# A note on modular group algebras with upper Lie nilpotency indices 

S. Bhatt and H. Chandra

Communicated by D. Simson

Abstract. Let $K G$ be the modular group algebra of an arbitrary group $G$ over a field $K$ of characteristic $p>0$. In this paper we give some improvements of upper Lie nilpotency index $t^{L}(K G)$ of the group algebra $K G$. It can be seen that if $K G$ is Lie nilpotent, then its lower as well as upper Lie nilpotency index is at least $p+1$. In this way the classification of group algebras $K G$ with next upper Lie nilpotency index $t^{L}(K G)$ upto $9 p-7$ have already been classified. Furthermore, we give a complete classification of modular group algebra $K G$ for which the upper Lie nilpotency index is $10 p-8$.

## 1. Introduction

Let $K G$ be the group algebra of a group $G$ over a field $K$ of characteristic $p>0$. The group algebra $K G$ can be regarded as a associated Lie algebra of $K G$, via the Lie commutator $[x, y]=x y-y x, \forall x, y \in K G$. Set $\left[x_{1}, x_{2}, \ldots x_{n}\right]=\left[\left[x_{1}, x_{2}, \ldots x_{n-1}\right], x_{n}\right]$, where $x_{1}, x_{2}, \ldots x_{n} \in K G$. The $n^{t h}$ lower Lie power $K G^{[n]}$ of $K G$ is the associated ideal generated by the Lie commutators $\left[x_{1}, x_{2}, \ldots x_{n}\right]$, where $K G^{[1]}=K G$. By induction, the $n^{t h}$ upper Lie power $K G^{(n)}$ of $K G$ is the associated ideal generated by all the Lie commutators $[x, y]$, where $x \in K G^{(n-1)}, y \in K G$ and $K G^{(1)}=K G$. $K G$ is said to be upper Lie nilpotent (lower Lie nilpotent) if there exists $m$

[^0]such that $K G^{(m)}=0\left(K G^{[m]}=0\right)$. The minimal non-negative integer $m$ such that $K G^{(m)}=0$ and $K G^{[m]}=0$ is known as the upper Lie nilpotency index and lower Lie nilpotency index of $K G$, denoted by $t^{L}(K G)$ and $t_{L}(K G)$ respectively. It is well known that, if $K G$ is Lie nilpotent, then $p+1 \leqslant t_{L}(K G) \leqslant\left|G^{\prime}\right|+1$ (see $\left.[21,23]\right)$. According to Bhandari and Passi [1], if $p>3$ then $t^{L}(K G)=t_{L}(K G)$. In this direction a recent result can be seen in [17]. The subgroup $D_{(m), K}(G)=G \cap\left(1+K G^{(m)}\right), m \geqslant 1$ is called the $m^{\text {th }}$ Lie dimension subgroup of $G$ and by Passi [11], we have
$$
D_{(m), K}(G)=\prod_{(i-1) p^{j} \geqslant m-1} \gamma_{i}(G)^{p^{j}}
$$

Let $p^{d_{(m)}}=\left|D_{(m), K}(G): D_{(m+1), K}(G)\right|, m \geqslant 2$. If $K G$ is Lie nilpotent such that $\left|G^{\prime}\right|=p^{n}$, then according to Jenning's theory [20], we have $t^{L}(K G)=2+(p-1) \Sigma_{m \geqslant 1} m d_{(m+1)}$ and $\Sigma_{m \geqslant 2} d_{(m)}=n$. Shalev [19] initiated the study of group algebras with maximum Lie nilpotency index. This problem was completed by [6]. Results on the next smaller Lie nilpotency index can be easily seen in [4-7]. In [3], Bovdi and Kurdics discussed the upper and lower Lie nilpotency index of a modular group algebra of metabelian group $G$ and determine the nilpotency class of the group of units. Recently, we have some results on classification of Lie nilpotent group algebras of Lie nilpotency index upto 14 (see [2, $8,22,24]$ ). Furthermore, group algebras with minimal Lie nilpotency index $p+1$ have been classified by Sharma and Bist [21]. A complete description of the Lie nilpotent group algebras with next possible nilpotency indices $2 p, 3 p-1$, $4 p-2,5 p-3,6 p-4,7 p-5,8 p-6$ and $9 p-7$ is given in $[13-16,18]$. In this article, we will classify group algebras with upper Lie nilpotency index $10 p-8$. For a prime $p$ and positive integer $x, \vartheta_{p^{\prime}}(x)$ is the maximal divisor of $x$ which is relatively prime to $p$. Also $S(n, m)$ denotes the small group number $m$ of order $n$ from the Small Group Library-Gap [9]. We use the following lemma throughout our paper.

## 2. Preliminaries

Lemma 1. ([19]) Let $K$ be a field with Char $K=p>0$ and $G$ be a nilpotent group such that $\left|G^{\prime}\right|=p^{n}$ and $\exp \left(G^{\prime}\right)=p^{l}$.

1) If $d_{(l+1)}=0$ for some $l<p m$, then $d_{(p m+1)} \leqslant d_{(m+1)}$.
2) If $d_{(m+1)}=0$, then $d_{(s+1)}=0$ for all $s \geqslant m$ with $\vartheta_{p^{\prime}}(s) \geqslant \vartheta_{p^{\prime}}(m)$ where $\vartheta_{p^{\prime}}(x)$ is the maximal divisor of $x$ which is relatively prime to $p$.

## 3. Main Results

Theorem 1. Let $G$ be a group and $K$ be a field of characteristics $p>0$ such that $K G$ is Lie nilpotent. Then $t^{L}(K G)=10 p-8$ if and only if one of the following condition satisfied:

1) $G^{\prime} \cong C_{7^{2}} \times\left(C_{7}\right)^{2}$ and $\gamma_{3}(G) \subseteq G^{\prime 7}$;
2) $G^{\prime} \cong C_{7^{2}} \times C_{7}, \gamma_{3}(G) \cong C_{7}$ and $\left|\gamma_{3}(G) \cap G^{\prime 7}\right|=1$;
3) $G^{\prime} \cong C_{7^{2}} \times C_{7}, \gamma_{4}(G) \subseteq G^{\prime 7} \subseteq \gamma_{3}(G) \cong\left(C_{7}\right)^{2}$ and $\gamma_{5}(G)=1$;
4) $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{4}, G^{\prime 5} \subseteq \gamma_{3}(G)$ and $\gamma_{4}(G)=1$;
5) $G^{\prime} \cong\left(C_{5}\right)^{6},\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{5}$ and $\gamma_{4}(G)=1$;
6) $G^{\prime} \cong\left(C_{5^{2}}\right)^{2} \times C_{5}$ and $\gamma_{3}(G) \subseteq G^{\prime 2}$;
7) $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{3}$, either $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{5}$ or $G^{\prime 5} \subseteq$ $\gamma_{3}(G) \cong\left(C_{5}\right)^{2} ;$
8) $G^{\prime} \cong\left(C_{5}\right)^{5},\left|G^{5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{5}\right)^{2}$ and $\gamma_{4}(G)=1$;
9) $G^{\prime}$ is one of the groups $S(3125,2), S(3125,40), S(3125,41)$, $S(3125,42), S(3125,43), S(3125,44), S(3125,73)$ or $S(3125,74)$, $G^{\prime 5} \subseteq \zeta\left(G^{\prime}\right), G^{\prime \prime} \subseteq \zeta\left(G^{\prime}\right), G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{2}, \gamma_{4}(G) \cong C_{5}$ and $\gamma_{5}(G)=1 ;$
10) $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{2}$, either $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{5}\right)^{2}$ or $G^{\prime 5}=\gamma_{3}(G) \cong C_{5}$ or $G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{3}$;
11) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}, \gamma_{3}(G) \subseteq G^{\prime 2}, \gamma_{3}(G) \cong C_{4}$ and $\gamma_{4}(G)=1$;
12) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}, \gamma_{3}(G) \subseteq G^{\prime 2}$ and $\gamma_{4}(G)=1$;
13) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4}$ and $\gamma_{4}(G)=1$;
14) $G^{\prime}$ is one of the groups $S(64,199)$ to $S(64,201)$ or $S(64,215)$ to $S(64,245), \gamma_{3}(G) \subseteq G^{2}$ and $\gamma_{4}(G) \cong C_{2}$;
15) $G^{\prime}$ is one of the groups $S(64,264)$ or $S(64,265)$, either $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong C_{4}$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$;
16) $G^{\prime}$ is one of the groups $S(64,247)$ or $S(64,248), G^{\prime 2}=\gamma_{3}(G) \cong C_{4}$, $\gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
17) $G^{\prime} \cong S(64,263),\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1 ;$
18) $G^{\prime} \cong C_{8} \times C_{4}$, either $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \subseteq G^{2}$, $\gamma_{3}(G) \cong C_{4} ;$
19) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}$ and $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$;
20) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong C_{4}$ or $\mid G^{\prime 2} \cap$ $\gamma_{3}(G) \mid=4, \gamma_{3}(G) \cong C_{4} \times C_{2} ;$
21) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2$ and $\gamma_{3}(G) \cong C_{4} \times C_{2}$;
22) $G^{\prime}$ is one of the groups $S(32,4), S(32,5)$ or $S(32,12), \gamma_{3}(G) \subseteq$ $G^{\prime 2} \cong C_{4} \times C_{2}, \gamma_{4}(G) \subseteq G^{\prime 4} \gamma_{3}(G)^{2} \cong C_{2}$ and $\gamma_{5}(G)=1$;
23) $G^{\prime}$ is one of the groups $S(32,22)$ to $S(32,26)$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong C_{4}$ or $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \subseteq G^{4} \gamma_{3}(G)^{2} \cong C_{2}$, $\gamma_{5}(G)=1$;
24) $G^{\prime}$ is one of the groups $S(32,37)$ or $S(32,38)$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \subseteq G^{4} \gamma_{3}(G)^{2} \cong C_{2}$, $\gamma_{5}(G)=1$;
25) $G^{\prime}$ is one of the groups $S(32,46)$ to $S(32,48)$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{4}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \subseteq G^{\prime 4} \gamma_{3}(G)^{2} \cong C_{2}$, $\gamma_{5}(G)=1 ;$
26) $G^{\prime} \cong\left(C_{p}\right)^{4},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{5}(G) \cong C_{p}$ for $p \geqslant 5$;
27) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{2}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $G^{\prime 3} \subseteq$ $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}$
28) $G^{\prime} \cong\left(C_{3}\right)^{4},\left|G^{3} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}$;
29) $G^{\prime} \cong C_{8} \times C_{2}$, either $\gamma_{3}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong C_{4} \times C_{2} ;$
30) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{2}$ and $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$;
31) $G^{\prime} \cong\left(\left(C_{p} \times C_{p}\right) \rtimes C_{p}\right) \times C_{p}, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}, \gamma_{5}(G) \cong$ $C_{p}$ and $\gamma_{6}(G)=1$ for $p \geqslant 5$;
32) $G^{\prime} \cong\left(C_{9}\right)^{2}$ and $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$;
33) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{2}$, either $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $G^{\prime 3} \subseteq$ $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}$
34) $G^{\prime} \cong\left(C_{3}\right)^{4},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}$;
35) $G^{\prime} \cong\left(C_{p}\right)^{5}, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$ and $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ for $p \geqslant 5$;
36) $G^{\prime} \cong\left(C_{9}\right)^{2} \times C_{3}$ and $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$;
37) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$, either $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $G^{\prime 3} \subseteq$ $\gamma_{3}(G) \cong\left(C_{3}\right)^{3} ;$
38) $G^{\prime} \cong\left(C_{3}\right)^{5},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}$;
39) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$;
40) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$;
41) $G^{\prime} \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$;
42) $G^{\prime} \cong S(32,2), \gamma_{3}(G) \subseteq G^{\prime 2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
43) $G^{\prime}$ is one of the groups $S(32,22)$ to $S(32,26), \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$ and $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$;
44) $G^{\prime}$ is one of the groups $S(32,46)$ to $S(32,48), \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$;
45) $G^{\prime}$ is one of the groups $S(243,2), S(243,33), S(243,34)$ or $S(243,36)$, either $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$ or $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$, $\gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1 ;$
46) $G^{\prime} \cong\langle a, b, c, d, e\rangle=\langle c, d\rangle \times\langle a, b\rangle$, where $\langle c, d\rangle \cong C_{p} \times C_{p}$ and $\left\langle a, b, e \mid=a^{p}=b^{p}=e^{p}=1,[b, a]=e\right\rangle$ is abelian group of order $p^{3}$ and exponent $p$, $\gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$ for $p \geqslant 5$;
47) $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{2}, \gamma_{3}(G) \subseteq G^{\prime 3}$ and $\gamma_{4}(G)=1$;
48) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$, either $\gamma_{3}(G) \cong C_{3}, \gamma_{4}(G)=1,\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G)=1$;
49) $G^{\prime}$ is one of the groups $S(729,422)$ or $S(729,502), G^{\prime 3} \subseteq \gamma_{3}(G) \cong$ $\left(C_{3}\right)^{2},\left|G^{\prime 3} \cap \gamma_{4}(G)\right|=1, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
50) $G^{\prime}$ is one of the groups $S(729,423)$ or $S(729,424), G^{\prime 3} \subseteq \gamma_{3}(G) \cong$ $\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
51) $G^{\prime}$ is one of the groups $S(729,103), S(729,105), S(729,417)$, $S(729,418), \quad S(729,420)$ or $S(729,421), G^{\prime 3}=\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$, $\gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
52) $G^{\prime}$ is one of the groups $S(729,416), S(729,419), S(729,499)$ or $S(729,500), G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
53) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{6}, \gamma_{3}(G) \subseteq G^{\prime 3} \cong C_{3}$ and $\gamma_{4}(G)=1$;
54) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ and $\gamma_{3}(G) \cong G^{2}$;
55) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$ or $G^{2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$
56) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}$, either $\gamma_{3}(G) \cong C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 3} \subseteq$ $\gamma_{3}(G) \cong\left(C_{3}\right)^{2} ;$
57) $G^{\prime} \cong\left(C_{p}\right)^{7},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{p}\right)^{2}$ for $p \geqslant 5$;
58) $G^{\prime}$ is one of the groups $S(128,2157)$ to $S(128,2162)$ or $S(128,2304)$, $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
59) $G^{\prime}$ is one of the groups $S(128,2323)$ to $S(128,2325),\left|G^{2} \cap \gamma_{3}(G)\right|=$ 2 , $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
60) $G^{\prime}$ is one of the groups $S(128,2151)$ to $S(128,2156), S(128,2302)$ or $S(128,2303), G^{2}=\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
61) $G^{\prime}$ is one of the groups $S(128,2320)$ to $S(128,2322), G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
62) $G^{\prime}$ is one of the groups $S(2187,5874), S(2187,5876), S(2187,9102)$ to $S(2187,9105), G^{\prime 3}=\gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
63) $G^{\prime}$ is one of the groups $S(2187,9100), S(2187,9101), S(2187,9306)$ or $S(2187,9307), G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
64) $G^{\prime}$ is one of the groups $S(2187,5867), S(2187,5870), S(2187,5872)$ or $S(2187,9096)$ to $S(2187,9099), G^{\prime 3}=\gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
65) $G^{\prime}$ is one of the groups $S(2187,9094), S(2187,9095), S(2187,9303)$ or $S(2187,9304), G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
66) $G^{\prime} \cong\left\langle a, b, c, d, e, f, g: a^{p}=b^{p}=c^{p}=d^{p}=e^{p}=f^{p}=g^{p}=1,[b, a]=c\right\rangle$, $\gamma_{3}(G) \cong\left(C_{p}\right)^{2}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$ for $p \geqslant 3$;
67) $G^{\prime} \cong\left\langle a, b, c, d, e, f, g: a^{p}=b^{p}=c^{p}=d^{p}=e^{p}=f^{p}=g^{p}=\right.$ $1,[b, a]=e,[d, c]=e\rangle, \gamma_{3}(G) \cong\left(C_{p}\right)^{2}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$ for $p \geqslant 3$;
68) $G^{\prime} \cong\left(C_{4}\right)^{3}, \gamma_{3}(G) \subseteq G^{\prime 2}$ and $\gamma_{4}(G)=1$;
69) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$ or $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{2}$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$;
70) $G^{\prime} \cong\left(C_{2}\right)^{6},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ and $\gamma_{4}(G)=1$;
71) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$, either $\gamma_{3}(G) \cong\left(C_{3}\right)^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 3} \subseteq$ $\gamma_{3}(G) \cong\left(C_{3}\right)^{3} ;$
72) $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$ for $p \geqslant 5$;
73) $G^{\prime}$ is one of the groups $S(64,199)$ to $S(64,201),\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
74) $G^{\prime}$ is one of the groups $S(64,264)$ or $S(64,265),\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
75) $G^{\prime}$ is one of the groups $S(64,56)$ to $S(64,59), \gamma_{3}(G) \subseteq G^{\prime 2}, \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
76) $G^{\prime}$ is one of the groups $S(64,193)$ to $S(64,198),\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
77) $G^{\prime}$ is one of the groups $S(64,56)$ to $S(64,59)$, $\gamma_{3}(G) \subseteq G^{2}$, $\gamma_{3}(G) \cong$ $\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$;
78) $G^{\prime}$ is one of the groups $S(64,193)$ to $S(64,198)$ and $G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{3}$;
79) $G^{\prime}$ is one of the groups $S(729,103)$ to $S(729,106), S(729,416)$ to $S(729,420), S(729,499)$ or $S(729,500), G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$, $\gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
80) $G^{\prime}$ is one of the groups $S(729,103), S(729,105), S(729,417)$, $S(729,418), S(729,420)$ or $S(729,421),\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong$ $\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
81) $G^{\prime}$ is one of the groups $S(729,104)$ or $S(729,106), \gamma_{3}(G) \subseteq G^{2}$, $\gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
82) $G^{\prime}$ is one of the groups $S(729,416), S(729,419), S(729,499)$ or $S(729,500),\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$;
83) $G^{\prime} \cong \phi_{2}\left(1^{5}\right) \times(1), \gamma_{3}(G) \cong\left(C_{p}\right)^{3},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$ for $p \geqslant 5$;
84) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\mid G^{\prime 2} \cap$ $\gamma_{3}(G) \mid=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$;
85) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$;
86) $G^{\prime} \cong\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}$;
87) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$, either $\gamma_{3}(G) \cong\left(C_{3}\right)^{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ or $\gamma_{3}(G) \cong$ $\left(C_{3}\right)^{4}, G^{\prime 3} \subseteq \gamma_{3}(G) ;$
88) $G^{\prime} \cong\left(C_{p}\right)^{5}, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}$ and $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ for $p \geqslant 5$;
89) $G^{\prime} \cong S(32,2),\left|G^{2} \cap \gamma_{3}(G)\right|=4, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1 ;$
90) $G^{\prime} \cong S(243,32),\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$ and $\gamma_{4}(G) \cong C_{3}$;
91) $G^{\prime} \cong\left(C_{p}\right)^{10}, \gamma_{3}(G)=1$ and $\left|G^{\prime 3} \cap \gamma_{4}(G)\right|=1$ for $p>0$;
92) $G^{\prime} \cong\left(C_{p}\right)^{9}, \gamma_{3}(G) \cong C_{p},\left|G^{p} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{4}(G)=1$ for $p \geqslant 3$;
93) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}, \gamma_{3}(G) \subseteq G^{2} \cong C_{2}$ and $\gamma_{4}(G)=1$;
94) $G^{\prime} \cong\left(C_{2}\right)^{9}$, $\gamma_{3}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{4}(G)=1$;
95) $G^{\prime} \cong\left(C_{p}\right)^{8}, \gamma_{3}(G) \cong\left(C_{p}\right)^{2},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{4}(G)=1$ for $p \geqslant 3$;
96) $G^{\prime} \cong\left(C_{2}\right)^{8},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ and $\gamma_{4}(G)=1$ for $p \geqslant 5$;
97) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$ or $G^{2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ for $p \geqslant 5$;
98) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, \gamma_{3}(G) \subseteq G^{\prime 2}$ and $\gamma_{4}(G)=1$;
99) $G^{\prime} \cong\left(C_{p}\right)^{7}, \gamma_{3}(G) \cong C_{p} \times C_{p} \times C_{p}$ and $\left|G^{p} \cap \gamma_{3}(G)\right|=1$ for $p \geqslant 3$;
100) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}, \gamma_{3}(G) \subseteq G^{\prime 2}$ and $\gamma_{4}(G)=1$;
101) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$ or $\mid G^{2} \cap$ $\gamma_{3}(G) \mid=2, \gamma_{3}(G) \cong C_{2} \times C_{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$;
102) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{3} ;$
103) $G^{\prime} \cong\left(C_{2}\right)^{7},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ and $\gamma_{4}(G)=1$;
104) $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{p}\right)^{4}$ for $p \geqslant 3$;
105) $G^{\prime} \cong\left(C_{4}\right)^{3}, \gamma_{3}(G) \subseteq G^{\prime 2}$ and $\gamma_{4}(G)=1$;
106) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\mid G^{2} \cap$ $\gamma_{3}(G) \mid=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$;
107) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$;
108) $G^{\prime} \cong\left(C_{2}\right)^{6},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$ and $\gamma_{4}(G)=1$.

Proof. Let $t^{L}(K G)=10 p-8$. Then $l=\frac{t^{L}(K G)-2}{p-1}=10$. Thus from [15], $d_{(11)}=0, d_{(10)}=0, d_{(9)}=0$ and $d_{(8)} \neq 0$ if and only if $p=7, G^{\prime} \cong$
$C_{7^{2}} \times\left(C_{7}\right)^{2}, \gamma_{3}(G) \subseteq G^{\prime 7}$ or $G^{\prime} \cong C_{7^{2}} \times C_{7}, \gamma_{3}(G) \cong C_{7},\left|\gamma_{3}(G) \cap G^{\prime 7}\right|=1$ or $G^{\prime} \cong C_{7^{2}} \times C_{7}, \gamma_{4}(G) \subseteq G^{\prime 7} \subseteq \gamma_{3}(G) \cong\left(C_{7}\right)^{2}, \gamma_{5}(G)=1$.

Now if $\mathbf{d}_{\mathbf{8}}=\mathbf{0}$, then $d_{(2)}+2 d_{(3)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}=10$. If $d_{7} \neq 0$, then we have $d_{(7)}=1, d_{(2)}=4$ or $d_{(7)}=d_{(3)}=1, d_{(2)}=2$ or $d_{(7)}=d_{(2)}=d_{(4)}=1$ or $d_{(7)}=1, d_{(3)}=2$ or $d_{(7)}=d_{(5)}=1$.

If $\mathbf{d}_{(\mathbf{7})}=\mathbf{1}$, then all the above cases are discarded by Lemma 1 .
Now if $\mathbf{d}_{(\mathbf{7})}=\mathbf{0}$, then $d_{(2)}+2 d_{(3)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}=10$. If $d_{(6)} \neq 0$, then we have the following possibilities: $d_{(6)}=d_{(2)}=d_{(5)}=1$ or $d_{(6)}=1$, $d_{(2)}=5$ or $d_{(6)}=d_{(3)}=1, d_{(2)}=3$ or $d_{(6)}=d_{(4)}=1, d_{(2)}=2$ or $d_{(6)}=d_{(2)}=1, d_{(3)}=2$ or $d_{(6)}=d_{(3)}=d_{(4)}=1$.

Let $\mathbf{d}_{(\boldsymbol{6})}=\mathbf{d}_{(\mathbf{2})}=\mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. Then by Lemma $1(2), \vartheta_{p^{\prime}}(4) \geqslant \vartheta_{p^{\prime}}(2)$, $\forall p>0$, so $d_{(5)}=0$.

Let $\mathbf{d}_{(\mathbf{6})}=\mathbf{1}, \mathbf{d}_{(\mathbf{2})}=\mathbf{5}$. If $p \neq 5$, then as $d_{(2+1)}=0, \vartheta_{p^{\prime}}(5) \geqslant \vartheta_{p^{\prime}}(2)$, hence by Lemma $1(2), d_{(6)}=0$. Now if $p=5$, then $\left|G^{\prime}\right|=5^{6},\left|D_{(6), K}(G)\right|=$ $\left|D_{(3), K}(G)\right|=\left|D_{(4), K}(G)\right|=\left|D_{(5), K}(G)\right|=5$. Therefore, $G^{\prime}$ is abelian and $\left|G^{\prime 5}\right| \leqslant 5$. We have $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{4}$ or $\left(C_{5}\right)^{6}$. If $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{4}$, then $G^{\prime 5} \subseteq \gamma_{3}(G), \gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{5}\right)^{6}$, then $\left|G^{5} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{5}$.

Let $\mathbf{d}_{(\mathbf{6})}=\mathbf{d}_{(\mathbf{3})}=\mathbf{1}, \mathbf{d}_{(\mathbf{2})}=\mathbf{3}$. If $p \neq 5$, then by Lemma $1(2), d_{(4+1)}=$ $0, \vartheta_{p^{\prime}}(5) \geqslant \vartheta_{p^{\prime}}(4)$, so $d_{(6)}=0$. Now if $p=5$, then $\left|G^{\prime}\right|=5^{5},\left|D_{(4), K}(G)\right|=$ $\left|D_{(5), K}(G)\right|=\left|D_{(6), K}(G)\right|=5,\left|D_{(3), K}(G)\right|=5^{2}$ and $\left|G^{\prime 5}\right|=5$. Thus $\gamma_{5}(G)=1,\left|\gamma_{4}(G)\right|=5$ and $\left|\gamma_{3}(G)\right|=5^{2}$. Let $G^{\prime}$ be an abelian group, then possible $G^{\prime}$ are $G^{\prime} \cong\left(C_{5^{2}}\right)^{2} \times C_{5}$ or $C_{5^{2}} \times\left(C_{5}\right)^{3}$ or $\left(C_{5}\right)^{5}$. If $G^{\prime} \cong\left(C_{5^{2}}\right)^{2} \times$ $C_{5}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$. If $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{3}$, then either $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{5}$ or $G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{2}$. If $G^{\prime} \cong\left(C_{5}\right)^{5}$, then $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{5}\right)^{2}$. Now if $G^{\prime}$ be a non-abelian group, then $G^{\prime \prime}=\gamma_{4}(G) \cong C_{5}$, $\gamma_{3}(G) \cong\left(C_{5}\right)^{2}$ and $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$. Thus $\left|\zeta\left(G^{\prime}\right)\right|=5^{2}$ or $5^{3}$. If $\left|\zeta\left(G^{\prime}\right)\right|=5^{2}$, then $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{5}\right)^{2}$ but from the Table 1, no such group exists. If $\left|\zeta\left(G^{\prime}\right)\right|=5^{3}$, then $\zeta\left(G^{\prime}\right) \cong C_{5^{2}} \times C_{5}$ or $\left(C_{5}\right)^{3}$. Thus possible $G^{\prime}$ are $S(3125,2), S(3125,40), S(3125,41), S(3125,42), S(3125,43), S(3125,44)$, $S(3125,73)$ and $S(3125,74)$ and for all these groups $G^{\prime 5} \subseteq \zeta\left(G^{\prime}\right), G^{\prime \prime} \subseteq$ $\zeta\left(G^{\prime}\right)$ and $G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{2}$.

Let $\mathbf{d}_{(\mathbf{6})}=\mathbf{d}_{(\mathbf{4})}=\mathbf{1}, \mathbf{d}_{(\mathbf{2})}=\mathbf{2}$. Then by Lemma 1, this case is not possible.

Let $\mathbf{d}_{(\mathbf{6})}=\mathbf{d}_{(\mathbf{2})}=\mathbf{1}, \mathbf{d}_{(\mathbf{3})}=\mathbf{2}$. If $p \neq 5$, then by Lemma $1(2), d_{(3+1)}=$ $0, \vartheta_{p^{\prime}}(5) \geqslant \vartheta_{p^{\prime}}(3)$, so $d_{(6)}=0$. If $p=5$, then $\left|G^{\prime}\right|=5^{4},\left|D_{(4), K}(G)\right|=$ $\left|D_{(5), K}(G)\right|=\left|D_{(6), K}(G)\right|=5,\left|D_{(3), K}(G)\right|=5^{3}$ and $\left|G^{\prime 5}\right| \leqslant 5$. Thus $\gamma_{5}(G)=1,\left|\gamma_{4}(G)\right|=5$ and $\left|\gamma_{3}(G)\right|=5^{2}$ or $5^{3}$. Let $G^{\prime}$ be an abelian group. Then, possible $G^{\prime}$ are, $\left(C_{5^{2}}\right)^{2}$ or $C_{5^{2}} \times\left(C_{5}\right)^{2}$. If $G^{\prime} \cong\left(C_{5^{2}}\right)^{2}$, then $\left|D_{(3), K}(G)\right| \neq 125$. If $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{2}$, then either $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1$,
$\gamma_{3}(G) \cong\left(C_{5}\right)^{2}$ or $G^{\prime 5}=\gamma_{3}(G) \cong C_{5}$ or $G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{3}$. Now let $G^{\prime}$ be a non-abelian group. Then $G^{\prime \prime}=\gamma_{4}(G) \cong C_{5}$ and $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$. If $\gamma_{3}(G) \cong\left(C_{5}\right)^{2}$, then $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{5}\right)^{2}$, but from the Table 2 of [14], no such group exists. If $\gamma_{3}(G) \cong\left(C_{5}\right)^{3}$, then $\left|\zeta\left(G^{\prime}\right)\right|=125$. Thus $G^{\prime}$ is abelian in this case.

Let $\mathbf{d}_{(\boldsymbol{6})}=\mathbf{d}_{(\mathbf{3})}=\mathbf{d}_{(4)}=\mathbf{1}$. Since $d_{(1+1)}=0$, then by Lemma 1(2), $\vartheta_{p^{\prime}}(5) \geqslant \vartheta_{p^{\prime}}(1)$, so $d_{(6)}=0, \forall p>0$. Thus this case is not possible.

Now let $\mathbf{d}_{(6)}=\mathbf{0}$. If $d_{(5)} \neq 0$, then we have the following possibilities: $d_{(3)}=1, d_{(5)}=2$ or $d_{(2)}=2, d_{(5)}=2$ or $d_{(2)}=6, d_{(5)}=1$ or $d_{(4)}=2$, $d_{(5)}=1$ or $d_{(2)}=4, d_{(3)}=d_{(5)}=1$ or $d_{(2)}=d_{(3)}=2, d_{(5)}=1$ or $d_{(2)}=d_{(3)}=d_{(4)}=d_{(5)}=1$ or $d_{(2)}=3, d_{(4)}=d_{(5)}=1$.

Let $\mathbf{d}_{(\mathbf{3})}=\mathbf{1}, \mathbf{d}_{(\mathbf{5})}=\mathbf{2}$. If $p \neq 2$, then by Lemma $1(2), \vartheta_{p^{\prime}}(2) \geqslant \vartheta_{p^{\prime}}(1)$. So $d_{(3)}=0$. If $p=2$, then by Lemma $1(1), 1=d_{(3)} \leqslant d_{(2)}=0$, so this case is not possible.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{2}, \mathbf{d}_{(\mathbf{5})}=\mathbf{2}$. If $p \neq 2$, then by Lemma(1.1)(2), $d_{(3+1)}=0$, $\vartheta_{p^{\prime}}(4) \geqslant \vartheta_{p^{\prime}}(3)$ and thus $d_{(5)}=0$. If $p=2$, then by Lemma $1(1), d_{(2+1)}=0$, $d_{(5)}=0$. Thus this case is not possible.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{6}, \mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. If $p \neq 2$, then by Lemma $1(2), d_{(3)}=0, \vartheta_{p^{\prime}}(4) \geqslant$ $\vartheta_{p^{\prime}}(3)$ and so $d_{(5)}=0$. If $p=2$, then by Lemma $1(1), d_{(2+1)}=0$ and so $d_{(5)}=0$. Thus this case is not possible.

Let $\mathbf{d}_{(\mathbf{4})}=\mathbf{2}, \mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. Then by Lemma 1 , this case is not possible.
Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{4}, \mathbf{d}_{(\mathbf{3})}=\mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. If $p \neq 2$, then by Lemma $1(2), d_{(3+1)}=$ $0, \vartheta_{p^{\prime}}(4) \geqslant \vartheta_{p^{\prime}}(3)$ and so $d_{(5)}=0$. If $p=2$, then $\left|G^{\prime}\right|=2^{6}$ $\left|D_{(3), K}(G)\right|=2^{2},\left|D_{(5), K}(G)\right|=\left|D_{(4), K}(G)\right|=2$. Since $D_{(6), K}(G)=$ $G^{\prime 8} \gamma_{3}(G)^{4} \gamma_{4}(G)^{2} \gamma_{6}(G)=1$, thus $\gamma_{4}(G) \subseteq G^{4} \gamma_{3}(G)^{2} \cong C_{2}, \gamma_{5}(G)=1$ and $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$ and so $G^{\prime 2} \neq 1$. First suppose that $G^{\prime}$ is an abelian group. Then possible $G^{\prime}$ are $C_{8} \times\left(C_{2}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $C_{4} \times\left(C_{2}\right)^{4}$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}, \gamma_{3}(G) \cong C_{4}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4}$. Now let $G^{\prime}$ is a non-abelian group. Thus $G^{4} \gamma_{3}(G)^{2}=\gamma_{4}(G)=G^{\prime \prime} \cong C_{2}$ and $\left|\zeta\left(G^{\prime}\right)\right| \leqslant 2^{4}$. Let $\left|\zeta\left(G^{\prime}\right)\right|=4$. Now from the Table 1 of [2] possible $G^{\prime}$ are $S(64,199)$ to $S(64,201), S(64,215)$ to $S(64,245), S(64,264)$ and $S(64,265)$. If $G^{\prime}$ is any one of the groups $S(64,199)$ to $S(64,201)$ or $S(64,215)$ to $S(64,245)$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$. If $G^{\prime}$ is any one of the groups $S(64,264)$ or $S(64,265)$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4}$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{2}$. Let $\left|\zeta\left(G^{\prime}\right)\right|=8$. But from the Table 1 of [2] no group exists with $\left|G^{\prime \prime}\right|=2$. Now let $\left|\zeta\left(G^{\prime}\right)\right|=16$. From Table 1 of [2] possible $G^{\prime}$ are $S(64,193)$ to $S(64,198), S(64,247), S(64,248)$ and $S(64,261)$ to $S(64,263)$. For all these groups $G^{\prime \prime} \subseteq G^{2} \subseteq \zeta\left(G^{\prime}\right)$. If $G^{\prime}$ is any one of the groups $S(64,193), S(64,194), S(64,261)$ or $S(64,262)$, then
$G^{4} \gamma_{3}(G)^{2}=1$. If $G^{\prime}$ is any one of the groups $S(64,195)$ to $S(64,198)$, then $\zeta\left(G^{\prime}\right) \cong C_{4} \times\left(C_{2}\right)^{2}, G^{2} \cong\left(C_{2}\right)^{2}$ and $G^{4} \gamma_{3}(G)^{2}=1$. If $G^{\prime}$ is any one of the groups $S(64,247)$ to $S(64,248)$, then $G^{2}=\gamma_{3}(G) \cong C_{4}$. If $G^{\prime}$ is $S(64,263)$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{d}_{(\mathbf{3})}=\mathbf{2}, \mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. If $p \neq 2$, then by Lemma $1(2), d_{(3+1)}=$ $0, \vartheta_{p^{\prime}}(4) \geqslant \vartheta_{p^{\prime}}(3)$ and so $d_{(5)}=0$. If $p=2$, then $\left|G^{\prime}\right|=2^{5},\left|D_{(3), K(G)}\right|=2^{3}$, $\left|D_{(4), K}(G)\right|=\left|D_{(5), K}(G)\right|=2$. Thus $\gamma_{5}(G)=1, \gamma_{4}(G) \subseteq G^{\prime 4} \gamma_{3}(G)^{2} \cong C_{2}$. Let $G^{\prime}$ be abelian. Then possible $G^{\prime}$ are $C_{8} \times C_{4}$ or $C_{8} \times\left(C_{2}\right)^{2}$ or $\left(C_{4}\right)^{2} \times C_{2}$ or $C_{4} \times\left(C_{2}\right)^{3}$. If $G^{\prime} \cong C_{8} \times C_{4}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$ or $\gamma_{3}(G) \subseteq G^{\prime 2}, \gamma_{3}(G) \cong C_{4}$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}$ or $\mid G^{2} \cap$ $\gamma_{3}(G) \mid=4, \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong C_{4} \times C_{2}$.

Now let $G^{\prime}$ be a non - abelian. Then $G^{4} \gamma_{3}(G)^{2}=\gamma_{4}(G)=G^{\prime \prime} \cong C_{2}$, $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$ and $\left|\zeta\left(G^{\prime}\right)\right| \leqslant 2^{3}$. If $\left|\zeta\left(G^{\prime}\right)\right|=4$, then from the Table 2 of [22], no group exists with $\left|G^{\prime \prime}\right|=2$. If $\left|\zeta\left(G^{\prime}\right)\right|=8$, then possible $G^{\prime}$ are $S(32,2), S(32,4), S(32,5), S(32,12), S(32,22)$ to $S(32,26), S(32,37)$ to $S(32,38)$ and $S(32,46)$ to $S(32,48)$ (see Table 2 of [22]). If $G^{\prime}$ is $S(32,2)$, then $G^{\prime 4} \gamma_{3}(G)^{2}=1$, which is not possible. If $G^{\prime}$ is any one of the groups $S(32,4), S(32,5)$ or $S(32,12)$, then $\zeta\left(G^{\prime}\right) \cong C_{4} \times C_{2}$ and $\gamma_{3}(G) \subseteq G^{\prime 2} \cong C_{4} \times C_{2}$. If $G^{\prime}$ is any one of the groups $S(32,22)$ to $S(32,26)$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime}$ is any one of the groups $S(32,37)$ or $S(32,38)$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. If $G^{\prime}$ is any one of the groups $S(32,46)$ to $S(32,48)$, then either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{4}$ or $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{d}_{(\mathbf{3})}=\mathbf{d}_{(\mathbf{4})}=\mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. Then $\left|G^{\prime}\right|=p^{4},\left|D_{(3), K}(G)\right|=p^{3}$, $\left|D_{(4), K}(G)\right|=p^{2},\left|D_{(5), K}(G)\right|=p$ and $D_{(6), K}(G)=1, \forall p>0$. Let $G^{\prime}$ is an abelian group. If $p \geqslant 5$, then $G^{\prime} \cong\left(C_{p}\right)^{4},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$, $\gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{5}(G) \cong C_{p}$. If $p=3$, then $D_{(6), K}(G)=1$ leads to $G^{\prime 9}=1$, so either $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{2}$ or $\left(C_{3}\right)^{4}$. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{2}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. If $G^{\prime} \cong\left(C_{3}\right)^{4}$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. If $p=2$, then $D_{(6), K}(G)=1$ leads to $G^{\prime 8}=1$, so $G^{\prime} \cong C_{8} \times C_{2}$ or $\left(C_{4}\right)^{2}$ or $C_{4} \times\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{8} \times C_{2}$, then either $\gamma_{3}(G) \cong C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. Clearly $G^{\prime} \cong\left(C_{4}\right)^{2}$ is not possible as $\left|D_{(3), K}(G)\right|<2^{3}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{2}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}$. Let $G^{\prime}$ be a non-abelian and $p \geqslant 5$. Then $\gamma_{6}(G)=1, \gamma_{5}(G) \cong C_{p}$, $\gamma_{4}(G) \cong\left(C_{p}\right)^{2}, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$ and $\zeta\left(G^{\prime}\right) \cong\left(C_{p}\right)^{2}$. Thus possible $G^{\prime}$ is $\left(\left(C_{p} \times C_{p}\right) \rtimes C_{p}\right) \times C_{p}$, (see [25]). If $p=3$, then $\gamma_{5}(G)=1,\left|\gamma_{4}(G)\right|=3$,
$\left|\gamma_{3}(G)\right|=3^{2}$ or $3^{3}$. Now $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$ and $\left|\zeta\left(G^{\prime}\right)\right| \leqslant 3^{2}$, so $\left|\gamma_{3}(G)\right| \neq 3^{3}$. Thus $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong C_{3} \times C_{3}$ and $G^{\prime \prime}=\gamma_{4}(G) \cong C_{3}$. Therefore, from Table 2 of [14] the possibilities for $G^{\prime}$ are $S(81,3), S(81,4), S(81,12)$ and $S(81,13)$, but then $\left|D_{(3), K}(G)\right|<3^{3}$. If $p=2$, then $\gamma_{5}(G)=1$, $G^{\prime \prime}=\gamma_{4}(G)=G^{4} \gamma_{3}(G)^{2} \cong C_{2}, \gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$ and $\left|\zeta\left(G^{\prime}\right)\right|=2^{2}$. So possible $G^{\prime}$ are $S(16,3), S(16,4)$ and $S(16,11)$ to $S(16,13)$. But for these groups $\left|D_{(3), K}(G)\right| \neq 2^{3}$ (see Table 1 of [14]).

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{3}, \mathbf{d}_{(\mathbf{4})}=\mathbf{d}_{(\mathbf{5})}=\mathbf{1}$. If $p \neq 2$, then by Lemma $1(2), d_{(2+1)}=$ $0, \vartheta_{p^{\prime}}(4) \geqslant \vartheta_{p^{\prime}}(2)$ and so $d_{(5)}=0$. If $p=2$, then by Lemma $1(1)$, as $d_{(3)}=0$, so $d_{(5)}=0$. Thus this case is not possible.

Now let $\mathbf{d}_{(\mathbf{5})}=\mathbf{0}$. If $d_{(4)} \neq 0$, then we have the following possibilities: $d_{(4)}=3, d_{(2)}=1$ or $d_{(4)}=d_{(2)}=2, d_{(3)}=1$ or $d_{(4)}=2, d_{(2)}=4$ or $d_{(4)}=1, d_{(2)}=7$ or $d_{(4)}=d_{(3)}=1, d_{(2)}=5$ or $d_{(4)}=1, d_{(2)}=3, d_{(3)}=2$ or $d_{(4)}=1, d_{(2)}=1, d_{(3)}=3$ or $d_{(4)}=d_{(3)}=2$.

Let $\mathbf{d}_{(4)}=\mathbf{3}, \mathbf{d}_{(\mathbf{2})}=\mathbf{1}$. Now $p \neq 3$ is not possible by Lemma 1. Thus $p=3$. Now $\left|G^{\prime}\right|=3^{4},\left|D_{(4), K}(G)\right|=\left|D_{(3), K}(G)\right|=3^{3}, D_{(5), K}(G)=1$. Let $G^{\prime}$ be an abelian group, then $G^{\prime} \cong\left(C_{9}\right)^{2}$ or $C_{9} \times\left(C_{3}\right)^{2}$ or $\left(C_{3}\right)^{4}$. If $G^{\prime} \cong\left(C_{9}\right)^{2}$, then $G^{\prime 3}=\gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{2}$, then either $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. If $G^{\prime} \cong\left(C_{3}\right)^{4}$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. Now let $G^{\prime}$ be a non-abelian group. Then $G^{\prime \prime}=\gamma_{4}(G) \cong C_{3}, \gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$. So $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{3}\right)^{2}$. Hence possible $G^{\prime}$ are $S(81,3), S(81,4), S(81,12)$ and $S(81,13)$. But for these groups $\left|D_{(3), K}(G)\right|<3^{3}$ (see Table 2 of [14]).

Let $\mathbf{d}_{(\mathbf{4})}=\mathbf{d}_{(\mathbf{2})}=\mathbf{2}, \mathbf{d}_{(\mathbf{3})}=\mathbf{1}$. Then $\left|G^{\prime}\right|=p^{5},\left|D_{(3), K}(G)\right|=p^{3}$ and $\left|D_{(4), K}(G)\right|=p^{2}, \forall p>0$. Let $G^{\prime}$ be an abelian group and $p \geqslant 5$. Now $D_{(5), K}(G)=1$ leads to $G^{\prime p}=1$, so $G^{\prime} \cong\left(C_{p}\right)^{5}, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$ and $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$. If $p=3$, then $G^{\prime} \cong\left(C_{9}\right)^{2} \times C_{3}$ or $C_{9} \times\left(C_{3}\right)^{3}$ or $\left(C_{3}\right)^{5}$. If $G^{\prime} \cong\left(C_{9}\right)^{2} \times C_{3}$, then either $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$ or $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3$, $\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $\left|G^{3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3}$. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$, then either $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. If $G^{\prime} \cong\left(C_{3}\right)^{5}$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. If $p=2$, then $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$ or $C_{4} \times\left(C_{2}\right)^{3}$ or $\left(C_{2}\right)^{5}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, then either $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, then either $G^{\prime 2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{5}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. Let $G^{\prime}$ be a non - abelian group. If $p=2$, then $D_{(5), K}(G)=G^{4} \gamma_{3}(G)^{2} \gamma_{5}(G)=1$ leads to $\left|\gamma_{4}(G)\right|=2$ or 4 and $\left|\gamma_{3}(G)\right|=4$ or 8 . First, let $\left|\gamma_{4}(G)\right|=2$. Then $G^{\prime \prime}=\gamma_{4}(G) \cong C_{2}$, so $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\left(C_{2}\right)^{3}$ and $\left|\zeta\left(G^{\prime}\right)\right|=2^{2}$ or $2^{3}$. If $\left|\zeta\left(G^{\prime}\right)\right|=4$, then from the Table 2 of $[22],\left|G^{\prime \prime}\right| \neq 2$. If $\left|\zeta\left(G^{\prime}\right)\right|=8$, then $\zeta\left(G^{\prime}\right) \cong C_{4} \times C_{2}$ or $\left(C_{2}\right)^{3}$.

Therefore possible $G^{\prime}$ are $S(32,2), S(32,4), S(32,5), S(32,12), S(32,22)$ to $S(32,26), S(32,37)$ and $S(32,46)$ to $S(32,48)$ (see table 2 of [22]). If $G^{\prime}$ is any one of the groups $S(32,4), S(32,5), S(32,12)$ or $S(32,37)$, then $G^{4} \neq 1$. If $G^{\prime}$ is $S(32,2)$, then $\gamma_{3}(G) \subseteq G^{2}$. If $G^{\prime}$ is any one of the groups $S(32,22)$ to $S(32,26)$, then either $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. If $G^{\prime}$ is any one of the groups $S(32,46)$ to $S(32,48)$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. Now for $\left|\gamma_{4}(G)\right|=4, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{2}\right)^{3}$. But from the Table 2 of [22], no such group exists with $\left|G^{\prime \prime}\right|=4$. Let $p=3$, then $D_{(5), K}(G)=1$ leads to $G^{\prime 9}=1$ and $\left|D_{(4), K}(G)\right|=3^{2}$ leads to $\left|\gamma_{4}(G)\right|=3$ or $3^{2}$. So $G^{\prime \prime}=\gamma_{4}(G) \cong C_{3}$ and $\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $\left(C_{3}\right)^{3}$. Thus $\left|\zeta\left(G^{\prime}\right)\right|=9$ or 27 . First let $\left|\zeta\left(G^{\prime}\right)\right|=9$, then from the Table 5 of [14], no such group exists. If $\left|\zeta\left(G^{\prime}\right)\right|=27$, then possible $G^{\prime}$ are $S(243,2), S(243,32)$ to $S(243,36)$ and $S(243,62)$ to $S(243,64)$ (see Table 5 of [14]). Now $\gamma_{4}(G) \subseteq G^{\prime 3} \gamma_{3}(G)^{3} \cong\left(C_{3}\right)^{2}$ and $\gamma_{3}(G)^{3}=1$. Hence $\left|G^{\prime 3}\right|=9$. If $G^{\prime}$ is one of the group from $S(243,32), S(243,35)$ or $S(243,62)$ to $S(243,64)$, then $\left|G^{\prime 3}\right| \neq 9$. If $G^{\prime}$ is any one of the groups $S(243,2), S(243,33), S(243,34)$ or $S(243,36)$, then either $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$ or $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong$ $\left(C_{3}\right)^{2}$. For $\left|\gamma_{4}(G)\right|=9, G^{\prime \prime}=\gamma_{4}(G) \cong\left(C_{3}\right)^{2}$ and $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{3}\right)^{3}$. But from the Table 3 no such group exists. For $p \geqslant 5, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$ or $\left(C_{p}\right)^{2}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ or $C_{p}$ and $\gamma_{5}(G)=1$. If $G^{\prime \prime}=\gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{3}(G) \cong\left(C_{p}\right)^{3}$, then $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$ and hence $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{p}\right)^{3}$. But from [12] no such group exists. If $G^{\prime \prime}=\gamma_{4}(G) \cong C_{p}, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$ or $\left(C_{p}\right)^{2}$ and $\gamma_{5}(G)=1$, then $\left|\zeta\left(G^{\prime}\right)\right|=p^{2}$ or $p^{3}$. Let $\zeta\left(G^{\prime}\right) \cong\left(C_{p}\right)^{2}$, then from [12] no such group exists. Now let $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{p}\right)^{3}$, then from [12], $G^{\prime} \cong\langle a, b, c, d, e\rangle=\langle c, d\rangle \times\langle a, b\rangle$, where $\langle c, d\rangle \cong C_{p} \times C_{p}$ and $\left\langle a, b, e \mid=a^{p}=b^{p}=e^{p}=1,[b, a]=e\right\rangle$ is a non-abelian group of order $p^{3}$ and exponent $p$.

Let $\mathbf{d}_{(4)}=\mathbf{2}, \mathbf{d}_{(\mathbf{2})}=4$. If $p \neq 3$ and $d_{(3)}=0$, then by Lemma 1(2), $\vartheta_{p^{\prime}}(3) \geqslant \vartheta_{p^{\prime}}(2)$, so $d_{(4)}=0$. If $p=3$, then $\left|G^{\prime}\right|=3^{6},\left|D_{(3), K}(G)\right|=$ $\left|D_{(4), K}(G)\right|=3^{2}, D_{(5), K}(G)=1$ and $G^{\prime 3} \neq 1$. Let $G^{\prime}$ be an abelian group. So possible $G^{\prime}$ are $\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{2}$ or $C_{9} \times\left(C_{3}\right)^{4}$. If $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{2}$, then $\gamma_{3}(G) \subseteq G^{\prime 3}$. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$, then either $\gamma_{3}(G) \cong C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. Let $G^{\prime}$ be a non - abelian group. Now $G^{\prime \prime}=$ $\gamma_{4}(G) \cong C_{3}, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ and $G^{\prime 3} \subseteq \gamma_{3}(G)$. Hence either $G^{\prime 3}=\gamma_{3}(G) \cong$ $\left(C_{3}\right)^{2}$ or $G^{\prime 3} \cong C_{3}$ and $\left|G^{\prime 3} \cap \gamma_{4}(G)\right|=1$. As $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$, so $\left|\zeta\left(G^{\prime}\right)\right|=3^{2}$ or $3^{3}$ or $3^{4}$. If $\left|\zeta\left(G^{\prime}\right)\right|=3^{2}$, then $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{3}\right)^{2}$. Hence from the Table 6 of [14], possible $G^{\prime}$ are $S(729,422)$ to $S(729,424)$ and $S(729,502)$. If $G^{\prime}$ is any one of the groups $S(729,422)$ or $S(729,502)$, then $G^{\prime 3} \cong C_{3}$, $\left|G^{\prime 3} \cap \gamma_{4}(G)\right|=1$. If $G^{\prime}$ is any one of the groups $S(729,423)$ or $S(729,424)$,
then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}$. If $\left|\zeta\left(G^{\prime}\right)\right|=3^{3}$, then from the Table 6 of [14], no such group exists. Now if $\left|\zeta\left(G^{\prime}\right)\right|=3^{4}$, then possible $G^{\prime}$ are $S(729,103), S(729,105), S(729,416)$ to $S(729,421)$ and $S(729,499)$ to $S(729,500)$. If $G^{\prime}$ is any one of the groups $S(729,103), S(729,105)$, $S(729,417), S(729,418), S(729,420)$ or $S(729,421)$, then $G^{\prime 3}=\gamma_{3}(G) \cong$ $\left(C_{3}\right)^{2}$. If $G^{\prime}$ is any one of the groups $S(729,416), S(729,419), S(729,499)$ or $S(729,500)$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ (see Table 6 of [14]).

Let $\mathbf{d}_{(4)}=\mathbf{1}, \mathbf{d}_{(\mathbf{2})}=\mathbf{7}$. If $p \neq 3$ and $d_{(2+1)}=0$, then by Lemma $1(2)$, $\vartheta_{p^{\prime}}(3) \geqslant \vartheta_{p^{\prime}}(2)$, so $d_{(4)}=0$. If $p=3$, then $\left|G^{\prime}\right|=3^{8},\left|D_{(3), K}(G)\right|=$ $\left|D_{(4), K}(G)\right|=3$ and $\gamma_{4}(G)=1$. Thus $G^{\prime}$ is abelian in this case. Now $\left|D_{(4), K}(G)\right|=3$ leads to $\left|G^{\prime 3}\right|=3$. So only possible $G^{\prime}$ is $C_{9} \times\left(C_{3}\right)^{6}$, $\gamma_{3}(G) \subseteq G^{\prime 3} \cong C_{3}$.

Let $\mathbf{d}_{(4)}=\mathbf{d}_{(\mathbf{3})}=\mathbf{1}, \mathbf{d}_{(\mathbf{2})}=\mathbf{5}$. Now $\left|G^{\prime}\right|=p^{7},\left|D_{(3), K}(G)\right|=p^{2}$, $\left|D_{(4), K}(G)\right|=p,\left|D_{(5), K}(G)\right|=1$, for all $p>0$. Let $G^{\prime}$ be an abelian group. If $p=2$, then $\left|G^{\prime 2}\right|=2$ or 4 . So possible $G^{\prime}$ are $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $C_{4} \times\left(C_{2}\right)^{5}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $p=3$, then $\left|D_{(4), K}(G)\right|=3$ leads to $\left|G^{\prime 3}\right|=3$. So $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}$, either $\gamma_{3}(G) \cong C_{3}$, $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. If $p \geqslant 5$, then $\left|D_{(4), K}(G)\right|=p$ leads to $G^{\prime p}=1$ and $G^{\prime} \cong\left(C_{p}\right)^{7},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{2}$. Let $G^{\prime}$ be a non - abelian group. Then for $p=2, G^{\prime \prime}=\gamma_{4}(G) \cong C_{2}$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ and $G^{\prime 2} \subseteq \gamma_{3}(G)$. Since $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$, therefore $\left|\zeta\left(G^{\prime}\right)\right| \geqslant 4$. If $\left|\zeta\left(G^{\prime}\right)\right|=4$ or 16 , then from the Table 4 of $[22]$ no such group exists. If $\left|\zeta\left(G^{\prime}\right)\right|=8$, then possible $G^{\prime}$ are $S(128,2157)$ to $S(128,2162)$, $S(128,2304)$ and $S(128,2323)$ to $S(128,2325)$ (see table 4 of $[22])$. If $G^{\prime}$ is any one of the groups $S(128,2157)$ to $S(128,2162)$ or $S(128,2304)$, then $G^{\prime 2}=\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime}$ is any one of the groups $S(128,2323)$ to $S(128,2325)$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. Let $\left|\zeta\left(G^{\prime}\right)\right|=32$, then from the Table 4 of [22], possible $G^{\prime}$ are $S(128,2151)$ to $S(128,2156), S(128,2302)$, $S(128,2303)$ and $S(128,2320)$ to $S(128,2322)$. If $G^{\prime}$ is any one of the groups $S(128,2151)$ to $S(128,2156), S(128,2302)$ or $S(128,2303)$, then $G^{\prime 2}=\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime}$ is any one of the groups $S(128,2320)$ to $S(128,2322)$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $p=3$, then $D_{(5), K}(G)=$ $G^{\prime 9} \gamma_{3}(G)^{3} \gamma_{5}(G)=1$ leads to $\gamma_{5}(G)=1$. Now $G^{\prime \prime}=\gamma_{4}(G) \cong C_{3}$, $\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ and $\left|\zeta\left(G^{\prime}\right)\right| \geqslant 3^{2}$. First let $\exp \left(G^{\prime}\right)=9$. If $\left|\zeta\left(G^{\prime}\right)\right|=3^{2}$ and $3^{4}$, then from the Table 2, no such group exists. If $\left|\zeta\left(G^{\prime}\right)\right|=3^{3}$, then possible $G^{\prime}$ are $S(2187,5874), S(2187,5876), S(2187,9100)$ to $S(2187,9105)$ and $S(2187,9306)$ to $S(2187,9307)$ (see Table 2). If $G^{\prime}$ is any one of the groups $S(2187,5874), S(2187,5876), S(2187,9102)$ to $S(2187,9103)$, $S(2187,9104)$ or $S(2187,9105)$, then $G^{\prime 3}=\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. If $G^{\prime}$ is
any one of the groups $S(2187,9100)$ to $S(2187,9101), S(2187,9306)$ or $S(2187,9307)$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. Now let $\left|\zeta\left(G^{\prime}\right)\right|=3^{5}$. So possible $G^{\prime}$ are $S(2187,5867), S(2187,5870), S(2187,5872), S(2187,9094)$ to $S(2187,9099)$ and $S(2187,9303)$ to $S(2187,9304)$ (see Table 2 ). If $G^{\prime}$ is any one of the groups $S(2187,5867), S(2187,5870), S(2187,5872)$ or $S(2187,9096)$ to $S(2187,9099)$, then $G^{\prime 3}=\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. If $G^{\prime}$ is any one of the groups $S(2187,9094)$ to $S(2187,9095), S(2187,9303)$ or $S(2187,9304)$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. For $p \geqslant 5, D_{(5), K}(G)=$ $G^{\prime p} \gamma_{3}(G)^{p} \gamma_{5}(G)=1$ leads to $\exp \left(G^{\prime}\right)=p$. Now let $\exp \left(G^{\prime}\right)=p$, for $p \geqslant 3$. Therefore $G^{\prime \prime}=\gamma_{4}(G) \cong C_{p}$ and $\gamma_{3}(G) \cong\left(C_{p}\right)^{2}$. Therefore possible $G^{\prime}$ are $\left\langle a, b, c, d, e, f, g: a^{p}=b^{p}=c^{p}=d^{p}=e^{p}=f^{p}=g^{p}=1,[b, a]=c\right\rangle$ and $\left\langle a, b, c, d, e, f, g: a^{p}=b^{p}=c^{p}=d^{p}=e^{p}=f^{p}=g^{p}=1,[b, a]=e,[d, c]=\right.$ e) and for these groups, we have $\gamma_{3}(G) \cong\left(C_{p}\right)^{2}($ see[26] $)$.

Let $\mathbf{d}_{(4)}=\mathbf{1}, \mathbf{d}_{(\mathbf{2})}=\mathbf{3}, \mathbf{d}_{(\mathbf{3})}=\mathbf{2}$. Now $\left|G^{\prime}\right|=p^{6},\left|D_{(4), K}(G)\right|=p$, $\left|D_{(3), K}(G)\right|=p^{3}$, for all $p>0$. Let $G^{\prime}$ be an abelian group. For $p=2$, $G^{\prime} \cong\left(C_{4}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $C_{4} \times\left(C_{2}\right)^{4}$ or $\left(C_{2}\right)^{6}$. If $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{2}$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. For $p=3$, $\left|D_{(4), K}(G)\right|=3$ leads to $\left|G^{\prime 3}\right|=3$. Hence $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$. For this group, either $\gamma_{3}(G) \cong\left(C_{3}\right)^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. For $p \geqslant 5, D_{(5), K}(G)=1$ leads to $G^{\prime p}=1$ and $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{p}\right)^{3}$. Let $G^{\prime}$ be a non-abelian group. For $p=2, G^{\prime \prime}=\gamma_{4}(G) \cong$ $C_{2}$ and $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\left(C_{2}\right)^{3}$. If $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, then $\left|\zeta\left(G^{\prime}\right)\right|=4,8$ or 16. Let $\left|\zeta\left(G^{\prime}\right)\right|=4$. Then $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{2}\right)^{2}$. Therefore, possible $G^{\prime}$ are $S(64,199)$ to $S(64,201)$ and $S(64,264)$ to $S(64,265)$ (see Table 1 of $[2]$ ). If $G^{\prime}$ is any one of the groups $S(64,199)$ to $S(64,201)$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$. If $G^{\prime}$ is any one of the groups $S(64,264)$ or $S(64,265)$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. Let $\left|\zeta\left(G^{\prime}\right)\right|=8$, therefore from the Table 1 of [2], no such group exists. Let $\left|\zeta\left(G^{\prime}\right)\right|=16$. Then for $\left|G^{\prime 2}\right|=8$, possible $G^{\prime}$ are $S(64,56)$ to $S(64,59)$. For these groups, $\gamma_{3}(G) \subseteq G^{\prime 2}$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. For $\left|G^{\prime 2}\right|=4$, possible $G^{\prime}$ are $S(64,193)$ to $S(64,198)$ and for these groups $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$. For $\left|G^{\prime 2}\right|=2$, possible $G^{\prime}$ are $S(64,261)$ to $S(64,263)$. For these groups $2=\left|G^{\prime \prime} \cap G^{\prime 2}\right| \leqslant\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$. If $\left|\gamma_{3}(G)\right|=8$, then $\left|\zeta\left(G^{\prime}\right)\right|=8$ or 16. Let $\left|\zeta\left(G^{\prime}\right)\right|=8$, then from the Table 1 of [2] no such group exists. Let $\left|\zeta\left(G^{\prime}\right)\right|=16$. Now for $\left|G^{\prime 2}\right|=8$, possible $G^{\prime}$ are $S(64,56)$ to $S(64,59)$ and for these groups $\gamma_{3}(G) \subseteq G^{\prime 2}$. For $\left|G^{\prime 2}\right|=4$, possible $G^{\prime}$ are $S(64,193)$ to $S(64,198)$, and for these groups $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. For $\left|G^{\prime 2}\right|=2$, no group exists ( see Table 1 of [2]). For $p=3, G^{\prime \prime}=\gamma_{4}(G) \cong C_{3}$. So $\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ or $\left(C_{3}\right)^{3}$
and $\left|\zeta\left(G^{\prime}\right)\right| \geqslant 3^{2}$. Let $\gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ and $\left|\zeta\left(G^{\prime}\right)\right|=9$. Then possible $G^{\prime}$ are $S(729,422)$ to $S(729,424)$ and $S(729,502)$ (see Table 6 of [14]). But then $\left|D_{(3), K}(G)\right| \neq 3^{3}$. If $\left|\zeta\left(G^{\prime}\right)\right|=3^{3}$, then no group exists (see Table 6 of [14]). Let $\left|\zeta\left(G^{\prime}\right)\right|=3^{4}$. If $\left|\gamma_{3}(G)\right|=3^{3}$, then $G^{\prime}$ is any one of the groups $S(729,103)$ to $S(729,106), S(729,416)$ to $S(729,420)$ or $S(729,499)$ to $S(729,500)$. For all these groups $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$. Let $\left|\gamma_{3}(G)\right|=3^{2}$, then possible $G^{\prime}$ are $S(729,103)$ to $S(729,106), S(729,416)$ to $S(729,421)$ and $S(729,499)$ to $S(729,500)$. If $G^{\prime}$ is any one of the groups $S(729,103), S(729,105), S(729,417), S(729,418), S(729,420)$ or $S(729,421)$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$. If $G^{\prime}$ is any one of the groups $S(729,104)$ or $S(729,106)$, then $\gamma_{3}(G) \subseteq G^{2}$. If $G^{\prime}$ is any one of the groups $S(729,416), S(729,419), S(729,499)$ or $S(729,500)$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$ (see Table 6 of [14]). For $p \geqslant 5$, $\left|D_{(5), K}(G)\right|=1$ leads to $G^{\prime p}=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, G^{\prime \prime}=\gamma_{4}(G) \cong C_{p}$, $\left|\zeta\left(G^{\prime}\right)\right|=p^{3}$ or $p^{4}$. If $\left|\zeta\left(G^{\prime}\right)\right|=p^{3}$, then no group exists (see [10]). If $\left|\zeta\left(G^{\prime}\right)\right|=p^{4}$. Then $G^{\prime} \cong \phi_{2}\left(1^{5}\right) \times(1), \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \zeta\left(G^{\prime}\right) \cong\left(C_{p}\right)^{4}$ and $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ (see [10]).

Let $\mathbf{d}_{(\mathbf{4})}=\mathbf{d}_{(\mathbf{2})}=\mathbf{1}, \mathbf{d}_{(\mathbf{3})}=\mathbf{3}$. Then $\left|G^{\prime}\right|=p^{5},\left|D_{(4), K}(G)\right|=p$, $\left|D_{(3), K}(G)\right|=p^{4}$. Let $G^{\prime}$ be an abelian group. For $p=2, G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$ or $C_{4} \times\left(C_{2}\right)^{3}$ or $\left(C_{2}\right)^{4}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}$, then either $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$. If $G^{\prime} \cong\left(C_{2}\right)^{4}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$. Now for $p=3,\left|D_{(4), K}(G)\right|=3$ leads to $\left|G^{\prime 3}\right|=3$. So $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$, then either $\gamma_{3}(G) \cong\left(C_{3}\right)^{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$ or $\gamma_{3}(G) \cong\left(C_{3}\right)^{4}, G^{\prime 3} \subseteq \gamma_{3}(G)$. Now for $p \geqslant 5, D_{(5), K}(G)=1$ leads to $G^{\prime p}=1$. So $G^{\prime} \cong\left(C_{p}\right)^{5}$, $\gamma_{3}(G) \cong\left(C_{p}\right)^{4}$ and $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$. Let $G^{\prime}$ be a non-abelian group. For $p=2, G^{\prime \prime}=\gamma_{4}(G) \cong C_{2}$ and $\left|\gamma_{3}(G)\right| \geqslant 4$. As $\gamma_{3}(G) \subseteq \zeta\left(G^{\prime}\right)$, hence $\left|\zeta\left(G^{\prime}\right)\right|=4$ or 8 . If $\left|\zeta\left(G^{\prime}\right)\right|=4$, then from the Table 2 of $[22],\left|G^{\prime \prime}\right| \neq 2$. If $\left|\zeta\left(G^{\prime}\right)\right|=8$, then $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{2}\right)^{3}$. Therefore only possible $G^{\prime}$ is $S(32,2)$ and for this group $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4$ (see Table 2 of [22]). For $p=3, G^{\prime \prime}=\gamma_{4}(G) \cong C_{3}, G^{\prime 3} \subseteq \gamma_{4}(G) \cong C_{3}$ and $\left|\gamma_{3}(G)\right| \geqslant 3^{2}$. If $\left|\gamma_{3}(G)\right|=3^{2}$ and $\left|\zeta\left(G^{\prime}\right)\right|=3^{2}$ or $3^{3}$, then from the Table 5 of [14] no such group exists. If $\left|\gamma_{3}(G)\right|=3^{3}$, then $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{3}\right)^{3}$, so only possible $G^{\prime}$ is $S(243,32)$ and for this group $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$. For $p \geqslant 5, D_{(5), K}(G)=G^{\prime p} \gamma_{3}(G)^{p} \gamma_{5}(G)=1$ leads to $G^{\prime p}=1$. Now $G^{\prime \prime}=\gamma_{4}(G) \cong C_{p}, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}$ and $\gamma_{3}(G)=\zeta\left(G^{\prime}\right) \cong\left(C_{p}\right)^{4}$. Thus $G^{\prime}$ is abelian in this case.

Let $\mathbf{d}_{(\mathbf{4})}=\mathbf{d}_{(\mathbf{3})}=\mathbf{2}$. Since $d_{(1+1)}=0$, therefore by Lemma $1(2)$, $\vartheta_{p^{\prime}}(2) \geqslant \vartheta_{p^{\prime}}(1)$ for all $p>0$ and so $d_{(3)}=0$.

Table 1.

| $G^{\prime}$ | $G^{\prime 5}$ | $\exp \left(G^{\prime}\right) \zeta\left(G^{\prime}\right)$ | $G^{\prime \prime \prime} G^{\prime \prime} \cap G^{\prime 5}$ | $G^{\prime \prime} \cap \zeta\left(G^{\prime}\right) G^{\prime 5} \cap \zeta\left(G^{\prime}\right)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{S}(3125,2)$ | $C_{5} \times C_{5}$ | 25 | $C_{5} \times C_{5} \times C_{5}$ | $C_{5}$ | 1 | $C_{5}$ | $C_{5} \times C_{5}$ |
| $\mathrm{~S}(3125,16)$ | $C_{25} \times C_{5}$ | 125 | $C_{25} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{25} \times C_{5}$ |
| $\mathrm{~S}(3125,17)$ | $C_{25}$ | 125 | $C_{25} \times C_{5}$ | $C_{5}$ | 1 | $C_{5}$ | $C_{25}$ |
| $\mathrm{~S}(3125,26)$ | $C_{25} \times C_{5}$ | 125 | $C_{25} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{25} \times C_{5}$ |
| $\mathrm{~S}(3125,29)$ | $C_{125}$ | 625 | $C_{125}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{125}$ |
| $\mathrm{~S}(3125,40)$ | $C_{5}$ | 25 | $C_{5} \times C_{5} \times C_{5} C_{5}$ | 1 | $C_{5}$ | $C_{5}$ |  |
| $\mathrm{~S}(3125,41)$ | $C_{5} \times C_{5}$ | 25 | $C_{5} \times C_{5} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5} \times C_{5}$ |
| $\mathrm{~S}(3125,42)$ | $C_{5} \times C_{5}$ | 25 | $C_{25} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5} \times C_{5}$ |
| $\mathrm{~S}(3125,43)$ | $C_{5}$ | 25 | $C_{25} \times C_{5}$ | $C_{5}$ | 1 | $C_{5}$ | $C_{5}$ |
| $\mathrm{~S}(3125,44)$ | $C_{5} \times C_{5}$ | 25 | $C_{25} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5} \times C_{5}$ |
| $\mathrm{~S}(3125,59)$ | $C_{25}$ | 125 | $C_{25} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{25}$ |
| $\mathrm{~S}(3125,60)$ | $C_{25}$ | 125 | $C_{125}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{25}$ |
| $\mathrm{~S}(3125,72)$ | 1 | 5 | $C_{5} \times C_{5} \times C_{5}$ | $C_{5}$ | 1 | $C_{5}$ | 1 |
| $\mathrm{~S}(3125,73)$ | $C_{5}$ | 25 | $C_{5} \times C_{5} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ |
| $\mathrm{~S}(3125,74)$ | $C_{5}$ | 25 | $C_{25} \times C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ |
| $\mathrm{~S}(3125,75)$ | 1 | 5 | $C_{5}$ | $C_{5}$ | 1 | $C_{5}$ | 1 |
| $\mathrm{~S}(3125,76)$ | $C_{5}$ | 25 | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ | $C_{5}$ |

Let $\mathbf{d}_{(4)}=\mathbf{0}$. Then we have the following possibilities: $d_{(2)}=10$ or $d_{(2)}=8, d_{(3)}=1$ or $d_{(2)}=6, d_{(3)}=2$ or $d_{(2)}=4, d_{(3)}=3$ or $d_{(2)}=2$, $d_{(3)}=4$ or $d_{(3)}=5$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{1 0}$. Then $\left|G^{\prime}\right|=p^{10},\left|D_{(3), K}(G)\right|=1$ and hence $G^{\prime p}=$ $\gamma_{3}(G)=1$, for all $p>0$. Thus $G^{\prime}$ is abelian and $G^{\prime} \cong\left(C_{p}\right)^{10}, \gamma_{3}(G)=1$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{8}, \mathbf{d}_{(\mathbf{3})}=\mathbf{1}$. Thus $\left|G^{\prime}\right|=p^{9},\left|D_{(3), K}(G)\right|=p$ and $G^{\prime}$ is abelian for all $p>0$. For $p \geqslant 3, G^{\prime p}=1$ and hence $G^{\prime} \cong\left(C_{p}\right)^{9}, \gamma_{3}(G) \cong C_{p}$, $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$. For $p=2,\left|D_{(3), K}(G)\right|=2$ leads to $\left|G^{\prime 2}\right| \leqslant 2$. So $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$ or $\left(C_{2}\right)^{9}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$, then $\gamma_{3}(G) \subseteq G^{\prime 2} \cong C_{2}$. If $G^{\prime} \cong\left(C_{2}\right)^{9}$, then $\gamma_{3}(G) \cong C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{6}, \mathbf{d}_{(\mathbf{3})}=\mathbf{2}$. Thus $\left|G^{\prime}\right|=p^{8},\left|D_{(3), K}(G)\right|=p^{2}$ and $G^{\prime}$ is abelian for all $p>0$. For $p \geqslant 3, G^{\prime p}=1$, hence $G^{\prime} \cong\left(C_{p}\right)^{8}, \gamma_{3}(G) \cong\left(C_{p}\right)^{2}$ and $\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$. For $p=2,\left|D_{(3), K}(G)\right|=2^{2}$ leads to $\left|G^{\prime 2}\right| \leqslant 4$. So $G^{\prime} \cong\left(C_{2}\right)^{8}$ or $C_{4} \times\left(C_{2}\right)^{6}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then either $\mid G^{\prime 2} \cap$ $\gamma_{3}(G) \mid=1, \gamma_{3}(G) \cong C_{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{4}, \mathbf{d}_{(\mathbf{3})}=\mathbf{3}$. Thus $\left|G^{\prime}\right|=p^{7},\left|D_{(3), K}(G)\right|=p^{3}$ and $G^{\prime}$ is abelian, for all $p>0$. If $p \geqslant 3$, then $G^{\prime} \cong\left(C_{p}\right)^{7}$ and $\gamma_{3}(G) \cong\left(C_{p}\right)^{3}$,

## Table 2.

| $G^{\prime}$ | $G^{\prime 3}$ | $\exp \left(G^{\prime}\right)$ | $\zeta\left(G^{\prime}\right)$ |  | $G^{\prime \prime} \cap G^{\prime 3}$ | $G^{\prime 3} \cap \zeta\left(G^{\prime}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S(2187,5867) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{9} \times C_{3}$ | $C_{3}$ | 1 | $C_{3} \times C_{3}$ |
| S (2187,5868) | $C_{3} \times C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{9} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3} \times C_{3}$ |
| S (2187,5869) | $C_{3} \times C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{9} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3} \times C_{3}$ |
| S(2187,5870) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3} \times C_{3}$ |
| S(2187,5871) | $C_{3} \times C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3} \times C_{3}$ |
| S(2187,5872) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3} \times C_{3}$ |
| S(2187,5873) | $C_{3} \times C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3} \times C_{3}$ |
| S(2187,5874) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3} \times C_{3}$ |
| S(2187,5875) | $C_{3} \times C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3} \times C_{3}$ |
| S (2187,5876) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3} \times C_{3}$ |
| S(2187,5877) | $C_{3} \times C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3} \times C_{3}$ |
| S(2187,9094) | $C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3}$ |
| S (2187,9095) | $C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3}$ |
| S(2187,9096) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{9} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S (2187,9097) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S (2187,9098) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S(2187,9099) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S(2187,9100) | $C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | 1 | $C_{3}$ |
| S (2187,9101) | $C_{3}$ | 9 | $C_{9} \times C_{3}$ | $C_{3}$ | 1 | $C_{3}$ |
| S (2187,9102) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S (2187,9103) | $C_{3} \times C_{3}$ | 9 | $C_{9} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S (2187,9104) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S(2187,9105) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S(2187,9303) | $C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (2187,9304) | $C_{3}$ | 9 | $C_{9} \times C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (2187,9306) | $C_{3}$ | 9 | $C_{3} \times C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (2187,9307) | $C_{3}$ | 9 | $C_{9} \times C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (2187,9309) | $C_{3}$ | 9 | $C_{3}$ | $C_{3}$ | $C_{3}$ | $C_{3}$ |

$\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$. For $p=2,\left|D_{(3), K}(G)\right|=2^{3}$ leads to $\left|G^{\prime 2}\right| \leqslant 8$. So $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ or $C_{4} \times\left(C_{2}\right)^{5}$ or $\left(C_{2}\right)^{7}$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{2}$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{2} \times C_{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$.

Let $\mathbf{d}_{(\mathbf{2})}=\mathbf{2}, \mathbf{d}_{(\mathbf{3})}=\mathbf{4}$. Thus $\left|G^{\prime}\right|=p^{6},\left|D_{(3), K}(G)\right|=p^{4}$ and $G^{\prime}$ is abelian for all $p>0$. For $p \geqslant 3, G^{\prime p}=1$, so $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G) \cong\left(C_{p}\right)^{4}$. For $p=2,\left|D_{(3), K}(G)\right|=2^{4}$ leads to $\left|G^{\prime 2}\right| \leqslant 8$.

Table 3.

| $G^{\prime}$ | $G^{\prime 3}$ | $\exp \left(G^{\prime}\right)$ | $\zeta\left(G^{\prime}\right)$ | $G^{\prime \prime}$ | $G^{\prime \prime} \cap G^{13}$ | $G^{\prime 3} \cap \zeta\left(G^{\prime}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S(243,13) | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,14)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,15)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,16)$ | $C_{9}$ | 27 | $C_{9}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $\mathrm{C}_{9}$ |
| S $(243,17)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,18)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,19)$ | $\mathrm{C}_{9}$ | 27 | $C_{9}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{9}$ |
| S (243,20) | $\mathrm{C}_{9}$ | 27 | $C_{9}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{9}$ |
| S (243,22) | $C_{9} \times C_{3}$ | 27 | $C_{3}$ | $C_{9}$ | $C_{9}$ | $C_{3}$ |
| S $(243,37)$ | 1 | 3 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | 1 | 1 |
| S $(243,38)$ | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,39)$ | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,40)$ | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,41)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,42)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,43)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,44)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,45)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,46)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,47)$ | $C_{3} \times C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ |
| S $(243,51)$ | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (243,52) | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,53)$ | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (243,54) | $C_{3}$ | 9 | $C_{3} \times C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,55)$ | $C_{3}$ | 9 | $C_{9}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,56)$ | $C_{3}$ | 9 | $C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,57)$ | $C_{3}$ | 9 | $C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (243,58) | $C_{3}$ | 9 | $C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S (243,59) | $C_{3}$ | 9 | $C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |
| S $(243,60)$ | $C_{3}$ | 9 | $C_{3}$ | $C_{3} \times C_{3}$ | $C_{3}$ | $C_{3}$ |

So $G^{\prime} \cong\left(C_{4}\right)^{3}$ or $\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$ or $C_{4} \times\left(C_{2}\right)^{4}$ or $\left(C_{2}\right)^{6}$. If $G^{\prime} \cong\left(C_{4}\right)^{3}$, then $\gamma_{3}(G) \subseteq G^{\prime 2}$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{2}$, then either $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then either $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$.

Let $\mathbf{d}_{(\mathbf{3})}=\mathbf{5}$. Since $d_{(1+1)}=0$, therefore by Lemma $1(2), \vartheta_{p^{\prime}}(2) \geqslant$ $\vartheta_{p^{\prime}}(1)$ for all $p>0$ and so $d_{(3)}=0$.

Converse can be easily done by computing $d_{(m)}$ 's in each case.

## Acknowledgment

The second author is thankful to Science and Engineering Research board (SERB), India [grant number: ECR/2016/001274] for financial assistance.

## References

[1] A. K. Bhandari and I. B. S. Passi, Lie nilpotency indices of group algebras, Bull. London Math. Soc. 24 (1992) pp. 68-70.
[2] S. Bhatt, H. Chandra and M. Sahai, Group algebras of Lie nilpotency index 14, Asian-Eur. J. Math (2019) DOI: 10.1142/S1793557120500886.
[3] A. Bovdi and J. Kurdics, Lie Properties of the Group Algebra and the Nilpotency Class of the Group of Units, Journal of Algebra 212 (1999) pp. 28-64.
[4] V. Bovdi, Modular group algebras with almost maximal Lie nilpotency indices II, Sci. Math. Jpn. 65 (2007) pp. 267-271.
[5] V. Bovdi, T. Juhasz and E. Spinelli , Modular group algebras with almost maximal Lie nilpotency indices, Algebr. Represt. Theory 9 (3) (2006) pp. 259-266.
[6] V. Bovdi and E. Spinelli, Modular group algebras with maximal Lie nilpotency indices, Publ. Math. Debrecen 65 (1-2) (2004) pp. 243-252.
[7] V. Bovdi and J. B. Srivastava, Lie nilpotency indices of modular group algebra, Algebra Colloq. 17 (1-2) (2010) pp. 17-26.
[8] H. Chandra and M. Sahai, Strongly Lie nilpotent group algebras of index atmost 8, J. Algebra Appl. 13 (7) (2014) 14500449 pp.
[9] The GAP Groups, GAP - Groups, Algorithms, programming - a System for Computational Discrete Algebra, Version 4.7 .8 (http://www.gap-system.org) (2015).
[10] R. James, Groups of order $p^{6}$ ( $p$ is an odd prime), Math. Comp. 34 (150) (1980) pp. 613-637.
[11] I. B. S. Passi, Group Rings and their Augmentation ideals, Lecture notes in Mathematics \#715 Springer Verlag Berlin 1979.
[12] Z. Qinhai, S. Qiangwei and X. Mingyai, A classification of some regular p-groups and its applications, Sci. China Ser. A Math 49 (3) (2006) pp. 366-386.
[13] M. Sahai, Group algebras with almost minimal Lie nilpotency index, Publ. Math. Debrecen 87 (1-2) 2015 pp. 47-55.
[14] M. Sahai and B. Sharan, A note on the upper Lie nilpotency index of a group algebra, Asian-Eur. J. Math 1(2020) 205001011 pp.
[15] M. Sahai and B. Sharan, On Lie nilpotent modular group algebras, Comm. Algebra 46(3)(2018) pp. 1199-1206.
[16] M. Sahai and B. Sharan, Modular group algebras of Lie nilpotency index $8 p-6$, Asian-Eur. J. Math 11(2018) 185003911 pp.
[17] M. Sahai and B. Sharan, On the lower Lie nilpotency index of a group algebra, Quaes. Math.(2020) https://doi.org/10.2989/16073606.2020.1795740.
[18] A. Shalev, The nilpotency class of the unit group of a modular group algebra III, Arch. Math. 60 (1993) pp. 136-145.
[19] A. Shalev, Lie dimension subgroups, Lie nilpotency indices and the exponent of the group of normalized units, J. London Math. Soc. 43 (1991) pp. 23-36.
[20] A. Shalev, Applications of dimension and Lie dimension subgroups to modular group algebras, Proceedings of Amitsur Conference in Ring Theory (1989) pp. 84-95.
[21] R. K. Sharma and V. Bist, A note on Lie nilpotent group rings, Bull. Austral. Math. Soc. 45 (1992) pp. 503-506.
[22] R. K. Sharma, R. Siwach and M. Sahai, Group algebras of Lie nilpotency index 12 and 13, Comm. Algebra 46 (4) (2018) pp. 1428-1446.
[23] R. K. Sharma and J. B. Srivastava, Lie ideals in group rings, J. Appl. Algebra 63 (1990) pp. 67-80.
[24] R. Siwach, R. K. Sharma and M. Sahai , Modular group algebras with small Lie nilpotency indices, Asian-Eur. J. Math 9(4) (2016) 165008015 pp.
[25] G. S. Stahl, J. Laine and G. Behm, On p-group of low power order, Bachelor's thesis KTH Royal Institute of Technology (2010).
[26] D.Wilkinson, The group of exponent $p$ and order $p^{7}$ ( $p$ any prime), J. Algebra 118 (1988) pp. 109-119.

## Contact information

## Suchi Bhatt, Harish Chandra

Received by the editors: 31.08.2020
and in final form 01.02.2021.


[^0]:    2020 MSC: 16S34, 17B30.
    Key words and phrases: group algebras, Lie nilpotency index, Lie dimension subgroups.

