)| = 1, γ3(G) ∼= (C2)
2 or |G′2∩

γ3(G)| = 2, γ3(G) ∼= (C2)
3 or G′2 ⊆ γ3(G) ∼= (C2)

4, γ4(G) = 1;
107) G′ ∼= C4 × (C2)

4, either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)
3 or G′2 ⊆

γ3(G) ∼= (C2)
4, γ4(G) = 1;

108) G′ ∼= (C2)
6, |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

4 and γ4(G) = 1.

Proof. Let tL(KG) = 10p− 8. Then l = tL(KG)−2
p−1 = 10. Thus from [15],

d(11) = 0, d(10) = 0, d(9) = 0 and d(8) ≠ 0 if and only if p = 7, G′ ∼=
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C72 × (C7)
2, γ3(G) ⊆ G′7 or G′ ∼= C72 ×C7, γ3(G) ∼= C7, |γ3(G)∩G′7| = 1

or G′ ∼= C72 × C7, γ4(G) ⊆ G′7 ⊆ γ3(G) ∼= (C7)
2, γ5(G) = 1.

Now if d8 = 0, then d(2) + 2d(3) + 3d(4) + 4d(5) + 5d(6) + 6d(7) = 10.
If d7 ≠ 0, then we have d(7) = 1, d(2) = 4 or d(7) = d(3) = 1, d(2) = 2 or
d(7) = d(2) = d(4) = 1 or d(7) = 1, d(3) = 2 or d(7) = d(5) = 1.

If d(7) = 1, then all the above cases are discarded by Lemma 1.
Now if d(7) = 0, then d(2)+2d(3)+3d(4)+4d(5)+5d(6) = 10. If d(6) ≠ 0,

then we have the following possibilities: d(6) = d(2) = d(5) = 1 or d(6) = 1,
d(2) = 5 or d(6) = d(3) = 1, d(2) = 3 or d(6) = d(4) = 1, d(2) = 2 or
d(6) = d(2) = 1, d(3) = 2 or d(6) = d(3) = d(4) = 1.

Let d(6) = d(2) = d(5) = 1. Then by Lemma 1(2), ϑp′(4) ⩾ ϑp′(2),
∀p > 0, so d(5) = 0.

Let d(6) = 1,d(2) = 5. If p ≠ 5, then as d(2+1) = 0, ϑp′(5) ⩾ ϑp′(2),
hence by Lemma 1(2), d(6) = 0. Now if p = 5, then |G′| = 56, |D(6),K(G)| =
|D(3),K(G)| = |D(4),K(G)| = |D(5),K(G)| = 5. Therefore, G′ is abelian
and |G′5| ⩽ 5. We have G′ ∼= C52 × (C5)

4 or (C5)
6. If G′ ∼= C52 × (C5)

4,
then G′5 ⊆ γ3(G), γ4(G) = 1. If G′ ∼= (C5)

6, then |G′5 ∩ γ3(G)| = 1,
γ3(G) ∼= C5.

Let d(6) = d(3) = 1,d(2) = 3. If p ̸= 5, then by Lemma 1(2), d(4+1) =
0, ϑp′(5) ⩾ ϑp′(4), so d(6) = 0. Now if p = 5, then |G′| = 55, |D(4),K(G)| =
|D(5),K(G)| = |D(6),K(G)| = 5, |D(3),K(G)| = 52 and |G′5| = 5. Thus
γ5(G) = 1, |γ4(G)| = 5 and |γ3(G)| = 52. Let G′ be an abelian group, then
possible G′ are G′ ∼= (C52)

2×C5 or C52 × (C5)
3 or (C5)

5. If G′ ∼= (C52)
2×

C5, then γ3(G) ⊆ G′2. If G′ ∼= C52 × (C5)
3, then either |G′5 ∩ γ3(G)| = 1,

γ3(G) ∼= C5 or G′5 ⊆ γ3(G) ∼= (C5)
2. If G′ ∼= (C5)

5, then |G′5∩γ3(G)| = 1,
γ3(G) ∼= (C5)

2. Now if G′ be a non-abelian group, then G′′ = γ4(G) ∼= C5,
γ3(G) ∼= (C5)

2 and γ3(G) ⊆ ζ(G′). Thus |ζ(G′)| = 52 or 53. If |ζ(G′)| = 52,
then γ3(G) = ζ(G′) ∼= (C5)

2 but from the Table 1, no such group exists.
If |ζ(G′)| = 53, then ζ(G′) ∼= C52 × C5 or (C5)

3. Thus possible G′ are
S(3125, 2), S(3125, 40), S(3125, 41), S(3125, 42), S(3125, 43), S(3125, 44),
S(3125, 73) and S(3125, 74) and for all these groups G′5 ⊆ ζ(G′), G′′ ⊆
ζ(G′) and G′5 ⊆ γ3(G) ∼= (C5)

2.
Let d(6) = d(4) = 1,d(2) = 2. Then by Lemma 1, this case is not

possible.
Let d(6) = d(2) = 1,d(3) = 2. If p ̸= 5, then by Lemma 1(2), d(3+1) =

0, ϑp′(5) ⩾ ϑp′(3), so d(6) = 0. If p = 5, then |G′| = 54, |D(4),K(G)| =
|D(5),K(G)| = |D(6),K(G)| = 5, |D(3),K(G)| = 53 and |G′5| ⩽ 5. Thus
γ5(G) = 1, |γ4(G)| = 5 and |γ3(G)| = 52 or 53. Let G′ be an abelian
group. Then, possible G′ are, (C52)

2 or C52 × (C5)
2. If G′ ∼= (C52)

2, then
|D(3),K(G)| ≠ 125. If G′ ∼= C52 × (C5)

2, then either |G′5 ∩ γ3(G)| = 1,
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γ3(G) ∼= (C5)
2 or G′5 = γ3(G) ∼= C5 or G′5 ⊆ γ3(G) ∼= (C5)

3. Now let G′

be a non-abelian group. Then G′′ = γ4(G) ∼= C5 and γ3(G) ⊆ ζ(G′). If
γ3(G) ∼= (C5)

2, then γ3(G) = ζ(G′) ∼= (C5)
2, but from the Table 2 of [14],

no such group exists. If γ3(G) ∼= (C5)
3, then |ζ(G′)| = 125. Thus G′ is

abelian in this case.
Let d(6) = d(3) = d(4) = 1. Since d(1+1) = 0, then by Lemma 1(2),

ϑp′(5) ⩾ ϑp′(1), so d(6) = 0, ∀p > 0. Thus this case is not possible.
Now let d(6) = 0. If d(5) ≠ 0, then we have the following possibilities:

d(3) = 1, d(5) = 2 or d(2) = 2, d(5) = 2 or d(2) = 6, d(5) = 1 or d(4) = 2,
d(5) = 1 or d(2) = 4, d(3) = d(5) = 1 or d(2) = d(3) = 2, d(5) = 1 or
d(2) = d(3) = d(4) = d(5) = 1 or d(2) = 3, d(4) = d(5) = 1.

Let d(3) = 1,d(5) = 2. If p ̸= 2, then by Lemma 1(2), ϑp′(2) ⩾ ϑp′(1).
So d(3) = 0. If p = 2, then by Lemma 1(1), 1 = d(3) ⩽ d(2) = 0, so this
case is not possible.

Let d(2) = 2,d(5) = 2. If p ≠ 2, then by Lemma(1.1)(2), d(3+1) = 0,
ϑp′(4) ⩾ ϑp′(3) and thus d(5) = 0. If p = 2, then by Lemma 1(1), d(2+1) = 0,
d(5) = 0. Thus this case is not possible.

Let d(2) = 6,d(5) = 1. If p ≠ 2, then by Lemma 1(2), d(3) = 0, ϑp′(4) ⩾
ϑp′(3) and so d(5) = 0. If p = 2, then by Lemma 1(1), d(2+1) = 0 and so
d(5) = 0. Thus this case is not possible.

Let d(4) = 2,d(5) = 1. Then by Lemma 1, this case is not possible.
Let d(2) = 4,d(3) = d(5) = 1. If p ≠ 2, then by Lemma 1(2), d(3+1) =

0, ϑp′(4) ⩾ ϑp′(3) and so d(5) = 0. If p = 2, then |G′| = 26

|D(3),K(G)| = 22, |D(5),K(G)| = |D(4),K(G)| = 2. Since D(6),K(G) =
G′8γ3(G)4γ4(G)2γ6(G) = 1, thus γ4(G) ⊆ G′4γ3(G)2 ∼= C2, γ5(G) = 1
and γ3(G) ⊆ ζ(G′) and so G′2 ̸= 1. First suppose that G′ is an abelian
group. Then possible G′ are C8 × (C2)

3 or (C4)
2 × (C2)

2 or C4 × (C2)
4. If

G′ ∼= C8 × (C2)
3, then γ3(G) ⊆ G′2, γ3(G) ∼= C4. If G′ ∼= (C4)

2 × (C2)
2,

then γ3(G) ⊆ G′2 ∼= (C2)
2. If G′ ∼= C4 × (C2)

4, then G′2 ⊆ γ3(G) ∼= C4.
Now let G′ is a non-abelian group. Thus G′4γ3(G)2 = γ4(G) = G′′ ∼= C2

and |ζ(G′)| ⩽ 24. Let |ζ(G′)| = 4. Now from the Table 1 of [2] possible
G′ are S(64, 199) to S(64, 201), S(64, 215) to S(64, 245), S(64, 264) and
S(64, 265). If G′ is any one of the groups S(64, 199) to S(64, 201) or
S(64, 215) to S(64, 245), then γ3(G) ⊆ G′2. If G′ is any one of the groups
S(64, 264) or S(64, 265), then G′2 ⊆ γ3(G) ∼= C4 or |G′2 ∩ γ3(G)| = 1,
γ3(G) ∼= C2. Let |ζ(G′)| = 8. But from the Table 1 of [2] no group ex-
ists with |G′′| = 2. Now let |ζ(G′)| = 16. From Table 1 of [2] possible
G′ are S(64, 193) to S(64, 198), S(64, 247), S(64, 248) and S(64, 261)
to S(64, 263). For all these groups G′′ ⊆ G′2 ⊆ ζ(G′). If G′ is any
one of the groups S(64, 193), S(64, 194), S(64, 261) or S(64, 262), then
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G′4γ3(G)2 = 1. If G′ is any one of the groups S(64, 195) to S(64, 198),
then ζ(G′) ∼= C4 × (C2)

2, G′2 ∼= (C2)
2 and G′4γ3(G)2 = 1. If G′ is any

one of the groups S(64, 247) to S(64, 248), then G′2 = γ3(G) ∼= C4. If G′

is S(64, 263), then |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= C4.
Let d(2) = d(3) = 2,d(5) = 1. If p ̸= 2, then by Lemma 1(2), d(3+1) =

0, ϑp′(4) ⩾ ϑp′(3) and so d(5) = 0. If p = 2, then |G′| = 25, |D(3),K(G)| = 23,
|D(4),K(G)| = |D(5),K(G)| = 2. Thus γ5(G) = 1,γ4(G) ⊆ G′4γ3(G)2 ∼= C2.
Let G′ be abelian. Then possible G′ are C8×C4 or C8×(C2)

2 or (C4)
2×C2

or C4 × (C2)
3. If G′ ∼= C8 × C4, then either G′2 ⊆ γ3(G) ∼= C4 × C2 or

γ3(G) ⊆ G′2, γ3(G) ∼= C4. If G′ ∼= C8×(C2)
2, then G′2 ⊆ γ3(G) ∼= C4×C2.

If G′ ∼= (C4)
2 × C2, then either |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= C4 or |G′2 ∩

γ3(G)| = 4, γ3(G) ∼= C4 ×C2. If G′ ∼= C4 × (C2)
3, then |G′2 ∩ γ3(G)| = 2,

γ3(G) ∼= C4 × C2.
Now let G′ be a non - abelian. Then G′4γ3(G)2 = γ4(G) = G′′ ∼= C2,

γ3(G) ⊆ ζ(G′) and |ζ(G′)| ⩽ 23. If |ζ(G′)| = 4, then from the Table 2
of [22], no group exists with |G′′| = 2. If |ζ(G′)| = 8, then possible G′

are S(32, 2), S(32, 4), S(32, 5), S(32, 12), S(32, 22) to S(32, 26), S(32, 37)
to S(32, 38) and S(32, 46) to S(32, 48) (see Table 2 of [22]). If G′ is
S(32, 2), then G′4γ3(G)2 = 1, which is not possible. If G′ is any one
of the groups S(32, 4), S(32, 5) or S(32, 12), then ζ(G′) ∼= C4 × C2 and
γ3(G) ⊆ G′2 ∼= C4×C2. If G′ is any one of the groups S(32, 22) to S(32, 26),
then |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= C4 or G′2 ⊆ γ3(G) ∼= C4 × C2. If G′ is
any one of the groups S(32, 37) or S(32, 38), then either |G′2 ∩ γ3(G)| = 2,
γ3(G) ∼= (C2)

2 or G′2 ⊆ γ3(G) ∼= C4 × C2. If G′ is any one of the groups
S(32, 46) to S(32, 48), then either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C4 or
G′2 ⊆ γ3(G) ∼= C4 × C2.

Let d(2) = d(3) = d(4) = d(5) = 1. Then |G′| = p4, |D(3),K(G)| = p3,
|D(4),K(G)| = p2, |D(5),K(G)| = p and D(6),K(G) = 1, ∀p > 0. Let G′ is an
abelian group. If p ⩾ 5, then G′ ∼= (Cp)

4, |G′p∩γ3(G)| = 1, γ3(G) ∼= (Cp)
3,

γ4(G) ∼= (Cp)
2 and γ5(G) ∼= Cp. If p = 3, then D(6),K(G) = 1 leads to

G′9 = 1, so either G′ ∼= C9×(C3)
2 or (C3)

4. If G′ ∼= C9×(C3)
2, then either

|G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)
2 or G′3 ⊆ γ3(G) ∼= (C3)

3. If G′ ∼= (C3)
4,

then |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)
3. If p = 2, then D(6),K(G) = 1 leads

to G′8 = 1, so G′ ∼= C8 × C2 or (C4)
2 or C4 × (C2)

2. If G′ ∼= C8 × C2,
then either γ3(G) ∼= C2, |G

′2 ∩ γ3(G)| = 1 or |G′2 ∩ γ3(G)| = 2, γ3(G) ∼=
(C2)

2 or G′2 ⊆ γ3(G) ∼= C4 × C2. Clearly G′ ∼= (C4)
2 is not possible

as |D(3),K(G)| < 23. If G′ ∼= C4 × (C2)
2, then G′2 ⊆ γ3(G) ∼= C4 × C2.

Let G′ be a non-abelian and p ⩾ 5. Then γ6(G) = 1, γ5(G) ∼= Cp,
γ4(G) ∼= (Cp)

2, γ3(G) ∼= (Cp)
3 and ζ(G′) ∼= (Cp)

2. Thus possible G′ is
((Cp × Cp)⋊ Cp)× Cp, (see [25]). If p = 3, then γ5(G) = 1, |γ4(G)| = 3,
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|γ3(G)| = 32 or 33. Now γ3(G) ⊆ ζ(G′) and |ζ(G′)| ⩽ 32, so |γ3(G)| ≠ 33.
Thus γ3(G) = ζ(G′) ∼= C3 × C3 and G′′ = γ4(G) ∼= C3. Therefore, from
Table 2 of [14] the possibilities for G′ are S(81, 3), S(81, 4), S(81, 12)
and S(81, 13), but then |D(3),K(G)| < 33. If p = 2, then γ5(G) = 1,
G′′ = γ4(G) = G′4γ3(G)2 ∼= C2, γ3(G) ⊆ ζ(G′) and |ζ(G′)| = 22. So
possible G′ are S(16, 3), S(16, 4) and S(16, 11) to S(16, 13). But for these
groups |D(3),K(G)| ≠ 23 (see Table 1 of [14]).

Let d(2) = 3,d(4) = d(5) = 1. If p ≠ 2, then by Lemma 1(2), d(2+1) =
0, ϑp′(4) ⩾ ϑp′(2) and so d(5) = 0. If p = 2, then by Lemma 1(1), as
d(3) = 0, so d(5) = 0. Thus this case is not possible.

Now let d(5) = 0. If d(4) ≠ 0, then we have the following possibilities:
d(4) = 3, d(2) = 1 or d(4) = d(2) = 2, d(3) = 1 or d(4) = 2, d(2) = 4 or
d(4) = 1, d(2) = 7 or d(4) = d(3) = 1, d(2) = 5 or d(4) = 1, d(2) = 3, d(3) = 2
or d(4) = 1, d(2) = 1, d(3) = 3 or d(4) = d(3) = 2.

Let d(4) = 3,d(2) = 1. Now p ̸= 3 is not possible by Lemma 1. Thus
p = 3. Now |G′| = 34, |D(4),K(G)| = |D(3),K(G)| = 33, D(5),K(G) = 1.
Let G′ be an abelian group, then G′ ∼= (C9)

2 or C9 × (C3)
2 or (C3)

4. If
G′ ∼= (C9)

2, then G′3 = γ3(G) ∼= (C3)
3. If G′ ∼= C9 × (C3)

2, then either
|G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)

2 or G′3 ⊆ γ3(G) ∼= (C3)
3. If G′ ∼= (C3)

4,
then |G′3∩γ3(G)| = 1, γ3(G) ∼= (C3)

3. Now let G′ be a non-abelian group.
Then G′′ = γ4(G) ∼= C3, γ3(G) ⊆ ζ(G′). So γ3(G) = ζ(G′) ∼= (C3)

2. Hence
possible G′ are S(81, 3), S(81, 4), S(81, 12) and S(81, 13). But for these
groups |D(3),K(G)| < 33 (see Table 2 of [14]).

Let d(4) = d(2) = 2,d(3) = 1. Then |G′| = p5, |D(3),K(G)| = p3 and
|D(4),K(G)| = p2, ∀p > 0. Let G′ be an abelian group and p ⩾ 5. Now
D(5),K(G) = 1 leads to G′p = 1, so G′ ∼= (Cp)

5, γ3(G) ∼= (Cp)
3 and

|G′p ∩ γ3(G)| = 1. If p = 3, then G′ ∼= (C9)
2 × C3 or C9 × (C3)

3 or (C3)
5.

If G′ ∼= (C9)
2 ×C3, then either G′3 ⊆ γ3(G) ∼= (C3)

3 or |G′3 ∩ γ3(G)| = 3,
γ3(G) ∼= (C3)

2 or |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= C3. If G′ ∼= C9 × (C3)
3,

then either |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)
2 or G′3 ⊆ γ3(G) ∼= (C3)

3.
If G′ ∼= (C3)

5, then |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)
3. If p = 2, then

G′ ∼= (C4)
2 × C2 or C4 × (C2)

3 or (C2)
5. If G′ ∼= (C4)

2 × C2, then
either G′2 ⊆ γ3(G) ∼= (C2)

3 or |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= (C2)
2 or

|G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2. If G′ ∼= C4 × (C2)
3, then either G′2 ⊆

γ3(G) ∼= (C2)
3 or |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

2. If G′ ∼= (C2)
5, then

|G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)
3. Let G′ be a non - abelian group. If

p = 2, then D(5),K(G) = G′4γ3(G)2γ5(G) = 1 leads to |γ4(G)| = 2 or 4
and |γ3(G)| = 4 or 8. First, let |γ4(G)| = 2. Then G′′ = γ4(G) ∼= C2, so
γ3(G) ∼= (C2)

2 or (C2)
3 and |ζ(G′)| = 22 or 23. If |ζ(G′)| = 4, then from

the Table 2 of [22], |G′′| ≠ 2. If |ζ(G′)| = 8, then ζ(G′) ∼= C4×C2 or (C2)
3.
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Therefore possible G′ are S(32, 2), S(32, 4), S(32, 5), S(32, 12), S(32, 22)
to S(32, 26), S(32, 37) and S(32, 46) to S(32, 48) (see table 2 of [22]). If
G′ is any one of the groups S(32, 4), S(32, 5), S(32, 12) or S(32, 37), then
G′4 ≠ 1. If G′ is S(32, 2), then γ3(G) ⊆ G′2. If G′ is any one of the groups
S(32, 22) to S(32, 26), then either |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= (C2)

2 or
G′2 ⊆ γ3(G) ∼= (C2)

3. If G′ is any one of the groups S(32, 46) to S(32, 48),
then either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

2 or G′2 ⊆ γ3(G) ∼= (C2)
3.

Now for |γ4(G)| = 4, γ4(G) ∼= (C2)
2, γ3(G) = ζ(G′) ∼= (C2)

3. But from
the Table 2 of [22], no such group exists with |G′′| = 4. Let p = 3,
then D(5),K(G) = 1 leads to G′9 = 1 and |D(4),K(G)| = 32 leads to
|γ4(G)| = 3 or 32. So G′′ = γ4(G) ∼= C3 and γ3(G) ∼= (C3)

2 or (C3)
3. Thus

|ζ(G′)| = 9 or 27. First let |ζ(G′)| = 9, then from the Table 5 of [14], no such
group exists. If |ζ(G′)| = 27, then possible G′ are S(243, 2), S(243, 32)
to S(243, 36) and S(243, 62) to S(243, 64) (see Table 5 of [14]). Now
γ4(G) ⊆ G′3γ3(G)3 ∼= (C3)

2 and γ3(G)3 = 1. Hence |G′3| = 9. If G′ is one
of the group from S(243, 32), S(243, 35) or S(243, 62) to S(243, 64), then
|G′3| ≠ 9. If G′ is any one of the groups S(243, 2), S(243, 33), S(243, 34) or
S(243, 36), then either G′3 ⊆ γ3(G) ∼= (C3)

3 or |G′3∩γ3(G)| = 3, γ3(G) ∼=
(C3)

2. For |γ4(G)| = 9, G′′ = γ4(G) ∼= (C3)
2 and γ3(G) = ζ(G′) ∼= (C3)

3.
But from the Table 3 no such group exists. For p ⩾ 5, γ3(G) ∼= (Cp)

3 or
(Cp)

2, γ4(G) ∼= (Cp)
2 or Cp and γ5(G) = 1. If G′′ = γ4(G) ∼= (Cp)

2 and
γ3(G) ∼= (Cp)

3, then γ3(G) ⊆ ζ(G′) and hence γ3(G) = ζ(G′) ∼= (Cp)
3.

But from [12] no such group exists. If G′′ = γ4(G) ∼= Cp, γ3(G) ∼= (Cp)
3

or (Cp)
2 and γ5(G) = 1, then |ζ(G′)| = p2 or p3. Let ζ(G′) ∼= (Cp)

2, then
from [12] no such group exists. Now let γ3(G) = ζ(G′) ∼= (Cp)

3, then
from [12], G′ ∼= ⟨a, b, c, d, e⟩ = ⟨c, d⟩ × ⟨a, b⟩, where ⟨c, d⟩ ∼= Cp × Cp and
⟨a, b, e| = ap = bp = ep = 1, [b, a] = e⟩ is a non-abelian group of order p3

and exponent p.
Let d(4) = 2,d(2) = 4. If p ≠ 3 and d(3) = 0, then by Lemma 1(2),

ϑp′(3) ⩾ ϑp′(2), so d(4) = 0. If p = 3, then |G′| = 36, |D(3),K(G)| =
|D(4),K(G)| = 32, D(5),K(G) = 1 and G′3 ̸= 1. Let G′ be an abelian group.
So possible G′ are (C9)

2× (C3)
2 or C9× (C3)

4. If G′ ∼= (C9)
2× (C3)

2, then
γ3(G) ⊆ G′3. If G′ ∼= C9×(C3)

4, then either γ3(G) ∼= C3, |G
′3∩γ3(G)| = 1

or G′3 ⊆ γ3(G) ∼= (C3)
2. Let G′ be a non - abelian group. Now G′′ =

γ4(G) ∼= C3, γ3(G) ∼= (C3)
2 and G′3 ⊆ γ3(G) . Hence either G′3 = γ3(G) ∼=

(C3)
2 or G′3 ∼= C3 and |G′3∩γ4(G)| = 1. As γ3(G) ⊆ ζ(G′), so |ζ(G′)| = 32

or 33 or 34. If |ζ(G′)| = 32, then γ3(G) = ζ(G′) ∼= (C3)
2. Hence from the

Table 6 of [14], possible G′ are S(729, 422) to S(729, 424) and S(729, 502).
If G′ is any one of the groups S(729, 422) or S(729, 502), then G′3 ∼= C3,
|G′3∩γ4(G)| = 1. If G′ is any one of the groups S(729, 423) or S(729, 424),
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then G′3 ⊆ γ3(G) ∼= (C3)
2, γ4(G) ∼= C3. If |ζ(G′)| = 33, then from the

Table 6 of [14], no such group exists. Now if |ζ(G′)| = 34, then possible G′

are S(729, 103), S(729, 105), S(729, 416) to S(729, 421) and S(729, 499)
to S(729, 500). If G′ is any one of the groups S(729, 103), S(729, 105),
S(729, 417), S(729, 418), S(729, 420) or S(729, 421), then G′3 = γ3(G) ∼=
(C3)

2. If G′ is any one of the groups S(729, 416), S(729, 419), S(729, 499)
or S(729, 500), then G′3 ⊆ γ3(G) ∼= (C3)

2 (see Table 6 of [14]).
Let d(4) = 1,d(2) = 7. If p ≠ 3 and d(2+1) = 0, then by Lemma 1(2),

ϑp′(3) ⩾ ϑp′(2), so d(4) = 0. If p = 3, then |G′| = 38, |D(3),K(G)| =
|D(4),K(G)| = 3 and γ4(G) = 1. Thus G′ is abelian in this case. Now
|D(4),K(G)| = 3 leads to |G′3| = 3. So only possible G′ is C9 × (C3)

6,
γ3(G) ⊆ G′3 ∼= C3.

Let d(4) = d(3) = 1,d(2) = 5. Now |G′| = p7, |D(3),K(G)| = p2,
|D(4),K(G)| = p, |D(5),K(G)| = 1, for all p > 0. Let G′ be an abelian group.
If p = 2, then |G′2| = 2 or 4. So possible G′ are (C4)

2×(C2)
3 or C4×(C2)

5.
If G′ ∼= (C4)

2 × (C2)
3, then γ3(G) ⊆ G′2. If G′ ∼= C4 × (C2)

5, then either
|G′2 ∩ γ3(G)| = 1, γ3(G) ∼= C2 or G′2 ⊆ γ3(G) ∼= (C2)

2. If p = 3, then
|D(4),K(G)| = 3 leads to |G′3| = 3. So G′ ∼= C9× (C3)

5, either γ3(G) ∼= C3,
|G′3 ∩ γ3(G)| = 1 or G′3 ⊆ γ3(G) ∼= (C3)

2. If p ⩾ 5, then |D(4),K(G)| = p

leads to G′p = 1 and G′ ∼= (Cp)
7, |G′p ∩ γ3(G)| = 1, γ3(G) ∼= (Cp)

2.
Let G′ be a non - abelian group. Then for p = 2, G′′ = γ4(G) ∼= C2,
γ3(G) ∼= (C2)

2 and G′2 ⊆ γ3(G). Since γ3(G) ⊆ ζ(G′), therefore
|ζ(G′)| ⩾ 4. If |ζ(G′)| = 4 or 16, then from the Table 4 of [22] no such group
exists. If |ζ(G′)| = 8, then possible G′ are S(128, 2157) to S(128, 2162),
S(128, 2304) and S(128, 2323) to S(128, 2325) (see table 4 of [22]). If G′

is any one of the groups S(128, 2157) to S(128, 2162) or S(128, 2304),
then G′2 = γ3(G) ∼= (C2)

2. If G′ is any one of the groups S(128, 2323) to
S(128, 2325), then G′2 ⊆ γ3(G) ∼= (C2)

2. Let |ζ(G′)| = 32, then from the
Table 4 of [22], possible G′ are S(128, 2151) to S(128, 2156), S(128, 2302),
S(128, 2303) and S(128, 2320) to S(128, 2322). If G′ is any one of the
groups S(128, 2151) to S(128, 2156), S(128, 2302) or S(128, 2303), then
G′2 = γ3(G) ∼= (C2)

2. If G′ is any one of the groups S(128, 2320) to
S(128, 2322), then G′2 ⊆ γ3(G) ∼= (C2)

2. If p = 3, then D(5),K(G) =
G′9γ3(G)3γ5(G) = 1 leads to γ5(G) = 1. Now G′′ = γ4(G) ∼= C3,
γ3(G) ∼= (C3)

2 and |ζ(G′)| ⩾ 32. First let exp(G′) = 9. If |ζ(G′)| = 32 and
34, then from the Table 2, no such group exists. If |ζ(G′)| = 33, then pos-
sible G′ are S(2187, 5874), S(2187, 5876), S(2187, 9100) to S(2187, 9105)
and S(2187, 9306) to S(2187, 9307) (see Table 2). If G′ is any one of
the groups S(2187, 5874), S(2187, 5876), S(2187, 9102) to S(2187, 9103),
S(2187, 9104) or S(2187, 9105), then G′3 = γ3(G) ∼= (C3)

2. If G′ is
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any one of the groups S(2187, 9100) to S(2187, 9101),S(2187, 9306) or
S(2187, 9307), then G′3 ⊆ γ3(G) ∼= (C3)

2. Now let |ζ(G′)| = 35. So pos-
sible G′ are S(2187, 5867), S(2187, 5870), S(2187, 5872), S(2187, 9094)
to S(2187, 9099) and S(2187, 9303) to S(2187, 9304) (see Table 2 ). If
G′ is any one of the groups S(2187, 5867), S(2187, 5870), S(2187, 5872)
or S(2187, 9096) to S(2187, 9099), then G′3 = γ3(G) ∼= (C3)

2. If G′

is any one of the groups S(2187, 9094) to S(2187, 9095), S(2187, 9303)
or S(2187, 9304), then G′3 ⊆ γ3(G) ∼= (C3)

2. For p ⩾ 5, D(5),K(G) =
G′pγ3(G)pγ5(G) = 1 leads to exp(G′) = p. Now let exp(G′) = p, for p ⩾ 3.
Therefore G′′ = γ4(G) ∼= Cp and γ3(G) ∼= (Cp)

2. Therefore possible G′ are
⟨a, b, c, d, e, f, g : ap = bp = cp = dp = ep = fp = gp = 1, [b, a] = c⟩ and
⟨a, b, c, d, e, f, g : ap = bp = cp = dp = ep = fp = gp = 1, [b, a] = e, [d, c] =
e⟩ and for these groups, we have γ3(G) ∼= (Cp)

2 (see[26]).
Let d(4) = 1,d(2) = 3,d(3) = 2. Now |G′| = p6, |D(4),K(G)| = p,

|D(3),K(G)| = p3, for all p > 0. Let G′ be an abelian group. For p = 2,
G′ ∼= (C4)

3 or (C4)
2 × (C2)

2 or C4 × (C2)
4 or (C2)

6. If G′ ∼= (C4)
3,

then γ3(G) ⊆ G′2. If G′ ∼= (C4)
2 × (C2)

2, then either |G′2 ∩ γ3(G)| = 1,
γ3(G) ∼= C2 or |G′2 ∩ γ3(G)| = 2, γ3(G) ∼= (C2)

2 or G′2 ⊆ γ3(G) ∼= (C2)
3.

If G′ ∼= (C2)
6, then |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

3. For p = 3,
|D(4),K(G)| = 3 leads to |G′3| = 3. Hence G′ ∼= C9× (C3)

4. For this group,
either γ3(G) ∼= (C3)

2, |G′2 ∩ γ3(G)| = 1 or G′3 ⊆ γ3(G) ∼= (C3)
3. For

p ⩾ 5, D(5),K(G) = 1 leads to G′p = 1 and G′ ∼= (Cp)
6, |G′p ∩ γ3(G)| = 1,

γ3(G) ∼= (Cp)
3. Let G′ be a non-abelian group. For p = 2, G′′ = γ4(G) ∼=

C2 and γ3(G) ∼= (C2)
2 or (C2)

3. If γ3(G) ∼= (C2)
2, then |ζ(G′)| = 4, 8

or 16. Let |ζ(G′)| = 4. Then γ3(G) = ζ(G′) ∼= (C2)
2. Therefore, pos-

sible G′ are S(64, 199) to S(64, 201) and S(64, 264) to S(64, 265) (see
Table 1 of [2]). If G′ is any one of the groups S(64, 199) to S(64, 201),
then |G′2 ∩ γ3(G)| = 2. If G′ is any one of the groups S(64, 264) or
S(64, 265), then |G′2 ∩ γ3(G)| = 1. Let |ζ(G′)| = 8, therefore from the
Table 1 of [2], no such group exists. Let |ζ(G′)| = 16. Then for |G′2| = 8,
possible G′ are S(64, 56) to S(64, 59). For these groups, γ3(G) ⊆ G′2,
γ3(G) ∼= (C2)

2. For |G′2| = 4, possible G′ are S(64, 193) to S(64, 198) and
for these groups |G′2∩γ3(G)| = 2. For |G′2| = 2, possible G′ are S(64, 261)
to S(64, 263). For these groups 2 = |G′′ ∩ G′2| ⩽ |G′2 ∩ γ3(G)| = 1. If
|γ3(G)| = 8, then |ζ(G′)| = 8 or 16. Let |ζ(G′)| = 8, then from the Ta-
ble 1 of [2] no such group exists. Let |ζ(G′)| = 16. Now for |G′2| = 8,
possible G′ are S(64, 56) to S(64, 59) and for these groups γ3(G) ⊆ G′2.
For |G′2| = 4, possible G′ are S(64, 193) to S(64, 198), and for these
groups G′2 ⊆ γ3(G) ∼= (C2)

3. For |G′2| = 2, no group exists ( see Ta-
ble 1 of [2]). For p = 3, G′′ = γ4(G) ∼= C3. So γ3(G) ∼= (C3)

2 or (C3)
3
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and |ζ(G′)| ⩾ 32. Let γ3(G) ∼= (C3)
2 and |ζ(G′)| = 9. Then possible

G′ are S(729, 422) to S(729, 424) and S(729, 502) (see Table 6 of [14]).
But then |D(3),K(G)| ̸= 33. If |ζ(G′)| = 33, then no group exists (see
Table 6 of [14]). Let |ζ(G′)| = 34. If |γ3(G)| = 33, then G′ is any one
of the groups S(729, 103) to S(729, 106), S(729, 416) to S(729, 420) or
S(729, 499) to S(729, 500). For all these groups G′3 ⊆ γ3(G) ∼= (C3)

3. Let
|γ3(G)| = 32, then possible G′ are S(729, 103) to S(729, 106), S(729, 416)
to S(729, 421) and S(729, 499) to S(729, 500). If G′ is any one of the
groups S(729, 103), S(729, 105), S(729, 417), S(729, 418), S(729, 420) or
S(729, 421), then |G′3 ∩ γ3(G)| = 3, γ3(G) ∼= (C3)

2. If G′ is any one of
the groups S(729, 104) or S(729, 106), then γ3(G) ⊆ G′2. If G′ is any
one of the groups S(729, 416), S(729, 419), S(729, 499) or S(729, 500),
then |G′3 ∩ γ3(G)| = 1, γ3(G) ∼= (C3)

2 (see Table 6 of [14]). For p ⩾ 5,
|D(5),K(G)| = 1 leads to G′p = 1, γ3(G) ∼= (Cp)

3, G′′ = γ4(G) ∼= Cp,
|ζ(G′)| = p3 or p4. If |ζ(G′)| = p3, then no group exists (see [10]). If
|ζ(G′)| = p4. Then G′ ∼= ϕ2(1

5)× (1), γ3(G) ∼= (Cp)
3, ζ(G′) ∼= (Cp)

4 and
|G′p ∩ γ3(G)| = 1 (see [10]).

Let d(4) = d(2) = 1,d(3) = 3. Then |G′| = p5, |D(4),K(G)| = p,
|D(3),K(G)| = p4. Let G′ be an abelian group. For p = 2, G′ ∼= (C4)

2 ×C2

or C4 × (C2)
3 or (C2)

4. If G′ ∼= (C4)
2 ×C2, then either |G′2 ∩ γ3(G)| = 1,

γ3(G) ∼= (C2)
2 or |G′2∩γ3(G)| = 2, γ3(G) ∼= (C2)

3 orG′2 ⊆ γ3(G) ∼= (C2)
4.

If G′ ∼= C4 × (C2)
3, then either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

3 or
G′2 ⊆ γ3(G) ∼= (C2)

4. If G′ ∼= (C2)
4, then |G′2∩γ3(G)| = 1, γ3(G) ∼= (C2)

4.
Now for p = 3, |D(4),K(G)| = 3 leads to |G′3| = 3. So G′ ∼= C9×(C3)

3, then
either γ3(G) ∼= (C3)

3, |G′3 ∩ γ3(G)| = 1 or γ3(G) ∼= (C3)
4, G′3 ⊆ γ3(G).

Now for p ⩾ 5, D(5),K(G) = 1 leads to G′p = 1. So G′ ∼= (Cp)
5,

γ3(G) ∼= (Cp)
4 and |G′p ∩ γ3(G)| = 1. Let G′ be a non-abelian group.

For p = 2, G′′ = γ4(G) ∼= C2 and |γ3(G)| ⩾ 4. As γ3(G) ⊆ ζ(G′), hence
|ζ(G′)| = 4 or 8. If |ζ(G′)| = 4, then from the Table 2 of [22], |G′′| ̸= 2.
If |ζ(G′)| = 8, then γ3(G) = ζ(G′) ∼= (C2)

3. Therefore only possible G′

is S(32, 2) and for this group |G′2 ∩ γ3(G)| = 4 (see Table 2 of [22]).
For p = 3, G′′ = γ4(G) ∼= C3, G

′3 ⊆ γ4(G) ∼= C3 and |γ3(G)| ⩾ 32.
If |γ3(G)| = 32 and |ζ(G′)| = 32 or 33, then from the Table 5 of [14]
no such group exists. If |γ3(G)| = 33, then γ3(G) = ζ(G′) ∼= (C3)

3,
so only possible G′ is S(243, 32) and for this group |G′3 ∩ γ3(G)| = 1.
For p ⩾ 5, D(5),K(G) = G′pγ3(G)pγ5(G) = 1 leads to G′p = 1. Now
G′′ = γ4(G) ∼= Cp, γ3(G) ∼= (Cp)

4 and γ3(G) = ζ(G′) ∼= (Cp)
4. Thus G′ is

abelian in this case.
Let d(4) = d(3) = 2. Since d(1+1) = 0, therefore by Lemma 1(2),

ϑp′(2) ⩾ ϑp′(1) for all p > 0 and so d(3) = 0.
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Table 1.

G′ G′5 exp(G′) ζ(G′) G′′ G′′
∩G′5 G′′

∩ ζ(G′) G′5
∩ ζ(G′)

S(3125,2) C5 × C5 25 C5 × C5 × C5 C5 1 C5 C5 × C5

S(3125,16) C25 × C5 125 C25 × C5 C5 C5 C5 C25 × C5

S(3125,17) C25 125 C25 × C5 C5 1 C5 C25

S(3125,26) C25 × C5 125 C25 × C5 C5 C5 C5 C25 × C5

S(3125,29) C125 625 C125 C5 C5 C5 C125

S(3125,40) C5 25 C5 × C5 × C5 C5 1 C5 C5

S(3125,41) C5 × C5 25 C5 × C5 × C5 C5 C5 C5 C5 × C5

S(3125,42) C5 × C5 25 C25 × C5 C5 C5 C5 C5 × C5

S(3125,43) C5 25 C25 × C5 C5 1 C5 C5

S(3125,44) C5 × C5 25 C25 × C5 C5 C5 C5 C5 × C5

S(3125,59) C25 125 C25 × C5 C5 C5 C5 C25

S(3125,60) C25 125 C125 C5 C5 C5 C25

S(3125,72) 1 5 C5 × C5 × C5 C5 1 C5 1

S(3125,73) C5 25 C5 × C5 × C5 C5 C5 C5 C5

S(3125,74) C5 25 C25 × C5 C5 C5 C5 C5

S(3125,75) 1 5 C5 C5 1 C5 1

S(3125,76) C5 25 C5 C5 C5 C5 C5

Let d(4) = 0. Then we have the following possibilities: d(2) = 10 or
d(2) = 8, d(3) = 1 or d(2) = 6, d(3) = 2 or d(2) = 4, d(3) = 3 or d(2) = 2,
d(3) = 4 or d(3) = 5.

Let d(2) = 10. Then |G′| = p10, |D(3),K(G)| = 1 and hence G′p =
γ3(G) = 1, for all p > 0. Thus G′ is abelian and G′ ∼= (Cp)

10, γ3(G) = 1.

Let d(2) = 8,d(3) = 1. Thus |G′| = p9, |D(3),K(G)| = p and G′ is
abelian for all p > 0. For p ⩾ 3,G′p = 1 and hence G′ ∼= (Cp)

9, γ3(G) ∼= Cp,
|G′p ∩ γ3(G)| = 1. For p = 2, |D(3),K(G)| = 2 leads to |G′2| ⩽ 2. So
G′ ∼= C4 × (C2)

7 or (C2)
9. If G′ ∼= C4 × (C2)

7, then γ3(G) ⊆ G′2 ∼= C2. If
G′ ∼= (C2)

9, then γ3(G) ∼= C2, |G
′2 ∩ γ3(G)| = 1.

Let d(2) = 6,d(3) = 2. Thus |G′| = p8, |D(3),K(G)| = p2 and G′ is
abelian for all p > 0 . For p ⩾ 3, G′p = 1, hence G′ ∼= (Cp)

8, γ3(G) ∼= (Cp)
2

and |G′p ∩ γ3(G)| = 1. For p = 2, |D(3),K(G)| = 22 leads to |G′2| ⩽ 4.
So G′ ∼= (C2)

8 or C4 × (C2)
6 or (C4)

2 × (C2)
4. If G′ ∼= (C2)

8, then
|G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

2. If G′ ∼= C4 × (C2)
6, then either |G′2 ∩

γ3(G)| = 1, γ3(G) ∼= C2 or G′2 ⊆ γ3(G) ∼= (C2)
2. If G′ ∼= (C4)

2 × (C2)
4,

then γ3(G) ⊆ G′2.

Let d(2) = 4,d(3) = 3. Thus |G′| = p7, |D(3),K(G)| = p3 and G′ is
abelian, for all p > 0. If p ⩾ 3, then G′ ∼= (Cp)

7 and γ3(G) ∼= (Cp)
3,
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Table 2.

G′ G′3 exp(G′) ζ(G′) G′′ G′′
∩G′3 G′3

∩ ζ(G′)

S(2187,5867) C3×C3 9 C9×C9×C3 C3 1 C3×C3

S(2187,5868) C3×C3×C3 9 C9×C9×C3 C3 C3 C3×C3×C3

S(2187,5869) C3×C3×C3 9 C9×C9×C3 C3 C3 C3×C3×C3

S(2187,5870) C3×C3 9 C9×C3×C3×C3 C3 1 C3×C3

S(2187,5871) C3×C3×C3 9 C9×C3×C3×C3 C3 C3 C3×C3×C3

S(2187,5872) C3×C3 9 C3×C3×C3×C3×C3 C3 1 C3×C3

S(2187,5873) C3×C3×C3 9 C9×C3×C3×C3 C3 C3 C3×C3×C3

S(2187,5874) C3×C3 9 C3×C3×C3 C3 1 C3×C3

S(2187,5875) C3×C3×C3 9 C3×C3×C3 C3 C3 C3×C3×C3

S(2187,5876) C3×C3 9 C3×C3×C3 C3 1 C3×C3

S(2187,5877) C3×C3×C3 9 C3×C3×C3 C3 C3 C3×C3×C3

S(2187,9094) C3 9 C3×C3×C3×C3×C3 C3 1 C3

S(2187,9095) C3 9 C9×C3×C3×C3 C3 1 C3

S(2187,9096) C3×C3 9 C9×C9×C3 C3 C3 C3×C3

S(2187,9097) C3×C3 9 C9×C3×C3×C3 C3 C3 C3×C3

S(2187,9098) C3×C3 9 C9×C3×C3×C3 C3 C3 C3×C3

S(2187,9099) C3×C3 9 C3×C3×C3×C3×C3 C3 C3 C3×C3

S(2187,9100) C3 9 C3×C3×C3 C3 1 C3

S(2187,9101) C3 9 C9×C3 C3 1 C3

S(2187,9102) C3×C3 9 C9×C3 C3 C3 C3×C3

S(2187,9103) C3×C3 9 C9×C3 C3 C3 C3×C3

S(2187,9104) C3×C3 9 C3×C3×C3 C3 C3 C3×C3

S(2187,9105) C3×C3 9 C3×C3×C3 C3 C3 C3×C3

S(2187,9303) C3 9 C3×C3×C3×C3×C3 C3 C3 C3

S(2187,9304) C3 9 C9×C3×C3×C3 C3 C3 C3

S(2187,9306) C3 9 C3×C3×C3 C3 C3 C3

S(2187,9307) C3 9 C9×C3 C3 C3 C3

S(2187,9309) C3 9 C3 C3 C3 C3

|G′p ∩ γ3(G)| = 1. For p = 2, |D(3),K(G)| = 23 leads to |G′2| ⩽ 8. So
G′ ∼= (C4)

3×C2 or (C4)
2×(C2)

3 or C4×(C2)
5 or (C2)

7. If G′ ∼= (C4)
3×C2,

then γ3(G) ⊆ G′2. If G′ ∼= (C4)
2 × (C2)

3, then either |G′2 ∩ γ3(G)| = 1,
γ3(G) ∼= C2 or |G′2∩γ3(G)| = 2, γ3(G) ∼= C2×C2 or G′2 ⊆ γ3(G) ∼= (C2)

3.
If G′ ∼= C4 × (C2)

5, then either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)
2 or

G′2 ⊆ γ3(G) ∼= (C2)
3. If G′ ∼= (C2)

7, then |G′2∩γ3(G)| = 1, γ3(G) ∼= (C2)
3.

Let d(2) = 2,d(3) = 4. Thus |G′| = p6, |D(3),K(G)| = p4 and G′ is
abelian for all p > 0. For p ⩾ 3, G′p = 1, so G′ ∼= (Cp)

6, |G′p ∩ γ3(G)| = 1
and γ3(G) ∼= (Cp)

4. For p = 2, |D(3),K(G)| = 24 leads to |G′2| ⩽ 8.
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Table 3.

G′ G′3 exp(G′) ζ(G′) G′′ G′′
∩G′3 G′3

∩ ζ(G′)

S(243,13) C3 × C3 9 C3 × C3 C3 × C3 C3 C3 × C3

S(243,14) C3 × C3 9 C3 × C3 C3 × C3 C3 C3 × C3

S(243,15) C3 × C3 9 C3 × C3 C3 × C3 C3 C3 × C3

S(243,16) C9 27 C9 C3 × C3 C3 C9

S(243,17) C3 × C3 9 C3 × C3 C3 × C3 C3 C3 × C3

S(243,18) C3 × C3 9 C3 × C3 C3 × C3 C3 C3 × C3

S(243,19) C9 27 C9 C3 × C3 C3 C9

S(243,20) C9 27 C9 C3 × C3 C3 C9

S(243,22) C9 × C3 27 C3 C9 C9 C3

S(243,37) 1 3 C3 × C3 C3 × C3 1 1

S(243,38) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,39) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,40) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,41) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,42) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,43) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,44) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,45) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,46) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,47) C3 × C3 9 C3 × C3 C3 × C3 C3 × C3 C3 × C3

S(243,51) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,52) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,53) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,54) C3 9 C3 × C3 C3 × C3 C3 C3

S(243,55) C3 9 C9 C3 × C3 C3 C3

S(243,56) C3 9 C3 C3 × C3 C3 C3

S(243,57) C3 9 C3 C3 × C3 C3 C3

S(243,58) C3 9 C3 C3 × C3 C3 C3

S(243,59) C3 9 C3 C3 × C3 C3 C3

S(243,60) C3 9 C3 C3 × C3 C3 C3

So G′ ∼= (C4)
3 or (C4)

2 × (C2)
2 or C4 × (C2)

4 or (C2)
6. If G′ ∼= (C4)

3,
then γ3(G) ⊆ G′2. If G′ ∼= (C4)

2 × (C2)
2, then either |G′2 ∩ γ3(G)| = 1,

γ3(G) ∼= (C2)
2 or |G′2∩γ3(G)| = 2, γ3(G) ∼= (C2)

3 orG′2 ⊆ γ3(G) ∼= (C2)
4.

If G′ ∼= C4 × (C2)
4, then either |G′2 ∩ γ3(G)| = 1, γ3(G) ∼= (C2)

3 or
G′2 ⊆ γ3(G) ∼= (C2)

4. If G′ ∼= (C2)
6, then |G′2∩γ3(G)| = 1, γ3(G) ∼= (C2)

4.

Let d(3) = 5. Since d(1+1) = 0, therefore by Lemma 1(2), ϑp′(2) ⩾

ϑp′(1) for all p > 0 and so d(3) = 0.

Converse can be easily done by computing d(m)’s in each case.
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