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Abstract. In this paper, suitable Brauer configuration

algebras are used to give an explicit formula for the number of
perfect matchings of a snake graph. Some relationships between
Brauer configuration algebras with path problems as the Lindström
problem are described as well.

Introduction

Snake graphs are combinatorial objects arising from the research of
cluster algebras. They allowed to Çanakçi and Schiffler to compute the Lau-
rent expansions of the cluster variables in cluster algebras of surface type.
The terms in the Laurent polynomial of such variables are parametrized
by the perfect matchings of the associated snake graph [3ś8, 15]. Such
graphs were studied by Propp [15] in the context of the investigation of
the Laurent phenomenon, which is a problem of paramount importance in
the theory of cluster algebras. Propp proved that two examples of rational
recurrences, the two-dimensional frieze patterns of Conway and Coxeter
and the tree of Markoff numbers-relate to one another and to the Laurent
phenomenon. In the program of Propp perfect matchings of snake graphs
derived from triangulations of polygons are linked with frieze patterns of
Conway and Coxeter.
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Propp in [15] also reported an interesting connection between snake
graphs and continued fractions, according to him, work of Benjamin and
Quinn in the context of the strip tiling model, shows how combinatorial
models can illuminate facts about continued fractions. In [3ś7] Çanakçi
and Schiffler go beyond Propp by proving that each snake graph G has
associated a unique continued fraction whose numerator is given by the
number of perfect matchings of G. They report that snake graphs provide
a new combinatorial model for continued fractions allowing to interpret the
numerators and denominators of positive continued fractions as cardinals
of combinatorially defined sets.

Regarding applications of the theory of snake graphs we recall that
recently Çanakçi and Schroll [8] defined abstract string modules associating
to each of such modules a suitable snake graph, whose lattice of perfect
matchings is in bijective correspondence with the lattice of submodules of
such abstract module. In this work, the number of perfect matchings of a
snake graph is interpreted as the message of a labeled Brauer configuration.
The same is done for the number of k-paths connecting two fixed points
u and v in an acyclic finite digraph.

The following is a list of our main results:

1) It is proved that the number of perfect matchings of an arbitrary
snake graph is given by messages of some suitable labeled Brauer
configurations (see Theorem 17). Particular cases of this result are
given in Theorem 14 and Corollaries 15 and 16.

2) An interpretation of the Lindström theorem (regarding the number
of tuples of non-intersecting lattice paths) is given based on the
message of a labeled Brauer configuration (see Theorem 23 and
Corollary 24),

3) Properties of the Brauer configuration algebra ΛD(k) induced by a
suitable Brauer configuration D(k) are given and proved in Theo-
rem 26 and Corollary 27. Such Brauer configuration D(k) allows
to enunciate Theorem 20 which, together with Corollary 21 states
Corollary 22 obtaining in this fashion an alternative interpretation
of the formula for perfect matchings given in Theorem 17. Special-
izations of D(k) are used to give the number of vertices in a suitable
system of k disjoint paths (A0, A1, . . . , Ak−1) in Corollary 25.

4) Integer sequences a(n, k) arising from perfect matchings of some
suitable snake graphs and their relationships with the Fibonomial
array are described in Section 2.2. Actually, we pose the following
conjecture.
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Conjecture.

∑

n⩾2

a(n, k)xn =
pk(x)

∑n
k=0(−1)(

k+1
2 )[n

k

]

F
xk

,

where a(n, k) = Match(Gf (n, n, . . . , n
︸ ︷︷ ︸

k times

)) (i.e., the number of perfect

matchings of a snake graph whose rows and columns have n tiles),
pk(x) is a polynomial of degree k, and

[
n
k

]

F
is the (n, k)-th entry of

the Fibonomial triangle (array A010048 in the OEIS).
The paper is organised as follows. In section 2, we recall main notation

and definitions regarding snake graphs and Brauer configuration algebras.
In particular, we introduce the notion of a labeled Brauer configuration.
In section 3, we give the number of perfect matchings of snake graphs via
suitable labeled Brauer configuration algebras, the Lindström theorem
is enunciated based on the message of a suitable Brauer configuration
algebra and some interesting sequences in the On-line Encyclopedia of
Integer Sequences (OEIS) arising from these computations are described
as well.

1. Preliminaries

In this section, we recall main definitions and notation to be used
throughout the paper [3ś7].

1.1. Snake graphs

A tile G is a square in the plane whose sides are parallel or orthogonal
to the elements in the standard orthonormal basis of the plane (as in [3]
in this work a tile G is considered as a graph with four vertices and four
edges in the obvious way).

A snake graph G is a connected planar graph consisting of a finite
sequence of tiles G1, G2, . . . , Gd, such that Gi and Gi+1 share exactly one
edge ei and this edge is either the north edge of Gi and the south edge
of Gi+1 or the east edge of Gi and the west edge of Gi+1, [3ś7]. Denote
by Int(G) = {e1, e2, . . . , ed−1} the set of interior edges of the snake graph
G. We will use the natural ordering of the set of interior edges of G, so
that ei is the edge shared by tiles Gi and Gi+1. A snake graph is called
straight if all its tiles lie in one column or one row, and a snake graph is
called zigzag if no three consecutive tiles are straight. Two snake graphs
are isomorphic if they are isomorphic as graphs.
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For positive integers n1, n2, . . . , nk, we let Gf (n1, n2, . . . , nk) denote
a snake graph, with n1 ⩾ 2 tiles in the first row, n2 ⩾ 2 tiles in the first
column, n3 ⩾ 2 tiles in the second row and so on, up to nk ⩾ 2. In this
case the last tile in a given row is the first tile in the next column (if it
exists) vice versa the last tile in a given column coincides with the first
tile in the next row. As an example, in Figure 1, it is shown the snake
graph Gf (5, 3, 3, 2, 5, 4, 2).

Figure 1. Snake graph Gf (5, 3, 3, 2, 5, 4, 2) (left) and an example of its perfect
matchings.

A perfect matching P of a graph G is a subset of the edges of G such
that every vertex of G is incident to exactly one edge in P . We denote by
Match(G) the set of perfect matchings of G.

A sign function f of a snake graph G is a map f from the set of edges
of G to the set of signs {+,−}, such that on every tile in G the north
and the west edge have the same sign and the sign on the north edge is
opposite to the sign on the south edge. For example, in Figure 2 we show
a labeling of the snake graph Gf (5, 3, 3, 2, 5, 4, 2).

−

− + − +
+

−

− +
+
+ − + −

−

+

−

−
−

Figure 2. Example of a sign function defined on the set of edges of a snake
graph.

Note that, on every snake graph there are exactly two sign functions. A
snake graph is determined up to symmetry by its sequence of tiles together
with a sign function on its interior edges {e1, e2, . . . , ed−1}. Henceforth, it
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will be assumed the notation e0 = sw(G) (the edge at the southwest of
the first tile).

If ed ∈ ne(G) (the edge at the northeast of the last tile) then sign
function can be extended in a unique way to all edges in G and it is
obtained a sign sequence
sgn(G) = {f(e0), f(e1), f(e2), . . . , f(ed−1), f(ed)} actually this sequence
uniquely determines the snake graph and a choice of a north east edge
ed ∈ ne(G).

A positive finite continued fraction is a function

[a1, a2, . . . , an] = a1 +
1

a2 +
1

a3+
1

a4+
1

...+ 1
an

on n variables a1, a2, . . . , an, ai ∈ Z⩾1. Now let [a1, a2, . . . , an] be a positive
continued fraction and let d = a1 + a2 + · · ·+ an − 1 and consider the sign
sequence:

(−ε, . . . ,−ε
︸ ︷︷ ︸

a1

, ε, . . . , ε
︸ ︷︷ ︸

a2

, . . . ,±ε, . . . ,±ε
︸ ︷︷ ︸

an

), (1)

where ε ∈ {+,−},

−ε =

{

+ if ε = −;

− if ε = +;
and sgn(ai) =

{

−ε if i is odd;

ε if i is even;

Thus each integer ai corresponds to a maximal subsequence of constant
sign sgn(ai) in the sequence (1).

According to Çanackçi and Schiffler [3], the snake graph G[a1, a2, . . . , an]
of the positive continued fraction [a1, a2, . . . , an] is the snake graph
with d tiles determined by the sign sequence (1). In particular, G[1] is
a single edge and the continued fraction of the graph in Figure 2 is
[2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 3]. Figure 3 shows examples of the chosen notations
for snake graphs.

Çanakçi and Schiffler report the following results regarding snake
graphs and their relationships with continued fractions:

Theorem 1 ([3], Corollary 4.3). The number of snake graphs with exactly
N perfect matchings is ϕ(N), where ϕ is the totient Euler function.

Theorem 2 ([3], Theorem 3.4).
1) The number of perfect matchings of G[a1, a2, . . . , an] is equal to the

numerator of the continued fraction [a1, a2, . . . , an].
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Figure 3. Gf (2, 3) = G[3, 2] and G[2, 3] = Gf (3, 2).

2) The number of perfect matchings of G[a2, a3, . . . , an] is equal to the
denominator of the continued fraction [a1, a2, . . . , an].

3) If Match(G) denotes the number of perfect matchings of the snake

graph G then [a1, a2, . . . , an] =
Match(G[a1,a2,...,an])
Match(G[a2,a3,...,an])

.

For instance, the snake graph

G[2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 3] = Gf (5, 3, 3, 2, 5, 4, 2)

shown in Figure 2 has 3221 perfect matchings. For [a1, a2, . . . , an] =
[1, 1, . . . , 1], we will prove more ahead (see Theorem 14) that the straight
snake graph G[1, 1, . . . , 1] = Gf (n− 1) with n− 1 tiles has Fn+1 perfect
matchings, where Fn+1 denotes the (n+1)-th Fibonacci number, this fact
is also reported by Çanakçi and Schiffler in [4].

A continued fraction [a1, a2, . . . , an] is said to be of even length if
n is even. It is called palindromic if the sequences (a1, a2, . . . , an) and
(an, an−1, . . . , a2, a1) are equal. A snake graph G is called palindromic if
it is the snake graph of a palindromic continued fraction. Given a snake
graph G, we can construct a palindromic snake graph of even length G↔ by
glueing two copies of G to a new center tile. This graph is called the palin-
dromification of G. More precisely, if G = G[a1, a2, . . . , an], then its palin-
dromification is the snake graph G↔ = G[an, . . . , a2, a1, a1, a2, . . . , an].

Theorem 3 ([4], Theorem 3.10). Let G = G[a1, a2, . . . , an] be a snake
graph and G↔ its palindromification. Let G′ = G[a2, a3, . . . , an] then
Match(G↔) = (Match(G))2 + (Match(G′))2.

Corollary 4 ([4], Corollary 3.14).
1) If N = p2 + q2 with (p, q) = 1 (i.e., N is a sum of two relatively

prime squares), then there exists a palindromic snake graph of even
length, such that Match(G) = N .

2) For each positive integer N , the number of ways we can write N as
a sum of two relatively prime numbers is equal to one half of the
number of palindromic snake graphs of even length with N perfect
matchings.
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3) For each positive integer N , the number of ways one can write N
as a sum of two relatively prime squares is equal to one half of
the number of palindromic continued fractions of even length with
numerator N .

Remark 5. Hereinafter, we assume notation Gf (n1, n2, . . . , nk) for snake
graphs.

1.2. Brauer configuration algebras

Brauer configuration algebras were introduced by Green and Schroll
in [12] as a generalization of Brauer graph algebras which are biserial
algebras of tame representation type and whose representation theory is
encoded by some combinatorial data based on graphs. Actually, underlying
every Brauer graph algebra is a finite graph with acyclic orientation of
the edges at every vertex and a multiplicity function [8]. The construction
of a Brauer graph algebra is a special case of the construction of a Brauer
configuration algebra in the sense that every Brauer graph is a Brauer
configuration with the restriction that every polygon is a set with two
vertices. In the sequel, we give precise definitions of a Brauer configuration
and a Brauer configuration algebra.

A Brauer configuration Γ is a quadruple of the form Γ = (Γ0,Γ1, µ,O)
where:

(B1) Γ0 is a finite set whose elements are called vertices,
(B2) Γ1 is a finite collection of multisets called polygons. In this case, if

V ∈ Γ1 then the elements of V are vertices possibly with repetitions,
occ(α, V ) denotes the frequency of the vertex α in the polygon V
and the valency of α denoted val(α) is defined in such a way that:

val(α) =
∑

V ∈Γ1

occ(α, V ).

(B3) µ is an integer valued function such that µ : Γ0 → N where N denotes
the set of positive integers, it is called the multiplicity function,

(B4) O denotes an orientation defined on Γ1 which is a choice, for each
vertex α ∈ Γ0, of a cyclic ordering of the polygons in which α occurs
as a vertex, including repetitions, we denote Sα such collection of

polygons. More specifically, if Sα = {V (α1)
1 , V

(α2)
2 , . . . , V

(αt)
t } is the

collection of polygons where the vertex α occurs with αi = occ(α, Vi)

and V
(αi)
i meaning that Sα has αi copies of Vi then an orientation

O is obtained by endowing a linear order < to Sα and adding a
relation Vt < V1, if V1 = min Sα and Vt = max Sα,
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(B5) Every vertex in Γ0 is a vertex in at least one polygon in Γ1,
(B6) Every polygon has at least two vertices,
(B7) Every polygon in Γ1 has at least one vertex α such that µ(α)val(α)>1.

The set (Sα, <) is called the successor sequence at the vertex α.

A vertex α ∈ Γ0 is said to be truncated if val(α)µ(α) = 1, that is, α is
truncated if it occurs exactly once in exactly one V ∈ Γ1 and µ(α) = 1. A
vertex is non-truncated if it is not truncated.

The quiver of a Brauer configuration algebra. The quiver QΓ =
((QΓ)0, (QΓ)1) of a Brauer configuration algebra is defined in such a way
that the vertex set (QΓ)0 = {v1, v2, . . . , vm} of QΓ is in correspondence
with the set of polygons {V1, V2, . . . , Vm} in Γ1, noting that there is one
vertex in (QΓ)0 for every polygon in Γ1.

Arrows in QΓ are defined by the successor sequences. That is, there is an
arrow vi

si−→ vi+1 ∈ (QΓ)1 provided that Vi < Vi+1 in (Sα, <)∪{Vt < V1}
for some non-truncated vertex α ∈ Γ0. In other words, for each non-
truncated vertex α ∈ Γ0 and each successor V ′ of V at α, there is an
arrow from v to v′ in QΓ where v and v′ are the vertices in QΓ associated
to the polygons V and V ′ in Γ1, respectively.

The ideal of relations and definition of a Brauer configuration

algebra. Fix a polygon V ∈ Γ1 and suppose that occ(α, V ) = t ⩾ 1
then there are t indices i1, . . . , it such that V = Vij . Then the special
α-cycles at v are the cycles Ci1 , Ci2 , . . . , Cit where v is the vertex in the
quiver of QΓ associated to the polygon V . If α occurs only once in V and
µ(α) = 1 then there is only one special α-cycle at v.

Let F be a field and Γ a Brauer configuration. The Brauer configuration
algebra associated to Γ is defined to be the bounded path algebra ΛΓ =
FQΓ/IΓ, where QΓ is the quiver associated to Γ and IΓ is the ideal in
FQΓ generated by the following set of relations ρΓ of type I, II and III.
Henceforth, if there is no confusion, we will assume notations, Λ, I and ρ
instead of ΛΓ, IΓ and ρΓ for a Brauer configuration algebra, the ideal and
set of relations, respectively defined by a given Brauer configuration Γ.

1) Relations of type I. For each polygon V = {α1, . . . , αm} ∈ Γ1

and each pair of non-truncated vertices αi and αj in V , the set of
relations ρ contains all relations of the form Cµ(αi) − C ′µ(αj) where
C is a special αi-cycle and C ′ is a special αj-cycle.

2) Relations of type II. Relations of type II are all paths of the form
Cµ(α)a where C is a special α-cycle and a is the first arrow in C.
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3) Relations of type III. These relations are quadratic monomial
relations of the form ab in FQΓ where ab is not a subpath of any
special cycle unless a = b and a is a loop associated to a vertex of
valency 1 and µ(α) > 1.

Let Λ = FQΓ/I be the Brauer configuration configuration algebra
associated to a reduced Brauer configuration Γ (i.e., truncated vertices
α ∈ Γ0 occur only in polygons with two vertices). Denote by π : FQΓ → Λ
the canonical surjection then π(x) is denoted by x, for x ∈ FQΓ.

The following results describe the structure of a Brauer configuration
algebra. In this case, rad M (soc M) denotes the radical (socle) of a
module M , rad M is the intersection of all the maximal submodules of
M , whereas soc M is generated by all simple modules of M .

Theorem 6 ([12], Theorem B, Proposition 2.7, Theorem 3.10, Corol-
lary 3.12). Let Λ be a Brauer configuration algebra with Brauer configura-
tion Γ.

1) There is a bijective correspondence between the set of indecomposable
projective Λ-modules and the polygons in Γ.

2) If P is an indecomposable projective Λ-module corresponding to a
polygon V in Γ. Then rad P is a sum of r indecomposable uniserial
modules, where r is the number of (non-truncated) vertices of V and
where the intersection of any two of the uniserial modules is a simple
Λ-module.

3) A Brauer configuration algebra is a multiserial algebra.
4) The number of summands in the heart ht(P ) = rad P/soc P of

an indecomposable projective Λ-module P such that rad2 P ̸= 0
equals the number of non-truncated vertices of the polygons in Γ
corresponding to P counting repetitions.

5) If Λ′ is a Brauer configuration algebra obtained from Λ by removing
a truncated vertex of a polygon in Γ1 with d ⩾ 3 vertices then Λ is
isomorphic to Λ′.

Proposition 7 ([12], Proposition 3.3). Let Λ be the Brauer configuration
algebra associated to the Brauer configuration Γ. For each V ∈ Γ1 choose
a non-truncated vertex α and exactly one special α-cycle CV at V ,

A = {p | p is a proper prefix of some Cµ(α)

where C is a special α-cycle},

B = {Cµ(α)
V | V ∈ Γ1}.

Then A ∪B is a F-basis of Λ.
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Proposition 8 ([12], Proposition 3.13). Let Λ be a Brauer configuration
algebra associated to the Brauer configuration Γ and let C = {C1, . . . , Ct}
be a full set of equivalence class representatives of special cycles. Assume
that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a non-truncated
vertex in Γ. Then

dimF Λ = 2|Q0|+
∑

Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number
of arrows in the αi-cycle Ci and ni = µ(αi).

Proposition 9 ([12], Proposition 3.6). Let Λ be the Brauer configuration
algebra associated to a connected Brauer configuration Γ. The algebra Λ has
a length grading induced from the path algebra FQ if and only if there is an
N ∈ Z>0 such that for each non-truncated vertex α ∈ Γ0 val(α)µ(α) = N .

The following result regards the center of a Brauer configuration
algebra.

Theorem 10 ([16], Theorem 4.9). Let Γ be a reduced and connected Brauer
configuration and let Q be its induced quiver and let Λ be the induced Brauer
configuration algebra such that rad2 Λ ̸= 0 then the dimension of the center
of Λ denoted dimF Z(Λ) is given by the formula:

dimF Z(Λ) = 1 +
∑

α∈Γ0

µ(α) + |Γ1| − |Γ0|+#(LoopsQ)− |CΓ|.

where |CΓ| = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.

Example 11. As an example consider a configuration Γ = (Γ0,Γ1, µ,O)
such that:

1) Γ0 = {1, 2, 3, 4},
2) Γ1 = {U = {1, 1, 4}, V = {1, 2, 2},W = {2, 3, 3}, X = {3, 4, 4}},
3) At vertex 1, it holds that; U < U < V , val(1) = 3,
4) At vertex 2, it holds that; V < V < W , val(2) = 3,
5) At vertex 3, it holds that; W < W < X, val(3) = 3,
6) At vertex 4, it holds that; X < X < U , val(4) = 3,
7) µ(α) = 1 for any vertex α.

The ideal I of the corresponding Brauer configuration algebra ΛΓ is
generated by the following relations (see Figure 4), for which it is assumed
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the following notation for the special cycles:

CU,1
1 = a11a

1
2a

1
3, CU,2

1 = a12a
1
3a

1
1, CV,1

1 = a13a
1
1a

1
2,

CV,1
2 = a21a

2
2a

2
3, CV,2

2 = a22a
2
3a

2
1, CW,1

2 = a23a
2
1a

2
2,

CW,1
3 = a31a

3
2a

3
3, CW,2

3 = a32a
3
3a

3
1, CX,1

3 = a33a
3
1a

3
2,

CX,1
4 = a41a

4
2a

4
3, CX,2

4 = a42a
4
3a

4
1, CU,1

4 = a43a
4
1a

4
2.

(2)

1) ahi a
s
r, if h ̸= s, for all possible values of i and r,

2) (a11)
2, (a21)

2, (a31)
2, (a41)

2, a13a
1
2, a23a

2
2, a33a

3
2, a43a

4
2,

3) CU,i
j − CU,k

l , for all possible values of i, j, k and l,

4) CV,i
j − CV,k

l , for all possible values of i, j, k and l,

5) CW,i
j − CW,k

l , for all possible values of i, j, k and l,

6) CX,i
j − CX,k

l , for all possible values of i, j, k and l,

7) CU,j
i a (CV,j

i a′) , with a (a′) being the first arrow of CU,j
i (CV,j

i ) for
all i, j.

8) CW,j
i a (CX,j

i a′) , with a (a′) being the first arrow of CW,j
i (CX,j

i ) for
all i, j.

Figures 4ś7 show the quiver QΓ associated to this configuration, indecom-
posable projective modules PU , PV , PW , and PX over ΛΓ together with
their corresponding hearts and radical square.

X

U

W

V

a11 a21

a41 a31

a12

a13

a33

a32

a43a42 a22a23

Figure 4. The quiver QΓ defined by the configuration Γ. Colors denote special
cycles at a given vertex. Color blue (red, purple, brown) is associated to a special
cycle at vertex 1 (2, 3, 4 respectively).
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U

U

V

V

U

X

X

U

PU =

a11

a12

a13

a12

a13

a11

a43

a41

a42

V

U

U

V

W

V

W

V

PV =

a13

a11

a12

a21

a22

a23

a22

a23

a21

W

V

V

W

X

X

W

W

PW =

a23

a21

a22

a31

a32

a33

a32

a33

a31

X

W

W

X

U

X

U

X

PX =

a33

a31

a32

a42

a43

a41

a41

a42

a43

Figure 5. Indecomposable projective modules PU , PV , PW , and PX . Note
that, the corresponding radicals are multiserial with series given by special cycles.

U

V

V

U

X

X

ht(PU ) = a12 a13 a41

U

U

V

W

W

V

ht(PV ) =a11 a23a22

V

V

W

X

X

W

ht(PW ) = a21 a32 a33

W

W

X

U

U

X

ht(PX) =a31 a43a42

Figure 6. Hearts of the indecomposable projective modules PU , PV , PW , and
PX .
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V U X

U

rad2 PU =

a13 a11 a42

U W

V

Vrad2 PV =

a12 a23 a21

V X W

W

rad2 PW =

a22 a33 a31

W U

X

Xrad2 PX =

a32 a41a43

Figure 7. Radical square of the projective modules PU , PV , PW , and PX .

The following are the numeric data associated to the algebra ΛΓ =
FQΓ/I with QΓ as shown in Figure 4 and special cycles given in (2),
(|r(QΓ)| is the number of indecomposable projective modules, rU , rV , rW
and rX denote the number of summands in the heart of the indecomposable
projective modules PU , PV , PW and PX . Note that, |Ci| = val(i)):

|r(QΓ)| = 4,

rU = 3, rV = 3, rW = 3, rX = 3,

|C1| = 3, |C2| = 3, |C3| = 3, |C4| = 3,
∑

α∈Γ0

∑

X∈Γ1

occ(α,X) = 12, the number of special cycles,

dimF Λ = 2(4) + 3(2) + 3(2) + 3(2) + 3(2) = 32,

dimF Z(Λ) = 1 + 4 + (4− 4) + 4− 0 = 9.

Remark 12. Note that according to Proposition 9, the Brauer configura-
tion algebra ΛΓ with quiver QΓ shown in Figure 4 has a length grading
induced by the path algebra FQΓ.

1.3. Labeled Brauer configuration

The notion of labeled Brauer configurations is helpful to define suitable
specializations of some Brauer configuration algebras.

Let Γ = {Γ0,Γ1, µ,O} be a Brauer configuration and let U ∈ Γ1 be

a polygon such that U = {αf1
1 , αf2

2 , . . . , αfn
n }, where fi = occ(αi, U). The
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term

w(U) = αf1
1 αf2

2 . . . αfn
n

is said to be the word associated to U . The formal sum (or word sum)

M(Γ) =
∑

U∈Γ1

w(U) (3)

is said to be the message of the Brauer configuration Γ.
An integer specialization of a Brauer configuration Γ = {Γ0,Γ1, µ,O}

is a Brauer configuration Γe = (Γe
0,Γ

e
1, µ

e,Oe) endowed with a preserving
orientation map e : Γ0 → N, such that

Γe
0 = Img e ⊂ N, Γe

1 = e(Γ1),

if H ∈ Γ1 then e(H) = {e(αi) | αi ∈ H} ∈ e(Γ1),

µe(e(α)) = µ(α) for any α ∈ Γ0.

(4)

Orientation Oe is given by defining a linear order ◁ such that e(U)◁
e(V ) in Γe

1 provided that U < V in Γ1.
We let we(U) = (e(α1))

f1(e(α2))
f2 . . . (e(αn))

fn denote the special-
ization under e of a word w(U). In such a case, M(Γe) =

∑

U∈Γe
1
we(U)

is the specialized message of the Brauer configuration Γ with the usual
integer sum and product (in general with the sum and product associated
to Img e).

A Brauer configuration Γ = (Γ0,Γ1, µ,O) is said to be labeled if each
polygon is labeled by an element of Ns for some s ⩾ 1. In such a case we
often write

Γ1 = {(U1, n1), (U2, n2), . . . , (Uk, nk)}, nj ∈ N
s,

with (Ui, ni) ≺ (Ui+1, ni+1), for 1 ⩽ i ⩽ k − 1 if Ui < Ui+1 in Γ1, i.e., the
labeling do not alter the orientation O.

Example 13. As an example, we define the labeled Brauer configuration
K = (K0,K1, µ,O), where:

K0 = {αi
w | 1 ⩽ i ⩽ k,w ∈ {0, 1}k−1, k ⩾ 2 fixed},

K1 = {(Uw, n) | αi
w ∈ (Uw, n), n = (n1, n2, . . . , nk), fixed, nj ⩾ 2}.

(5)

Vertices αi
w ∈ (Uw, n) ∈ K1 are given by the following formula bearing

in mind that w is of the form w = (w1, w2, . . . , wk−1).

αi
w = ni − g(wi−1, i)− g(wi, i) + 2, (6)
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where g is a map g := {0, 1} × Z
+ → {1, 2} defined by

g(0, i) =

{

2, if i is even;

1, if i is odd;
and g(1, i) =

{

1, if i is even;

2, if i is odd;
.

In particular, g(w0, 1) = g(wk, k) = 0. The definition of g can be
reformulated by the rule g(x, n) = 2− (x+ n (mod 2)).

In this case, µ(α) = 2, for any vertex α ∈ K0 and the orientation O is
given by the relation ≺. Actually, henceforth µ(α) will be chosen in such
a way that each polygon will contain at least one non-truncated vertex.

2. On the number of perfect matchings of snake graphs

via Brauer configuration algebras

In this section, we give formulas for the number of perfect matchings
of snake graphs with the shape Gf (n1, n2, . . . , nk) (see Remark 5). Firstly,
we note that;

Match(Gf (n)) = Fn+2, (7)

where Fn denotes the n-th Fibonacci number. In the next result, we
assume that Gf (1) is a snake graph with only one tile.

Theorem 14. Match(Gf (n)) = Fn+2, for all n ⩾ 1.

Proof. For any perfect matching of Gf ((n)) there are two options: either
the vertical right edge of the last square is contained in the matching or
the horizontal edges of the last square are contained in the matching, see
Figure 8.

n
X

X

n
X

X
X X

Figure 8. A perfect matching of Gf (n).

From the definition of perfect matching it is clear that the edges labeled
with red X cannot be used. Therefore we have the recurrence relation

Match(Gf (n)) = Match(Gf (n− 1)) +Match(Gf (n− 2)).

Since Match(Gf (1)) = 2 and Match(Gf (2)) = 3, we conclude that
Match(Gf (n)) = Fn+2 for all n ⩾ 1.
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Corollary 15. Match(Gf (n1, n2))=Fn1+1Fn2+Fn1Fn2+1 for all n1, n2⩾2.

Proof. Let V be the vertex on the lower right corner of Gf (n1, n2). We
consider the adjacent edges to the vertex V . So, we have the following
possible configurations:

n2

V

X X

n1

X

X

n2

V

X X

n1

X

X

Therefore, it holds that

Match(Gf (n1, n2)) = M1 +M2.

Where

M1 = Match(Gf (n1 − 1))Match(Gf (n2 − 2))

M2 = Match(Gf (n1 − 2))Match(G(n2 − 1)).

Theorem 14 allows to obtain the desired result. We are done.

The following result corresponds to the case of a snake graph with
three straight subsnake graphs.

Corollary 16.

Match(Gf (n1, n2, n3)) = Fn1Fn2Fn3 + Fn1+1Fn2−2Fn3+1

+ Fn1Fn2−1Fn3+1 + Fn1+1Fn2−1Fn3

for all n1, n2, n3 ⩾ 2.

Proof. Firstly, let us suppose that n2 ⩾ 4. For the cases n2 = 2, 3, we can
use a similar argument. Let V1 and V2 be the vertices in the lower right
corner and the upper left corner, respectively. By considering the adjacent
edges with the vertices V1 and V2, we obtain the following four options:
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X

X

X X

X

X

X X

V1

V2

X

X

X X

X

X

X X

V1

V2

X

X

X X

X

X

X X

V1

V2

X

X

X X

X

X

X X

V1

V2

From the above decomposition, we obtain that if

M1 = Match(Gf (n1 − 2))Match(Gf (n2 − 2))Match(Gf (n3 − 2)),

M2 = Match(Gf (n1 − 1))Match(Gf (n2 − 4))Match(Gf (n3 − 1)),

M3 = Match(Gf (n1 − 2))Match(Gf (n2 − 3))Match(Gf (n3 − 1),

M4 = Match(Gf (n1 − 1))Match(Gf (n2 − 3))Match(Gf (n3 − 2)),

then

Match(Gf (n1, n2, n3)) =
4∑

i=1

Mi.

And Theorem 14 allows us to conclude the desired result. We are done.

The following result gives the number of perfect matchings of a snake
graph of type Gf (n1, n2, . . . , nk) as a specialized message of the Brauer
configuration defined in Example 13. In this case, words concatenation
arising from the configuration is specialized by the usual product of natural
numbers.

Theorem 17. For all n1, n2 . . . , nk ⩾ 2, we have

Match(Gf (n1, n2, . . . , nk)) = M(Ke),

where K is the Brauer configuration given in Example 13, M(K) defined
as in (3). And e is an integer specialization of K with associated map e
of the form e : K0 → N such that e(αi

w) = Fαi
w

with Fj being the j-th
Fibonacci number.
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Proof. The definition of the Brauer configuration K and the corresponding
specialization e allow us to infer that it suffices to see that

Match(Gf (n1, n2, . . . , nk)) =
∑

w∈{0,1}k−1

k∏

ℓ=1

Fnℓ−g(wℓ−1,ℓ)−g(wℓ,ℓ)+2.

Note that, for l fixed a product of the form
∏

wl
Fnℓ−g(wℓ−1,ℓ)−g(wℓ,ℓ)+2

is a specialized message we((Ul, nl)) of the labeled polygon (Ul, nl). Now,
we proceed to prove the proposed identity.

Let V1, V2, . . . , Vk−1 be the vertices on the k − 1 corners of the snake
graph Gf (n1, n2, . . . , nk), see Figure 9. There are 2k−1 ways to choose the
adjacent edges with the vertices V1, V2, . . . , Vk−1.

...
...

Vk−1

V3

V2

V1

Figure 9. Snake graph Gf (n1, n2, . . . , nk).

Let ei be one of the incident edge with Vi, for i = 1, 2, . . . , k − 1. For
each Vi, there are two options for ei: either ei is vertical or horizontal.
If ei is vertical and i is odd, we have to consider the number of perfect
matchings for the snake graphs Gf (ni−1) and Gf (ni+1−2). Note that for
the first case we do not consider the last tile of the row that contains the
vertex Vi, and for the second case we do not consider the first two tiles of
the column that contains the vertex Vi. Analogously, if ei is horizontal and
i is odd, we have to consider the perfect matching for the snake graphs
Gf (ni − 2) and Gf (ni+1 − 1). Similarly, for the case when i is even.

Finally, we can encode this situation with binary words. We use 0 for
vertical edges and 1 for horizontal edges. So, it is clear that the function
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g(x, n) encodes the subtraction of the tiles that we must apply to each
vertex Vi.

Identity (7), the multiplication principle and the definition of the
message M(Ke) of the Brauer configuration Ke allow us to conclude that

Match(Gf (n1, n2, . . . , nk))

=
∑

w∈{0,1}k−1

k∏

ℓ=1

Match(Gf (nℓ − g(wℓ−1, ℓ)− g(wℓ, ℓ))

=
∑

w∈{0,1}k−1

k∏

ℓ=1

Fnℓ−g(wℓ−1,ℓ)−g(wℓ,ℓ)+2 = M(Ke).

Example 18. As an example, we define a Brauer configuration algebra
induced by the Brauer configuration K for k = 3 (see, (4), (5) and (6)).
The relations defined here can be adapted for all the distinct values of F
in order to define the corresponding Brauer configuration algebras, in this
case w ∈ {0, 1}2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, n = (n1, n2, n3) and

K0 = {α1
(0,0), α

2
(0,0), α

3
(0,0), α

1
(1,0), α

2
(1,0), α

3
(1,0), α

1
(0,1), α

2
(0,1), α

3
(0,1),

α1
(1,1), α

2
(1,1), α

3
(1,1)},

K1 = {(U(0,0), n), (U(1,0), n), (U(0,1), n), (U(1,1), n),

with n = (n1, n2, n3), nj ⩾ 2}.
In Table 1 we compute all the vertices and polygons of K by using

the values of i and w.

i/w (0, 0) (1, 0) (0, 1) (1, 1)

1 n1 − g(w0, 1)− g(w1, 1) + 2 n1 + 1 n1 n1 + 1 n1

2 n2 − g(w1, 2)− g(w2, 2) + 2 n2 − 2 n2 − 1 n2 − 1 n2

3 n3 − g(w2, 3)− g(w3, 3) + 2 n3 + 1 n3 + 1 n3 n3

Table 1. In this table entries correspond to the vertices and columns corre-
spond to polygons of the Brauer configuration K.

Explicitly, (U(0,0), n) = {n1 +1, n2 − 2, n3 +1}, (U(1,0), n) = {n1, n2 −
1, n3 + 1}, (U(0,1), n) = {n1 + 1, n2 − 1, n3}, (U(1,1), n) = {n1, n2, n3} and

w((U(0,0), n)) = n1 + 1 · n2 − 2 · n3 + 1,

w((U(1,0), n)) = n1 · n2 − 1 · n3 + 1,

w((U(0,1), n)) = n1 + 1 · n2 − 1 · n3,

w((U(1,1), n)) = n1 · n2 · n3.
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The following identities are obtained by using the specialization
e(αi

w) = Fαi
w

defined in Theorem 17 with Fj being the j-th Fibonacci
number:

we((U(0,0), n)) = Fn1+1Fn2−2Fn3+1,

we((U(1,0), n)) = Fn1Fn2−1Fn3+1,

we((U(0,1), n)) = Fn1+1Fn2−1Fn3 ,

we((U(1,1), n)) = Fn1Fn2Fn3 .

The specialized message M(Ke) =
∑

U∈Γe
1
we(U) of the Brauer con-

figuration K has the following form:

M(Ke) = Fn1+1Fn2−2Fn3+1 + Fn1Fn2−1Fn3+1

+ Fn1+1Fn2−1Fn3 + Fn1Fn2Fn3

= Match(Gf (n1, n2, n3))

For k = 3, the Brauer configuration algebra associated to K is defined as
follows:

1) K0 = {n1 + 1, n2 − 2, n3 + 1, n2 − 1, n1, n2, n3},
2) K1 = {(U(0,0), n), (U(1,0), n), (U(0,1), n), (U(1,1), n),

with n = (n1, n2, n3)},
3) At vertex n1+1, it holds that (U(0,0), n) < (U(0,1), n), val(n1+1) = 2,
4) At vertex n2 − 2, it holds that (U(0,0), n), val(n2 − 2) = 1,
5) At vertex n3+1, it holds that (U(0,0), n) < (U(1,0), n), val(n3+1) = 2,
6) At vertex n2−1, it holds that (U(1,0), n) < (U(0,1), n), val(n2−1) = 2,
7) At vertex n1, it holds that (U(1,0), n) < (U(1,1), n), val(n1) = 2,
8) At vertex n2, it holds that (U(1,1), n), val(n2) = 1,
9) At vertex n3, it holds that (U(0,1), n) < (U(1,1), n), val(n3) = 2,

10) µ(α) = 2 for any vertex α.
The ideal I of the corresponding Brauer configuration algebra ΛK

is generated by the following relations (see Figure 10), for which it is
assumed the following notation for the special cycles:

C
U(0,0),1

n1+1 = an1+1
1 an1+1

2 , C
U(0,1),1

n1+1 = an1+1
2 an1+1

1 , C
U(0,0),1

n2−2 = an2−2
1 ,

C
U(0,0),1

n3+1 = an3+1
1 an3+1

2 , C
U(1,0),1

n3+1 = an3+1
2 an3+1

1 , C
U(1,0),1

n2−1 = an2−1
1 an2−1

2 ,

C
U(0,1),1

n2−1 = an2−1
2 an2−1

1 , C
U(1,0),1
n1 = an1

1 an1
2 , C

U(1,1),1
n1 = an1

2 an1
1 ,

C
U(1,1),1
n2 = an2

1 , C
U(0,1),1
n3 = an3

1 an3
2 , C

U(1,1),1
n3 = an3

2 an3
1 .

(8)



P. F. F. Espinosa et al. 49

1) ahi a
s
r, if h ̸= s, for all possible values of i and r,

2)
(
C

U(0,0),i

j

)2 −
(
C

U(0,0),k

l

)2
, for all possible values of i, j, k and l,

3)
(
C

U(0,1),i

j

)2 −
(
C

U(0,1),k

l

)2
, for all possible values of i, j, k and l,

4)
(
C

U(1,0),i

j

)2 −
(
C

U(1,0),k

l

)2
, for all possible values of i, j, k and l,

5)
(
C

U(1,1),i

j

)2 −
(
C

U(1,1),k

l

)2
, for all possible values of i, j, k and l,

6)
(
C

U(0,0),j

i a
)2

(
(
C

U(0,1),j

i a′
)2

) , with a (a′) being the first arrow of

C
U(0,0),j

i (C
U0,1,j

i ) for all i, j,

7)
(
C

U(1,0),j

i a
)2

(
(
C

U(1,1),j

i a′
)2

) , with a (a′) being the first arrow of

C
U(1,0),j

i (C
U(1,1),j

i ) for all i, j.

Figure 10 shows the quiver QK associated to this configuration.

U(0,1)

U(0,0)

U(1,1)

U(0,1)

a
n2−2

1

a
n2
1

a
n1+1

1

a
n1+1

2

a
n1
1

a
n1
2

a
n3+1

2
a
n3+1

1
a
n3
1

a
n3
2

a
n2−1

1

a
n2−1

2

Figure 10. Quiver QK associated to configuration K. Colors are assigned as
in Figure 4.

The following is the numeric data associated to the algebra ΛK =
FQK/I with QK as shown in Figure 10 and special cycles given in (8),
(|r(QK)| is the number of indecomposable projective modules, rU(0,0)

,
rU(0,1)

, rU(1,0)
and rU(1,1)

denote the number of summands in the heart of
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the indecomposable projective modules PU(0,0)
, PU(0,1)

, PU(1,0)
and PU(1,1)

.
Note that, |Ci| = val(i)):

|r(QK)| = 4,

rU(0,0)
= 3, rU(0,1)

= 3, rU(1,0)
= 3, rU(1,1)

= 3,

|Cn1+1| = 2, |Cn2−2| = 1, |Cn3+1| = 2, |Cn2−1| = 2,

|Cn1 | = 2, |Cn2 | = 1, |Cn3 | = 2,
∑

α∈K0

∑

X∈K1

occ(α,X) = 12, the number of special cycles,

dimF ΛK = 8 + 2(3) + 1(1) + 2(3) + 2(3) + 2(3) + 1(1) + 2(3) = 40,

dimF Z(ΛK) = 1 + 14 + 4− 7 + 2− 2 = 12.

Example 19. As another example of Theorem 17 consider the following
snake graph of type Gf (5, 3, 3, 2, 5, 4, 2):

In this case,

Match(Gf (5, 3, 3, 2, 5, 4, 2)) = 3221

= 4F3F4F5F
4
2 + 12F1F3F4F6F

3
2 + 16F1F

2
3F4F5F

2
2

+ 12F 2
1F

2
3F4F6F2 + 4F 2

1F
3
3F4F5.

Note that, sequences (Fibonacci words) F3F4F5F
4
2 , F1F3F4F6F

3
2 , . . .

are specialized polygons of the Brauer configuration (5).

2.1. Determinants and Path Problems Via Brauer Configura-

tions

In this section, we describe the way that specializations of suitable
Brauer configurations (or Brauer configuration algebras) can be used to
define determinants thus solutions of some very well known problems, as the
paths problem solved by Lindström, Gessel and Viennot can be interpreted
as a specialization of a Brauer configuration and as a consequence of such
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interpretation the message described in Theorem 17 can be viewed as a
product of specialized Brauer configurations as well.

Let us consider a labeled Brauer configuration D(k) = {D0(k),D1(k),
ν,O} obtained from the labeled Brauer configuration K defined by iden-
tities (5) and (6) by redefining vertices labels and polygons as follows:

D0(k) = {αi
π = α(i,π(i)) ∈ G | 1 ⩽ i ⩽ k, π ∈ Sk, k > 2 fixed},

D1(k) = {(Uπ, π) | π ∈ Sk}, (Uπ, π) = {α(i,π(i)) | π ∈ Sk fixed},
ν(α(i,π(i))) = 1 for any vertex α(i,π(i)) ∈ D0(k),

(9)

where π is an element of the group (Sk,≺) of permutations of k elements
endowed with a linear order ≺, the labels in this case have the form
(π(1), . . . , π(k)), ν is a multiplicity function. And the orientation O is
defined in such a way that labeled polygons (Uπj

, πj) and (Uπj+1 , πj+1)
are consecutive in D1(k) provided that πj and πj+1 are consecutive in
(Sk,≺).

For the sake of accuracy in this case, to each word w(Uπ, π) associated
to the polygon (Uπ, π) it is defined sign(w(Uπ, π)) = sign(π) and the
message M(D) of the Brauer configuration D(k) is given by the identity:

M(D(k)) =
∑

(Uπ ,π)∈D1

sign(w)w(Uπ, π). (10)

The following result follows immediately from the definitions (9)
and (10).

Theorem 20. M(D(k)) = det(α(i,j)) where det(α(i,j)) is the determinant
with entries α(i,j) ∈ D0(k).

Now several specializations can be defined for the message (10).

Henceforth, we let M(Dek
F(k)) denote the specialization of the message

(10) with an associated function of the form ek
F
: D0(k) → C such that

ek
F
(α(r,s)) =







i =
√
−1, if s = r + 1, 1 ⩽ r ⩽ k − 1,

i, if s = r − 1, 2 ⩽ r ⩽ k,

1, if s = r, 1 ⩽ r ⩽ k,

0, elsewhere.

Then the following result holds (see [2] for the calculus of this family
of determinants).
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Corollary 21. M(Dek
F(k)) = Fk+1 where Fj is the jth Fibonacci number.

Proof. M(Dek
F(k)) is a k × k-determinant whose entries are given by

identities ek
F
(α(r,s)) then column transformations of the form C ′

j+1 ↔
− Fj

Fj+1
Cji+Cj+1, for 1 ⩽ j ⩽ k−1 reduce det(ek

F
(α(r,s))) to a determinant

with entries of the form:

T (ek
F
(α(r,s))) =







Fj+1

Fj
, if s = r, 1 ⩽ r ⩽ k,

i, if s = r − 1, 2 ⩽ r ⩽ k,

0, elsewhere.

Thus, T (ek
F
(α(r,s))) is a diagonal determinant such that

det(T (ek
F
(α(r,s)))) =

k∏

j=1

Fj+1

Fj
= Fk+1.

The following result is a direct consequence of Theorem 17 and Corol-
lary 21.

Corollary 22. For all n1, n2 . . . , nk ⩾ 2, we have that Match(Gf (n1, n2,

. . . , nk)) =
∑

w∈{0,1}k−1

∏k
ℓ=1M(De

hl
F (k)) where hl = nℓ − g(wℓ−1, ℓ) −

g(wℓ, ℓ) + 1.

The Lindström’s theorem. Specializations of the Brauer configuration
D(k) allow us to interpret the Lindström's theorem as a message M(D(k)).
To do that, let us first recall the description of such a result as Gessel and
Viennot described in [10].

If Q is an acyclic digraph with finitely many paths between any two
vertices. Let k be a fixed positive integer. A k-vertex is a k-tuple of vertices
of Q, if u = (u1, u2, . . . , uk) and v = (v1, v2, . . . , vk) are k-vertices of Q
then a k-path from u to v is a k-tuple A = (A1, A2, . . . , Ak) such that
Ai is a path from ui to vi. The k-path A is disjoint if the paths Ai are
vertex disjoint. Let Sk be the set of permutations of {1, 2, . . . , k} then for
π ∈ Sk, by π(v) we mean the k-vertex (vπ(1), vπ(2), . . . , vπ(k)).

Let us assign a weight to every edge of Q we define the weight of a
path to be the product of the weights of its edges and the weight of a
k-path to be the product of the weights of its components.

Let P(ui, vj) be the set of paths from ui to vj and P (ui, vj) be the
sum of their weights. Define P(u, v) and P (u, v) analogously for k paths
from u to v.
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Let N(u, v) be the subset of P(u, v) of disjoint paths and let N(u, v)
be the sum of their weights then it is clear that for any permutation

π ∈ {1, 2, . . . , k}, it holds that P (u, π(v)) =
k∏

i=1
P (ui, vπ(i)). Thus the

specialization with associated function of the form h : D0(k) → N such
that h(α(i,π(i))) = P (ui, vπ(i)) and words defined by the specialized poly-
gons h(Uπ, π) = {P (ui, vπ(i)) | 1 ⩽ i ⩽ k, π ∈ Sk fixed} of the form
w(h(Uπ, π)) = sign(π)P (u, π(v)) build the following Brauer configuration
version of the theorem of Lindström [10].

Theorem 23. M(Dh(k)) =
∑

π∈Sk
sign(π)N(u, π(v)).

Proof. By definition M(Dh(k)) = det(P (ui, vj))1⩽i,j⩽k.

The following results are well known consequences of Theorem 23 giving
values of n× n, t-Catalan determinants. For which, we define specialized
messages M(Dht(n)) with P (u1+h, vj−h) = P (u1, vj) = Ct−1+j , t ⩾ 1
fixed, 0 ⩽ h ⩽ j − 1, 1 ⩽ j ⩽ n, j − h > 0, and P (uk+l, vn−l) =
P (uk, vn) = Ct+n+k−2, for 2 ⩽ k ⩽ n and 0 ⩽ l ⩽ n− k, Cs denotes the
sth Catalan number.

Corollary 24. M(Dh1(k)) = 1.

Proof. Consider the infinite directed graph G with Z × Z as the set of
vertices and directed edges from (i, j) to (i + 1, j) and to (i, j + 1) for
every i, j ∈ Z. Let di denote the vertex (i, i) in G, i ∈ Z. Note that the
number of directed paths in G from di to dj , with j ⩾ i is equal to the
Catalan number Cj−i. Let Q1

k be the family consisting of all k pairwise
vertex disjoint directed paths (A0, A1, . . . , Ak−1) in G such that Ai joins
d−i with di+1, i = 0, 1, . . . , k − 1 then M(Dh1(k)) = |Q1

k| = 1, where |Q1
k|

is the number of vertices of the graph Q1
k, see the diagram below.

dk

d3

d2

d1

d0

d−1

d−2

d−(k−1)
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The following is a more general result obtained via specializations
M(Dht(k)) and digraphs Qt

k (as described in the proof of Corollary 24)
where the system of k-paths (A0, A1, . . . , Ak−1) and Ai joins vertices d−i

and dt+i [14].

Corollary 25. M(Dht(k)) = |Qt
k|.

For example M(Dh2(k)) = k + 1 and M(Dh3(k)) = (k+1)(k+2)(2k+3)
6 .

On the Brauer configuration algebra ΛD(k) induced by the Brauer

configuration D(k). Note that each vertex α(i,j) ∈ D0(k) has associated
a successor sequence of the form

S(i,j) = (Uπi1
, πi1) ≺ (Uπi2

, πi2) ≺ · · · ≺ (Uπik
, πik),

(i, j) ∈ πij with πij being a k-set permutation and for any j, it holds
that 1 ⩽ i ⩽ j. Successor sequences S(i,j) define the corresponding special
cycles C(i,j). Then the following are relations generating the admissible
ideal I of ΛD(k).

1) If xi = (i, π(i)) and xj = (j, π(j)) are elements of π ∈ Sk then a
relation of the form C(i,π(i)) − C(j,π(j)) takes place,

2) If a is the first arrow of a special cycle C(i,j) then a relation C(i,j)a
takes also place,

3) If γ is an arrow of a given special cycle C(i,j) and β is arrow of a
special cycle C ′

(i′,j′) with the final vertex e(α) being the initial vertex

s(β) and C(i,j) ̸= C ′
(i,j) then a relation of the form αβ holds in I,

4) The Brauer quiver QD(k) has no loops.
The following is the Brauer quiver QD(3):

QD(3) =

(α1,1, α
′

1,1)

(α
′

3
,3 ,

α
3
,3 )

(α′

1,2, α1,2)

(α
′

2
,
1
,
α
2
,
1
)

(α′

1,3, α1,3)

(α
′

3
,1 ,

α
3
,1 )

(α
2
,
3
,
α

′

2
,
3
)

(α
3
,2
,
α
′

3
,2 )

(α
2
,
2
,
α

′

2
,
2
)
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For the sake of clarity any cycle of the form
••

b

a

is written as

(b, a)

.

Note that in this case relations of the following form take place
α′
(i,j)α(j+n) mod3,r and α(i,j)α

′
(j+n) mod3,s, besides α(1,1)α(2,3), α(2,3)α(3,1),

α(3,1)α(1,3), α(1,3)α(2,1), α(1,3)α(3,2), α(3,2)α(2,3), α(2,3)α(1,2), α(2,2)α(1,3),
α′
(2,3)α

′
(1,1), α′

(2,1)α
′
(1,3), α′

(1,3)α
′
(2,2), α′

(1,3)α
′
(3,1), α′

(3,1)α
′
(2,3), α′

(3,2)α
′
(1,3),

α′
(1,2)α

′
(2,3) for all possible values of r and s. Thus in general the following

result holds.

Theorem 26. For the Brauer configuration ΛD(k) induced by the Brauer
configuration D(k) the following statements hold:

1) ΛD(k) has k! indecomposable projective modules.
2) If α(i,j) ∈ D0(k) then val(α(i,j)) = (k − 1)!.
3) The number of summands in the heart of an indecomposable projec-

tive module given by a polygon of the form (Uπ, π) is k.
4) dimF ΛD(k) = 2(k!+k2t((k−1)!−1)) where ts denotes the sth triangular

number.
5) dimF Z(ΛD(k)) = 1 + k!.

Proof. 1) The assertion follows from Theorem 6 (item 1) and the fact that
|D1(k)| = |Sk| = k!.

2) By definition of a k× k-determinant it holds that each entry-vertex
α(i,π(i)) occurs in (k − 1)! summands-polygons of the form

α(1,π(1))α(2,π(2)) . . . α(k,π(k)).

3) We note that if P is an indecomposable projective ΛD(k)-module

corresponding to a polygon (Uπ, π) then rad2 P ̸= 0 and the result follows
bearing in mind that any polygon (Uπ, π) has k vertices each of them
occurring in (k − 1)! polygons (i.e., all vertices in a given polygon are
non-truncated).

4) Proposition 8 allows to conclude that

dimF ΛD(k) = 2k! +
∑

α(i,j)∈D0

|Cα(i,j)
|(|Cα(i,j)

| − 1)

where for each α(i,j), |Cα(i,j)
| = val(α(i,j)) = (k− 1)!. Thus, the statement

holds taking into account that for any j ⩾ 2, j(j − 1) = 2tj−1.
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5) Since rad2 ΛD(k) ̸= 0, the statement is a consequence of Theorem 10
with ν(α(i,j)) = 1, for all α(i,j) ∈ D0(k), |D0(k)| = k2, |D1(k)| = k!,
#(LoopsQD(k)) = 0 and |CD(k)| = 0.

Corollary 27. For n > 2 the algebra ΛD(n) associated to the Brauer
configuration D(n) has a length grading induced from the path algebra
FQD(n).

Proof. Since by definition D(n) is connected, then the corollary holds as
a consequence of Proposition 9, taking into account that for any α(i,j) ∈
D0(n), ν(α(i,j)) = 1 and val(α(i,j)) = (n− 1)!.

2.2. Some particular sequences

In this section, we study some sequences obtained from the number of
perfect matchings of some particular snake graphs. Let us denote by a(n, k)
the sequence whose terms are given by the number of perfect matchings of
the snake graph Gf (n, n, . . . , n

︸ ︷︷ ︸

k times

), that is a(n, k) := Match(Gf (n, n, . . . , n
︸ ︷︷ ︸

k times

)).

For example, a(2, 3) = 5, the relevant perfect matchings for the graph
Gf (2, 2, 2) are shown in Figure 11.

Figure 11. Perfect matchings of the snake graph Gf (2, 2, 2).

In Table 2, we give several terms of sequences a(n, k) for different
values of k and their ordinary generating functions. Notice that each term
in the sequence a(n, 2) (sequence A079472 in the OEIS [17]) corresponds
to the number of perfect matchings of a symmetric L-shaped graph [13].

k Sequence a(n, k) Generating Funct. A-Sequence

2 4, 12, 30, 80, 208, 546, 1428, 3740, 9790, . . .
2(2+2x−x2)
x3−2x2−2x+1

A079472

3 5, 29, 112, 493, 2059, 8770, 37073, 157169, 665576, . . . −2x3−5x2+14x+5
x4+3x3−6x2−3x+1

Ð

4 6, 70, 418, 3038, 20382, 140866, 962470, 6604838, . . . − 2(x4−6x3−11x2+20x+3)
x5−5x4−15x3+15x2+5x−1

Ð

5 165, 1153, 7811, 53745, 367797, 2522395, 17284853, . . . − 2(x4−6x3−11x2+20x+3)
x5−5x4−15x3+15x2+5x−1

Ð

Table 2. Particular cases of the sequence a(n, k).

We note that the coefficients of the polynomial in the denominators
of the generating functions

∑

n⩾2 a(n, k)x
n coincide with the Fibonomial
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triangle (array A010048 in the OEIS), except for the signs. Let
[
n
k

]

F
be

the (n, k)-th entry of the Fibonomial triangle, which is defined by (cf. [11])
[
n

k

]

F

:=
FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk

.

The first few rows of the Fibonomial matrix are

[[
n

k

]

F

]

n,k⩾0

=

















1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 2 2 1 0 0 0 0 0
1 3 6 3 1 0 0 0 0
1 5 15 15 5 1 0 0 0
1 8 40 60 40 8 1 0 0
1 13 104 260 260 104 13 1 0
1 21 273 1092 1820 1092 273 21 1

















In fact, we conjecture that

∑

n⩾2

a(n, k)xn =
pk(x)

∑n
k=0(−1)(

k+1
2 )[n

k

]

F
xk

,

where pk(x) is a polynomial of degree k.
Let b(n, k) denote the number of perfect matchings of the snake graph

Gf (n, n+ 1, . . . , n+ k − 1). In Table 3, we give terms of sequences of this
type for different values of k and their ordinary generating functions. The
sequence b(n, 2) = F 2

n+1 + FnFn+2 (sequence A061646 in the OEIS) was
studied by Tauraso [18]. This sequence counts the number of domino tilings
of a L-grid obtained by removing the upper-right (n−1)×(n−2) rectangle
from a (n+1)×n rectangle. Moreover, this sequence is a particular example
of the family of nonlinear recurrences studied by Alperin in [1].

k Sequence b(n, k) Generating Funct. A-Sequence

2 7, 19, 49, 129, 337, 883, 2311, 6051, 15841, . . . −3x2+5x+7
x3−2x2−2x+1

A061646

3 27, 116, 487, 2069, 8754, 37099, 157127, 665644, 2819643, . . . −7x3−23x2+35x+27
x4+3x3−6x2−3x+1

Ð

4 165, 1153, 7811, 53745, 367797, 2522395, 17284853, . . . −27x4+130x3+429x2−328x−165
x5−5x4−15x3+15x2+5x−1

Ð

5 1640, 18493, 202901, 2258082, 25006855, 277477625, 3076643824, . . . −165x5−1339x4+6446x3+10643x2−5373x−1640
x6+8x5−40x4−60x3+40x2+8x−1

Ð

Table 3. Particular cases of the sequence b(n, k).
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