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On the orbits of automaton semigroups

and groups∗
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Abstract. We investigate the orbits of automaton semi-
groups and groups to obtain algorithmic and structural results, both
for general automata but also for some special subclasses.

First, we show that a more general version of the őniteness prob-
lem for automaton groups is undecidable. This problem is equivalent
to the őniteness problem for left principal ideals in automaton semi-
groups generated by complete and reversible automata.

Then, we look at ω-word (i. e. right inőnite words) with a őnite
orbit. We show that every automaton yielding an ω-word with
a őnite orbit already yields an ultimately periodic one, which is not
periodic in general, however. On the algorithmic side, we observe
that it is not possible to decide whether a given periodic ω-word
has an inőnite orbit and that we cannot check whether a given
reversible and complete automaton admits an ω-word with a őnite
orbit, a reciprocal problem to the őniteness problem for automaton
semigroups in the reversible case.

Finally, we look at automaton groups generated by reversible
but not bi-reversible automata and show that many words have
inőnite orbits under the action of such automata.
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1. Introduction

Starting with the realization that the famous Grigorchuk group1 (the
őrst example of a group with subexponential but superpolynomial growth)
and many other groups with interesting and peculiar properties can be
generated by őnite automata, the class of so-called automaton groups
grew into a widely and intensively studied object. The őnite automaton
here is a őnite-state, letter-to-letter transducer. It induces an action of
the őnite words over its state set on the words over its alphabet and this
action is used to deőne the generated group.

Roughly speaking, the research in this area is divided into three
branches: the study of individual, special automaton groups (such as the
mentioned Grigorchuk group), the study of structural properties of automa-
ton groups and the study of algorithmic problems over automaton groups.
The aim of this work is to contribute to the latter two of these branches.
In fact, we will not only consider automaton groups but also their natural
generalization to automaton semigroups, in which the interest seems to
have risen lately, both for structural results (see, for example, [3ś5,10])
but also for algorithmic problems. They are particularly interesting for the
latter point because many important and classical algorithmic problem in
group theory are proven2 or suspected to be undecidable for automaton
groups and it is usually easier to encode computations in semigroups than
in groups. Sometimes algorithmic results for automaton semigroups could
later be lifted to groups. An example for this is the order problem: őrst,
it could be shown to be undecidable for automaton semigroups [11] and
later this result could be extended to automaton groups [2, 12]. Similarly,
a result on the complexity of the word problem could be lifted from the
(inverse) semigroup case [9] to the groups case [20]. For another important
problem, the őniteness problem, the current state is that it has been
proven to be undecidable in the semigroup case [11] (and also in a more
restrictive setting [8]) but the decidability of the problem in the group
case remains unknown.

In this paper, we give a partial solution to this problem. The classical
question of the őniteness problem is whether a given invertible automaton
generates a őnite or an inőnite group. This is equivalent to the question
whether there are inőnitely many state sequences whose actions on the

1See [15] for an accessible introduction to Grigorchuk’s group.
2Two of Dehn’s fundamental problems in algorithmic group theory, the conjugacy

problem and the isomorphism problems are among the problems which have been
proven to be undecidable for automaton groups [19].
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words over the alphabet are pairwise distinct. We show that the problem
is undecidable if we instead ask whether there are inőnitely many state
sequences whose actions pairwisely differ on all words with a given preőx.
If we pass to the dual automaton (i. e. if we change the roles of states and
letters), this problem is the same as asking whether a given element s of a
semigroup S generated by a complete and reversible (i. e. co-deterministic
with respect to the input) automaton has an inőnite left principal ideal
Ss ∪ {s}.

Quite recently, the current authors could show that the algebraic
property of an automaton semigroup (and, thus, of an automaton group)
to be inőnite is equivalent to the fact that the action given by the generating
automaton yields an ω-word with an inőnite orbit [6]. Thus, the őniteness
problem is equivalent to asking whether such an inőnite orbit exists.
Reciprocally, we can also ask whether there is an (inőnite) ω-word with
a őnite orbit and we show that the corresponding decision problem is
undecidable even for complete and reversible automata. Furthermore, we
show that it is algorithmically impossible to test whether a given (periodic)
word has a őnite or inőnite orbit.

Structurally, we explore further consequences of the mentioned connec-
tion between the semigroup being inőnite and the existence of an inőnite
orbit as well as the dual argument underlying its proof. Here, we őrst look
at ω-words with a őnite orbit and show that, whenever such a word exists,
there is also an ultimately periodic ω-word with a őnite orbit. We will see
that this word can be assumed to be periodic if the automaton is reversible
but that this does not hold in the general case. Finally, we look at the
class of groups generated by invertible, reversible but not bi-reversible
(i. e. not co-deterministic with respect to the output) automata. Here, we
obtain that they always admit periodic ω-words (of a certain form) with
inőnite orbits and that, if the dual automaton is additionally connected,
all ω-words have inőnite orbits. For semigroups generated by reversible
but not bi-reversible automata, we will see, however, that this is not true:
they can be inőnite while the orbits of all (ultimately) periodic words
are őnite. This also shows that the result about the existence of a word
with an inőnite orbit (if the generated semigroup is inőnite) cannot be
extended to periodic or ultimately periodic words.

2. Preliminaries

Fundamentals, Words and Languages. Let A and B be sets. We write
A ⊔B for their disjoint union and, for a partial function from A to B, we
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write A→p B. If the function is total, we omit the index p. Furthermore,
we use N to denote the set of natural numbers including 0.

A non-empty, őnite set Σ is called an alphabet, its elements are called
letters and őnite or right-inőnite sequence over Σ are called őnite words
and ω-words, respectively. A word can be a őnite word or an ω-word.
The set of all őnite word over Σ ś including the empty word ε ś is
Σ∗ and Σ+ is Σ∗ \ {ε}. The length of a őnite word w = a1 . . . aℓ with
a1, . . . , aℓ ∈ Σ is |w| = ℓ. Finally, the reverse of a őnite word w = a1 . . . aℓ
with a1, . . . , aℓ ∈ Σ is ∂w = aℓ . . . a1.

The set of all ω-words over an alphabet Σ is Σω. An ω-word is called
ultimately periodic if it is of the form uvω for some u ∈ Σ∗ and v ∈ Σ+

where vω = vv . . . ; it is called periodic if it is of the form vω for v ∈ Σ+.
We can also take the reverse of an ω-word α = a1a2 . . . with a1, a2, · · · ∈ Σ
to obtain the left-inőnite sequence ∂α = . . . a2a1 over Σ.

A word u is called a suffix of another word w if there is some őnite
word x with w = xu. Symmetrically, u is a preőx of w if there is a word
x with w = ux. A language L is a set of words over some alphabet Σ. It
is suffix-closed if w ∈ L implies that every suffix of w is in L as well and
it is preőx-closed if w ∈ L implies that every preőx of w is also in L. By
Prew, we denote the set of őnite preőxes of a word w and PreL for a
language L is PreL = ∪w∈L Prew. Symmetrically, we deőne Suf w and
Suf L for the őnite suffixes of a őnite word or left-inőnite sequence w and
a set L of őnite words and left-inőnite sequences.

For two languages K and L of őnite words, we let KL = {uv | u ∈
K, v ∈ L}. Furthermore, we deőne L∗ = {w1 . . . wi | i ∈ N, w1, . . . , wi ∈
L} and sometimes simply write w for the singleton language {w}. Ad-
ditionally, we lift operators on words to languages; for example, we let
∂L = {∂w | w ∈ L}.

Semigroups, Groups and Torsion. We assume the reader to be familiar
with basic notions from semigroup and group theory such as inverses (in
the group sense) and generating sets. If a semigroup S or a monoid M is
generated by a (őnite) set Q, then there is a natural epimorphism from
Q+ to S or from Q∗ to M . In this case, we write q in S or in M for the
image of q ∈ Q+ or q ∈ Q∗. Similarly, for K ⊆ Q∗, we write K in S or in
M for the image of K under this homomorphism. Additionally, we use
some natural variations for this notation. For example, we write p = q in
S if p and q have the same image under the natural homomorphism.

An element s of a semigroup S has torsion if there are i, j ⩾ 1 with
i ̸= j but si = sj . If S = G is even a group, this is connected to the order
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of a group element g ∈ G: it is the smallest number i ⩾ 1 such that gi is
the neutral element of the group; if there is no such i, then the element
has inőnite order. Obviously, an element of a group is of őnite order if
and only if it has torsion.

Automata. The most important objects in this paper are automata, which
are more precisely described as őnite-state, letter-to-letter transducers.
Formally, an automaton is a triple T = (Q,Σ, δ) where Q is a set of states,
Σ is an alphabet and δ ⊆ Q × Σ × Σ × Q is a set of transitions. For a
transition (p, a, b, q) ∈ Q× Σ× Σ×Q, we use a more graphical notation
and denote it by p qa/b or, when depicting an entire automaton, by

p q
a/b

.

An automaton T = (Q,Σ, δ) is complete if

dp,a =
∣∣∣{p qa/b ∈ δ | b ∈ Σ, q ∈ Q}

∣∣∣

is at least one for every p ∈ Q and a ∈ Σ. If, on the other hand, all dp,a
are at most one, then T is deterministic. Additionally, T is reversible if it
is co-deterministic with respect to the input, i. e. if

{p qa/b ∈ δ | p ∈ Q, b ∈ Σ}

contains at most one element for every a ∈ Σ and q ∈ Q and it is inverse-
reversible if it is co-deterministic with respect to the output, i. e. if

{p qa/b ∈ δ | p ∈ Q, a ∈ Σ}

contains at most one element for every b ∈ Σ and q ∈ Q. An automaton
that is both, reversible and inverse-reversible is called bi-reversible.

Another way of depicting transitions in automata are cross diagrams.
We write

a

p q

b

to indicate that an automaton T = (Q,Σ, δ) contains the transition
p qa/b ∈ δ. We can combine multiple transitions into a single cross
diagrams. For example, the cross diagram
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a0,1 . . . a0,m
q1,0 q1,1 . . . q1,m−1 q1,m

a1,1 a1,m...
...

...
...

an−1,1 an−1,m

qn,0 qn,1 . . . qn,m−1 qn,m
an,1 . . . an,m

states that the automaton contains all transitions qi,j−1 qi,j
ai−1,j/ai,j

for 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m. Sometimes, we will omit intermediate states
or letters if we do not need to assign them a name. Instead of always
drawing complete cross diagrams, we also introduce a shot-hand notation
where we do not only allow states and letters but also state sequences and
words. For example, the above cross diagram can be abbreviate by

u = a0,1 . . . a0,m
qn,0 . . . q1,0 = q p = qn,m . . . q1,m .

v = an,1 . . . an,m

It is important to note the ordering of the state sequences here: qn,0
belongs to the last transition but is written leftmost while q1,0 belongs to
the őrst transition and is written rightmost.3

Automaton Semigroups. For a deterministic automaton T = (Q,Σ, δ),
we can deőne a partial left action of Q∗ on Σ∗ and a partial right action
of Σ∗ on Q∗ using cross diagrams. Since the automaton is deterministic,
there is at most one v ∈ Σ+ and at most one q ∈ Q+ for every u ∈ Σ+

and every p ∈ Q+ such that the cross diagram

u

p q

v

holds. In this case, we deőne the left partial action of p on u as p◦T u = v
and the right partial action of u on p as p ·T u = q. If there are no such q

and v, we let p◦T u and p ·T u be undeőned. Additionally, we let p◦T ε = ε,
ε ◦T u = u, p ·T ε = p and ε ·T u = ε. With this deőnition, it is easy to see

3This seemingly wrong ordering is justiőed here because we will deőne automaton
semigroups and groups using left actions later on.
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that we have q ◦T p ◦T u = qp ◦T u and u ·T p ·T q = u ·T pq. Whenever
the automaton T is clear form the context, we simply write p ◦u and p ·u
instead of p ◦T u and p ·T u.

Now, every p ∈ Q∗ induces a partial, length-preserving function p ◦ :
Σ∗ →p Σ∗ which maps every u to p ◦ u. These partial functions are preőx-
compatible in the sense that we have p◦u1u2 = (p◦u1)v2 for some v2 ∈ Σ∗

(whenever the partial action is deőned on a word u1u2). Naturally, we
can extend p ◦ into a partial function Σ∗ ∪ Σω →p Σ∗ ∪ Σω: α = a1a2 . . .
with a1, a2, · · · ∈ Σ gets mapped to b1b2 . . . where the b1, b2, · · · ∈ Σ are
deőned by b1 . . . bm = p ◦ a1 . . . am (if p ◦ is undeőned on some preőx of
α, then p ◦ obviously should also be undeőned on α).

In the same way, we can also deőne the partial, length-preserving
functions · u : Q∗ →p Q

∗ with u ∈ Σ∗ which map p to p · u and observe
that they have similar properties as the maps p ◦.

The semigroup S(T ) generated by the deterministic automaton T is
the set Q+ ◦ = {q ◦ | q ∈ Q+} with the composition of partial functions
as its operation. This semigroup is generated by Q ◦ = {q ◦ | q ∈ Q}.
To emphasize the fact that they generate semigroups, we will use the
name S-automata for deterministic automata from now on. An automaton
semigroup is a semigroup generated by some S-automaton.

Remark 2.1. We want to point out that we do not require an S-automa-
ton to be complete. If an automaton semigroup is generated by a complete
automaton, we call it a complete automaton semigroup to emphasize this.
It is not known whether the class of complete automaton semigroups
and the class of (partial) automaton semigroups coincide (see [10] for a
discussion).

Clearly, if T = (Q,Σ, δ) is a complete S-automaton, p ◦ u and p · u
are deőned for all p ∈ Q∗ and all u ∈ Σ∗ and all functions q ◦ are total.

For an S-automaton T = (Q,Σ, δ), the partial action of Σ∗ on Q∗

is compatible with the structure of the generated semigroup as we have
p ◦ = q ◦ =⇒ p · u ◦ = q · u ◦ (or both undeőned) for all p, q ∈ Q∗ and
u ∈ Σ∗ (which can be seen easily). Accordingly, we can deőne a partial
action of Σ∗ on S(T ): for an element s = q ◦ ∈ S(T ) with q ∈ Q+, we
let s · u = p · u ◦ for u ∈ Σ∗.

Automaton Groups and Inverse Automata. An automaton T = (Q,Σ, δ)
is called invertible if the sets

{p qa/b | a ∈ Σ, q ∈ Q}
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contain at most one element for all p ∈ Q and b ∈ Σ. If a complete
S-automaton T = (Q,Σ, δ) is invertible, all functions p ◦ with p ∈ Q∗ are
bijections (and, in particular, total). In this case, we deőne Q−1 = {q−1 |
q ∈ Q} as a disjoint copy of Q and let Q±∗ = (Q⊔Q−1)∗. We can extend
the action of Q∗ on Σ∗ (and Σω) into an action of Q±∗ on Σ∗ (and Σω)
by letting q−1 ◦ u be given by the pre-image of u under q ◦.

The group G(T ) generated by an complete and invertible S-automaton
T = (Q,Σ, δ) is Q±∗◦= {q◦ | q ∈ Q±∗} with the composition of functions
as its operation and such an automaton is called a G-automaton. A group
generated by some G-automaton is an automaton group.

The group G(T ) generated by a G-automaton T = (Q,Σ, δ) is also an
automaton semigroup. It is the semigroup generated by the automaton
T ′ = (Q ⊔Q−1,Σ, δ ∪ δ−1) where we let

δ−1 = {p−1 q−1b/a | p qa/b ∈ δ}.

The automaton T −1 = (Q−1,Σ, δ−1) is the inverse automaton of T .

Example 2.2. The typical example of an automaton is generated by the
adding machine

q id1/0
0/1 0/0

1/1
,

which we denote by T = ({q, id}, {0, 1}, δ) in this example. It is determin-
istic, complete and invertible and the action of id is obviously the identity
mapping on Σ∗. To understand the action of q, we observe that we have
q ◦000 = 100, q ◦100 = 010 and q ◦010 = 110. Thus, if we interpret a word
u ∈ {0, 1}∗ as the reverse/least-signiőcant bit őrst binary representation
of a natural number n, then q ◦ maps u to the reverse/least-signiőcant
bit őrst binary representation of n+ 1 (with appropriately many leading
zeros). Therefore, the element q ◦ of the semigroup S(T ) can be identiőed
with plus one in the monoid of natural numbers with addition as operation;
accordingly, qi ◦ is plus i. Since we also have the identity as a state, the
semigroup S(T ) generated by T is isomorphic to N (with addition and
including zero) or ś in different words ś the free monoid of rank one.

Since the automaton is complete and invertible, we can also consider
the group G(T ) generated by it. The inverse of q ◦ can, obviously, be
identiőed with minus one and we obtain that G(T ) is isomorphic to the
free group of rank one or the set of integers with addition as operation.
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Dual Automaton and Dual Action. The dual of an automaton T =
(Q,Σ, δ) is the automaton ∂T = (Σ, Q, ∂δ) with

∂δ = {a bp/q | p qa/b ∈ δ},

i. e. we swap the roles of Q and Σ. To obtain a cross diagram for ∂T from
one for T , we have to mirror it at the north-west to south-east diagonal,
i. e. we have the following equivalence of cross diagrams:

a1 . . . am
p1 . . . q1
...

...
...

...

pn . . . qn
b1 . . . bm

in T ⇐⇒

p1 . . . pn
a1 . . . b1
...

...
...

...

am . . . bm
q1 . . . qn

in ∂T .

If we let p = pn . . . p1 and q = qn . . . q1 as well as u = a1 . . . am and
v = b1 . . . bm, we can write the above equivalence in short-hand notation:

u

p q

v

in T ⇐⇒
∂p

∂u ∂v

∂q

in ∂T .

Clearly, taking the dual of an automaton is an involution and the dual
of a deterministic (complete) automaton is also deterministic (complete).
Additionally, the dual of an invertible automaton is reversible. Thus, the
dual of an S-automaton is an S-automaton and the dual of a G-automaton
is a complete and reversible S-automaton (and vice versa).

Therefore, if T = (Q,Σ, δ) is an S-automaton, T itself induces the
actions ◦T and ·T and its dual induces the actions ◦∂T and ·∂T , which
we simply write as ◦∂ and ·∂ if the automaton is clear from the context.
Because of the above equivalence of cross diagrams, there is a strong
connection between ◦ and ·∂ (and, equivalently, between ◦∂ and ·). We
have

∂u ◦∂ ∂p = ∂(p · u) (or both undeőned)

for all u ∈ Σ∗ and p ∈ Q∗. Here, we have used the convention that ∂ has
higher precedence than the two automaton actions to avoid parentheses;
for example, ∂p ◦ u is to be understood as (∂p) ◦ u instead of ∂(p ◦ u).

Since the dual of a complete and reversible S-automaton T = (Q,Σ,
δ) is a G-automaton and we, thus, have that all u ◦∂ are bijections, we
immediately obtain the following fact from the above connection.
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Fact 2.3. Let T = (Q,Σ, δ) be a complete and reversible S-automaton.
Then, all maps · u : Q∗ ∪ Qω → Q∗ ∪ Qω,p 7→ p · u for u ∈ Σ∗ are
length-preserving bijections.

Orbits. Let T = (Q,Σ, δ) be an S-automaton and u ∈ Σ∗ ∪ Σω. For
K ⊆ Q∗, the K-orbit of u is

K ◦ u = {q ◦ u | q ∈ K, q ◦ u deőned}.

The orbit of u is its Q∗-orbit. The orbit Q∗ ◦ u of a word u has a natural
graph structure: we have a q-labeled edge for q ∈ Q from p ◦ u to qp ◦ u
whenever qp ◦ u is deőned (where p ∈ Q∗).

If T is even a G-automaton, we can deőne theK-orbit of u forK ⊆ Q±∗

analogously. It is well-known that, for a G-automaton T = (Q,Σ, δ),
the orbit of u is inőnite if and only if its Q±∗-orbit is inőnite (see, e. g.
[8, Lemma 2.5]).

Recently, it could be shown that the existence of an ω-word with an
inőnite orbit is equivalent to the algebraic property that an automaton
semigroup (or group) is inőnite.

Theorem 2.4 ([6, Corollary 3.3]). The semigroup S(T ) generated by
some S-automaton T = (Q,Σ, δ) is inőnite if and only if there is some
ω-word α ∈ Σω with an inőnite orbit Q∗ ◦ α.

In fact, this result is only a special case of a more general result.

Theorem 2.5 ([6, Theorem 3.2]). Let T = (Q,Σ, δ) be some S-automaton
and let K ⊆ Q∗ be suffix-closed. The image of K in S(T ) is inőnite if
and only if there is some ω-word α whose K-orbit K ◦ α is inőnite.

The proof of this result heavily relies on a dual argument. In fact, in
the course of its proof, there appears a result which seems to be more
fundamental than the actual end result and we will need this intermediate
result directly for some of our proofs below. In order to state it, we őrst
need to introduce a concept that generalizes the concept of equality in an
automaton semigroup. For an S-automaton T = (Q,Σ, δ) and a language
L ⊆ Σ∗, we deőne the relation ≡T ,L ⊆ Q∗ ×Q∗ by

p ≡T ,L q ⇐⇒ ∀u ∈ L : p ◦ u = q ◦ u (or both undeőned).

As is the case with the two automaton actions, we do not write the index
T whenever the automaton is clear from the context. It is easy to verify
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that ≡L is an equivalence relation for all languages L ⊆ Σ∗. We write [p]L
for the equivalence class of p ∈ Q∗ under ≡L and

K/L = {[p]L | p ∈ K}

for the set of classes with a representative in K ⊆ Q∗. The set K/L is
a generalization of a couple of other notions (including the automaton
semigroup itself and co-sets with respect to stabilizers in the group case;
see [6] for these examples) but, most importantly, it is closely related to
the K-orbit of a word.

Proposition 2.6 ([6, Proposition 2.4]). Let T = (Q,Σ, δ) be an S-auto-
maton and let K ⊆ Q∗ be suffix-closed. For all α ∈ Σω, we have

|K/Preα| = ∞ ⇐⇒ |K ◦ α| = ∞.

In particular, this result also holds for non-complete S-automata.
For an S-automaton T = (Q,Σ, δ) and a set K ⊆ Q∗, we also have

the equivalence ≡K,∂T belonging to the dual of T . We also simply write
≡K for this relation and L/K for the classes of ≡K with a representative
in L ⊆ Σ∗. That these are to be understood with respect to ∂T (and not
with respect to T itself) can be seen from the fact that K is a set of state
sequences of T .

The above-mentioned result shows a close relation between the sets
K/L and L/K:

Proposition 2.7 ([6, Proposition 3.1]). Let T = (Q,Σ, δ) be an S-auto-
maton, let K ⊆ Q∗ be suffix-closed and let L ⊆ Σ∗ be preőx-closed. Then,
we have:

|K/L| = ∞ ⇐⇒ |∂L/∂K| = ∞

An important special case of Proposition 2.7 is when K and L are
both given by a single ω-word. Combined with Proposition 2.6, this case
yields the following duality result for orbits (which we will also use below).

Corollary 2.8 ([6, Corollary 3.11]). Let T = (Q,Σ, δ) be an S-automaton
and let π ∈ Qω and α ∈ Σω. Then, we have

|∂ Preπ ◦ α| = ∞ ⇐⇒ |∂ Preα ◦∂ π| = ∞

Proposition 2.7 can also be used to prove the following connection
between an element of an automaton semigroup having torsion and the
inőnity of the corresponding dual orbit (compare to [7, Theorem 3] and
[17, Proposition 7]).
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Theorem 2.9 ([6, Theorem 3.12]). Let T = (Q,Σ, δ) be an S-automaton
and let q ∈ Q+. Then, the statements

1) ∂q has torsion in S(T ).
2) The orbit Σ∗ ◦∂ qω of qω under the action of the dual of T is őnite.
3) The orbit Σ∗ ◦∂ pqω of pqω under the action of the dual of T is

őnite for all p ∈ Q∗.
are equivalent.

3. The őniteness problem for automaton groups

The question whether the őniteness problem for automaton groups

Input: a G-automaton T
Question: is G(T ) őnite?

is undecidable is an important open question in the algorithmic study of
automaton groups [14, 7.2 b)]. In this section, we will show that a more
general version of the problem is undecidable. We will show this by using
Gillibert’s result that there is an automaton group whose order problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a őnite state sequence q ∈ Q∗

Question: has q őnite order in G(T )?

is undecidable [12]. In fact, this result was also obtain by Bartholdi and
Mitrofanov [2] but we speciőcally use the construction given by Gillibert.

Theorem 3.1. The decision problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a őnite word w ∈ Σ∗

Question: is G(T ) · w = {g · w | g ∈ G(T )} őnite?

is undecidable for some G-automaton T .

Proof. Although it is not explicitly stated in his proof, Gillibert actually
shows the undecidability of the decision problem

Constant: a G-automaton R = (P,Γ, τ) and
a state $ ∈ P

Input: a őnite sequence p ∈ P ∗ of states
Question: has $Λ(p) őnite order in G(R)?

where Λ : P ∗ → P ∗ is given by Λ(ε) = ε and Λ(p̂p) = Λ(p)p̂Λ(p) [12].4

4In Gillibert’s paper, the function is called Q, actually. However, this notation
clashes with the convention of using Q to denote the state sets of automata followed
in this work. Therefore, we use Λ instead. Additionally, Gillibert uses right actions to
deőne automaton groups. Therefore, we mirror the ordering here.
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s t #p p

$id

∗/∗

(ap, 1)/(ap, 0)

(ap, 0)/(ap, 1)

#/#

(aq, 0)/(aq, 0)
(aq, 1)/(aq, 1)

#/#

a/a

Figure 1. New transitions of T

We take the G-automaton R and extend it into a new G-automaton
T = (Q,Σ, δ). Then, we reduce the above version of the order problem of
R to the generalized őniteness problem for T from the theorem statement.

As the alphabet of T , we use Σ = Γ⊔{ap | p ∈ P}×{0, 1}⊔{∗,#}, i. e.
we add two new special letters ∗ and # as well as two new letters (ap, 0)
and (ap, 1) for every state p ∈ P . Similarly, we use Q = P⊔{s, t, id}⊔{#p |
p ∈ P} for the state set, i. e. we add three new states s, t and id as well
as a new state #p for every old state p ∈ P . Of course, we also add new
transitions

δ′ = τ ∪ {s t∗/∗ , t $#/# }
∪ {t t(ap, 1)/(ap, 0) , t #p

(ap, 0)/(ap, 1) | p ∈ P}
∪ {#p #p

(aq , i)/(aq , i) ,#p p#/# | p, q ∈ P, i ∈ {0, 1}}
∪ {id ida/a | a ∈ Σ},

which are depicted schematically in Figure 1, and make the automaton
complete by adding a transition to the identity state whenever some
transition is missing:

δ = δ′ ∪ {q ida/a | q ∈ Q, a ∈ Σ, ∄a′ ∈ Σ, q′ ∈ Q : q q′a/a′ ∈ δ′}

Note that the resulting automaton is indeed a G-automaton!
For the reduction of the strengthened version of the order problem

to the generalized version of the őniteness problem, we map the input
sequence p = pℓ . . . p1 to the őnite word w = ∗w′ = ∗(ap1 , 0) . . . (apℓ , 0)#,
which is obviously computable. In the remainder of this proof, we show
that $Λ(p) has őnite order in G(R) if and only if G(T ) · w is őnite.
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First, we show that $Λ(p) has őnite order in G(R) if and only if it
has in G(T ). We do this, by showing that ($Λ(p))i and ($Λ(p))j are
distinct in G(R) if and only if they are distinct in G(T ) for i, j ∈ N.
If they are distinct in G(R), there is some witness u ∈ Γ∗ which they
act differently on. Since we have τ ⊆ δ′ ⊆ δ, this is also a witness for
their difference in G(T ). For the other direction, suppose that ($Λ(p))i is
different to ($Λ(p))j in G(T ). Then, there must be some witness u ∈ Σ∗

which they act differently on. We are done if u is already in Γ∗. Otherwise,
we can factorize u = u1au2 with u1 ∈ Γ∗, a ∈ Σ \ Γ and u2 ∈ Σ∗. By the
construction of T , we remain in states from P if we start in P and read
letters from Γ. If we read a letter from Σ \ Γ, we go to id, which yields
the cross diagrams

u1 a u2
($Λ(p))i idi |$Λ(p)|

v1 a u2

and

u1 a u2
($Λ(p))j idj |$Λ(p)|

v′1 a u2

for T .

Thus, ($Λ(p))i and ($Λ(p))j must already act differently on u1, which is
from Γ∗ and, thus, also a witness for R.

Next, we observe that ∗ is not changed by the action of any state and
that we have q · ∗ = id for all q ∈ Q except s and s · ∗ = t. Thus, G(T ) · ∗
is the subgroup T generated by t in G(T ) and we obtain G(T ) ·w = T ·w′.
To understand the elements in T ·w′, we will show that we have the cross
diagram

w′

tk |$Λ(p)| ($Λ(p))k

w′
in T (†)

for all k ∈ N. This shows that G(T ) · w = T · w′ is given by the state
sequences

(Suf $Λ(p)) ($Λ(p))∗

and their inverses in G(T ). These form a őnite set in G(T ) if and only
if ($Λ(p))∗ is őnite in G(T ) and this is the case if and only if $Λ(p) has
őnite order in G(T ) (or, equivalently, in G(R)).
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The easiest way to establish the cross diagrams (†) is by calculation.
For example, for p = p3p2p1, we have w′ = (ap1 , 0)(ap2 , 0)(ap3 , 0)# and
the cross diagram:

(ap1 , 0) (ap2 , 0) (ap3 , 0) #

t #p1 #p1 #p1 p1
(ap1 , 1) (ap2 , 0) (ap3 , 0) #

t t #p2 #p2 p2
(ap1 , 0) (ap2 , 1) (ap3 , 0) #

t #p1 #p1 #p1 p1
(ap1 , 1) (ap2 , 1) (ap3 , 0) #

t t t #p3 p3
(ap1 , 0) (ap2 , 0) (ap3 , 1) #

t #p1 #p1 #p1 p1
(ap1 , 1) (ap2 , 0) (ap3 , 1) #

t t #p2 #p2 p2
(ap1 , 0) (ap2 , 1) (ap3 , 1) #

t #p1 #p1 #p1 p1
(ap1 , 1) (ap2 , 1) (ap3 , 1) #

t t t t $

(ap1 , 0) (ap2 , 0) (ap3 , 0) #

Λ(p2p1)

Λ(p2p1)

Λ(p3p2p1)

Notice that, in the second component, t implements a binary increment
(in the same way as the adding machine in Example 2.2). This is what
creates the pattern of Λ(p).

For a formal proof, we őrst deőne the shorthand notations (ap, i) =
(ap1 , i) . . . (apℓ , i) for i ∈ {0, 1} and p = pℓ . . . p1 as well as #ε = ε and
#Λ(p̂p) = #Λ(p)#p̂#Λ(p) for p ∈ P ∗ and p̂ ∈ P . We start by showing the
cross diagram(s)

(ap, 0)

t|Λ(p)| #Λ(p)

(ap, 1)

t t

(ap, 0)

for every p ∈ P+ by induction on the length of p. For p = p ∈ P , this is
easily veriőed from the deőnition of T (note that Λ(p) = Λ(p) = p in this
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case). For p′ = p̂p with p̂ ∈ P , we have |Λ(p̂p)| = 2|Λ(p)| + 1 and the
cross diagram

(ap, 0) (ap̂, 0)

t|Λ(p)| #Λ(p) #Λ(p)

(ap, 1) (ap̂, 0)

t t #p̂

(ap, 0) (ap̂, 1)

t|Λ(p)| #Λ(p) #Λ(p)

(ap, 1) (ap̂, 1)

t t t

(ap, 0) (ap̂, 0)

#Λ(p̂p)

where the shaded part is obtained from using the induction hypothesis
twice. For the part on the right, notice that we have #p ◦ (aq, i) = (aq, i)
and #p · (aq, i) = #p for all p, q ∈ P and i ∈ {0, 1} by construction. The
two transactions on the right involving t can directly be veriőed, which
concludes the induction.

Finally, we can extend this to prove the cross diagrams (†) required
above:

(ap, 0) #

t|Λ(p)| #Λ(p) Λ(p)

(ap, 1) #

t t $

(ap, 0) #

The only point to notice here is that we indeed have #Λ(p) ·# = Λ(p);
however, this is straight-forward to verify.

Orbital and Dual Formulation. The őniteness problem for automaton
groups and the generalized problem from Theorem 3.1 can also be formu-
lated in other ways.

The őrst one is a re-formulation based on orbits. Using Corollary 2.4,
we immediately obtain that the őniteness problem for automaton groups
is equivalent to (the complement of) the problem:

Input: a G-automaton T = (Q,Σ, δ)
Question: ∃α ∈ Σω : |Q∗ ◦ α| = ∞?

For the problem in Theorem 3.1, this view yields the following formulation.
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Corollary 3.2. The decision problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a őnite word w ∈ Σ∗

Question: ∃α ∈ Σω : |Q∗ ◦ wα| = ∞?

is undecidable for some G-automaton T .

Proof. We have to show that G(T ) · w is inőnite if and only if there is
some ω-word α ∈ Σω such that the orbit Q∗ ◦ wα is inőnite.

In G(T ), the elements of G(T ) · w are given by Q±∗ · w, which is
suffix-closed and, thus, by Theorem 2.5, inőnite in G(T ) if and only if
there is some α ∈ Σω with |Q±∗ · w ◦ α| = ∞. We claim that Q±∗ · w ◦ α
is inőnite if and only if Q±∗ ◦ wα is. Since the latter is the case if and
only if Q∗ ◦ wα is inőnite, we are done when we have shown this claim.

Clearly, we can map Q±∗◦wα surjectively onto Q±∗ ·w◦α by removing
the preőx of length |w|. Thus, if Q±∗ ·w◦α is inőnite, so must be Q±∗◦wα.
On the other hand, we have Q±∗ ◦ wα ⊆ (Q±∗ ◦ w) (Q±∗ · w ◦ α) and the
őrst of the two sets on the right is always őnite. Thus, if Q±∗ ◦ wα is
inőnite, Q±∗ · w ◦ α must also be inőnite.

Another re-formulation is based on the dual automaton. A G-au-
tomaton generates an inőnite group if and only if its dual generates
an inőnite semigroup (see, e. g., [1, Proof of Lemma 5] combined with
[1, Proposition 10]). Thus, the őniteness problem for automaton groups is
equivalent to the problem

Input: a complete and reversible S-automaton T = (Q,Σ, δ)
Question: is S(T ) őnite?

If we re-formulate the problem from Theorem 3.1 under this view, we basi-
cally obtain the őniteness problem for left principal ideals for semigroups
generated by complete and reversible S-automata.

Corollary 3.3. The decision problem

Constant: a complete and reversible S-automaton R = (P,Γ, τ)
Input: a őnite state sequence p ∈ P ∗

Question: is P ∗p őnite in S(R)?

is undecidable.

Proof. We reduce the problem from Corollary 3.2 to this problem. As the
automaton R, we choose the dual ∂T of the G-automaton T = (Q,Σ, δ)
and, for the reduction, we map w ∈ Σ∗ to ∂w as the input sequence p.
We have to show that there is some α ∈ Σω with |Q∗ ◦ wα| = ∞ if and
only if Σ∗∂w is inőnite in S(∂T ).
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If the orbital graph Q∗ ◦ wα is inőnite (for some α ∈ Σω), it must
contain an inőnite simple path starting in wα. In other words, there is
some π ∈ Qω with π = p1p2 . . . (where p1, p2, · · · ∈ Q) such that all
pi . . . p1 ◦ wα are pairwise distinct and that, thus, ∂ Preπ ◦ wα is inőnite.
From Corollary 2.8, we obtain that ∂ Pre(wα)◦∂π = Suf ((∂α)(∂w))◦∂π ⊆
(Σ∗∂w ∪ Pre ∂w) ◦∂ π is also inőnite, which shows that Σ∗∂w is inőnite
in S(∂T ).

On the other hand, if Σ∗∂w is inőnite in S(∂T ), we have in particular
that L = Σ∗∂w ∪ Suf ∂w is inőnite in S(∂T ). Since L is suffix-closed, we
obtain by Theorem 2.5 that there is some π ∈ Qω such that L ◦∂ π is
inőnite. Therefore, we have an inőnite path in the orbital graph Σ∗ ◦∂ π
which starts in π, goes to ∂w ◦∂ π and then continues as an inőnite simple
path. In other words, there has to be some α ∈ Σω with α = a1a2 . . .
(where a1, a2, · · · ∈ Σ) such that all ai . . . a1(∂w) ◦∂ π are pairwise distinct.
In particular, ∂ Pre(wα) ◦∂ π is inőnite, which implies that ∂ Preπ ◦wα ⊆
Q∗ ◦ wα is also inőnite by Corollary 2.8.

4. Finite orbits

So far, we have looked at inőnite orbits. In this section, we look at the
opposite end and study ω-words with őnite orbits.

While the existence of an inőnite orbit is coupled to the algebraic
property of an automaton semigroup S(T ) to be inőnite (by Corollary 2.4),
the existence of an ω-word with a őnite orbit depends on the generating
automaton T (i. e. it is a property of the way the semigroup is presented,
not an algebraic property). Indeed, if an S-automaton T does not admit
an ω-word whose orbit is őnite, we can add a new letter a to the alphabet
of T and loops q qa/a to every state q. Obviously, this does not change
the generated semigroup; however, now aω has a őnite orbit.

Periodic and Ultimately Periodic Words. We have just seen that we
can add transitions to any S-automaton to even obtain a periodic and,
thus, ultimately periodic ω-word with a őnite orbit (without changing the
generated semigroup). We will see next that, in many cases, we do not
even need to change the automaton: if there is an ω-word with a őnite
orbit, then there is already an ultimately periodic word with őnite orbit
for every S-automaton.5 If the S-automaton is complete and reversible,
we even have a periodic word with a őnite orbit.

5Contrasting this, we will later see in Proposition 5.7 that there are semigroups
where the only inőnite orbits belong to words that are not ultimately periodic.
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Proposition 4.1. Let T = (Q,Σ, δ) be an S-automaton. If there is an
ω-word α ∈ Σω such that its orbit Q∗ ◦ α is őnite, then there are u ∈ Σ∗

and v ∈ Σ+ such that Q∗ ◦ uvω is őnite and v can be chosen in such a
way that it contains all letters that appear inőnitely often in α.

If, in addition, T is complete and reversible, then we already have that
the orbit Q∗ ◦ vω is őnite.

Proof. Suppose we have |Q∗ ◦ α| < ∞ for the ω-word α = a1a2 . . .
with a1, a2, · · · ∈ Σ and the S-automaton T . By Proposition 2.6, this is
equivalent to |Q∗/Preα| <∞, which, by Proposition 2.7, is equivalent to
|∂ Preα/Q∗| <∞. Thus, there is an inőnite set I ⊆ N with ai . . . a1 ≡Q∗

aj . . . a1 for all i, j ∈ I. Let k = min I and ℓ = min I \ {k} and deőne

u = a1 . . . ak and v = ak+1 . . . aℓ.

For this choice, we have that ∂(uv∗)/Q∗ contains only one element and that
∂ Preuvω/Q∗ = {[∂w]Q∗ | w ∈ Preuv} is still őnite. By Proposition 2.7,
this implies that Q∗/Preuvω is őnite, which is the case if and only if
Q∗ ◦ uvω is őnite by Proposition 2.6.

If T is additionally complete and reversible, there is a surjective
function Q∗ ◦ uvω → Q∗ ◦ vω, which shows |Q∗ ◦ vω| ⩽ |Q∗ ◦ uvω| < ∞.
This function maps a word wβ ∈ Q∗◦uvω with preőx w of length |w| = |u|
to β. Clearly, wβ ∈ Q∗ ◦ uvω implies β ∈ Q∗ ◦ vω and, to show that the
function is surjective, consider an arbitrary element β ∈ Q∗ ◦ vω. Then,
there is some q ∈ Q∗ with q ◦ vω = β. Since T is complete and reversible,
there is some p ∈ Q|q| with p ·u = q (as the map ·u is a length-preserving
permutation in this case by Fact 2.3 and we can choose p as the pre-image
of q). This yields the cross diagram

u vω

p q

w β

for w = p ◦ u and, thus, that wβ ∈ Q∗ ◦ uvω is a pre-image of β for our
function.

In the general case, when the automaton is not reversible, however, the
existence of an ω-word with őnite orbit does not imply the existence of a
periodic ω-word with őnite orbit; not even, if the automaton is complete
and invertible.
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Proposition 4.2. Let T = (Q,Σ, δ) be the G-automaton

p id q
0/1

0′/0′

1′/1′

1/0
1′/0′

0/0
1/1

0′/1′

where id acts as the identity.
Then, there exist an (ultimately periodic) ω-word α ∈ Σω with őnite

orbit Q±∗ ◦ α but every periodic ω-word uω with u ∈ Σ+ has an inőnite
orbit Q∗ ◦ uω.

Proof. Let α = 1′0ω and α′ = 0′0ω. It is easy to see that p ◦ α = α,
p ◦ α′ = α′, q ◦ α = α′ and q ◦ α′ = α. Thus, we have Q±∗ ◦ α = {α, α′},
which is őnite.

To see that the orbit of every periodic word is inőnite, let u ∈ Σ+

be arbitrary. We distinguish two cases: u ∈ {0, 1}+ or u contains a 0′ or
a 1′. For the őrst case, observe that we obtain the adding machine (see
Example 2.2) if we remove the state q and the letters 0′ and 1′ from T .
Thus, for u ∈ {0, 1}+, the orbit of uω is inőnite; in fact, we already have
|p∗ ◦ uω| = ∞.

In the other case, we can factorize u = u0a1u1a2 . . . anun with a1, a2,
. . . , an ∈ {0′, 1′} and u0, u1, . . . , un ∈ {0, 1}∗. Similarly to the other case,
we observe that we obtain the adding machine (with letters 0′ and 1′)
from T if we remove the state p and the letters 0 and 1. Thus, we have
|q∗ ◦ (u′)ω| = ∞ where u′ = a1a2 . . . an is obtained by removing all letters
in {0, 1} from u. By the construction of the automaton, reading any of
the blocks ui ∈ {0, 1} does not change the state as long as we are in q or
in id. Therefore, it follows easily that q∗ ◦ uω and, thus, the orbit of uω

remain inőnite.

Undecidability of Orbit Finiteness. Algorithmically, it is not possible to
decide whether a given ω-word has a őnite or inőnite orbit. This can be
seen from the connection stated in Theorem 2.9.

Proposition 4.3. There is some complete and reversible S-automaton
whose orbit őniteness problem for periodic ω-words

Constant: a complete and reversible S-automaton T = (Q,Σ, δ)
Input: a őnite word u ∈ Σ+

Question: is Q∗ ◦ uω őnite?

is undecidable.
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Proof. There is an automaton group with an undecidable order problem [2,
12], i. e. there is a G-automaton T such that the problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a state sequence q ∈ Q∗

Question: is q of őnite order in G(T )?

is undecidable. We reduce this problem to the one in the proposition:
as the automaton, we use ∂T , the dual of T , which ś as the dual of a
G-automaton ś is reversible and complete; the word is (∂q)ω, which is
periodic. By Theorem 2.9, the orbit of (∂q)ω under the action of the dual
∂T is őnite if and only if q has torsion in G(T ) (i. e. is of őnite order).

By Corollary 2.4, the question whether a given (complete) S-auto-
maton admits a word with an inőnite orbit or not is equivalent to the
őniteness problem for automaton semigroups and, thus, undecidable [11].6

Here, we show a dual result: checking the existence of an ω-word with a
őnite orbit is undecidable, even for complete and reversible S-automata.

Proposition 4.4. The decision problem

Input: a complete and reversible S-automaton T = (Q,Σ, δ)
Question: is there an ω-word α ∈ Σω such that |Q∗ ◦ α| <∞?

is undecidable.

Proof. By [8, Theorem 1], the problem

Input: a G-automaton T = (Q,Σ, δ)
Question: is there a state sequence q ∈ Q+ such that q ◦ is the

identity?

is undecidable. We reduce this problem to the one in the proposition
by taking the dual automaton. Obviously, the dual of a G-automaton is
complete and reversible.

Now, suppose that there is some q ∈ Q+ such that q ◦ is the identity.
Then, q ◦, in particular, has torsion. By Theorem 2.9, this implies that
(∂q)ω has a őnite orbit under the action of the dual.

If, on the other hand, there is some word with a őnite orbit under the
action of the dual, then, by Proposition 4.1, this implies that there already
is some periodic word qω with a őnite orbit (where q ∈ Q+). Again, by
Theorem 2.9, this implies that ∂q ◦ has torsion in the group generated by
the original automaton. In other words, there is k ⩾ 1 such that ∂qk ◦ is
the identity.

6We have already discussed this for the őniteness problem for automaton groups
above.
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5. Reversible but not bi-reversible automata

In this section, we have a closer look at the class of automaton groups
generated by reversible but not bi-reversible G-automata.

First, we show that every such G-automaton T admits a periodic
word uω with an inőnite orbit. The main idea is to take the dual of T ,
which is a reversible but not bi-reversible G-automaton as well, and to
őnd elements without torsion in the semigroup generated by the dual. By
Theorem 2.9, these elements correspond to periodic ω-words with inőnite
orbits. For the special case that the dual is connected (or only contains
non-bi-reversible connected components), we could use [13, Theorem 23]
or [7, Proposition 7] to obtain that none of the elements have torsion.
However, the result is also true in the general case.

In a reversible and complete S-automaton T = (Q,Σ, δ), all maps
· u : Q → Q for u ∈ Σ∗ are bijections (see Fact 2.3). It is not difficult
to see that, therefore, in such automata, every connected component is
already strongly connected.

The central argument for our proof is that the semigroup generated
by a reversible but not bi-reversible G-automaton cannot contain the
(group) inverse of any function induced by a state from a non-bi-reversible
connected component.

Lemma 5.1. Let T = (Q,Σ, δ) be a reversible G-automaton with a non-bi-
reversible (strongly) connected component consisting of the states P ⊆ Q.
Then, S(T ) does not contain the inverse p−1 ◦ for any p ∈ P .

Proof. We őrst show that S(T ) must contain q−1 ◦ for all q ∈ P if it
contains p−1 ◦ for a single p ∈ P . Therefore, assume the latter to be true.
Since q and p are in the same (strongly) connected component, there is
some u ∈ Σ∗ with p · u = q. Then, for v = p ◦ u, we have q−1 ◦ = p−1 · v ◦.
Since we have p−1 ◦ = p′ ◦ for some p′ ∈ Q+ by assumption, we obtain
q−1 ◦ = p′ · v ◦, which is in S(T ).

Now, assume to the contrary that S(T ) contains p−1 ◦ for one, and
thus for all, p ∈ P . Since P is the state set of some non-bi-reversible
component, there are q, p, r ∈ P and a, b, c ∈ Σ with p ̸= q or a ≠ b (or
both) and the transitions

p

r

q

a/c

b/c
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(i. e. p · a = q · b = r and p ◦ a = q ◦ b = c). Notice that p = q (which
implies a ̸= b) is not possible since T is a G-automaton and that neither
is a = b because T is reversible.

We have p−1 · c ◦ = r−1 ◦ = q−1 · c ◦ and, by assumption, there are
p′, q′ ∈ Q+ with p−1 ◦ = p′ ◦ and q−1 ◦ = q′ ◦ . Together, this yields
p′ · c ◦ = r−1 ◦ = q′ · c ◦. Since T is complete and reversible, the map
· c : Q+ → Q+ is a bijection (see Fact 2.3) and there is some k ⩾ 1 with
p′ · ck = p′ and q′ · ck = q′. For this k, we have

p−1 ◦ = p′ ◦ = (p′ · c) · ck−1 ◦ = (q′ · c) · ck−1 ◦ = q′ ◦ = q−1 ◦

and, thus, a = p−1 ◦ c = q−1 ◦ c = b, which is a contradiction.

Actually, Lemma 5.1 allows for a stronger formulation:

Lemma 5.2. Let T = (Q,Σ, δ) be a reversible G-automaton and let P
be the non-empty state set of some non-bi-reversible connected component
of T . Then, P contains at least two elements and no element qp ◦ with
q ∈ Q+ and p ∈ P has an inverse in S(T ). In particular, no element
qp ◦ has torsion in G(T ).

Proof. Since the connected component belonging to P is non-bi-reversible
(but needs to be reversible since T is), it contains transitions q pa/b and
q′ pa′/b with a ≠ a′ and q ̸= q′, as q = q′ contradicts the invertibility
of T . Therefore, {q, q′, p} ⊆ P contains at least two elements.

Now, let p ∈ P and q ∈ Q∗ be arbitrary and suppose that there is
some r ∈ Q+ such that rqp ◦ is the identity on Σ∗. Then, rq ◦ ∈ S(T )
would be an inverse of p ◦ contradicting Lemma 5.1.

Finally, if qp◦was of torsion, then (qp)i◦ for some i would be its inverse,
which would also constitute a contradiction because of (qp)i ∈ Q+.

We can now apply Lemma 5.2 to obtain periodic ω-words with inőnite
orbits.

Theorem 5.3. Let T = (Q,Σ, δ) be an S-automaton such that its dual
∂T = (Σ, Q, ∂δ) contains a reversible G-automaton D = (∆, R, κ) as a
sub-automaton.

Then, every non-bi-reversible connected component of D with state set
Γ contains at least two elements and Q∗ ◦ u(av)ω is inőnite for all a ∈ Γ
and all u, v ∈ ∆∗.
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Proof. Let Γ be the state set of some non-bi-reversible connected com-
ponent of D. By Lemma 5.2, no element va ◦ from S(D) with a ∈ Γ
and v ∈ ∆∗ has torsion. By Theorem 2.9, this means that all orbits
R∗ ◦ u(a∂v)ω ⊆ Q∗ ◦ u(a∂v)ω for u ∈ ∆∗ are inőnite.

Corollary 5.4. Let T = (Q,Σ, δ) be a reversible but not bi-reversible
G-automaton. Then, there are two distinct letters a, b ∈ Σ such that all
Q∗ ◦ u(av)ω and all Q∗ ◦ u(bv)ω for u, v ∈ Σ∗ are inőnite.

Proof. Notice that ∂T is a reversible but not bi-reversible G-automaton as
well. Thus, the corollary follows from Theorem 5.3 since ∂T must contain
at least one non-bi-reversible connected component.

Interestingly, we can combine Theorem 5.3 with the result about ω-
words with a őnite orbit from Proposition 4.1 to obtain that many orbits
in groups generated by reversible but not bi-reversible G-automata are
inőnite.

Corollary 5.5. Let T = (Q,Σ, δ) be a reversible but not bi-reversible
G-automaton and let Γ ⊆ Σ denote the set of states in the dual automaton
∂T belonging to a non-bi-reversible connected component.

Then, every α ∈ Σω which contains at least one letter from Γ inőnitely
often has an inőnite orbit: |Q∗ ◦ α| = ∞.

Proof. Suppose to the contrary that there is some α ∈ Σω with a őnite orbit
such that α contains a letter a ∈ Γ inőnitely often. Then, by Proposition 4.1,
there is some w ∈ Σ+ with w = w1aw2 for some w1, w2 ∈ Σ∗ such that
the orbit of wω = w1(aw2w1)

ω is őnite. However, from Theorem 5.3
follows that all words of the form u(av)ω must have inőnite orbit; a
contradiction.

The previous corollary directly implies that no inőnite word has a őnite
orbit under the action of a reversible but not bi-reversible G-automaton
with a connected dual:

Corollary 5.6. Let T = (Q,Σ, δ) be a reversible but not bi-reversible
G-automaton whose dual ∂T is connected. Then, every ω-word α ∈ Σω

has an inőnite orbit Q∗ ◦ α.

Proof. Obviously, all letters from Σ belong to a non-bi-reversible connected
component of the dual. Therefore, any α ∈ Σω must, in particular, contain
at least one of them inőnitely often and the result follows from Corollary 5.5.
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As a side remark, we note that, in Lemma 5.2, we can neither drop the
completeness nor the invertibility requirement, which also has consequences
for the other results above. To see the former, consider the S-automaton T

q p

a/b

a/a

b/b ,

which is strongly connected, reversible and invertible but neither bi-
reversible nor complete. One may observe that q2 ◦ is undeőned on all
words (except ε) and that q ◦, therefore, has torsion as we have q2 ◦ = q3 ◦.
In fact, it turns out that the semigroup generated by the automaton is
őnite7 and, thus, that all its elements have torsion.

p ◦

q ◦

qp ◦

p2 ◦

pq ◦ q2 ◦

qp2 ◦
p ◦

q ◦

p ◦

q ◦

p ◦ q ◦

p ◦
q ◦p ◦

q ◦
p ◦, q ◦

p ◦

q ◦

Figure 2. Left Cayley graph of S(T1).

To see that the automaton in the statements of Lemma 5.2 and the
corollaries needs to be invertible, we use the following counter-example
based on the connection from Theorem 2.9.

Counter-Example 5.7. Let T = (Q,Σ, δ) be the G-automaton

7This can, for example, be seen by computing its powers (up to the fourth one); the
left Cayley graph of the generated semigroup can be found in Figure 2.
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b

a

d

c id

0/1
1/0

0/0

1/1

0/0

1/1

0/0

1/1

0/0
1/1

,

which generates the Grigorchuk group. The Grigorchuk group G(T ) is
inőnite (see e. g. [18, Theorem 1.6.1]) and, thus, so is S(T ) (see, for
example, [1, Proof of Lemma 5])8.

The dual ∂T of T

0 1

id/id
b/a
c/a
d/id

a/id id/id
b/c
c/d
d/ba/id

is complete and reversible but neither invertible nor bi-reversible. It gener-
ates an inőnite semigroup S(∂T ) since an S-automaton generates a őnite
semigroup if and only if its dual does [1, Proposition 10]. However, the
orbits of all ultimately periodic words Σ∗ ◦∂ pqω under its action with
p ∈ Q∗ and q ∈ Q+ are őnite.

This is the case because all elements of the Grigorchuk group G(T )
have őnite order (see e. g. [18, Theorem 1.6.1]), i. e. G(T ) is a Burnside
group, and because Theorem 2.9 yields that the orbit Σ∗ ◦∂ pqω for any
p ∈ Q∗ and q ∈ Q+ is őnite if and only if ∂q ◦ has torsion in S(T ).

Another important consequence of Proposition 5.7 is that an inőnite
automaton semigroup does not always admit a periodic or ultimately
periodic word with an inőnite orbit. Thus, Corollary 2.4 cannot be extended
in this way. However, since the automaton ∂T is not a G-automaton, this
still leaves the following question for automaton groups open.

Open Problem 5.8. Does every G-automaton generating an inőnite
group admit a periodic or ultimately periodic ω-word with an inőnite
orbit?

8In fact, we have S(T ) = G(T ) since the group is a Burnside group (see e. g.
[18, Theorem 1.6.1]).
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In fact, for arbitrary S-automata T and T ′, an isomorphism between
S(T ) and S(T ′) does not imply that S(∂T ) and S(∂T ′) are isomorphic.
In other words, the dual is not an algebraic property of an automaton
semigroup but only a property of the presentation by a speciőc automa-
ton. The dual of the Grigorchuk automaton depicted in Proposition 5.7
generates the free semigroup of rank two9. This semigroup can also be
generated by a different automaton (see [5, Proposition 4.1]) which admits
a periodic ω-word with an inőnite orbit (in fact, every ω-word has an
inőnite orbit under its action).

Therefore, we have not completely settled the semigroup case either. It
could still be the case that every inőnite automaton semigroup is generated
by some S-automaton admitting a periodic word with inőnite orbit.
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