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3
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Abstract. In this paper, we study on the capability of

groups of order p3q, where p and q are distinct prime numbers and

p > 2.

1. Introduction and motivation

A group G is called capable if there exists a group E such that
G ∼= E/Z(E). The study of capable groups goes back to Baer [1], who
determined all őnitely generated abelian capable groups. P. Hall remarked
in [7] that characterizations of capable groups are important in classifying
groups of prime power order. In 1979, Beyl et al. [2] studied capable groups
by focusing on a characteristic subgroup Z∗(G), called the epicenter of
G, which is the smallest central subgroup of G such that G/Z∗(G) is
capable. Therefore the triviality of the epicenter of a group is a criterion
for capability of the group.

Graham Ellis [6] characterized the epicenter in terms of the nonabelian
exterior square as deőned below. Once the nonabelian exterior square
of a group is known, it is not too hard to determine its epicenter. For a
group G, the nonabelian tensor square G⊗G is the group generated by
the symbols g ⊗ h subject to the relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h) and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′),
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for all g, g′, h, h′ ∈ G, where G acts on itself by conjugation, i.e. gg′ =
gg′g−1. The nonabelian tensor square is a special case of the nonabelian
tensor product which introduced by Brown and Loday in [4]. The non-
abelian exterior square G ∧ G is obtained by imposing the additional
relations g⊗g = 1 on G⊗G, for all g ∈ G. The nonabelian exterior square
of a group G, deőnes the central subgroup Z∧(G) of G called the exterior
center, which is deőned as follows:

Z∧(G) = {g ∈ G | g ∧ x = 1; ∀ x ∈ G}.

G. Ellis [6] established that Z∧(G) = Z∗(G). So the following criterion
follows immediately:

A group G is capable if and only if Z∧(G) = 1.

Regarding to the P. Hall’s remark mentioned above, many authors have
been interested in characterizing the capable groups among the speciőc
classes of groups, for example, see [3,9,13,16]. In particular, the capability
of groups of order 8q, q is an odd prime, was studied in [15]. In this paper,
our goal is to complete the latter work by studying on the capability of
groups of order p3q, where p and q are distinct prime numbers and p > 2.
We őrst determine the epicenter for those groups and then identify the
capable ones among them. In 1899, Western [17] classiőed the groups of
order p3q. He proved that there are 25 types of nonabelian groups of order
p3q, where p is an odd prime.

Theorem 1. [17, pp. 258-261]. Let G be a nonabelian group of order p3q,
where p and q are distinct prime numbers and p > 2. Then G is one of
the following types:

⟨a, b, d | ap
2

= bp = dq = 1, b−1ab = ap+1, ad = da, bd = db⟩, (1)

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, c−1bc = ab,

ad = da, bd = db, cd = dc⟩ (2)

If q ≡ 1 (mod p), there are the following:

⟨a, d | ap
3

= dq = 1, a−1da = dα⟩ (3)



106 Capable groups of order p3q

where α (here and in the next őve groups) is any primitive root of αp ≡ 1
(mod q).

⟨a, b, d | ap
2

= bp = dq = 1, ab = ba, ad = da, b−1db = dα⟩ (4)

⟨a, b, d | ap
2

= bp = dq = 1, ab = ba, a−1da = dα, bd = db⟩ (5)

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, bc = cb,

ad = da, bd = db, c−1dc = dα⟩
(6)

⟨a, b, d | ap
2

= bp = dq = 1, b−1ab = ap+1, ad = da, b−1db = dβ⟩ (7)

where β = α, or α2,. . . , or αp−1.

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, ad = da,

bd = db, c−1bc = ab, c−1dc = dα⟩
(8)

⟨a, d | ap
3

= dq = 1, a−1da = dα⟩ (9)

where α (here and in the next group) is any primitive root of αp2 ≡ 1
(mod q).

⟨a, b, d | ap
2

= bp = dq = 1, ab = ba, a−1da = dα, bd = db⟩ (10)

⟨a, d | ap
3

= dq = 1, a−1da = dα⟩ (11)

where α is any primitive root of αp3 ≡ 1 (mod q).
When p ≡ 1 (mod q), there are the following types (where α, α2 and

α3 are the primitive qth root of unity modulo p, p2 and p3 respectively):

⟨a, d | ap
3

= dq = 1, d−1ad = aα3⟩ (12)

⟨a, b, d | ap
2

= bp = dq = 1, ab = ba, ad = da, d−1bd = bα⟩ (13)

⟨a, b, d | ap
2

= bp = dq = 1, ab = ba, d−1ad = aα2 , db = bd⟩ (14)

⟨a, b, d | ap
2

= bp = dq = 1, ab = ba, d−1ad = aα2 , d−1bd = bα
i
2⟩ (15)

where 1 ⩽ i ⩽ q − 1.

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, bc = cb,

ad = da, bd = db, d−1cd = cα⟩
(16)

q = 2 · ⟨a, b, c, d | ap = bp = cp = d2 = 1, ab = ba, ac = ca,

bc = cb, ad = da, dbd = b−1, dcd = c−1⟩
(17)

q > 2 · ⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca,

bc = cb, ad = da, d−1bd = bα, d−1cd = cα
λ

⟩



O. Kalteh, S. Hadi Jafari 107

where λ represents the different solutions of xy ≡ 1 (mod q), in which
b ≡ ax (mod p), and a and b are the primitive roots of q (mod p).

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, bc = cb,

d−1ad = aα, d−1bd = bα
x

, d−1cd = cα
y

⟩ (18)

where q ≡ 0 or ±1 (mod 3), and x and y may have any of the values
1, 2, . . . , q − 1.

⟨a, b, d | ap
2

= bp = dq = 1, b−1ab = ap+1, bd = db, d−1ad = aα2⟩ (19)

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca,

ad = da, c−1bc = ab, d−1bd = bα, d−1cd = cα
q−1

⟩
(20)

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, c−1bc = ab,

d−1ad = aα, db = bd, d−1cd = cα⟩
(21)

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, c−1bc = ab,

d−1ad = aα, d−1bd = bα
x

, d−1cd = cα
q+1−x

⟩
(22)

where x = 2 or 3,. . . ,or q+1
2 and q > 2.

When p ≡ −1 (mod q), and q > 2, there are the following two types:

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, bc = cb,

ad = da, d−1bd = c, d−1cd = b−1ct
p+t⟩ (23)

where t (here and in the next group) is any primitive Galoisian root of
tq ≡ 1 (mod p).

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, c−1bc = ab,

ad = da, d−1bd = c, d−1cd = b−1ct
p+t⟩. (24)

And, lastly, when p2+p+1 ≡ 0 (mod q), and q > 3, there is the following
type:

⟨a, b, c, d | ap = bp = cp = dq = 1, ab = ba, ac = ca, bc = cb,

d−1ad = b, d−1bd = c, d−1cd = ab−λ−1
−λ−p

−λ−p2

cλ+λp+λp2

⟩ (25)

where λ is a Galois imaginary of the third order, which is a primitive root
of λq ≡ 1 (mod p).

In what follows, we use the following notations frequently:
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• M(G) is the Schur multiplier of G;
• Gab is the abelianization of G;
• Ck

p is the direct product of k copies of the cyclic group of order p;
• E1

p3
is the extraspecial p-group of order p3 and exponent p;

• Φi is the isoclinic family of groups of order pn, where n ⩽ 6 and
p ̸= 2 given in [10].

2. Capable and unicentral groups

For a group G, the commutator map induces the homomorphisms
k : G⊗G → G and k′ : G∧G → G such that k(g⊗h) = k′(g∧h) = [g, h]
for all g, h ∈ G. The kernel of k and k′ denoted by J2(G) and M(G),
respectively. In order to study the capability of groups of order p3q, p > 2,
we őrst compute their nonabelian exterior squares. Also it will be useful to
know the nonabelian tensor squares and Schur multipliers of such groups
which are described in [11]. The following result (part (ii)) will be used in
proof of Proposition 3. It is an immediate consequence of part (i).

Proposition 1. Let G be a őnite polycyclic group with a polycyclic gen-
erating sequence g1, . . . , gk. Then

(i) G⊗G = ⟨gi ⊗ gi, gi ⊗ gj , (gi ⊗ gj)(gj ⊗ gi)⟩ ([3, Proposition 20]).
(ii) G ∧G = ⟨gi ∧ gj⟩ where 1 ⩽ j < i ⩽ k.

Proposition 2. Let G be a nonabelian group of order p3q with 2 < p < q.
Then

G ∧G ∼=































Cp, if G is of type (1)

Cq, if G is any group of types (3), (9) or (11)

Cpq, if G is any group of types (4), (5), (7) or (10)

C3
p , if G is of type (2)

C3
p × Cq, if G is any group of types (6) or (8)

Proof. When M(G) ∼= 1 we have G ∧G ∼= G′. So for groups of types (1),
(3), (7), (9) or (11) the result follows by [11, Proposition 3.1]. If G is of type
(4), then M(G) ∼= Cp by [11, Proposition 3.1]. Moreover, we have G′ ∼= Cq.
Since G′ is isomorphic with the central factor group (G∧G)/M(G), then
G ∧G is an abelian group of order pq. Utilizing the same method we can
show that G ∧G ∼= Cpq for any group of types (5) or (10).

If G is of type (2), then [11, Proposition 3.1] shows that M(G) ∼= C2
p .

Also we have G′ ∼= Cp. Hence |G ∧ G| = p3. Now it is easily seen that
G/N ∼= E1

p3
, where N = ⟨d⟩. Since E1

p3
∧ E1

p3
∼= C3

p (see [13, Proposition
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34]), we have G ∧G ∼= E1
p3

∧ E1
p3

which is generated by a ∧ b, a ∧ c and
b ∧ c.

If G is of type (6), then [11, Proposition 3.1] shows that M(G) ∼= C3
p .

Also we have G′ ∼= Cq. Hence |G ∧ G| = p3q. Set N = ⟨d⟩ ∼= Cq, then
G/N ∼= C3

p and G/N ∧ G/N ∼= C3
p . Therefore a ∧ b, a ∧ c and b ∧ c

are non-trivial independent generators of G ∧G. On the other hand, the
epimorphism G∧G −→ G′ together with the equation dq∧c = (d∧c)q = 1
imply that d ∧ c is a non-trivial generator of G ∧ G whose order is q.
Moreover, d∧ c is independent of the above three generators. Thus G∧G
is an abelian group isomorphic with C3

p × Cq. For group (8), the desired
result follows similarly by considering the factor group G/⟨d⟩ ∼= E1.

Proposition 3. Let G be a nonabelian group of order p3q with p > q and
p > 2. Then

G ∧G ∼=



















































































































































Cp, if G is of type (13)

C2
p , if G is of type (16)

C2
p or E1

p3
, if G is any group of types

(17), (21) or (23)

Cp2 , if G is any group of types (14)
or (19)

Cp2 × Cp, if G is of type (15) and
1 ⩽ i ⩽ q − 2

Φ2(211)c, if G is of type (15) and i = q − 1

Cp3 , if G is of type (12)

C3
p , Φ2(1

4), Φ4(1
5)

or Φ11(1
6),

if G is any group of types (18)
or (25)

E1
p3
, if G is any group of types (20)

or (24)

E1
p3
, Φ3(1

4) or Φ3(1
5), if G is of type (22)

Proof. If G is any group of types (12), (13), (14), (19), (20) or (24), then
M(G) ∼= 1 by [11, Proposition 3.2], whence G∧G ∼= G′. If G is of type (16),
then [11, Proposition 3.2] shows that M(G) ∼= Cp. Also we have G′ ∼= Cp.
Hence |G ∧ G| = p2. Now set N = ⟨c, d⟩. The natural homomorphism
G ∧ G −→ G/N ∧ G/N implies that a ∧ b is a non-trivial generator of
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G ∧ G. Since ap ∧ b = (a ∧ b)p = 1, then |a ∧ b| = p. In addition, it is
clear that c ∧ d is a non-trivial generator of G ∧G which is independent
of a ∧ b, for [c, d] ̸= 1. As cp ∧ d = (c ∧ d)p = 1, it follows that |c ∧ d| = p.
Therefore we deduce that G ∧G = ⟨a ∧ b, c ∧ d⟩ ∼= C2

p .

Assume G is any group of types (17), (21) or (23). Then M(G) ∼= 1 or
Cp by [11, Proposition 3.2]. If M(G) ∼= 1, then G∧G ∼= C2

p . Suppose G is
of type (17) and M(G) ∼= Cp. Then |G∧G| = p3. Set N = ⟨a⟩. Obviously
(G/N)′ ∼= C2

p and (G/N)ab ∼= Cq. By the [11, proof of Proposition 3.2] we
know that in this case M(G/N) ∼= Cp. Hence it follows from [8, Theorem
C] that G/N ⊗ G/N ∼= Cq × H where H is an extraspecial p-group of
order p3. Now, [5, Proposition 8] implies that G/N ∧G/N ∼= H . Therefore
G∧G ∼= G/N ∧G/N . As b∧ c, b∧ d and c∧ d are non-trivial independent
generators of orders p, then G ∧G = ⟨b ∧ c, b ∧ d, c ∧ d⟩ ∼= E1

p3
.

Assume G is of type (21) and M(G) ∼= Cp. We know that |G∧G| = p3.
The polycyclic presentation of G is as follows:

⟨a1, a2, a3, a4 | a
q
1 = ap2 = ap3 = ap4 = 1, aa12 = aα2 , a

a1
3 = a3,

aa14 = aα4 , a
a2
3 = a3a4, a

a2
4 = a4, a

a3
4 = a4⟩.

The above generating set form polycyclic generating sequence so that
Proposition 1 provides a generating set {a2 ∧ a1, a3 ∧ a1, a4 ∧ a1, a3 ∧
a2, a4 ∧ a2, a4 ∧ a3} for G ∧ G. Obviously a4 ∧ a3 = a3 ∧ a1 = 1. We
claim that a3 ∧ a2 can be generated by a4 ∧ a2 and a4 ∧ a1. First by

induction observe that for any integer n, a3 ∧ an2 = (a3 ∧ a2)
n(a4 ∧ a2)

(n2).

Furthermore a−1
3 ∧ an2 = (a4 ∧ a2)

−(n2)(a3 ∧ a2)
−n, which implies that

a−1
3 ∧aα−1

2 = (a4∧a2)
−(α−1

2 )(a3∧a2)
1−α. On the other hand a−1

3 ∧aα−1
2 =

a−1
3 ∧ [a2, a1] = (a2 ∧ a4)

α−1(a4 ∧ a1). So the claim holds by equating
the last two equalities. Therefore G ∧ G = ⟨a4 ∧ a2, a4 ∧ a1, a2 ∧ a1⟩.
The epimorphism G ∧ G −→ G′ implies that a4 ∧ a1 and a2 ∧ a1 are
non-trivial independent generators whose orders are divided by p. On the
other hand ap4 ∧ a1 = (a4 ∧ a1)

p = 1 and ap2 ∧ a1 = (a2 ∧ a1)
p = 1. Hence

|a4 ∧ a1| = |a2 ∧ a1| = p. As [a4 ∧ a1, a2 ∧ a1] = ⟨a4 ∧ a2⟩ = M(G), then
G ∧G ∼= E1

p3
.

Assume G is of type (23) and M(G) ∼= Cp. So |G ∧ G| = p3. Put
Z = ⟨a⟩ ⩽ Z(G). Since (G/Z)′ has the cyclic complement (G/Z)ab ∼= Cq,
then G/Z ⊗ G/Z ∼= (G/Z ∧ G/Z) × Cq by [5, Proposition 8]. On the
other hand it follows from [12, Theorem 2.5.5] that M(G/Z) ∼= Cp. Hence
[8, Theorem C] yields that G/Z ∧ G/Z ∼= E1

p3
so that G/Z ∧ G/Z ∼=

G ∧G ∼= E1
p3

.
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Assume G is of type (15). Then by [11, Proposition 3.2], either M(G) ∼=
1 when 1 ⩽ i ⩽ q − 2 or M(G) ∼= Cp when i = q − 1. If M(G) ∼= 1, then
G∧G ∼= Cp2 ×Cp. In the case M(G) ∼= Cp, őrst observe by [11, Corollary
3.4] that |G ⊗ G| = p4q. Also, [11, Proposition 2.4] and exact sequence
1 → J2(G) → G ⊗ G → G′ → 1 show that J2(G) ∼= Cp × Cq. Since
G′ is abelian, we also have (G ⊗ G)′ ⊆ J2(G). From the presentation
of G, we őnd that a ⊗ b and d ⊗ d belong to J2(G), which imply that
J2(G) = ⟨a ⊗ b⟩ × ⟨d ⊗ d⟩, as |J2(G)| = pq. Thus |a ⊗ b| = p. On the
other hand, from the natural epimorphism π : G ⊗ G → Gab ⊗ Gab, we
have |kerπ| = p4 and (G ⊗ G)′ ⊆ kerπ. Hence |(G ⊗ G)′| | p4. Since
(G ⊗ G)′ ⊆ J2(G), we also get |(G ⊗ G)′| | pq, from which it follows
that |(G ⊗ G)′| | p. Consequently we have (G ⊗ G)′ = ⟨a ⊗ b⟩ ∼= Cp. As
every element g in G may be presented by g = arbsdt for some integers
r, s, t, then one can easily show that G∧G = ⟨a∧ b, b∧ d, a∧ d⟩. Now the
epimorphism k′ : G ∧G −→ G′ implies that p2 | |a ∧ d|. Also it follows by
induction on any integer n that an ∧ d = (a ∧ d)n. So |a ∧ d| | p2 whence
|a ∧ d| = p2. Similarly |b ∧ d| = p. Now from the fact that G ∧ G is a
nonabelian group of order p4, it follows that G ∧G ∼= Φ2(211)c (see [10]).

Assume G is of type (18). Then by [11, Proposition 3.2], M(G) ∼=
1, Cp, C

2
p or C3

p . If M(G) = 1, then G∧G ∼= G′. Suppose that M(G) ∼= Cp.
It is readily seen that |G ∧G| = p4. The polycyclic presentation of G is
as follows:

⟨a1, a2, a3, a4 | a
q
1 = ap2 = ap3 = ap4 = 1, aa12 = aα2 , a

a1
3 = ac33 ,

aa14 = ac44 , aa23 = a3, a
a2
4 = a4, a

a3
4 = a4⟩,

in which c3 = αx mod p and c4 = αy mod p. By Proposition 1 we get

G ∧G = ⟨a2 ∧ a1, a3 ∧ a1, a4 ∧ a1, a3 ∧ a2, a4 ∧ a2, a4 ∧ a3⟩,

and M(G) = ⟨a3 ∧ a2, a4 ∧ a2, a4 ∧ a3⟩. It follows from the epimorphism
G∧G −→ G′ that a2 ∧ a1, a3 ∧ a1 and a4 ∧ a1 are non-trivial independent
generators such that p divides their orders. On the other hand ap2 ∧ a1 =
(a2∧a1)

p = 1, ap3∧a1 = (a3∧a1)
p = 1, and ap4∧a1 = (a4∧a1)

p = 1. Hence
|a2 ∧ a1| = |a3 ∧ a1| = |a4 ∧ a1| = p. Moreover it is shown in [11, proof of
Theorem B] that

(G ∧G)′ = ⟨(a2 ∧ a3)
(α−1)(c3−1), (a2 ∧ a4)

(α−1)(c4−1),

(a3 ∧ a4)
(c3−1)(c4−1)(a2 ∧ a3)

(c4−1)(c3−1

2 )⟩,

and consequently (G ∧ G)′ = M(G). Therefore by applying [10] we
conclude that G ∧ G ∼= Φ2(1

4). For the case M(G) ∼= C2
p , as (G ∧
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G)/Z(G∧G) is abelian group of order p3 and by using [10], likewise above
we deduce that G∧G ∼= Φ4(1

5). Finally, if M(G) ∼= C3
p , the result follows

by a same method.
Assume G is of type (25). Then from [11, Proposition 3.2] we have

M(G) ∼= 1, Cp, C
2
p or C3

p . By a same argument as for the group (18) we
can show that G ∧G ∼= C3

p , Φ2(1
4), Φ4(1

5) or Φ11(1
6), respectively (for

more details see the proof of Theorem B in [11]). Note that the polycyclic
presentation of G is as follows:

⟨a1, a2, a3, a4 | a
q
1 = ap2 = ap3 = ap4 = 1, aa12 = a3, a

a1
3 = a4,

aa14 = a2a
s
3a

t
4, a

a2
3 = a3, a

a2
4 = a4, a

a3
4 = a4⟩,

where s = −λ−1 − λ−p − λ−p2 mod p and t = λ+ λp + λp2 mod p.
For the group (22) the result follows similarly. Here the polycyclic

presentation of G is as follows:

⟨a1, a2, a3, a4 | a
q
1 = ap2 = ap3 = ap4 = 1, aa12 = ac32 , aa13 = ac23 ,

aa14 = aα4 , a
a2
3 = a3a4, a

a2
4 = a4, a

a3
4 = a4⟩,

in which c3 = αq+1−x mod p and c2 = αx mod p.

Now we are ready to compute the exterior centers of all the groups in
Theorem 1, and then determine those that are capable.

Theorem 2. Let G be a nonabelian group of order p3q, where p and q
are distinct prime numbers and p > 2. Then

Z∧(G) ∼=



































Cpq, if G is of type (1)

Cq, if G is of type (2)

Cp, if G is any group of types (4),
(5), (7), (9), (14), (17), (20),
(23) or (24)

Cp2 , if G is of type (3) or (13)

In other cases, Z∧(G) = 1.

Proof. Note that if M(G) = 1, then Z∧(G) = Z(G). So for groups of types
(1), (3), (7), (9), (11), (12), (13), (14), (19), (20) or (24) the result follows
easily. Assume G is of type (2). Then Z(G) = ⟨a, d⟩. By Proposition 2,
G ∧ G = ⟨a ∧ b, a ∧ c, b ∧ c⟩, which implies that a /∈ Z∧(G), whence
Z∧(G) = ⟨d⟩ ∼= Cq. If G is of type (4), then Z(G) = ⟨a⟩ ∼= Cp2 . We claim
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that G∧G = ⟨a∧b, b∧d⟩. First, it can be shown that 1 = a∧bp = (a∧b)p

and 1 = b ∧ dq = (dα−1 ∧ d)q(b ∧ d)q = (b ∧ d)q. Note that di ∧ dj = 1
modulo G ∧G for any integers i, j. On the other hand, the epimorphisms
G ∧ G −→ Gab ∧ Gab and G ∧ G −→ G′ imply that a ∧ b and b ∧ d are
non-trivial generators, respectively. Now, since p and q are coprime, it
follows that these generators are independent, as desired. It shows that
a /∈ Z∧(G). Moreover, by induction on any integer n, we can prove that
an∧ b = a∧ bn. Hence ap∧ b = 1. Also ap∧d = 1, because ap∧d has order
dividing p and q, which implies that Z∧(G) = ⟨ap⟩ ∼= Cp. For group (5),
one can readily show that G ∧G = ⟨a ∧ b, a ∧ d⟩ and Z∧(G) = ⟨ap⟩ ∼= Cp

as same as above.
If G is of type (6), then Z(G) = ⟨a, b⟩. Also by Proposition 2 we have

G ∧G = ⟨a ∧ b, a ∧ c, b ∧ c, c ∧ d⟩,

which implies that a, b /∈ Z∧(G). Thus Z∧(G) = 1. For the type (16), the
result follows by a same method. The exterior square of group (10) is
generated by a ∧ b and a ∧ d. So for any group of types (8) or (10), as
a ∧ b ≠ 1 then Z∧(G) = 1. If G is of type (17), then Z(G) = ⟨a⟩ ∼= Cp.
When M(G) = 1, we have Z∧(G) = Z(G). If M(G) ∼= Cp, it follows
from the generators set of G ∧G described in proof of Proposition 3 that
Z∧(G) = ⟨a⟩. For the group (23) the result follows similarly.

For any group of types (15), (18), (21), (22) and (25), it is clear that
Z(G) = 1. Hence Z∧(G) = 1.

Corollary 1. Let G be a nonabelian group of order p3q, where p and q
are distinct prime numbers and p > 2. Then G is capable if and only if
G is any group of types (6), (8), (10), (11), (12), (15), (16), (18), (19),
(21), (22) or (25).

We now consider the case of unicentral groups. Recall that the uni-
central groups lie at the opposite extreme as the capable groups: a group
G is unicentral if and only if the smallest subgroup N of Z(G) such that
G/N is capable is N = Z(G) [2]; that is, if and only if Z∧(G) = Z(G).

Corollary 2. Let G be a nonabelian group of order p3q, where p and q
are distinct prime numbers and p > 2. Then G is unicentral if and only
if G is any group of types (1), (3), (7), (9), (11), (12), (13), (14), (15),
(17), (18), (19), (20), (21), (22), (23), (24) or (25).

Remark 1. There are three abelian groups of order p3q. It follows from
[2, Proposition 7.3] (see also [14, Proposition 2.6]) that none of them are
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capable. Also the cyclic group Cp3q is the only abelian unicentral group
of order p3q.

Remark 2. The őnal summary table of groups determined by Western [17]
has a group missing in the case that q ≡ 1 (mod p). The following missing
group appears in Western’s analysis in Section 13:

G = ⟨a, b, d | ap
2

= bp = dq = 1, b−1ab = ap+1, a−1da = dα, bd = db⟩
(26)

where α is any primitive root of αp ≡ 1 (mod q). It follows from [11] that
G ∧ G ∼= G′ ∼= Cpq. One could readily seen that Z∧(G) = Z(G) which
implies that G is unicentral.
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