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A virtually 2-step nilpotent group

with polynomial geodesic growth∗
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Abstract. A direct consequence of Gromov’s theorem is

that if a group has polynomial geodesic growth with respect to

some finite generating set then it is virtually nilpotent. However,

until now the only examples known were virtually abelian. In this

note we furnish an example of a virtually 2-step nilpotent group

having polynomial geodesic growth with respect to a certain finite

generating set.

Introduction

The geodesic growth function for a finitely generated group with respect
to a finite (monoid) generating set S is the function which sends n to the
number of geodesic words over S of length at most n. It is bounded below
by the usual growth function which counts the number of group elements
represented by a word over S of length at most n.

Bridson, Burillo, Šunić and the second author [5] investigated groups
for which this function is polynomial, building on work of Shapiro [10].
They showed that if a nilpotent group is not virtually cyclic then it has
exponential geodesic growth with respect to all finite generating sets. They
also gave an example of a virtually Z

2 group having polynomial geodesic
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growth with respect to a certain generating set, and a sufficient condition
for when a virtually abelian group has polynomial geodesic growth.

The first author extended this to show for virtually abelian groups,
the function is either polynomial or exponential [2] with respect to any
finite generating set (in particular, cannot be intermediate).

Here we take the next step, by furnishing a first example of a virtually
2-step nilpotent group having polynomial geodesic growth. The group
contains the integral 3-dimensional Heisenberg group of index 2.

Our proof relies on a fact contained in work of Blachère [4] that for the
integral 3-dimensional Heisenberg group with respect to the (standard)
generating set {a, a−1, b, b−1}, every element has a geodesic representative
which łswitchesž between a±1 letters and b±1 letters at most five times
(see Lemma 1). We exploit this somewhat surprising fact to construct our
example.

Our result opens the door to the intriguing possibility that some
construction of a virtually nilpotent group could have intermediate geodesic
growth with respect to some generating set. It also raises the question of
whether polynomial geodesic growth is restricted to virtually nilpotent
groups of step at most 2, or if some construction works for higher steps.

1. Virtually Heisenberg group

Let G be a group with finite generating set X. For each word w =
w1w2 · · ·wk ∈ X∗ we write |w|X = k for the word length of w, and w ∈ G
for the element corresponding to the word w. We write wR = wk · · ·w2w1

for the reverse of w. For each element g ∈ G we write ℓX(g) = min{|w|X |
w = g} for the length of an element with respect to the generating set X.
A word w ∈ X∗ is a geodesic if ℓX(w) = |w|X , and γX : N → N defined by

γX(n) = {w ∈ X∗ | ℓX(w) = |w|X ⩽ n}

is the geodesic growth function of G with respect to X.
Consider the discrete Heisenberg group

H = ⟨a, b | [a, [a, b]] = [b, [a, b]] = 1⟩

with generating set X = {a, a−1, b, b−1} where [a, b] = aba−1b−1. We
follow the convention of Blachère [4] and write (x, y, z) ∈ H for the
element corresponding to the normal form word [a, b]zbyax.

We define the virtually Heisenberg group

vH =
〈

a, b, t | [a, [a, b]] = [b, [a, b]] = t2 = 1, at = b
〉

. (1)
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We see that S = {a, a−1, t} is a generating set for vH as after a Tietze
transform to remove the generator b we may obtain the presentation

vH =
〈

a, t | [a, [a, at]] = [at, [a, at]] = t2 = 1
〉

. (2)

We provide a partial view of the Cayley graph of (vH, S) in Figure 1.
Informally, one may think of this group as two copies of H glued with
a łtwistž by t edges. Our construction is patently inspired by Cannon’s
virtually-Z2 example with interesting geodesic behaviour [8, 9].

Figure 1. Cayley graph for vH with respect to the generating set S where

the undirected edges are labelled by t and directed edges labelled by a.

Our goal is to show that any geodesic of vH with respect to the
generating set S can contain at most 7 instances of the letter t. From
this we are able to place a polynomial upper bound on the geodesic
growth function of vH. To do this, we first study geodesics of the discrete
Heisenberg group with respect to the generating set X.

In [4] Blachère provided explicit formulae for the length of elements in
H, with respect the generating set X, by constructing geodesic example.
The following lemma is implicit in Blachère’s work.

Lemma 1. Each element (x, y, z) ∈ H has a geodesic representative with

respect to the generating set X = {a, a−1, b, b−1} of the form

aα1bβ1aα2bβ2aα3bβ3 or bβ1aα1bβ2aα2bβ3aα3

where each αi, βj ∈ Z.

Proof. We see that our lemma holds in the case of (0, 0, 0) ∈ H as the
empty word ε ∈ S∗ is such a geodesic. In the remainder of this proof, we
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assume that (x, y, z) ̸= (0, 0, 0). Following Blachère [4, p. 22] we reduce
this proof to the case where x, z ⩾ 0 and −x ⩽ y ⩽ x as follows.

Let τ : X∗ → X∗ be the monoid isomorphism defined such that τ(ak) =
bk and τ(bk) = ak for each k ∈ Z. If w ∈ X∗ is a word as described in
the lemma statement with w = (x, y, z), then w′ = τ(wR) is also in the
form described in the lemma statement and w′ = (y, x, z). Moreover, we
see that τ(wR) is a geodesic if and only if w is a geodesic. Defining the
monoid isomorphisms φa, φb : X

∗ → X∗ by φa(a
k) = a−k, φa(b

k) = bk,
and φb(a

k) = ak, φb(b
k) = b−k for each k ∈ Z, we see that if w ∈ X∗ is a

geodesic representative for (x, y, z) ∈ H, then φa(w), φb(w) and φa(φb(w))
are geodesics for (−x, y,−z), (x,−y,−z) and (−x,−y, z), respectively, and
each such word is in the form as described in the lemma statement. From
application of the above transformations, we may assume without loss of
generality that x, z ⩾ 0 and −x ⩽ y ⩽ x.

Let h = (x, y, z) ∈ H, then from [4, Theorem 2.2] we have the
following formulae for the length ℓX(h) and (most importantly for us)
geodesic representative for h.

I. If y ⩾ 0, then we have the following cases.
I.1. If x <

√
z, then ℓX(h) = 2⌊2√z⌋ − x− y and h has a geodesic

representative given by by−y′Sza
x−x′

where x′, y′ are the values
given by Sz = (x′, y′, z) (cf. [4, p. 32]), where Sz is as follows.

∗ If z = (n+ 1)2 for some n ∈ N, then Sz = an+1bn+1;
∗ if there exists a k ∈ N with 1 ⩽ k ⩽ n such that z = n2+k,

then let Sz = akban−kbn;
∗ otherwise, there exists some k ∈ N with 1 ⩽ k ⩽ n such

that z = n2 + n+ k and we have Sz = akban+1−kbn.
I.2. If x ⩾

√
z, then we have the following two cases:

I.2.1 xy ⩾ z, then ℓX(h) = x+ y, otherwise
I.2.2 xy ⩽ z, then ℓX(h) = 2⌈z/x⌉+ x− y;
and in both cases, the word by−u−1avbax−vbu is a geodesic for
h where 0 ⩽ u, 0 ⩽ v < x and z = ux+ v (cf. [4, p. 24, 32, 33]).

II. If y < 0, then we have the following cases.
II.1. If x ⩽

√
z − xy, then ℓX(h) = 2⌈2√z − xy⌉ − x+ y. Let n =

⌈√z − xy⌉ − 1. Then
∗ there is either some k ∈ N with 1 ⩽ k ⩽ n such that we

have z − xy = n2 + k, and h has ax−nb−n−1akban−kbn+y

as a geodesic representative; or
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∗ there is some k ∈ N with 0 ⩽ k ⩽ n such that we have
z − xy = (n+ 1)2 − k and ax−nb−ka−1bk−n−1an+1bn+1+y

is a geodesic representative for h (cf. [4, p. 24]1).
II.2. If x ⩾

√
z − xy, then ℓX(h) = 2⌈z/x⌉ + x − y and h has a

geodesic representative of by−u−1avbax−vbu where u, v ⩾ 0,
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From this we obtain the following.

Theorem 1. The geodesic growth function of vH with respect to S =
{a, a−1, t} is bounded from above by a polynomial of degree 8.

Proof. From Corollary 1, we see that any geodesic of vH, with respect to
the generating set S, must have the form

w = am1tam2t · · · tamk+1

where k ⩽ 7 and each mi ∈ Z. Then with k fixed and r = |w|S , we see
that there are at most 2k+1 choices for the sign of m1,m2, . . . ,mk+1, and
at most

(

r
k

)

choices for the placement of the t’s in w. Thus the geodesic
growth function γS(n) has an upper bound given by

γS(n) ⩽

n
∑

r=0

7
∑

k=0

2k+1

(

r

k

)

which give the degree 8 polynomial upper bound.

2. Open questions and further work

The key to our proof of Theorem 1 is the explicit calculation of geodesic
length and consequent explicit form of geodesic words by Blachère. In
particular, we exploit the fact that each element of H has some geodesic
of a particularly special form to make our construction of vH. For these
reasons, our proof does not immediately appear to generalise to other
virtually nilpotent groups (or for that matter to different generating sets
of vH). In light of this, we pose the following question.

Question 1 (Characterising polynomial geodesic growth). For which

k ∈ N is there a virtually k-step nilpotent group with polynomial geodesic

growth with respect to some finite generating set?

It follows from [1, Theorem 2] that the usual growth rate of a virtually
nilpotent group is polynomial of integer degree. Moreover, from [2] it is
known that if a virtually abelian group has polynomial geodesic growth,
then it must be of integer degree (since the geodesic growth series is
rational in this case). It is not known if there is a virtually nilpotent
group with polynomial geodesic growth of a non-integer degree. Based
on experimental results we conjecture that the geodesic growth rate of
vH with respect to the generating set S can be bounded from above and
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below by polynomials of degree six (cf. the usual growth is polynomial of
degree four). The corresponding code and first 645 terms of the geodesic
growth function are available from [3].

Question 2 (Degree of polynomial geodesic growth). Is there a group

with polynomial geodesic growth which is not equivalent to nc for c ∈ N

with respect to some finite generating set?

The first author showed that the geodesic growth series for virtually
abelian groups is D-finite (holonomic) in the exponential case and rational
in the polynomial case [2]. It follows from Pólya-Carlson Theorem [6] that
a geodesic growth sequence of sub-exponential growth is either rational,
or its associated generating function has the unit circle as its natural
boundary. (In particular, such a sequence is either rational or is not D-
finite.) It was shown by Duchin and Shapiro [7] that the usual growth of
H is rational for all generating sets. Preliminary investigation of the data
in [3] leads us to suspect that the geodesic growth sequence for (vH, S) is
not rational, which would mean it is not D-finite.

Finally, we recall a motivating question from [5].

Question 3. Is there a group with intermediate geodesic growth?

From [2,5] it is known that if such a group exists, then it cannot be
nilpotent or virtually abelian.
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