Capable groups of order $p^{3} q$

O. Kalteh and S. Hadi Jafari*

Communicated by I. Ya. Subbotin

Abstract. In this paper, we study on the capability of groups of order $p^{3} q$, where p and q are distinct prime numbers and $p>2$.

1. Introduction and motivation

A group G is called capable if there exists a group E such that $G \cong E / Z(E)$. The study of capable groups goes back to Baer [1], who determined all finitely generated abelian capable groups. P. Hall remarked in [7] that characterizations of capable groups are important in classifying groups of prime power order. In 1979, Beyl et al. [2] studied capable groups by focusing on a characteristic subgroup $Z^{*}(G)$, called the epicenter of G, which is the smallest central subgroup of G such that $G / Z^{*}(G)$ is capable. Therefore the triviality of the epicenter of a group is a criterion for capability of the group.

Graham Ellis [6] characterized the epicenter in terms of the nonabelian exterior square as defined below. Once the nonabelian exterior square of a group is known, it is not too hard to determine its epicenter. For a group G, the nonabelian tensor square $G \otimes G$ is the group generated by the symbols $g \otimes h$ subject to the relations

$$
g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h) \quad \text { and } \quad g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)
$$

[^0]for all $g, g^{\prime}, h, h^{\prime} \in G$, where G acts on itself by conjugation, i.e. ${ }^{g} g^{\prime}=$ $g g^{\prime} g^{-1}$. The nonabelian tensor square is a special case of the nonabelian tensor product which introduced by Brown and Loday in [4]. The nonabelian exterior square $G \wedge G$ is obtained by imposing the additional relations $g \otimes g=1$ on $G \otimes G$, for all $g \in G$. The nonabelian exterior square of a group G, defines the central subgroup $Z^{\wedge}(G)$ of G called the exterior center, which is defined as follows:
$$
Z^{\wedge}(G)=\{g \in G \mid g \wedge x=1 ; \forall x \in G\}
$$
G. Ellis [6] established that $Z^{\wedge}(G)=Z^{*}(G)$. So the following criterion follows immediately:

A group G is capable if and only if $Z^{\wedge}(G)=1$.

Regarding to the P. Hall's remark mentioned above, many authors have been interested in characterizing the capable groups among the specific classes of groups, for example, see [3, 9, 13, 16]. In particular, the capability of groups of order $8 q, q$ is an odd prime, was studied in [15]. In this paper, our goal is to complete the latter work by studying on the capability of groups of order $p^{3} q$, where p and q are distinct prime numbers and $p>2$. We first determine the epicenter for those groups and then identify the capable ones among them. In 1899, Western [17] classified the groups of order $p^{3} q$. He proved that there are 25 types of nonabelian groups of order $p^{3} q$, where p is an odd prime.

Theorem 1. [17, pp. 258-261]. Let G be a nonabelian group of order $p^{3} q$, where p and q are distinct prime numbers and $p>2$. Then G is one of the following types:

$$
\begin{align*}
& \left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, b^{-1} a b=a^{p+1}, a d=d a, b d=d b\right\rangle \tag{1}\\
& \langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, c^{-1} b c=a b \\
& \quad a d=d a, b d=d b, c d=d c\rangle \tag{2}
\end{align*}
$$

If $q \equiv 1(\bmod p)$, there are the following:

$$
\begin{equation*}
\left\langle a, d \mid a^{p^{3}}=d^{q}=1, a^{-1} d a=d^{\alpha}\right\rangle \tag{3}
\end{equation*}
$$

where α (here and in the next five groups) is any primitive root of $\alpha^{p} \equiv 1$ $(\bmod q)$.

$$
\begin{gather*}
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, a b=b a, a d=d a, b^{-1} d b=d^{\alpha}\right\rangle \tag{4}\\
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, a b=b a, a^{-1} d a=d^{\alpha}, b d=d b\right\rangle \tag{5}\\
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, b c=c b \\
\left.a d=d a, b d=d b, c^{-1} d c=d^{\alpha}\right\rangle \tag{6}\\
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, b^{-1} a b=a^{p+1}, a d=d a, b^{-1} d b=d^{\beta}\right\rangle \tag{7}
\end{gather*}
$$

where $\beta=\alpha$, or α^{2}, \ldots, or α^{p-1}.

$$
\begin{gather*}
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, a d=d a \\
\left.b d=d b, c^{-1} b c=a b, c^{-1} d c=d^{\alpha}\right\rangle \tag{8}\\
\left\langle a, d \mid a^{p^{3}}=d^{q}=1, a^{-1} d a=d^{\alpha}\right\rangle \tag{9}
\end{gather*}
$$

where α (here and in the next group) is any primitive root of $\alpha^{p^{2}} \equiv 1$ $(\bmod q)$.

$$
\begin{gather*}
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, a b=b a, a^{-1} d a=d^{\alpha}, b d=d b\right\rangle \tag{10}\\
\left\langle a, d \mid a^{p^{3}}=d^{q}=1, a^{-1} d a=d^{\alpha}\right\rangle \tag{11}
\end{gather*}
$$

where α is any primitive root of $\alpha^{p^{3}} \equiv 1(\bmod q)$.
When $p \equiv 1(\bmod q)$, there are the following types (where α, α_{2} and α_{3} are the primitive q th root of unity modulo p, p^{2} and p^{3} respectively):

$$
\begin{gather*}
\left\langle a, d \mid a^{p^{3}}=d^{q}=1, d^{-1} a d=a^{\alpha_{3}}\right\rangle \tag{12}\\
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, a b=b a, a d=d a, d^{-1} b d=b^{\alpha}\right\rangle \tag{13}\\
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, a b=b a, d^{-1} a d=a^{\alpha_{2}}, d b=b d\right\rangle \tag{14}\\
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, a b=b a, d^{-1} a d=a^{\alpha_{2}}, d^{-1} b d=b^{\alpha_{2}^{i}}\right\rangle \tag{15}
\end{gather*}
$$

where $1 \leqslant i \leqslant q-1$.

$$
\begin{align*}
& \langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, b c=c b \tag{16}\\
& \left.\quad a d=d a, b d=d b, d^{-1} c d=c^{\alpha}\right\rangle \\
& q=2 \cdot\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{2}=1, a b=b a, a c=c a \\
& \left.\quad b c=c b, a d=d a, d b d=b^{-1}, d c d=c^{-1}\right\rangle \tag{17}\\
& q>2 \cdot\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a \\
& \left.\quad b c=c b, a d=d a, d^{-1} b d=b^{\alpha}, d^{-1} c d=c^{\alpha^{\lambda}}\right\rangle
\end{align*}
$$

where λ represents the different solutions of $x y \equiv 1(\bmod q)$, in which $b \equiv a^{x}(\bmod p)$, and a and b are the primitive roots of $q(\bmod p)$.

$$
\begin{gather*}
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, b c=c b, \\
\left.\quad d^{-1} a d=a^{\alpha}, d^{-1} b d=b^{\alpha^{x}}, d^{-1} c d=c^{\alpha^{y}}\right\rangle \tag{18}
\end{gather*}
$$

where $q \equiv 0$ or $\pm 1(\bmod 3)$, and x and y may have any of the values $1,2, \ldots, q-1$.

$$
\begin{gather*}
\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, b^{-1} a b=a^{p+1}, b d=d b, d^{-1} a d=a^{\alpha_{2}}\right\rangle \tag{19}\\
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a \\
\left.a d=d a, c^{-1} b c=a b, d^{-1} b d=b^{\alpha}, d^{-1} c d=c^{\alpha^{q-1}}\right\rangle \tag{20}\\
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, c^{-1} b c=a b \\
\left.d^{-1} a d=a^{\alpha}, d b=b d, d^{-1} c d=c^{\alpha}\right\rangle \tag{21}\\
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, c^{-1} b c=a b \\
\left.d^{-1} a d=a^{\alpha}, d^{-1} b d=b^{\alpha^{x}}, d^{-1} c d=c^{\alpha^{q+1-x}}\right\rangle \tag{22}
\end{gather*}
$$

where $x=2$ or $3, \ldots$, or $\frac{q+1}{2}$ and $q>2$.
When $p \equiv-1(\bmod q)$, and $q>2$, there are the following two types:

$$
\begin{gather*}
\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, b c=c b, \\
\left.a d=d a, d^{-1} b d=c, d^{-1} c d=b^{-1} c^{t^{p}+t}\right\rangle \tag{23}
\end{gather*}
$$

where t (here and in the next group) is any primitive Galoisian root of $t^{q} \equiv 1(\bmod p)$.

$$
\begin{align*}
& \langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, c^{-1} b c=a b \\
& \left.\quad a d=d a, d^{-1} b d=c, d^{-1} c d=b^{-1} c^{t^{p}+t}\right\rangle \tag{24}
\end{align*}
$$

And, lastly, when $p^{2}+p+1 \equiv 0(\bmod q)$, and $q>3$, there is the following type:

$$
\begin{align*}
& \langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{q}=1, a b=b a, a c=c a, b c=c b \\
& \left.\quad d^{-1} a d=b, d^{-1} b d=c, d^{-1} c d=a b^{-\lambda^{-1}-\lambda^{-p}-\lambda^{-p^{2}}} c^{\lambda+\lambda^{p}+\lambda^{p^{2}}}\right\rangle \tag{25}
\end{align*}
$$

where λ is a Galois imaginary of the third order, which is a primitive root of $\lambda^{q} \equiv 1(\bmod p)$.

In what follows, we use the following notations frequently:

- $\mathcal{M}(G)$ is the Schur multiplier of G;
- $G^{a b}$ is the abelianization of G;
- C_{p}^{k} is the direct product of k copies of the cyclic group of order p;
- $E_{p^{3}}^{1}$ is the extraspecial p-group of order p^{3} and exponent p;
- Φ_{i} is the isoclinic family of groups of order p^{n}, where $n \leqslant 6$ and $p \neq 2$ given in [10].

2. Capable and unicentral groups

For a group G, the commutator map induces the homomorphisms $k: G \otimes G \rightarrow G$ and $k^{\prime}: G \wedge G \rightarrow G$ such that $k(g \otimes h)=k^{\prime}(g \wedge h)=[g, h]$ for all $g, h \in G$. The kernel of k and k^{\prime} denoted by $J_{2}(G)$ and $\mathcal{M}(G)$, respectively. In order to study the capability of groups of order $p^{3} q, p>2$, we first compute their nonabelian exterior squares. Also it will be useful to know the nonabelian tensor squares and Schur multipliers of such groups which are described in [11]. The following result (part (ii)) will be used in proof of Proposition 3. It is an immediate consequence of part (i).

Proposition 1. Let G be a finite polycyclic group with a polycyclic generating sequence g_{1}, \ldots, g_{k}. Then
(i) $G \otimes G=\left\langle g_{i} \otimes g_{i}, g_{i} \otimes g_{j},\left(g_{i} \otimes g_{j}\right)\left(g_{j} \otimes g_{i}\right)\right\rangle([3$, Proposition 20] $)$.
(ii) $G \wedge G=\left\langle g_{i} \wedge g_{j}\right\rangle$ where $1 \leqslant j<i \leqslant k$.

Proposition 2. Let G be a nonabelian group of order $p^{3} q$ with $2<p<q$. Then

$$
G \wedge G \cong \begin{cases}C_{p}, & \text { if } G \text { is of type (1) } \\ C_{q}, & \text { if } G \text { is any group of types (3), (9) or (11) } \\ C_{p q}, & \text { if } G \text { is any group of types (4), (5), (7) or (10) } \\ C_{p}^{3}, & \text { if } G \text { is of type (2) } \\ C_{p}^{3} \times C_{q}, & \text { if } G \text { is any group of types (6) or (8) }\end{cases}
$$

Proof. When $\mathcal{M}(G) \cong 1$ we have $G \wedge G \cong G^{\prime}$. So for groups of types (1), (3), (7), (9) or (11) the result follows by [11, Proposition 3.1]. If G is of type (4), then $\mathcal{M}(G) \cong C_{p}$ by [11, Proposition 3.1]. Moreover, we have $G^{\prime} \cong C_{q}$. Since G^{\prime} is isomorphic with the central factor $\operatorname{group}(G \wedge G) / \mathcal{M}(G)$, then $G \wedge G$ is an abelian group of order $p q$. Utilizing the same method we can show that $G \wedge G \cong C_{p q}$ for any group of types (5) or (10).

If G is of type (2), then [11, Proposition 3.1] shows that $\mathcal{M}(G) \cong C_{p}^{2}$. Also we have $G^{\prime} \cong C_{p}$. Hence $|G \wedge G|=p^{3}$. Now it is easily seen that $G / N \cong E_{p^{3}}^{1}$, where $N=\langle d\rangle$. Since $E_{p^{3}}^{1} \wedge E_{p^{3}}^{1} \cong C_{p}^{3}$ (see [13, Proposition

34]), we have $G \wedge G \cong E_{p^{3}}^{1} \wedge E_{p^{3}}^{1}$ which is generated by $a \wedge b, a \wedge c$ and $b \wedge c$.

If G is of type (6), then [11, Proposition 3.1] shows that $\mathcal{M}(G) \cong C_{p}^{3}$. Also we have $G^{\prime} \cong C_{q}$. Hence $|G \wedge G|=p^{3} q$. Set $N=\langle d\rangle \cong C_{q}$, then $G / N \cong C_{p}^{3}$ and $G / N \wedge G / N \cong C_{p}^{3}$. Therefore $a \wedge b, a \wedge c$ and $b \wedge c$ are non-trivial independent generators of $G \wedge G$. On the other hand, the epimorphism $G \wedge G \longrightarrow G^{\prime}$ together with the equation $d^{q} \wedge c=(d \wedge c)^{q}=1$ imply that $d \wedge c$ is a non-trivial generator of $G \wedge G$ whose order is q. Moreover, $d \wedge c$ is independent of the above three generators. Thus $G \wedge G$ is an abelian group isomorphic with $C_{p}^{3} \times C_{q}$. For group (8), the desired result follows similarly by considering the factor group $G /\langle d\rangle \cong E_{1}$.

Proposition 3. Let G be a nonabelian group of order $p^{3} q$ with $p>q$ and $p>2$. Then

Proof. If G is any group of types (12), (13), (14), (19), (20) or (24), then $\mathcal{M}(G) \cong 1$ by [11, Proposition 3.2], whence $G \wedge G \cong G^{\prime}$. If G is of type (16), then [11, Proposition 3.2] shows that $\mathcal{M}(G) \cong C_{p}$. Also we have $G^{\prime} \cong C_{p}$. Hence $|G \wedge G|=p^{2}$. Now set $N=\langle c, d\rangle$. The natural homomorphism $G \wedge G \longrightarrow G / N \wedge G / N$ implies that $a \wedge b$ is a non-trivial generator of
$G \wedge G$. Since $a^{p} \wedge b=(a \wedge b)^{p}=1$, then $|a \wedge b|=p$. In addition, it is clear that $c \wedge d$ is a non-trivial generator of $G \wedge G$ which is independent of $a \wedge b$, for $[c, d] \neq 1$. As $c^{p} \wedge d=(c \wedge d)^{p}=1$, it follows that $|c \wedge d|=p$. Therefore we deduce that $G \wedge G=\langle a \wedge b, c \wedge d\rangle \cong C_{p}^{2}$.

Assume G is any group of types (17), (21) or (23). Then $\mathcal{M}(G) \cong 1$ or C_{p} by [11, Proposition 3.2]. If $\mathcal{M}(G) \cong 1$, then $G \wedge G \cong C_{p}^{2}$. Suppose G is of type (17) and $\mathcal{M}(G) \cong C_{p}$. Then $|G \wedge G|=p^{3}$. Set $N=\langle a\rangle$. Obviously $(G / N)^{\prime} \cong C_{p}^{2}$ and $(G / N)^{a b} \cong C_{q}$. By the [11, proof of Proposition 3.2] we know that in this case $\mathcal{M}(G / N) \cong C_{p}$. Hence it follows from [8, Theorem C] that $G / N \otimes G / N \cong C_{q} \times H$ where H is an extraspecial p-group of order p^{3}. Now, [5, Proposition 8] implies that $G / N \wedge G / N \cong H$. Therefore $G \wedge G \cong G / N \wedge G / N$. As $b \wedge c, b \wedge d$ and $c \wedge d$ are non-trivial independent generators of orders p, then $G \wedge G=\langle b \wedge c, b \wedge d, c \wedge d\rangle \cong E_{p^{3}}^{1}$.

Assume G is of type (21) and $\mathcal{M}(G) \cong C_{p}$. We know that $|G \wedge G|=p^{3}$. The polycyclic presentation of G is as follows:

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| a_{1}^{q}=a_{2}^{p}=a_{3}^{p}=a_{4}^{p}=1, a_{2}^{a_{1}}=a_{2}^{\alpha}, a_{3}^{a_{1}}=a_{3}, \\
& \left.a_{4}^{a_{1}}=a_{4}^{\alpha}, a_{3}^{a_{2}}=a_{3} a_{4}, a_{4}^{a_{2}}=a_{4}, a_{4}^{a_{3}}=a_{4}\right\rangle .
\end{aligned}
$$

The above generating set form polycyclic generating sequence so that Proposition 1 provides a generating set $\left\{a_{2} \wedge a_{1}, a_{3} \wedge a_{1}, a_{4} \wedge a_{1}, a_{3} \wedge\right.$ $\left.a_{2}, a_{4} \wedge a_{2}, a_{4} \wedge a_{3}\right\}$ for $G \wedge G$. Obviously $a_{4} \wedge a_{3}=a_{3} \wedge a_{1}=1$. We claim that $a_{3} \wedge a_{2}$ can be generated by $a_{4} \wedge a_{2}$ and $a_{4} \wedge a_{1}$. First by induction observe that for any integer $n, a_{3} \wedge a_{2}^{n}=\left(a_{3} \wedge a_{2}\right)^{n}\left(a_{4} \wedge a_{2}\right)^{\binom{n}{2}}$. Furthermore $a_{3}^{-1} \wedge a_{2}^{n}=\left(a_{4} \wedge a_{2}\right)^{-\binom{n}{2}}\left(a_{3} \wedge a_{2}\right)^{-n}$, which implies that $a_{3}^{-1} \wedge a_{2}^{\alpha-1}=\left(a_{4} \wedge a_{2}\right)^{-\binom{\alpha-1}{2}}\left(a_{3} \wedge a_{2}\right)^{1-\alpha}$. On the other hand $a_{3}^{-1} \wedge a_{2}^{\alpha-1}=$ $a_{3}^{-1} \wedge\left[a_{2}, a_{1}\right]=\left(a_{2} \wedge a_{4}\right)^{\alpha-1}\left(a_{4} \wedge a_{1}\right)$. So the claim holds by equating the last two equalities. Therefore $G \wedge G=\left\langle a_{4} \wedge a_{2}, a_{4} \wedge a_{1}, a_{2} \wedge a_{1}\right\rangle$. The epimorphism $G \wedge G \longrightarrow G^{\prime}$ implies that $a_{4} \wedge a_{1}$ and $a_{2} \wedge a_{1}$ are non-trivial independent generators whose orders are divided by p. On the other hand $a_{4}^{p} \wedge a_{1}=\left(a_{4} \wedge a_{1}\right)^{p}=1$ and $a_{2}^{p} \wedge a_{1}=\left(a_{2} \wedge a_{1}\right)^{p}=1$. Hence $\left|a_{4} \wedge a_{1}\right|=\left|a_{2} \wedge a_{1}\right|=p$. As $\left[a_{4} \wedge a_{1}, a_{2} \wedge a_{1}\right]=\left\langle a_{4} \wedge a_{2}\right\rangle=\mathcal{M}(G)$, then $G \wedge G \cong E_{p^{3}}^{1}$.

Assume G is of type (23) and $\mathcal{M}(G) \cong C_{p}$. So $|G \wedge G|=p^{3}$. Put $Z=\langle a\rangle \leqslant Z(G)$. Since $(G / Z)^{\prime}$ has the cyclic complement $(G / Z)^{a b} \cong C_{q}$, then $G / Z \otimes G / Z \cong(G / Z \wedge G / Z) \times C_{q}$ by [5, Proposition 8]. On the other hand it follows from [12, Theorem 2.5.5] that $\mathcal{M}(G / Z) \cong C_{p}$. Hence [8, Theorem C] yields that $G / Z \wedge G / Z \cong E_{p^{3}}^{1}$ so that $G / Z \wedge G / Z \cong$ $G \wedge G \cong E_{p^{3}}^{1}$.

Assume G is of type (15). Then by [11, Proposition 3.2], either $\mathcal{M}(G) \cong$ 1 when $1 \leqslant i \leqslant q-2$ or $\mathcal{M}(G) \cong C_{p}$ when $i=q-1$. If $\mathcal{M}(G) \cong 1$, then $G \wedge G \cong C_{p^{2}} \times C_{p}$. In the case $\mathcal{M}(G) \cong C_{p}$, first observe by [11, Corollary 3.4] that $|G \otimes G|=p^{4} q$. Also, [11, Proposition 2.4] and exact sequence $1 \rightarrow J_{2}(G) \rightarrow G \otimes G \rightarrow G^{\prime} \rightarrow 1$ show that $J_{2}(G) \cong C_{p} \times C_{q}$. Since G^{\prime} is abelian, we also have $(G \otimes G)^{\prime} \subseteq J_{2}(G)$. From the presentation of G, we find that $a \otimes b$ and $d \otimes d$ belong to $J_{2}(G)$, which imply that $J_{2}(G)=\langle a \otimes b\rangle \times\langle d \otimes d\rangle$, as $\left|J_{2}(G)\right|=p q$. Thus $|a \otimes b|=p$. On the other hand, from the natural epimorphism $\pi: G \otimes G \rightarrow G^{a b} \otimes G^{a b}$, we have $|k e r \pi|=p^{4}$ and $(G \otimes G)^{\prime} \subseteq k e r \pi$. Hence $\left|(G \otimes G)^{\prime}\right| \mid p^{4}$. Since $(G \otimes G)^{\prime} \subseteq J_{2}(G)$, we also get $\left|(G \otimes G)^{\prime}\right| \mid p q$, from which it follows that $\left|(G \otimes G)^{\prime}\right| \mid p$. Consequently we have $(G \otimes G)^{\prime}=\langle a \otimes b\rangle \cong C_{p}$. As every element g in G may be presented by $g=a^{r} b^{s} d^{t}$ for some integers r, s, t, then one can easily show that $G \wedge G=\langle a \wedge b, b \wedge d, a \wedge d\rangle$. Now the epimorphism $k^{\prime}: G \wedge G \longrightarrow G^{\prime}$ implies that $p^{2}| | a \wedge d \mid$. Also it follows by induction on any integer n that $a^{n} \wedge d=(a \wedge d)^{n}$. So $|a \wedge d| \mid p^{2}$ whence $|a \wedge d|=p^{2}$. Similarly $|b \wedge d|=p$. Now from the fact that $G \wedge G$ is a nonabelian group of order p^{4}, it follows that $G \wedge G \cong \Phi_{2}(211) c$ (see [10]).

Assume G is of type (18). Then by [11, Proposition 3.2], $\mathcal{M}(G) \cong$ $1, C_{p}, C_{p}^{2}$ or C_{p}^{3}. If $\mathcal{M}(G)=1$, then $G \wedge G \cong G^{\prime}$. Suppose that $\mathcal{M}(G) \cong C_{p}$. It is readily seen that $|G \wedge G|=p^{4}$. The polycyclic presentation of G is as follows:

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| a_{1}^{q}=a_{2}^{p}=a_{3}^{p}=a_{4}^{p}=1, a_{2}^{a_{1}}=a_{2}^{\alpha}, a_{3}^{a_{1}}=a_{3}^{c_{3}} \\
& \left.\quad a_{4}^{a_{1}}=a_{4}^{c_{4}}, a_{3}^{a_{2}}=a_{3}, a_{4}^{a_{2}}=a_{4}, a_{4}^{a_{3}}=a_{4}\right\rangle
\end{aligned}
$$

in which $c_{3}=\alpha^{x} \bmod p$ and $c_{4}=\alpha^{y} \bmod p$. By Proposition 1 we get

$$
G \wedge G=\left\langle a_{2} \wedge a_{1}, a_{3} \wedge a_{1}, a_{4} \wedge a_{1}, a_{3} \wedge a_{2}, a_{4} \wedge a_{2}, a_{4} \wedge a_{3}\right\rangle
$$

and $\mathcal{M}(G)=\left\langle a_{3} \wedge a_{2}, a_{4} \wedge a_{2}, a_{4} \wedge a_{3}\right\rangle$. It follows from the epimorphism $G \wedge G \longrightarrow G^{\prime}$ that $a_{2} \wedge a_{1}, a_{3} \wedge a_{1}$ and $a_{4} \wedge a_{1}$ are non-trivial independent generators such that p divides their orders. On the other hand $a_{2}^{p} \wedge a_{1}=$ $\left(a_{2} \wedge a_{1}\right)^{p}=1, a_{3}^{p} \wedge a_{1}=\left(a_{3} \wedge a_{1}\right)^{p}=1$, and $a_{4}^{p} \wedge a_{1}=\left(a_{4} \wedge a_{1}\right)^{p}=1$. Hence $\left|a_{2} \wedge a_{1}\right|=\left|a_{3} \wedge a_{1}\right|=\left|a_{4} \wedge a_{1}\right|=p$. Moreover it is shown in [11, proof of Theorem B] that

$$
\begin{gathered}
(G \wedge G)^{\prime}=\left\langle\left(a_{2} \wedge a_{3}\right)^{(\alpha-1)\left(c_{3}-1\right)},\left(a_{2} \wedge a_{4}\right)^{(\alpha-1)\left(c_{4}-1\right)},\right. \\
\left.\left.\left(a_{3} \wedge a_{4}\right)^{\left(c_{3}-1\right)\left(c_{4}-1\right)}\left(a_{2} \wedge a_{3}\right)^{\left(c_{4}-1\right)\left({ }_{3}-1\right.}\right)\right\rangle
\end{gathered}
$$

and consequently $(G \wedge G)^{\prime}=\mathcal{M}(G)$. Therefore by applying [10] we conclude that $G \wedge G \cong \Phi_{2}\left(1^{4}\right)$. For the case $\mathcal{M}(G) \cong C_{p}^{2}$, as $(G \wedge$
$G) / Z(G \wedge G)$ is abelian group of order p^{3} and by using [10], likewise above we deduce that $G \wedge G \cong \Phi_{4}\left(1^{5}\right)$. Finally, if $\mathcal{M}(G) \cong C_{p}^{3}$, the result follows by a same method.

Assume G is of type (25). Then from [11, Proposition 3.2] we have $\mathcal{M}(G) \cong 1, C_{p}, C_{p}^{2}$ or C_{p}^{3}. By a same argument as for the group (18) we can show that $G \wedge G \cong C_{p}^{3}, \Phi_{2}\left(1^{4}\right), \Phi_{4}\left(1^{5}\right)$ or $\Phi_{11}\left(1^{6}\right)$, respectively (for more details see the proof of Theorem B in [11]). Note that the polycyclic presentation of G is as follows:

$$
\begin{gathered}
\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| a_{1}^{q}=a_{2}^{p}=a_{3}^{p}=a_{4}^{p}=1, a_{2}^{a_{1}}=a_{3}, a_{3}^{a_{1}}=a_{4}, \\
\left.\quad a_{4}^{a_{1}}=a_{2} a_{3}^{s} a_{4}^{t}, a_{3}^{a_{2}}=a_{3}, a_{4}^{a_{2}}=a_{4}, a_{4}^{a_{3}}=a_{4}\right\rangle
\end{gathered}
$$

where $s=-\lambda^{-1}-\lambda^{-p}-\lambda^{-p^{2}} \bmod p$ and $t=\lambda+\lambda^{p}+\lambda^{p^{2}} \bmod p$.
For the group (22) the result follows similarly. Here the polycyclic presentation of G is as follows:

$$
\begin{aligned}
& \left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| a_{1}^{q}=a_{2}^{p}=a_{3}^{p}=a_{4}^{p}=1, a_{2}^{a_{1}}=a_{2}^{c_{3}}, a_{3}^{a_{1}}=a_{3}^{c_{2}} \\
& \left.\quad a_{4}^{a_{1}}=a_{4}^{\alpha}, a_{3}^{a_{2}}=a_{3} a_{4}, a_{4}^{a_{2}}=a_{4}, a_{4}^{a_{3}}=a_{4}\right\rangle
\end{aligned}
$$

in which $c_{3}=\alpha^{q+1-x} \bmod p$ and $c_{2}=\alpha^{x} \bmod p$.
Now we are ready to compute the exterior centers of all the groups in Theorem 1, and then determine those that are capable.

Theorem 2. Let G be a nonabelian group of order $p^{3} q$, where p and q are distinct prime numbers and $p>2$. Then

$$
Z^{\wedge}(G) \cong \begin{cases}C_{p q}, & \text { if } G \text { is of type (1) } \\
C_{q}, & \text { if } G \text { is of type (2) } \\
C_{p}, & \text { if } G \text { is any group of types (4), } \\
& \begin{array}{ll}
\text { (5), (7), (9), (14), (17), (20) } \\
& \text { (23) (24) }
\end{array} \\
C_{p^{2}}, & \text { if } G \text { is of type (3) or (13) }\end{cases}
$$

In other cases, $Z^{\wedge}(G)=1$.
Proof. Note that if $\mathcal{M}(G)=1$, then $Z^{\wedge}(G)=Z(G)$. So for groups of types (1), (3), (7), (9), (11), (12), (13), (14), (19), (20) or (24) the result follows easily. Assume G is of type (2). Then $Z(G)=\langle a, d\rangle$. By Proposition 2, $G \wedge G=\langle a \wedge b, a \wedge c, b \wedge c\rangle$, which implies that $a \notin Z^{\wedge}(G)$, whence $Z^{\wedge}(G)=\langle d\rangle \cong C_{q}$. If G is of type (4), then $Z(G)=\langle a\rangle \cong C_{p^{2}}$. We claim
that $G \wedge G=\langle a \wedge b, b \wedge d\rangle$. First, it can be shown that $1=a \wedge b^{p}=(a \wedge b)^{p}$ and $1=b \wedge d^{q}=\left(d^{\alpha-1} \wedge d\right)^{q}(b \wedge d)^{q}=(b \wedge d)^{q}$. Note that $d^{i} \wedge d^{j}=1$ modulo $G \wedge G$ for any integers i, j. On the other hand, the epimorphisms $G \wedge G \longrightarrow G^{a b} \wedge G^{a b}$ and $G \wedge G \longrightarrow G^{\prime}$ imply that $a \wedge b$ and $b \wedge d$ are non-trivial generators, respectively. Now, since p and q are coprime, it follows that these generators are independent, as desired. It shows that $a \notin Z^{\wedge}(G)$. Moreover, by induction on any integer n, we can prove that $a^{n} \wedge b=a \wedge b^{n}$. Hence $a^{p} \wedge b=1$. Also $a^{p} \wedge d=1$, because $a^{p} \wedge d$ has order dividing p and q, which implies that $Z^{\wedge}(G)=\left\langle a^{p}\right\rangle \cong C_{p}$. For group (5), one can readily show that $G \wedge G=\langle a \wedge b, a \wedge d\rangle$ and $Z^{\wedge}(G)=\left\langle a^{p}\right\rangle \cong C_{p}$ as same as above.

If G is of type (6), then $Z(G)=\langle a, b\rangle$. Also by Proposition 2 we have

$$
G \wedge G=\langle a \wedge b, a \wedge c, b \wedge c, c \wedge d\rangle
$$

which implies that $a, b \notin Z^{\wedge}(G)$. Thus $Z^{\wedge}(G)=1$. For the type (16), the result follows by a same method. The exterior square of group (10) is generated by $a \wedge b$ and $a \wedge d$. So for any group of types (8) or (10), as $a \wedge b \neq 1$ then $Z^{\wedge}(G)=1$. If G is of type (17), then $Z(G)=\langle a\rangle \cong C_{p}$. When $\mathcal{M}(G)=1$, we have $Z^{\wedge}(G)=Z(G)$. If $\mathcal{M}(G) \cong C_{p}$, it follows from the generators set of $G \wedge G$ described in proof of Proposition 3 that $Z^{\wedge}(G)=\langle a\rangle$. For the group (23) the result follows similarly.

For any group of types (15), (18), (21), (22) and (25), it is clear that $Z(G)=1$. Hence $Z^{\wedge}(G)=1$.

Corollary 1. Let G be a nonabelian group of order $p^{3} q$, where p and q are distinct prime numbers and $p>2$. Then G is capable if and only if G is any group of types (6), (8), (10), (11), (12), (15), (16), (18), (19), (21), (22) or (25).

We now consider the case of unicentral groups. Recall that the unicentral groups lie at the opposite extreme as the capable groups: a group G is unicentral if and only if the smallest subgroup N of $Z(G)$ such that G / N is capable is $N=Z(G)$ [2]; that is, if and only if $Z^{\wedge}(G)=Z(G)$.

Corollary 2. Let G be a nonabelian group of order $p^{3} q$, where p and q are distinct prime numbers and $p>2$. Then G is unicentral if and only if G is any group of types (1), (3), (7), (9), (11), (12), (13), (14), (15), (17), (18), (19), (20), (21), (22), (23), (24) or (25).

Remark 1. There are three abelian groups of order $p^{3} q$. It follows from [2, Proposition 7.3] (see also [14, Proposition 2.6]) that none of them are
capable. Also the cyclic group $C_{p^{3} q}$ is the only abelian unicentral group of order $p^{3} q$.

Remark 2. The final summary table of groups determined by Western [17] has a group missing in the case that $q \equiv 1(\bmod p)$. The following missing group appears in Western's analysis in Section 13:

$$
\begin{equation*}
G=\left\langle a, b, d \mid a^{p^{2}}=b^{p}=d^{q}=1, b^{-1} a b=a^{p+1}, a^{-1} d a=d^{\alpha}, b d=d b\right\rangle \tag{26}
\end{equation*}
$$

where α is any primitive root of $\alpha^{p} \equiv 1(\bmod q)$. It follows from [11] that $G \wedge G \cong G^{\prime} \cong C_{p q}$. One could readily seen that $Z^{\wedge}(G)=Z(G)$ which implies that G is unicentral.

References

[1] R. Baer, Groups with preassigned central and central quotient group, Trans. Amer. Math. Soc. 44 (1938), 387-412.
[2] F. R. Beyl, U. Felgner, P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.
[3] R. D. Blyth, R. F. Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra 321(8) (2009), 2139-2148.
[4] R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335.
[5] R. Brown, D. L. Johnson, E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), 177-202.
[6] G. Ellis, On the capability of groups, Proc. Edinburgh Math. Soc. 41 (1998), 487-495.
[7] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.
[8] S. H. Jafari, P. Niroomand, A. Erfanian, The nonabelian tensor square and Schur multiplier of group of order $p^{2} q$ and $p^{2} q r$, Algebra Colloq. 19 (2012), 1083-1888.
[9] S. H. Jafari, Categorizing finite p-groups by the order of their non abelian tensor squares, J. Algebra Appl. 15(5) (2016), 1650095-1,1650095-13.
[10] R. James, The groups of order p^{6} (p an odd prime), Math. Comp. 34 (1980), 613-637.
[11] O. Kalteh, S. Hadi Jafari, Computing the nonabelian tensor squares of groups of order $p^{3} q$, Arabian J. Math. 10 (2021), 103-113.
[12] G. Karpilovsky, The Schur Multiplier, LMS Monogrphs New Series 2. New York: Oxford University Press, 1987.
[13] A. Magidin, R. F. Morse, Certain homological functors of 2-generator p-groups of class 2, Contemp. Math. 511 (2010), 127-166.
[14] M. R. R. Moghaddam, P. Niroomand, S. Hadi Jafari, Some properties of tensor centre of groups, J. Korean Math. Soc. 46(2) (2009), 249-256.
[15] S. Rashid, N. H. Sarmin, A. Erfanian, N. M. Mohd Ali, R. Zainal, On the nonabelian tensor square and capability of groups of order 8q, Indag. Math. (N.S.), 24(3) (2013), 581-588.
[16] M. Seifi, S. Hadi Jafari, On the capability of finite p-groups with derived subgroup of order p, Comm. Algebra 47(7) (2019), 2920-2930.
[17] A. E. Western, Groups of order $p^{3} q$, Proc. London Math. Soc. 30 (1899), 209-263.

Contact information

O. Kalteh, S. Hadi Jafari
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-Mail(s): kaltehstudent@yahoo.com, s.hadi_jafari@yahoo.com

Received by the editors: 03.07.2020
and in final form 08.11.2020.

[^0]: *Corresponding author.
 2020 MSC: Primary 20D15; Secondary 20J99.
 Key words and phrases: nonabelian exterior square, capable group.

