© Algebra and Discrete Mathematics Volume **36** (2023). Number 2, pp. 179–187 DOI:10.12958/adm1673

On weakly *s*-normal subgroups of finite groups C. W. Li

Communicated by L. A. Kurdachenko

ABSTRACT. In this paper, we present some sufficient conditions for a finite group to be *p*-nilpotent and *p*-supersoluble under assumption that some subgroups are weakly *s*-normal. Some earlier results are improved and extended.

Introduction

All groups considered in this article are finite. G stands for a finite group, |G| is the order of G and p denotes a prime.

A subgroup H of G is said to be *s*-permutable [9] in G if H permutes with every Sylow subgroup of G. A subgroup H of G is called weakly *s*-permutable [17] in G if there is a subnormal subgroup T of G such that G = HT and $H \cap T \leq H_{sG}$, where H_{sG} is the subgroup of H generated by all those subgroups of H which are *s*-permutable in G.

A subgroup H of G is said to be s-semipermutable [5] in G if Hpermutes with every Sylow p-subgroup G_p of G with (|H|, p) = 1. A subgroup H of G is called weakly s-semipermutable [12] in G if there are a subnormal subgroup T of G and an s-semipermutable subgroup H_{ssG} of G contained in H such that G = HT and $H \cap T \leq H_{ssG}$.

A subgroup H of G is said to be *s*-permutably embedded [4] in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some *s*-permutable subgroup of G. A subgroup H of G is called weakly *s*-permutably embedded [11] in G if there are a subnormal

²⁰²⁰ Mathematics Subject Classification: 20D10, 20D20.

Key words and phrases: weakly s-normal, p-supersoluble, p-nilpotent.

subgroup T of G and an s-permutably embedded subgroup H_{seG} of G contained in H such that G = HT and $H \cap T \leq H_{seG}$.

In [13], Li and Qiao introduced the following concept which covers the above mentioned subgroups:

Definition 1. A subgroup H of G is called weakly s-normal in G if there are a subnormal subgroup T of G and a subgroup H_* of H such that G = HT and $H \cap T \leq H_*$, where H_* is a subgroup of H which is either s-permutably embedded or s-semipermutable in G.

In [13], the authors obtained some results on p-nilpotency and supersolubility by using the notion of weakly s-normal subgroup. In this paper, we continue to investigate this concept and we give some criteria of p-nilpotency and p-supersolvability. Some recent results are generalized.

1. Preliminaries

Lemma 1 ([13, Lemma 2.5]). Let U be a weakly s-normal subgroup of G and N a normal subgroup of G. Then

(1) If $U \leq H \leq G$, then U is weakly s-normal in H.

(2) Suppose that U is a p-group for some prime p. If $N \leq U$, then U/N is weakly s-normal in G/N.

(3) Suppose that U is a p-group for some prime p and N is a p'-subgroup. Then UN/N is weakly s-normal in G/N.

(4) Suppose that U is a p-group for some prime p and U is neither s-semipermutable nor s-permutably embedded in G. Then G has a normal subgroup M such that |G:M| = p and G = MU.

(5) If $U \leq O_p(G)$ for some prime p, then U is weakly s-permutable in G.

Lemma 2. Let P be a normal p-subgroup of G, where p is a prime dividing |G|. Suppose that there exists a subgroup D of P with 1 < |D| <|P| such that every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is weakly s-permutable in G. Then every G-chief factor of P is cyclic.

Proof. It is a corollary of [19, Theorem].

Lemma 3 ([1, Theorem 2.1.6]). If G is p-supersoluble and $O_{p'}(G) = 1$, then the Sylow p-subgroup of G is normal in G.

Lemma 4 ([6, Theorem 8.3.1]). Let P be a Sylow p-subgroup of G, where p is an odd prime divisor of |G|. Then G is p-nilpotent if and only if $N_G(Z(J(P)))$ is p-nilpotent, where J(P) is the Thompson subgroup of P.

Lemma 5 ([14, Lemma 2.3]). Suppose that H is s-permutable in G, and let P be a Sylow p-subgroup of H. If $H_G = 1$, then P is s-permutable in G.

 $F^*(G)$ is the generalized Fitting subgroup of G, i.e., the product of all normal quasinilpotent subgroups of G.

Lemma 6 ([18, Theorem C]). Let E be a normal subgroup of G. If every G-chief factor of $F^*(E)$ is cyclic, then every G-chief factor of E is also cyclic.

 $F_p^*(G)$ is the generalized *p*-Fitting subgroup of *G*, i.e., the normal subgroup of *G* such that $F^*(G/O_{p'}(G)) = F_p^*(G)/O_{p'}(G)$.

Lemma 7 ([2, Lemma 2.10]). Let p be a prime and G a group.

(1) $Soc(G) \leq F_{p}^{*}(G)$. (2) $O_{p'}(G) \leq F_{p}^{*}(G)$. In fact, $F^{*}(G/O_{p'}(G)) = F_{p}^{*}(G/O_{p'}(G)) = F_{p}^{*}(G)/O_{p'}(G)$. (3) If $F_{p}^{*}(G)$ is p-soluble, then $F_{p}^{*}(G) = F_{p}(G)$.

Lemma 8. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. If there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with |H| = |D| (and 4 if |D| = 2) is weakly s-normal in G, then G is p-nilpotent.

Proof. It is a corollary of [13, Theorem 3.2].

Lemma 9 ([10, Lemma 2.4]). Let p be a prime dividing |G| with (|G|, p-1) = 1. If G is p-supersoluble, then G is p-nilpotent.

2. Main Results

Theorem 1. Let p be an odd prime dividing |G| and P a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with |H| = |D| is weakly s-normal in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and G is a counter-example with minimal order. We will derive a contradiction in several steps.

(1) $O_{p'}(G) = 1.$

If $O_{p'}(G) \neq 1$, then we can consider the factor group $\overline{G} = G/O_{p'}(G)$. Since $N_{\overline{G}}(\overline{P}) = \overline{N_G(P)}$, it follows that $N_{\overline{G}}(\overline{P})$ is *p*-nilpotent. For every subgroup \overline{H} of Sylow *p*-subgroup $PO_{p'}(G)/O_{p'}(G)$ of $G/O_{p'}(G)$ with order |D|, we can write $\overline{H} = HO_{p'}(G)/O_{p'}(G)$, where H is a subgroup of P with order |D|. Then H is weakly *s*-normal in G by hypothesis. Hence \overline{H} is weakly *s*-normal in \overline{G} by Lemma 1(3). Therefore, \overline{G} satisfies the hypothesis of our theorem. The minimal choice of G implies that $G/O_{p'}(G)$ is *p*-nilpotent and so G is *p*-nilpotent, a contradiction.

(2) G is not p-supersoluble.

If G is p-supersoluble, then P is normal in G by Lemma 3. By hypothesis, $G = N_G(P)$ is p-nilpotent, a contradiction.

(3) If E is a proper subgroup of G with $P \leq E$, then E is p-nilpotent.

By Lemma 1(1), every subgroup H of P with |H| = |D| is weakly s-normal in E. Since $N_E(P) \leq N_G(P)$ and $N_G(P)$ is p-nilpotent, it follows that $N_E(P)$ is p-nilpotent. Hence E satisfies the hypothesis of the theorem and so E is p-nilpotent by the minimal choice of G.

(4) $O_p(G) \neq 1$.

Consider the group Z(J(P)), where J(P) is the Thompson subgroup of P. If $N_G(Z(J(P))) < G$, then $N_G(Z(J(P)))$ is p-nilpotent by step (3). Then G is p-nilpotent by Lemma 4, a contradiction. Hence $N_G(Z(J(P))) = G$ and $1 < Z(J(P)) \le O_p(G) < P$.

(5) $G/O_p(G)$ is *p*-nilpotent. In particular, $G/O_p(G)$ is *p*-supersoluble.

Let $\overline{G} = G/O_p(G)$, $\overline{P} = P/O_p(G)$, $\overline{K} = Z(J(\overline{P}))$ and $G_1/O_p(G) = N_{\overline{G}}(Z(J(\overline{P})))$. Since $O_p(\overline{G}) = 1$, we have $N_{\overline{G}}(Z(J(\overline{P})) < \overline{G}$. Thus $G_1 < G$. By step (3), we have G_1 is *p*-nilpotent. Then $N_{\overline{G}}(Z(J(\overline{P})))$ is *p*-nilpotent. Thus \overline{G} is *p*-nilpotent by Lemma 4.

(6) Every G-chief factor of $O_p(G)$ is not cyclic.

If not, then G is p-supersolvable since $G/O_p(G)$ is p-supersolvable, contrary to step (2).

(7) |P| > pD|.

Suppose that |P| = p|D|. Obviously, G is p-solvable. Let N be a minimal normal group of G. From (1), $N \leq O_p(G)$. It is easy to see that G/N satisfies the hypothesis of the theorem. Hence the choice of G yields that G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, N is the unique minimal normal subgroup of G and $\Phi(G) = 1$. Consequently, G has a maximal subgroup M such that

G = MN. Clearly, $P = P \cap NM = N(P \cap M)$. Since $P \cap M < P$, we may take a maximal subgroup P_1 of P such that $P \cap M \leq P_1$. Consequently, $P = NP_1$ and $N \not\leq P_1$. By hypothesis, P_1 is weakly s-normal in G. Then there are a subnormal subgroup T of G and a subgroup $(P_1)_*$ of P_1 such that $G = P_1T$ and $P_1 \cap T \leq (P_1)_*$, where $(P_1)_*$ is a subgroup of P_1 which is either s-permutably embedded or s-semipermutable in G. Since |G:T| is a power of p, we have $N \leq O^p(G) \leq T$. It follows that $P_1 \cap N = (P_1)_* \cap N$.

Firstly, we have $N \cap P_1 \neq 1$. If not, $|N : P_1 \cap N| = |NP_1 : P_1| = |P : P_1| = p$ and so $P_1 \cap N$ is a maximal of N. Therefore |N| = p, which contradicts step (6).

Secondly, $N \cap P_1$ is not normal in G. If not, then $N \cap P_1 = N$ since $N \cap P_1 \neq 1$. This contradicts the fact $N \nleq P_1$.

Thirdly, $(P_1)_*$ is s-semipermutable in G. Assume that $(P_1)_*$ is s-permutably embedded in G. Then there is an s-permutable subgroup K of G such that $(P_1)_*$ is a Sylow p-subgroup of K. If $K_G \neq 1$, then $N \leq K_G \leq K$ since N is the unique minimal normal subgroup of G. It follows that $N \leq (P_1)_* \leq P_1$, a contradiction. If $K_G = 1$, then, by Lemma 5, we have $(P_1)_*$ is s-permutable in G and so $(P_1)_*$ is s-semipermutable in G.

Now, $(P_1)_*Q = Q(P_1)_*$ for any Sylow q-subgroup Q of G, $q \neq p$. Then, there holds $[P_1 \cap N, Q] \leq N \cap (P_1)_*Q = N \cap (P_1)_* = N \cap P_1$. Obviously, $N \cap P_1$ is normalized by P. Therefore $N \cap P_1$ is normal in G, a contradiction.

(8) $O_p(G)$ is not a maximal subgroup of P.

If not, then, by step (7), we have $1 < |D| < |O_p(G)|$. In view of Lemma 1(5), every subgroup H of $O_p(G)$ with |H| = |D| is weakly *s*-permutable in G. Applying Lemma 2, every G-chief factor of $O_p(G)$ is cyclic, contrary to step (6).

(9) G has no normal subgroup of index p.

Assume that G has a normal subgroup M such that |G:M| = p. Clearly, $P \cap M$ is a Sylow p-subgroup of M. Since $|P:P \cap M| = |PM:M| = |G:M| = p$, we have $P \cap M$ is a maximal subgroup of P. If $N_G(P \cap M) < G$, then, by step (3), $N_G(P \cap M)$ is p-nilpotent and so is $N_M(P \cap M)$. By step (7), $1 < |D| < |P \cap M|$. In view of Lemma 1(1), every subgroup H of $P \cap M$ with |H| = |D| is weakly s-normal in M. Hence M satisfies the hypothesis of the theorem. The the minimal choice of G shows that M is p-nilpotent. It follows that G is also p-nilpotent. This contradiction shows that $N_G(P \cap M) = G$, namely, $P \cap M$ is a normal p-subgroup of G. Hence $P \cap M \leq O_p(G)$. Since $O_p(G) < P$, we have $P \cap M = O_p(G)$, which contradicts step (8).

(10) Final contradiction.

Since $G/O_p(G)$ is *p*-nilpotent, we can assume that $G/O_p(G)$ has a normal Hall *p'*-subgroup, say $L/O_p(G)$. Clearly, *L* is also normal in *G* and G/L is *p*-group. Then there exists a normal subgroup *M* of *G* such that $L \leq M$ and |G:M| = p, contrary to step (9).

Corollary 1. Let p be an odd prime divisor of |G|. Suppose that G has a normal subgroup N such that G/N is p-nilpotent and P is a Sylow p-subgroup of N. Suppose that $N_G(P)$ is p-nilpotent and there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup H of Pwith |H| = |D| is weakly s-normal in G. Then G is p-nilpotent.

Proof. By Lemma 1(1), every subgroup H of P with |H| = |D| is weakly s-normal in N and $N_N(P)$ is p-nilpotent. Applying Theorem 1, N is p-nilpotent. It follows that $O_{p'}(N)$ is the normal Hall p'-subgroup of N. Clearly, $O_{p'}(N) \triangleleft G$. If $O_{p'}(N) \neq 1$, then it is easy to see that $G/O_{p'}(N)$ satisfies the hypothesis of the theorem by virtue of Lemma 1(3). Hence $G/O_{p'}(N)$ is p-nilpotent by induction. It follows that G is p-nilpotent. Now we assume that $O_{p'}(N) = 1$, i.e. N = P. Then $G = N_G(P)$ is p-nilpotent by hypothesis.

Theorem 2. Let N be a p-soluble normal subgroup of G such that G/N is p-supersoluble, where p is a prime divisor of |G|. Suppose that for a Sylow p-subgroup P of $F_p(N)$, there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is weakly s-normal in G. Then G is p-supersoluble.

Proof. Suppose that this theorem is false and consider a counterexample (G, N) for which |G||N| is minimal. In fact, $F_p(N) = O_{p'p}(N)$ and $F_p(N) = PO_{p'}(N)$.

(1) $O_{p'}(N) = 1.$

Assume that $O_{p'}(N) \neq 1$. We consider the factor group $G/O_{p'}(N)$. Obviously, $(G/O_{p'}(N))/(N/O_{p'}(N)) \cong G/N$ is *p*-supersoluble. Since $O_{p'}(N/O_{p'}(N)) = 1$, we have

$$F_p(N/O_{p'}(N)) = O_p(N/O_{p'}(N)) = F_p(N)/O_{p'}(N) = PO_{p'}(N)/O_{p'}(N).$$

In view of Lemma 1(3), every subgroup of $F_p(N/O_{p'}(N))$ with the order |D| (and order 4 if |D| = 2) is weakly s-normal in $G/O_{p'}(N)$. Thus $G/O_{p'}(N)$ satisfies the hypothesis of the theorem. By the minimal choice of (G, N), we have $G/O_{p'}(N)$ is *p*-supersoluble and so is G, a contradiction.

(2) Every G-chief factor of N is cyclic.

By (1), $F_p(N) = F(N) = O_p(N) = P$. In view of Lemma 1(5), every subgroup H of $O_p(N)$ with |H| = |D| (and order 4 if |D| = 2) is weakly *s*-permutable in G. Applying Lemma 2, every G-chief factor of $O_p(N)$ is cyclic. Since N is p-soluble, we have $F^*(N) = F_p^*(N) = F_p(N) =$ $= O_p(N) = P$ by Lemma 7 and so every G-chief factor of $F^*(N)$ is cyclic. Applying Lemma 6, every G-chief factor of N is cyclic.

(3) The final contradiction.

Since G/N is *p*-supersoluble by hypothesis, we have G is *p*-supersoluble, a contradiction.

Corollary 2. Let G be a p-soluble and P a Sylow p-subgroup of $F_p(G)$, where p is a prime divisor of |G|. If there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is weakly s-normal in G, then G is p-supersoluble.

Theorem 3. Let N be a normal subgroup of G such that G/N is p-supersoluble, where p is a prime divisor of |N| with (|N|, p - 1) = 1. Suppose that for a Sylow p-subgroup P of N, there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P with |H| = |D|(and 4 if |D| = 2) is weakly s-normal in G. Then G is p-supersoluble.

Proof. Suppose that this theorem is false and consider a counterexample (G, N) for which |G||N| is minimal.

(1) N is p-nilpotent.

By Lemma 1(1), it is easy to see that every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is is weakly s-normal in N. Applying Lemma 8, N is p-nilpotent.

(2) P = N.

By (1), we know $O_{p'}(N)$ is the normal Hall p'-subgroup of N. Assume that $O_{p'}(N) \neq 1$. In view of Lemma 1(3), the hypothesis holds for $(G/O_{p'}(N), N/O_{p'}(N))$. Hence, by the minimal choice of (G, N), the theorem is true for $(G/O_{p'}(N), L/O_{p'}(N))$ and so $G/O_{p'}(N)$ is p-supersoluble. Consequently, G is p-supersoluble. This contradiction shows that $O_{p'}(N) = 1$. Hence N is a normal p-subgroup of G.

(3) Every G-chief factor of N is cyclic.

In view of Lemma 1(5), every subgroup H of N with |H| = |D| (and order 4 if |D| = 2) is weakly *s*-permutable in G. Applying Lemma 2, every G-chief factor of N is cyclic.

(4) The final contradiction.

Since G/N is *p*-supersoluble by hypothesis, we have G is *p*-supersoluble.

In [3] and [12], we can find the following Theorem:

Theorem 4. Let p be a prime dividing |G| and P a Sylow p-subgroup of G. If there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with |H| = |D| is s-permutably embedded (or weakly s-semipermutable) in G, then G is p-supersoluble.

However, above Theorem does not hold if we replace s-permutably embedded (or weakly s-semipermutable) subgroup by weakly s-normal subgroup. For example, let $G = Z_5 \times A_5$, where A_5 it the alternating group of degree 5. It is not hard to see that each subgroup of G with order 5 is weakly s-normal subgroup in G. But, G is not 5-supersoluble.

References

- A. Ballester-Bolinches, R. Esteban-Romero, and M. Asaad, *Products of finite groups*, Walter de Gruyter, Berlin, 2010.
- [2] A. Ballester-Bolinches, L.M. Ezquerro, A.N. Skiba, Local embeddings of some families of subgroups of finite group, Acta Math. Sin. (Engl. Ser.), 25, no. 6, 2009, pp. 869–882.
- [3] A. Ballester-Bolinches and Y. Li, On s-permutably embedded subgroups of finite groups, Monatsh. Math., 172, no. 3-4, 2013, pp. 247–257.
- [4] A. Ballester-Bolinches and M.C. Pedraza-Aguilera, Sufficient conditions for supersolvability of finite groups, J. Pure Appl. Algebra, 127, no. 2, 1998, pp. 113–118.
- [5] Z. Chen, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci., 12, no. 1, 1987, pp. 1–4.
- [6] D. Gorenstein, *Finite Groups*, Chelsea, New York, 1980.
- [7] X. Guo and K.P. Shum, On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups, Arch. Math., 80, no. 6, 2003, pp. 561–569.
- [8] Z. Han, On s-semipermutable subgroups of finite groups and p-nilpotency, Proc. Indian Acad. Sci. (Math. Sci.), **120**, no. 2, 2010, pp. 141–148.
- [9] O.H. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78, no. 1, 1962, pp. 205–221.
- [10] C. Li, X. Zhang, and X. Yi, On partially τ-quasinormal subgroups of finite groups, Hacet. J. Math. Stat., 43, no. 6, 2014, pp. 953–961.
- [11] Y. Li, S. Qiao, and Y. Wang, On weakly s-permutably embedded subgroups of finite groups, Comm. Algebra, 37, no. 3, 2009, pp. 1086–1097.
- [12] Y. Li, S. Qiao, N. Su, and Y. Wang, On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371, 2012, pp. 250–261.

- [13] Y. Li and S. Qiao, On weakly s-normal subgroups of finite groups, Ukrainian Math. J., 63, no. 11, 2012, pp. 1770–1780.
- [14] Y. Li, Y. Wang, and H. Wei, On p-nilpotency of finite groups with some subgroups π -quasinormally embedded, Acta Math. Hungar., **108**, no. 4, 2005, pp. 283–298.
- [15] Y. Li, Y. Wang and H. Wei, The influence of π-quasinormality of some subgroups of a finite group, Arch. Math., 81, no. 3, 2003, pp. 245–252.
- [16] L. Miao, On weakly S-permutable subgroups, Bull. Braz. Math. Soc, New Series, 41, no. 2, 2010, pp. 223–235.
- [17] A.N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315, 2007, pp. 192–209.
- [18] A.N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, 215, no. 3, 2011, pp. 257–261.
- [19] A.N. Skiba, Cyclicity conditions for G-chief factors of normal subgroups of a group G, Siberian Math. J., 52, no. 1, 2011, pp. 127–130.
- [20] Y. Wang, On c-normality of groups and its properties, J. Algebra, 180, 1996, pp. 954–965.
- [21] L. Wang, Y. Wang, On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups, Comm. Algebra, 34, no. 1, 2006, pp. 143–149.
- [22] X. Wei, X. Guo, On s-permutable subgroups and p-nilpotency of finite groups, Comm. Algebra, 37, no. 10, 2009, pp. 3410–3417.
- [23] X. Wei, X. Guo, On finite groups with prime-power order S-quasinormally embedded subgroups, Monatsh. Math., 162, no. 3, 2011, pp. 329–339.
- [24] H. Wei and Y. Wang, On c^{*}-normality and its properties, J. Group Theory, 10, no. 2, 2007, pp. 211–223.
- [25] L. Yang, H. Wei, and R. Lu, On c^{*}-normal subgroups of p-power order in a finite groups, Comm. Algebra, 42, no. 1, 2014, pp. 164–173.

CONTACT INFORMATION

Changwen Li School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R. China *E-Mail:* lcwxz@jsnu.edu.cn *URL:*

Received by the editors: 21.07.2020 and in final form 10.12.2023.